JP5730176B2 - Inverter-integrated electric compressor - Google Patents

Inverter-integrated electric compressor Download PDF

Info

Publication number
JP5730176B2
JP5730176B2 JP2011247972A JP2011247972A JP5730176B2 JP 5730176 B2 JP5730176 B2 JP 5730176B2 JP 2011247972 A JP2011247972 A JP 2011247972A JP 2011247972 A JP2011247972 A JP 2011247972A JP 5730176 B2 JP5730176 B2 JP 5730176B2
Authority
JP
Japan
Prior art keywords
heat
inverter
heat conduction
control circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011247972A
Other languages
Japanese (ja)
Other versions
JP2013106421A (en
Inventor
中野 浩児
浩児 中野
克弘 齊藤
克弘 齊藤
渡邊 恭平
恭平 渡邊
圭史 永坂
圭史 永坂
友貴 一瀬
友貴 一瀬
将人 伊藤
将人 伊藤
洋行 上谷
洋行 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011247972A priority Critical patent/JP5730176B2/en
Publication of JP2013106421A publication Critical patent/JP2013106421A/en
Application granted granted Critical
Publication of JP5730176B2 publication Critical patent/JP5730176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Inverter Devices (AREA)

Description

本発明は、ハウジング外周に設けられるインバータボックスの内部にインバータ装置を設置して構成される、特に車両用空調装置に用いて好適なインバータ一体型電動圧縮機に関するものである。   The present invention relates to an inverter-integrated electric compressor that is particularly suitable for use in a vehicle air conditioner, which is configured by installing an inverter device inside an inverter box provided on the outer periphery of a housing.

近年、電気自動車やハイブリッド自動車、あるいは燃料電池自動車のように、電動機の動力で走行する電動車両の開発および市場への投入が急速に進んでいる。このような電動車両における空調装置の多くは、冷媒を圧縮して送出する圧縮機についても電動機を用いた電動圧縮機が用いられている。   2. Description of the Related Art In recent years, electric vehicles that run on the power of an electric motor, such as electric vehicles, hybrid vehicles, and fuel cell vehicles, have been rapidly developed and introduced into the market. Many of the air conditioners in such an electric vehicle use an electric compressor that uses an electric motor as a compressor that compresses and sends out the refrigerant.

また、内燃機関の動力で走行する自動車の空調装置においても、走行用の内燃機関により電磁クラッチを介して駆動される圧縮機に替え、電磁クラッチの断続に伴うドライバビリティーの低下を改善するため、電動圧縮機が使用されるものがある。   Further, in an air conditioner for an automobile that travels with the power of an internal combustion engine, in order to improve the drivability drop caused by the intermittent connection of the electromagnetic clutch, the compressor is driven by the traveling internal combustion engine via the electromagnetic clutch. Some electric compressors are used.

こうした電動圧縮機としては、圧縮機構および電動機をハウジング内に一体的に内蔵した密閉型電動圧縮機が採用され、さらには、電源から入力される電力を、インバータ装置を介して電動機に供給するようにし、空調負荷に応じて圧縮機の回転数を可変制御できるようにしたものが多く採用されている。   As such an electric compressor, a hermetic electric compressor in which a compression mechanism and an electric motor are integrally incorporated in a housing is adopted, and furthermore, electric power input from a power source is supplied to the electric motor via an inverter device. In many cases, the compressor can be variably controlled in accordance with the air conditioning load.

このようにインバータ装置を介して駆動される電動圧縮機において、インバータ装置を構成する制御回路基板等を、電動圧縮機のハウジング外周に一体成形されたインバータボックス内に収納設置してインバータ装置を電動圧縮機と一体化し、さらに電磁ノイズ抑える平滑コンデンサやコイル等の電気部品を上記インバータボックス内部に収容したものがある。   In the electric compressor driven through the inverter device in this way, the control circuit board or the like constituting the inverter device is housed and installed in an inverter box integrally formed on the outer periphery of the housing of the electric compressor to electrically drive the inverter device. There is one in which electric parts such as a smoothing capacitor and a coil that are integrated with a compressor and further suppress electromagnetic noise are accommodated in the inverter box.

この場合、インバータ装置のスイッチング素子(IGBT,Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)のような発熱性の高い電気部品を冷却する必要がある。インバータボックスは完全な密閉構造であり、外部から冷却空気等を導入できないため、例えば特許文献1〜2に開示されているように、インバータボックスの内部にハウジングの外壁を構成する放熱用平面部(ヒートシンク)を形成し、ここに発熱電気部品を当接させて、ハウジング内部を流れる冷媒の冷熱により電気部品の熱を放熱および冷却している。   In this case, it is necessary to cool a highly exothermic electrical component such as a switching element (IGBT, Insulated Gate Bipolar Transistor) of the inverter device. Since the inverter box has a completely sealed structure and cooling air or the like cannot be introduced from the outside, for example, as disclosed in Patent Documents 1 and 2, a heat radiating plane portion that constitutes the outer wall of the housing inside the inverter box ( A heat sink) is formed, and a heat generating electric component is brought into contact therewith, and the heat of the electric component is radiated and cooled by the cold heat of the refrigerant flowing inside the housing.

特許文献1に記載されているインバータ一体型電動圧縮機は、インバータボックスの底面に放熱用平面部が形成され、この放熱用平面部の上面にIGBT等の発熱電気部品が設置され、その上方にスペースを介して制御回路基板が平行に設置され、発熱電気部品から上方に延びるピン端子が制御回路基板にハンダ付けされている。   In the inverter-integrated electric compressor described in Patent Document 1, a flat surface for heat dissipation is formed on the bottom surface of the inverter box, and an exothermic electrical component such as IGBT is installed on the top surface of the flat surface for heat dissipation. A control circuit board is installed in parallel through a space, and pin terminals extending upward from the heat generating electrical components are soldered to the control circuit board.

また、特許文献2に記載されているインバータ一体型電動圧縮機は、インバータボックスの底面に形成された放熱用平面部の上に金属基板が固定され、この金属基板の上に発熱電気部品が搭載され、この発熱電気部品の上方にスペースを介して制御回路基板が平行に設置されており、発熱電気部品の熱が金属基板を経て放熱用平面部側に放熱されるようになっている。   Further, in the inverter-integrated electric compressor described in Patent Document 2, a metal substrate is fixed on a heat radiation flat portion formed on the bottom surface of the inverter box, and a heat generating electrical component is mounted on the metal substrate. In addition, a control circuit board is installed in parallel above the heat generating electrical component via a space, and heat of the heat generating electrical component is radiated to the heat radiation flat portion side through the metal substrate.

特開2008−131792号公報JP 2008-131792 A 特開2009−207310号公報JP 2009-207310 A

このような従来のインバータ一体型電動圧縮機は、いずれも放熱用平面部側に熱を放熱するように設置された発熱電気部品と、制御回路基板との間にスペースが設けられており、このスペースによってインバータ装置の高さ寸法が大きくなり、ひいてはインバータ一体型電動圧縮機の大型化に繋がっていた。発熱電気部品と制御回路基板との間にスペースが設けられるのは、発熱電気部品から制御回路基板に向かって延びるピン端子を制御回路基板にハンダ付けし易くするためと、ピン端子に繰り返し加わる熱応力や振動等によってピン端子が金属疲労を起こさないように、ピン端子に所定の長さを付与するためである。   In such conventional inverter-integrated electric compressors, a space is provided between the heat generating electrical component installed to dissipate heat on the heat radiation flat surface side and the control circuit board. The height of the inverter device was increased depending on the space, which led to an increase in the size of the inverter-integrated electric compressor. The space is provided between the heat generating electrical component and the control circuit board in order to make it easy to solder the pin terminal extending from the heat generating electrical component toward the control circuit board to the control circuit board, and to repeatedly apply heat to the pin terminal. This is to give the pin terminal a predetermined length so that the pin terminal does not cause metal fatigue due to stress or vibration.

ところで、最近実用化がなされた銅インレイ基板と呼ばれる熱伝導性基板がある(例えば特開2011−159727号公報参照)。これは、絶縁体からなる板状の基板本体と、この基板本体の厚さ方向に貫通充填された、銅等の良熱伝導体からなる熱伝導貫通部材とを備えてなる基板である。この熱伝導性基板をインバータの制御回路基板として用いれば、制御回路基板の熱伝導貫通部材の一方の面にスペースを空けずに発熱電気部品を搭載できる。また、熱伝導貫通部材の他方の面をインバータボックス側の放熱用平面部に近接させて発熱電気部品の冷却性を向上させることができる。   Incidentally, there is a thermally conductive substrate called a copper inlay substrate that has recently been put into practical use (see, for example, Japanese Patent Application Laid-Open No. 2011-159727). This is a substrate provided with a plate-like substrate body made of an insulator and a heat conduction penetrating member made of a good heat conductor such as copper and filled in the thickness direction of the substrate body. If this thermally conductive substrate is used as a control circuit substrate of an inverter, a heat generating electrical component can be mounted without leaving a space on one surface of the thermally conductive penetrating member of the control circuit substrate. Moreover, the other surface of the heat conduction penetrating member can be brought close to the heat radiation flat portion on the inverter box side to improve the cooling performance of the heat generating electrical component.

この構成によれば、熱伝導性基板である制御回路基板が放熱用平面部の上に多大なスペースを介すことなく載置され、さらにこの制御回路基板の上に発熱電気部品がスペースを介さずに設置されるため、放熱用平面部と制御回路基板と発熱電気部品との間に無駄なスペースが存在せず、これによりインバータ装置の高さ方向の寸法を格段に小型化することができる。しかしながら、この熱伝導性基板をインバータ一体型電動圧縮機の制御回路基板として用いるには、以下の課題が残されている。   According to this configuration, the control circuit board, which is a heat conductive board, is placed on the heat radiation flat portion without a large space, and further, the heat generating electrical component is placed on the control circuit board with a space. Therefore, there is no useless space between the heat radiation flat part, the control circuit board, and the heat generating electrical parts, and thus the size of the inverter device in the height direction can be remarkably reduced. . However, in order to use this thermally conductive substrate as a control circuit substrate for an inverter-integrated electric compressor, the following problems remain.

即ち、高電圧・高電流が流れるインバータ装置においては、制御回路基板と放熱用平面部と間の絶縁性確保の面から、両者の間に絶縁部材を介してある一定の絶縁距離を確保する必要がある。しかし、この絶縁距離を大きくし過ぎると、発熱電気部品の冷却性が損なわれてしまう。そこで、絶縁性と冷却性とを両立させることができる絶縁距離を算出する必要がある。   In other words, in an inverter device through which a high voltage and a high current flow, it is necessary to ensure a certain insulation distance between the control circuit board and the heat radiation flat part through an insulating member between them in order to ensure insulation. There is. However, if the insulation distance is too large, the cooling performance of the heat generating electrical components is impaired. Therefore, it is necessary to calculate an insulation distance that can achieve both insulation and cooling.

一方、熱伝導性基板は、その基板本体の両面から熱伝導貫通部材が僅かに突出しており、他部品との接触性の向上が図られているが、その製法上から熱伝導貫通部材の突出量がばらつく傾向がある。このように熱伝導貫通部材の突出量がばらつくと、上述の絶縁距離を算出することが困難になる。この熱伝導貫通部材の突出量のばらつきに左右されることなく、絶縁性と冷却性とを両立させることが課題となっている。   On the other hand, in the heat conductive substrate, the heat conduction penetrating member slightly protrudes from both surfaces of the substrate body, and the contact with other parts is improved. However, the heat conductive penetrating member protrudes from the manufacturing method. The amount tends to vary. Thus, when the protrusion amount of the heat conduction penetrating member varies, it becomes difficult to calculate the above-described insulation distance. The problem is to achieve both insulation and cooling without being affected by variations in the protruding amount of the heat conduction penetrating member.

本発明は、このような事情に鑑みてなされたものであって、インバータ装置を構成する制御回路基板として熱伝導性基板を実用化し、制御回路基板に搭載される発熱電気部品の冷却性と絶縁性とを両立させ、且つインバータ装置の小型軽量化、低コスト化、組立ばらつきの低減、組立工数の低減を図ることのできるインバータ一体型電動圧縮機を提供することを目的とする。   The present invention has been made in view of such circumstances, and a thermal conductive substrate has been put to practical use as a control circuit substrate constituting an inverter device, and cooling performance and insulation of a heat-generating electrical component mounted on the control circuit substrate have been made. It is an object of the present invention to provide an inverter-integrated electric compressor capable of achieving both high performance and reducing the size and weight of an inverter device, reducing costs, reducing variation in assembly, and reducing the number of assembly steps.

上記目的を達成するために、本発明は以下の手段を提供する。
即ち、本発明に係るインバータ一体型電動圧縮機は、冷媒の圧縮機構および該圧縮機構を駆動する電動機が内蔵されるハウジングの外面に設けられたインバータボックスと、制御回路基板を有して前記インバータボックス内に収納設置されるインバータ装置と、前記制御回路基板に搭載されて前記インバータ装置を構成する発熱電気部品と、を備え、前記インバータボックスの内部に、前記ハウジングの外壁を構成する放熱用平面部が形成され、前記発熱電気部品の熱を、前記放熱用平面部側に放熱させることによって冷却するように構成されたインバータ一体型電動圧縮機であって、前記制御回路基板を熱伝導性基板とし、該制御回路基板の一方の面に前記発熱電気部品を熱伝達可能に設置し、該制御回路基板の他方の面を前記放熱用平面部に対し放熱空間を介して対向させ、前記放熱空間内に柔軟で電気絶縁性および熱伝導性のある熱伝導充填部材を充填し、前記制御回路基板は、絶縁体からなる基板本体と、前記基板本体の厚さ方向に貫通充填された良熱伝導体からなる熱伝導貫通部材と、を備えてなり、前記熱伝導貫通部材の厚みは、前記基板本体の厚みよりも大きく設定され、前記熱伝導貫通部材の一方の端面が前記発熱電気部品に熱伝達可能に接触し、前記熱伝導貫通部材の他方の端面が前記基板本体から突出して前記熱伝導充填部材に接触し、前記放熱空間の絶縁距離をdとした場合、前記絶縁距離dは下記の式から求められることを特徴とする。
min /β+d 1_max ≦d≦R max ・α・S+d 1_min
但し、d は制御回路基板からの熱伝導貫通部材の突き出し量、Sは熱伝導貫通部材の放熱用平面部側への放熱面積、Rは熱伝導充填部材の熱抵抗、Vはインバータ装置に必要な熱伝導充填部材の絶縁電圧値、αは熱伝導充填部材の熱伝導率、βは熱伝導充填部材の絶縁破壊電圧。
In order to achieve the above object, the present invention provides the following means.
That is, the inverter-integrated electric compressor according to the present invention includes a refrigerant compression mechanism, an inverter box provided on an outer surface of a housing in which the electric motor that drives the compression mechanism is built, and a control circuit board. An inverter device housed and installed in the box; and a heat generating electrical component mounted on the control circuit board and constituting the inverter device; and a heat radiation plane constituting the outer wall of the housing inside the inverter box And an inverter-integrated electric compressor configured to cool the heat generating electrical component by radiating the heat of the heat-generating electrical component to the heat-dissipating flat part, wherein the control circuit board is a thermally conductive board. The heat generating electrical component is installed on one side of the control circuit board so that heat can be transferred, and the other side of the control circuit board is placed on the heat radiation plane. Are opposed to each other via the heat dissipation space to, said flexible, electrically insulating and thermally conductive is heat conductive filler member to the heat radiating space filling, the control circuit board includes a substrate main body made of an insulating material, the substrate A heat conduction penetrating member made of a good heat conductor that is through-filled in the thickness direction of the main body, and the thickness of the heat conduction penetrating member is set larger than the thickness of the substrate main body, and the heat conduction One end surface of the penetrating member is in contact with the heat-generating electrical component so that heat can be transferred, and the other end surface of the heat conducting penetrating member protrudes from the substrate body and contacts the heat conducting filling member, and the insulation distance of the heat dissipation space Is d, the insulation distance d is obtained from the following equation .
V min / β + d 1_max ≦ d ≦ R max · α · S + d 1_min
However, the protrusion amount of heat conduction through member from d 1 is the control circuit board, S is the heat dissipation area of the heat-dissipating flat portion of the heat conduction through member, R represents the thermal resistance of the heat conducting filler member, V is the inverter device The necessary insulation voltage value of the heat conduction filling member, α is the heat conductivity of the heat conduction filling member, and β is the dielectric breakdown voltage of the heat conduction filling member.

上記構成によれば、熱伝導性基板である制御回路基板の一方の面に発熱電気部品が熱伝達可能に設置され、制御回路基板の他方の面が柔軟な熱伝導充填部材を介して放熱用平面部に対向する。柔軟な熱伝導充填部材は制御回路基板の他方の面と放熱用平面部に隙間無く密着するため、制御回路基板の一方の面に設置された発熱電気部品の熱が熱伝導充填部材を経て放熱用平面部側に良好に放熱される。このため、発熱電気部品の放熱性を高めることができる。しかも、熱伝導充填部材は電気絶縁性があるため、発熱電気部品と放熱用平面部との間の絶縁性を高めることができる。したがって、発熱電気部品の絶縁性と冷却性とを両立させることができる。   According to the above configuration, the heat generating electrical component is installed on one side of the control circuit board, which is a heat conductive board, so that heat can be transferred, and the other side of the control circuit board is for heat dissipation via the flexible heat conduction filling member. Opposite the flat part. The flexible heat conduction filling member is in close contact with the other surface of the control circuit board and the flat surface for heat dissipation without any gap, so that the heat of the heat generating electrical components installed on one side of the control circuit board is radiated through the heat conduction filling member. Heat is dissipated well to the flat surface side. For this reason, the heat dissipation of a heat-generating electrical component can be improved. In addition, since the heat conductive filling member has electrical insulation, the insulation between the heat generating electrical component and the heat radiation flat portion can be enhanced. Therefore, it is possible to achieve both insulating properties and cooling properties of the heat generating electrical component.

さらに、制御回路基板と放熱用平面部との間に形成した放熱空間に電気絶縁性のある熱伝導充填部材を充填することにより、放熱空間の絶縁距離、即ち制御回路基板と放熱用平面部との間隔を狭めることができる。このため、制御回路基板が収容されるインバータボックスの高さ方向の寸法を小さくすることができ、インバータ装置の小型軽量化を図ることができる。   Furthermore, by filling the heat radiation space formed between the control circuit board and the heat radiation flat portion with an electrically insulating heat conductive filling member, the insulation distance of the heat radiation space, that is, the control circuit board and the heat radiation flat portion, Can be narrowed. For this reason, the dimension of the height direction of the inverter box in which the control circuit board is accommodated can be reduced, and the inverter device can be reduced in size and weight.

しかも、熱伝導貫通部材と放熱用平面部との間に柔軟な熱伝導充填部材が介在するため、熱伝導貫通部材の基板本体からの突出量にばらつきがあっても、このばらつきが熱伝導充填部材の柔軟性により吸収される。このため、熱伝導貫通部材の突出量のばらつきに拘わらず、発熱電気部品の熱を放熱用平面部側に良好に放熱させることができる。したがって、基板本体に熱伝導貫通部材が設けられた構成の熱伝導性基板を、インバータ装置の制御回路基板として実用化することができる。
さらに、上記構成によれば、放熱空間の絶縁距離dが過大になって制御回路基板に搭載される発熱電気部品の冷却性が低下したり、逆に絶縁距離dが過小になって発熱電気部品の絶縁性が低下したりすることを防止でき、発熱電気部品の冷却性と絶縁性とを最適な状態で両立させることができる。
In addition, since a flexible heat conduction filling member is interposed between the heat conduction penetrating member and the heat radiation flat portion, even if there is a variation in the amount of protrusion of the heat conduction penetrating member from the substrate body, this variation is not reduced. Absorbed by the flexibility of the member. For this reason, the heat of the heat generating electrical component can be radiated favorably to the heat radiating flat portion side regardless of variations in the protruding amount of the heat conduction penetrating member. Therefore, a thermally conductive substrate having a configuration in which a thermally conductive penetrating member is provided on the substrate body can be put into practical use as a control circuit substrate of an inverter device.
Further, according to the above configuration, the insulation distance d of the heat radiation space becomes excessive, and the cooling performance of the heat generating electrical component mounted on the control circuit board is lowered, or conversely, the insulation distance d becomes excessively small and the heat generating electrical component is reduced. It is possible to prevent the insulation property of the heat generating element from being lowered, and to achieve both the cooling property and the insulation property of the heat generating electrical component in an optimum state.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記熱伝導充填部材は、当初は流動性があり、前記放熱空間内に充填された後に硬化して弾性体となる性質であることを特徴とする。 The inverter-integrated electric compressor according to the present invention, prior Symbol of state-like, the thermally conductive filler member initially has fluidity, and the elastic body is cured after being filled into the heat dissipating space It is the characteristic which becomes.

上記構成によれば、熱伝導充填部材がその充填時には流動性を有するため、例えば制御回路基板を構成する熱伝導性基板の、基板本体の裏面から突出する複数の熱伝導貫通部材の突出量にばらつきがあっても、これら全ての熱伝導貫通部材と、基板本体と、放熱用平面部とに熱伝導充填部材が隙間無く接触した状態で充填される。その後、熱伝導充填部材が硬化することで、上記充填状態が維持される。このため、制御回路基板に搭載される発熱電気部品の冷却性と絶縁性を高い状態で維持することができる。   According to the above configuration, since the heat conductive filling member has fluidity at the time of filling, for example, the amount of protrusion of the plurality of heat conductive penetrating members protruding from the back surface of the substrate main body of the heat conductive substrate constituting the control circuit board. Even if there is a variation, the heat conduction filling member is filled in a state where there is no gap between all these heat conduction penetrating members, the substrate body, and the heat radiation flat portion. Then, the said filling state is maintained because a heat conductive filling member hardens | cures. For this reason, the cooling property and insulation property of the heat generating electrical component mounted on the control circuit board can be maintained in a high state.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記制御回路基板に、前記放熱空間に連通する貫通孔が穿設されていることを特徴とする。 The inverter-integrated electric compressor according to the present invention, prior SL aspect, the control circuit board, a through hole communicating with the heat dissipation space, characterized in that it is bored.

上記構成によれば、放熱用平面部に熱伝導充填部材を塗布した後、その上に制御回路基板を設置した際に、放熱空間内に残留する空気が、制御回路基板に形成された貫通孔から排出される。このため、制御回路基板の裏面に熱伝導充填部材が隙間無く接触することができ、これによって制御回路基板に搭載される発熱電気部品の冷却性を良好に保つことができる。さらに、貫通孔から余剰な熱伝導充填部材が出てくるのを組立作業者が目視して確認できるため、熱伝導充填部材の充填量が足りずに放熱空間内に隙間が発生することを効果的に防止することができ、確実な冷却性を得るとともに、組立のばらつきを排除することができる。   According to the above configuration, when the heat conduction filling member is applied to the heat radiation flat portion and then the control circuit board is installed thereon, the air remaining in the heat radiation space is formed in the through hole formed in the control circuit board. Discharged from. For this reason, the heat conduction filling member can be brought into contact with the back surface of the control circuit board without any gap, and thereby the cooling property of the heat generating electrical components mounted on the control circuit board can be kept good. Furthermore, since the assembly operator can visually confirm that an excessive heat conductive filling member comes out from the through hole, it is effective that a gap is generated in the heat radiation space due to insufficient filling amount of the heat conductive filling member. Therefore, reliable cooling can be obtained and variations in assembly can be eliminated.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記放熱空間は、前記制御回路基板に前記発熱電気部品が搭載されている付近にのみ形成されていることを特徴とする。 The inverter-integrated electric compressor according to the present invention, prior SL aspect, the heat radiation space, and wherein the heat generating electrical component to the control circuit board is formed only in the vicinity mounted To do.

上記構成によれば、熱伝導充填部材の充填量を必要最低量にできるため、インバータ装置の低コスト化に貢献することができる。   According to the said structure, since the filling amount of a heat conductive filling member can be made into the minimum required amount, it can contribute to the cost reduction of an inverter apparatus.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記放熱用平面部と前記制御回路基板との間にスペーサ部材が介装され、前記制御回路基板に前記発熱電気部品が搭載されている部位では前記スペーサ部材が省略されることによって前記放熱空間が形成されていることを特徴とする。 The inverter-integrated electric compressor according to the present invention, prior SL aspect, the spacer member is interposed between the control circuit board and the heat-dissipating flat portion, the heat generating electrical component to the control circuit board The heat radiation space is formed by omitting the spacer member in a portion where the is mounted.

上記構成によれば、制御回路基板に発熱電気部品が搭載されている部位のみスペーサ部材を省略することによって放熱空間を形成し、熱伝導充填部材の充填量を必要最低量にするとともに、放熱用平面部の面形状を平坦にして切削加工を容易にし、インバータ装置およびインバータ一体型電動圧縮機の低コスト化を図ることができる。なお、スペーサ部材を板状に形成し、発熱電気部品が設けられる位置のみ穴を開ければ、簡単に形成することができる。   According to the above configuration, the heat radiation space is formed by omitting the spacer member only in the part where the heat generating electrical component is mounted on the control circuit board, the amount of the heat conductive filling member is reduced to the necessary minimum amount, and for heat radiation. The surface shape of the flat portion is made flat to facilitate cutting, and the cost of the inverter device and the inverter-integrated electric compressor can be reduced. In addition, if a spacer member is formed in plate shape and a hole is opened only in the position where a heat-generating electrical component is provided, it can be formed easily.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記放熱用平面部の、前記熱伝導貫通部材と対向する部位に、前記熱伝導貫通部材の端部形状に沿う凹部形状を形成したことを特徴とする。 The recess inverter-integrated electric compressor according to the present invention, prior SL aspect, the heat-dissipating flat portion, the portion facing the thermal conductive penetrating member, along the edge shape of the heat conduction through member It is characterized by forming a shape.

上記構成によれば、熱伝導貫通部材から発せられる熱を、放熱用平面部に形成された凹部形状に広い面積で受熱させることができるため、制御回路基板に搭載された発熱電気部品の冷却性を向上させることができる。また、上記凹部形状の深さ寸法を大きくすることにより、熱伝導貫通部材と放熱用平面部との距離を広げて発熱電気部品の絶縁性を確保しつつ、放熱空間の絶縁距離を小さくしてインバータボックスの高さ方向の寸法を小さくし、インバータ装置の小型軽量化を図ることができる。   According to the above configuration, the heat generated from the heat conduction penetrating member can be received in a concave shape formed in the flat surface for heat dissipation over a wide area, so that the cooling performance of the heat generating electrical components mounted on the control circuit board is improved. Can be improved. In addition, by increasing the depth of the concave shape, the distance between the heat conduction penetrating member and the heat radiation flat portion is increased to ensure the insulation of the heat generating electrical components, while the insulation distance of the heat radiation space is reduced. By reducing the height dimension of the inverter box, the inverter device can be reduced in size and weight.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記熱伝導貫通部材の、前記放熱用平面部と対向する面に凹凸形状を設けたことを特徴とする。 Further, the present invention integrated-inverter electric compressor according to the prior SL aspect, the heat conduction through member, characterized by providing the heat-dissipating flat portion and the surface facing the concave-convex shape.

上記構成によれば、熱伝導貫通部材の、放熱用平面部と対向する面の表面積が大きくなり、熱伝導充填部材と広い面積で接することができるため、熱伝導貫通部材の反対側に設置された発熱電気部品の放熱性、即ち冷却性を向上させることができる。   According to the above configuration, the surface area of the heat conduction penetrating member facing the heat radiation flat portion is increased and can be in contact with the heat conduction filling member over a wide area. In addition, the heat dissipation property, that is, the cooling property of the heat generating electrical component can be improved.

また、本発明に係るインバータ一体型電動圧縮機は、前記の態様において、前記熱伝導充填部材は、柔軟なシート状であることを特徴とする。 The inverter-integrated electric compressor according to the present invention, prior SL aspect, the thermally conductive filler member may be a flexible sheet.

上記構成によれば、熱伝導充填部材を放熱空間に流し込むことなく設置することができるため、インバータ装置の組立工数の低減を図ることができ、インバータ一体型電動圧縮機の製造コストダウンにも貢献することができる。   According to the above configuration, since the heat conduction filling member can be installed without flowing into the heat radiation space, it is possible to reduce the number of assembling steps of the inverter device and contribute to the reduction in the manufacturing cost of the inverter-integrated electric compressor. can do.

以上のように、本発明に係るインバータ一体型電動圧縮機によれば、インバータ装置を構成する制御回路基板として熱伝導性基板を実用化し、制御回路基板に搭載される発熱電気部品の冷却性と絶縁性とを両立させ、且つインバータ装置の小型軽量化、低コスト化、組立ばらつきの低減、組立工数の低減を図ることができる。   As described above, according to the inverter-integrated electric compressor according to the present invention, the heat conductive substrate is put into practical use as the control circuit board constituting the inverter device, and the cooling performance of the heat generating electrical components mounted on the control circuit board is improved. Insulating properties can be achieved, and the inverter device can be reduced in size, weight, cost, assembly variation, and assembly man-hours.

本発明の第1実施形態であるインバータ一体型電動圧縮機の概略構成を説明する縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view explaining schematic structure of the inverter integrated electric compressor which is 1st Embodiment of this invention. 図1のII部を拡大したインバータ装置の縦断面図である。It is the longitudinal cross-sectional view of the inverter apparatus which expanded the II section of FIG. 図2のIII−III線に沿うインバータ装置の縦断面により、本発明の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of this invention by the longitudinal cross-section of the inverter apparatus which follows the III-III line of FIG. インバータ装置の斜視図である。It is a perspective view of an inverter apparatus. 図3のV部を拡大した熱伝導貫通部材付近の縦断面図である。It is the longitudinal cross-sectional view of the heat conduction penetration member vicinity which expanded the V section of FIG. 本発明の第2実施形態を示すインバータ装置の縦断面図である。It is a longitudinal cross-sectional view of the inverter apparatus which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示すインバータ装置の縦断面図である。It is a longitudinal cross-sectional view of the inverter apparatus which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示すインバータ装置の縦断面図である。It is a longitudinal cross-sectional view of the inverter apparatus which shows 4th Embodiment of this invention. 本発明の第5実施形態を示す熱伝導貫通部材付近の縦断面図である。It is a longitudinal cross-sectional view of the heat conduction penetration member vicinity which shows 5th Embodiment of this invention. 本発明の第6実施形態を示す熱伝導貫通部材付近の縦断面図である。It is a longitudinal cross-sectional view of the heat conduction penetrating member vicinity which shows 6th Embodiment of this invention. 本発明の第7実施形態を示すインバータ装置の縦断面図である。It is a longitudinal cross-sectional view of the inverter apparatus which shows 7th Embodiment of this invention. 本発明の第8実施形態を示すインバータ一体型電動圧縮機の概略構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining schematic structure of the inverter integrated electric compressor which shows 8th Embodiment of this invention.

以下に、本発明の複数の実施形態について、図1〜図12を参照しながら説明する。
〔第1実施形態〕
図1〜図5は本発明の第1実施形態を示しており、図1は本発明の第1実施形態であるインバータ一体型電動圧縮機の概略構成を説明する縦断面図である。このインバータ一体型電動圧縮機1は、車両用空気調和機に用いられる圧縮機であって、インバータ装置により駆動回転数が制御されるものである。
A plurality of embodiments of the present invention will be described below with reference to FIGS.
[First Embodiment]
FIGS. 1-5 has shown 1st Embodiment of this invention, FIG. 1 is a longitudinal cross-sectional view explaining schematic structure of the inverter integrated electric compressor which is 1st Embodiment of this invention. The inverter-integrated electric compressor 1 is a compressor used in a vehicle air conditioner, and the drive rotation speed is controlled by an inverter device.

インバータ一体型電動圧縮機1は、その外殻をなすアルミニウム合金製のハウジング2を有し、このハウジング2は、圧縮機側ハウジング3と電動機側ハウジング4とを、その間に軸受ハウジング5を挟んでボルト6により締め付け固定して構成されている。   The inverter-integrated electric compressor 1 has an aluminum alloy housing 2 that forms an outer shell. The housing 2 includes a compressor side housing 3 and an electric motor side housing 4 with a bearing housing 5 interposed therebetween. The bolt 6 is fastened and fixed.

圧縮機側ハウジング3内には、公知のスクロール圧縮機構8が組み込まれる。また、電動機側ハウジング4内には、電動機10を構成するステータ11およびロータ12が組み込まれる。このスクロール圧縮機構8と電動機10は、主軸14を介して連結され、電動機10を回転させることにより、スクロール圧縮機構8が駆動されるよう構成されている。主軸14は、軸受ハウジング5に保持されたメインベアリング15と、電動機側ハウジング4の端部に保持されたサブベアリング16とによって回転自在に軸支されている。   A known scroll compression mechanism 8 is incorporated in the compressor-side housing 3. Further, a stator 11 and a rotor 12 constituting the electric motor 10 are incorporated in the electric motor side housing 4. The scroll compression mechanism 8 and the electric motor 10 are connected via a main shaft 14, and the scroll compression mechanism 8 is driven by rotating the electric motor 10. The main shaft 14 is rotatably supported by a main bearing 15 held by the bearing housing 5 and a sub-bearing 16 held by the end portion of the motor-side housing 4.

また、電動機側ハウジング4の端部には、図示しない冷媒吸入口が設けられており、該冷媒吸入口には冷凍サイクルの吸入配管が接続され、低圧の冷媒ガスが電動機側ハウジング4内に吸入されるようになっている。この冷媒ガスは、電動機側ハウジング4内を流通して電動機10を冷却した後にスクロール圧縮機構8に吸い込まれ、そこで圧縮されて高温高圧の冷媒ガスとなり、圧縮機側ハウジング3の端部に設けられている図示しない吐出口から冷凍サイクルの吐出配管へと吐出されるように構成されている。   A refrigerant suction port (not shown) is provided at the end of the motor-side housing 4, and a suction pipe for a refrigeration cycle is connected to the refrigerant suction port so that low-pressure refrigerant gas is sucked into the motor-side housing 4. It has come to be. The refrigerant gas flows through the motor side housing 4 and cools the motor 10, and then is sucked into the scroll compression mechanism 8, where it is compressed into a high-temperature and high-pressure refrigerant gas, and is provided at the end of the compressor side housing 3. It is constituted so that it may discharge from the discharge port which is not illustrated to the discharge piping of a refrigerating cycle.

電動機10は、インバータ装置21を介して駆動され、空調負荷に応じて回転数が可変制御されるものである。この第1実施形態において、インバータ装置21は、ハウジング2の外周、例えばハウジング2の上面に一体形成された平面視で矩形のインバータボックス23の内部に、例えば制御回路基板である下部基板25と上部基板26とが上下に重なるように収納設置されて構成されており、インバータ一体型電動圧縮機1と一体化されている。   The electric motor 10 is driven via the inverter device 21 and the rotation speed is variably controlled according to the air conditioning load. In the first embodiment, the inverter device 21 includes, for example, a lower substrate 25 that is a control circuit board and an upper portion inside a rectangular inverter box 23 that is integrally formed on the outer periphery of the housing 2, for example, the upper surface of the housing 2. The substrate 26 is housed and installed so as to overlap vertically, and is integrated with the inverter-integrated electric compressor 1.

インバータ装置21は、バスバー27、ガラス絶縁端子28、モータ端子29、リード線30等を介して電動機10に電気的に接続されている。なお、本実施形態においては、例えば下部基板25が、後述する多数の発熱性のある電気部品(発熱素子)が搭載されたパワーモジュール基板とされ、上部基板26は、図示しないCPU等の低電圧で動作する素子が搭載されたCPU基板とされている。   The inverter device 21 is electrically connected to the electric motor 10 through a bus bar 27, a glass insulating terminal 28, a motor terminal 29, a lead wire 30, and the like. In the present embodiment, for example, the lower substrate 25 is a power module substrate on which a large number of exothermic electrical components (heating elements) described later are mounted, and the upper substrate 26 is a low voltage such as a CPU (not shown). It is set as the CPU board | substrate with which the element which operate | moves is mounted.

インバータボックス23は、例えば電動機側ハウジング4の上部に周壁23aが一体に形成されて、その上部開口部が蓋部材23bにより液密的に閉塞される構造である。インバータボックス23の深さは、その内部に下部基板25と上部基板26とを上下に所定間隔を保って収納設置でき、さらに下部基板25の上面に背の高い平滑コンデンサ37等の電気部品を設置可能な深さとされている。   The inverter box 23 has a structure in which, for example, a peripheral wall 23a is integrally formed on the upper portion of the motor-side housing 4, and the upper opening is liquid-tightly closed by a lid member 23b. The depth of the inverter box 23 is such that the lower substrate 25 and the upper substrate 26 can be accommodated and installed at a predetermined interval in the interior, and electrical components such as a tall smoothing capacitor 37 are installed on the upper surface of the lower substrate 25. It is possible depth.

図2にも示すように、インバータボックス23の底部は電動機側ハウジング4の外壁を構成しており、ここには下部基板25と上部基板26に対して平行な放熱用平面部31(ヒートシンク)が形成されている。一方、下部基板25は熱伝導性基板であり、その一方の面(ここでは上面)に、平滑コンデンサ37と、コイル38と、6個のスイッチング素子(IGBT)39といった発熱電気部品が下部基板25に対して熱伝達可能に搭載されている。平滑コンデンサ37とコイル38は電磁ノイズを抑制するものである。   As shown in FIG. 2, the bottom of the inverter box 23 constitutes the outer wall of the motor-side housing 4, and a heat radiation flat portion 31 (heat sink) parallel to the lower substrate 25 and the upper substrate 26 is formed here. Is formed. On the other hand, the lower substrate 25 is a heat conductive substrate, and on one surface (here, the upper surface), heat generating electrical components such as a smoothing capacitor 37, a coil 38, and six switching elements (IGBT) 39 are formed on the lower substrate 25. It is mounted so that heat can be transferred. The smoothing capacitor 37 and the coil 38 suppress electromagnetic noise.

また、下部基板25の他方の面(ここでは下面)が、放熱用平面部31に対して放熱空間34を介して対向するように配置され、例えば複数のビス35でインバータボックス23内に固定されている(図3参照)。ビス35が締結される締結ボス部35aの上面が放熱用平面部31よりも寸法dだけ高くなっているため、下部基板25の下面と放熱用平面部31との間に寸法dの間隔が空く。この寸法dが放熱空間34の高さ、即ち後述する絶縁距離dとなる。   Further, the other surface (the lower surface in this case) of the lower substrate 25 is disposed so as to face the heat radiation flat surface portion 31 via the heat radiation space 34, and is fixed in the inverter box 23 with a plurality of screws 35, for example. (See FIG. 3). Since the upper surface of the fastening boss portion 35a to which the screw 35 is fastened is higher than the heat radiation flat surface portion 31 by the dimension d, there is a space of the dimension d between the lower surface of the lower substrate 25 and the heat radiation flat surface portion 31. . This dimension d is the height of the heat radiation space 34, that is, the insulation distance d described later.

放熱空間34には、柔軟で電気絶縁性のある熱伝導充填部材36が充填されている。熱伝導充填部材36の材質としては、例えばシリコン系やエラストマー系等を用いることができる。このため、下部基板25の下面が熱伝導充填部材36を介して放熱用平面部31に対し熱伝達可能となっている。熱伝導充填部材36は、当初は流動性があり、放熱空間34内に充填された後に硬化して弾性体となる性質である。   The heat radiation space 34 is filled with a heat conduction filling member 36 that is flexible and electrically insulating. As a material of the heat conduction filling member 36, for example, a silicon type or an elastomer type can be used. For this reason, the lower surface of the lower substrate 25 can transfer heat to the heat radiation flat portion 31 via the heat conductive filling member 36. The heat conduction filling member 36 is initially fluid and has a property of being cured after being filled into the heat radiation space 34 to become an elastic body.

一方、上部基板26は、例えば図示しないスペーサ部材を介して下部基板25の上に所定の間隔を有して平行に設置され、ビス等で下部基板25に固定されている。この上部基板26は、下部基板25の上面に搭載された背の高い平滑コンデンサ37とコイル38を避けて、背の低い6個のスイッチング素子39の上部を覆うように設けられている。   On the other hand, the upper substrate 26 is installed in parallel with a predetermined interval on the lower substrate 25 via a spacer member (not shown), for example, and is fixed to the lower substrate 25 with screws or the like. The upper substrate 26 is provided so as to cover the upper portions of the six short switching elements 39 while avoiding the tall smoothing capacitor 37 and the coil 38 mounted on the upper surface of the lower substrate 25.

熱伝導性基板である下部基板25は、ガラスエポキシやフェノール樹脂等の絶縁体からなる基板本体41と、この基板本体41の厚さ方向に貫通充填された、例えば銅等の良熱伝導体からなる熱伝導貫通部材42とを備えて構成されている。また、下部基板25は、基板本体41の内部に複数層の回路パターン43が積層埋設された多層基板である。図3に示すように、これらの回路パターン43が熱伝導貫通部材42の貫通によって電気的に接続されている。なお、熱伝導貫通部材42は回路パターン43に対して絶縁されていてもよい。   The lower substrate 25, which is a heat conductive substrate, is composed of a substrate body 41 made of an insulator such as glass epoxy or phenol resin, and a good heat conductor such as copper filled in the thickness direction of the substrate body 41. The heat conduction penetrating member 42 is configured. The lower substrate 25 is a multilayer substrate in which a plurality of circuit patterns 43 are laminated and embedded in the substrate body 41. As shown in FIG. 3, these circuit patterns 43 are electrically connected by penetration of the heat conduction penetrating member 42. The heat conduction penetrating member 42 may be insulated from the circuit pattern 43.

熱伝導貫通部材42は、平滑コンデンサ37とコイル38と6個のスイッチング素子39の搭載位置に整合するように下部基板25に位置付けられており、その一方の端面(上面)が各電気部品37,38,39の下面に熱伝達可能に接触し、他方の端面(下面)が熱伝導性と弾力性とを備えた熱伝導充填部材36を介して放熱用平面部31に対して熱伝達可能に接している。   The heat conduction penetrating member 42 is positioned on the lower substrate 25 so as to be aligned with the mounting position of the smoothing capacitor 37, the coil 38, and the six switching elements 39, and one end surface (upper surface) of each of the electric components 37, The lower end surfaces of 38 and 39 are in contact with each other so as to be able to transfer heat, and the other end surface (lower surface) is capable of transferring heat to the heat radiation flat portion 31 via a heat conductive filling member 36 having heat conductivity and elasticity. It touches.

図3および図5に示すように、熱伝導貫通部材42の厚みは、基板本体41の厚みよりも若干大きく設定され、熱伝導貫通部材42の放熱用平面部31側(放熱空間34側)の端面(下端面)が基板本体41の下面から僅かに突出している。そして、放熱空間34の高さ、即ち熱伝導充填部材36の厚みが前述の絶縁距離dとなる。   As shown in FIGS. 3 and 5, the thickness of the heat conduction penetrating member 42 is set to be slightly larger than the thickness of the substrate body 41, and the heat conduction penetrating member 42 has a heat radiation planar portion 31 side (heat radiation space 34 side). An end surface (lower end surface) slightly protrudes from the lower surface of the substrate body 41. The height of the heat radiation space 34, that is, the thickness of the heat conduction filling member 36 is the aforementioned insulation distance d.

以下に、絶縁距離d〔mm〕の設定方法について説明する。
図5に示すように、絶縁距離をd、熱伝導貫通部材42の下部基板25(基板本体41)からの突き出し量をd〔mm〕、熱伝導貫通部材42の先端から放熱用平面部31までの距離をd〔mm〕、熱伝導貫通部材42の放熱用平面部31側への放熱面積をS〔mm〕、熱伝導充填部材36の熱伝導率をα〔W/(mm・K)〕、熱伝導充填部材36の熱抵抗をR〔K/W〕、熱伝導充填部材36の絶縁破壊電圧をβ〔kV/mm〕、熱伝導充填部材36の絶縁電圧をV〔kV〕とすると、下部基板25と放熱用平面部31との間の絶縁距離dにおける熱伝導充填部材36の熱抵抗Rは次式で表わされる。
R=d/(α・S)・・・式(1)
なお、d=d+dとなるが、dには製造上のばらつきがあるため、dの最小値をd1_minとしたときのdをd2_max、dの最大値をd1_maxとしたときのdをd2_minとする。
インバータ装置21の放熱に必要な熱抵抗をRmaxとすると、
R=d2_max/(α・S)≦Rmax・・・式(2)
式(1)と式(2)より、
d≦Rmax・α・S+d1_min・・・式(3)
Below, the setting method of the insulation distance d [mm] is demonstrated.
As shown in FIG. 5, the insulation distance is d, the protruding amount of the heat conduction penetrating member 42 from the lower substrate 25 (substrate body 41) is d 1 [mm], and the heat radiation penetrating member 42 from the tip of the heat conduction penetrating member 42 D 2 [mm], the heat radiation area of the heat conduction penetrating member 42 toward the heat radiation flat portion 31 side is S [mm 2 ], and the heat conductivity of the heat conduction filling member 36 is α [W / (mm · K)], the thermal resistance of the heat conduction filling member 36 is R [K / W], the dielectric breakdown voltage of the heat conduction filling member 36 is β [kV / mm], and the insulation voltage of the heat conduction filling member 36 is V [kV]. Then, the thermal resistance R of the heat conduction filling member 36 at the insulation distance d between the lower substrate 25 and the heat radiation flat portion 31 is expressed by the following equation.
R = d 2 / (α · S) (1)
Although the d = d 1 + d 2, since there is a manufacturing variation in d 1, the d 2 when the minimum value of d 1 was d 1_min d 2_max, the maximum value of d 1 d 1_Max D 2 is defined as d 2 — min .
When the thermal resistance required for the heat dissipation of the inverter 21 and R max,
R = d 2_max / (α · S) ≦ R max ··· formula (2)
From Equation (1) and Equation (2),
d ≦ R max · α · S + d 1 — min (3)

次に、下部基板25と放熱用平面部31との間における絶縁可能な距離について検討する。熱伝導充填部材36の絶縁破壊電圧βと絶縁電圧Vは次式で表わされる。
V=β・d
インバータ装置21に必要とされる絶縁電圧の最小値をVminとすると、
V=β・d2_min≧Vmin・・・式(4)
式(1)と式(4)より、
d≧Vmin/β+d1_max・・・式(5)
よって、式(3)と式(5)より、下部基板25と放熱用平面部31との間の絶縁距離dを次の式(6)の範囲内に設定することで、放熱性と電気絶縁性を両立させることができる。
min/β+d1_max≦d≦Rmax・α・S+d1_min・・・式(6)
Next, an insulable distance between the lower substrate 25 and the heat radiation flat portion 31 will be examined. The dielectric breakdown voltage β and the insulation voltage V of the heat conduction filling member 36 are expressed by the following equations.
V = β · d 2
When the minimum value of the insulation voltage required for the inverter device 21 is V min ,
V = β · d 2_min ≧ V min (4)
From Equation (1) and Equation (4),
d ≧ V min / β + d 1 — max (5)
Therefore, from the equations (3) and (5), by setting the insulation distance d between the lower substrate 25 and the heat radiation flat portion 31 within the range of the following equation (6), heat dissipation and electrical insulation are achieved. Sex can be made compatible.
V min / β + d 1_max ≦ d ≦ R max · α · S + d 1_min (6)

このように絶縁距離dを算出することにより、絶縁距離dが過大になって下部基板25に搭載される発熱電気部品37,38,39の冷却性が低下したり、逆に絶縁距離dが過小になって発熱電気部品37,38,39の放熱用平面部31に対する絶縁性が低下したりすることを防止でき、発熱電気部品37,38,39の冷却性と絶縁性とを最適な状態で両立させることができる。   By calculating the insulation distance d in this way, the insulation distance d becomes excessive, the cooling performance of the heat generating electrical components 37, 38, 39 mounted on the lower substrate 25 decreases, and conversely, the insulation distance d is too small. It is possible to prevent the heat insulation of the heat generating electrical components 37, 38, 39 from being deteriorated with respect to the flat surface 31 for heat dissipation, and the cooling property and the insulation properties of the heat generating electrical components 37, 38, 39 can be optimized. Both can be achieved.

このインバータ装置21を組み立てる時は、最初に放熱用平面部31の上に熱伝導充填部材36を塗布し、次に下部基板25をビス35で締結ボス部35aに締結する。この時、余剰な熱伝導充填部材36は、放熱用平面部31の周囲を堀り下げるように形成された逃げ溝45に膨出する。その後、熱伝導充填部材36が放熱空間34内で硬化する。なお、上部基板26は、予め下部基板25に取り付けられた状態で下部基板25と共にインバータボックス23内に組み込まれるか、あるいは下部基板25の後から組み付けられる。   When assembling the inverter device 21, first, the heat conduction filling member 36 is applied on the heat radiation flat portion 31, and then the lower substrate 25 is fastened to the fastening boss portion 35 a with the screw 35. At this time, the surplus heat conduction filling member 36 bulges into the escape groove 45 formed so as to dig up the periphery of the heat radiation flat portion 31. Thereafter, the heat conduction filling member 36 is cured in the heat radiation space 34. The upper substrate 26 is assembled in the inverter box 23 together with the lower substrate 25 in a state of being attached to the lower substrate 25 in advance, or is assembled from the rear of the lower substrate 25.

以上のように構成されたインバータ一体型電動圧縮機1が作動すると、冷凍サイクル中を循環した後の低圧冷媒ガスが、図示しない冷媒吸入口から電動機側ハウジング4内に吸入され、電動機側ハウジング4内を流通してスクロール圧縮機構8に吸い込まれる。スクロール圧縮機構8で圧縮され、高温高圧となった冷媒ガスは、圧縮機側ハウジング3の端部に設けられている図示しない吐出口から吐出配管を経て冷凍サイクルへと循環される。   When the inverter-integrated electric compressor 1 configured as described above operates, the low-pressure refrigerant gas after circulating in the refrigeration cycle is sucked into the motor-side housing 4 from a refrigerant suction port (not shown), and the motor-side housing 4 The inside is circulated and sucked into the scroll compression mechanism 8. The refrigerant gas compressed by the scroll compression mechanism 8 to become high temperature and pressure is circulated from a discharge port (not shown) provided at the end of the compressor side housing 3 to a refrigeration cycle through a discharge pipe.

この間、電動機側ハウジング4内を流通する低温な低圧冷媒ガスは、インバータボックス23内で、インバータ装置21から発せられる作動熱に対し、電動機側ハウジング4のハウジング外壁でもある放熱用平面部31を介して吸熱作用を行う。これにより、パワー基板である下部基板25を強制的に冷却することができる。   During this time, the low-temperature low-pressure refrigerant gas that circulates in the motor-side housing 4 passes through the heat radiation flat portion 31 that is also the housing outer wall of the motor-side housing 4 against the operating heat generated from the inverter device 21 in the inverter box 23. Endothermic. Thereby, the lower board | substrate 25 which is a power board can be forcedly cooled.

特に、下部基板25に搭載される発熱電気部品である平滑コンデンサ37、コイル38、スイッチング素子39は、その各々の下面が、熱伝導性基板である下部基板25の厚さ方向に貫通充填された良熱伝導体である熱伝導貫通部材42の上面に密着しており、この熱伝導貫通部材42の下面が、柔軟で熱伝導性のある熱伝導充填部材36を介して放熱用平面部31に対し熱伝達可能に接しているため、各電機部品37,38,39の熱が熱伝導貫通部材42と熱伝導充填部材36を経て速やかに放熱用平面部31側に伝達され、効率良く冷却される。中でも6個のスイッチング素子39は特に発熱量が多いため、その熱が熱伝導充填部材36を経て速やかに放熱用平面部31側に放熱されることにより、インバータ装置21全体が効率良く冷却され、インバータボックス23の内部温度上昇が防止される。また、熱伝導充填部材36は電気絶縁性があるため、高電圧・高電流が印加されるパワーモジュール基板である下部基板25を、放熱用平面部31(ハウジング2)側に対して確実に絶縁することができる。   In particular, the smoothing capacitor 37, the coil 38, and the switching element 39, which are heat-generating electrical components mounted on the lower substrate 25, have their lower surfaces filled through in the thickness direction of the lower substrate 25, which is a thermally conductive substrate. The heat conduction penetrating member 42, which is a good heat conductor, is in close contact with the upper surface of the heat conduction penetrating member 42, and the lower surface of the heat conduction penetrating member 42 is attached to the heat radiation planar portion 31 via the heat conduction filling member 36 that is flexible and thermally conductive. Since the heat is transmitted to the electric parts 37, 38, 39 through the heat conduction penetrating member 42 and the heat conduction filling member 36, the heat is quickly transmitted to the heat radiating flat surface portion 31 side to be efficiently cooled. The Among them, the six switching elements 39 have a particularly large calorific value, so that the heat is quickly radiated to the heat radiation flat surface portion 31 side through the heat conduction filling member 36, whereby the entire inverter device 21 is efficiently cooled, The internal temperature rise of the inverter box 23 is prevented. Further, since the heat conduction filling member 36 is electrically insulating, the lower substrate 25, which is a power module substrate to which a high voltage and a high current are applied, is reliably insulated from the heat radiation flat portion 31 (housing 2) side. can do.

本実施形態の構成では、下部基板25を熱伝導性基板とし、この下部基板25の上面に発熱電気部品37,38,39を熱伝達可能に設置し、下部基板25の下面を放熱用平面部31に対し放熱空間34を介して対向させ、放熱空間34内に柔軟で電気絶縁性および熱伝導性のある熱伝導充填部材36を充填したため、柔軟な熱伝導充填部材36が下部基板25の下面と放熱用平面部31とに隙間無く密着する。したがって、下部基板25の上面に設置された発熱電気部品37,38,39の熱が熱伝導充填部材36を経て放熱用平面部31側に良好に放熱され、発熱電気部品37,38,39の冷却性を高めることができる。しかも、熱伝導充填部材36は電気絶縁性があるため、発熱電気部品37,38,39と放熱用平面部31との間の絶縁性を高めることができる。したがって、発熱電気部品37,38,39の絶縁性と冷却性とを両立させることができる。   In the configuration of the present embodiment, the lower substrate 25 is a heat conductive substrate, and the heat generating electrical components 37, 38, 39 are installed on the upper surface of the lower substrate 25 so as to be able to transfer heat, and the lower surface of the lower substrate 25 is disposed on the flat surface portion for heat dissipation. Since the heat radiation filling space 36 is filled with a heat conductive filling member 36 that is flexible and electrically insulating and thermally conductive, the flexible heat conduction filling member 36 is placed on the lower surface of the lower substrate 25. And the heat-dissipating flat portion 31 are in close contact with each other without any gap. Therefore, the heat of the heat generating electrical components 37, 38, 39 installed on the upper surface of the lower substrate 25 is well radiated to the heat radiation flat portion 31 side through the heat conduction filling member 36, and the heat generating electrical components 37, 38, 39 Coolability can be improved. In addition, since the heat conduction filling member 36 has electrical insulation, the insulation between the heat generating electrical components 37, 38, 39 and the heat radiation flat portion 31 can be enhanced. Therefore, it is possible to achieve both insulation and cooling of the heat generating electrical components 37, 38, and 39.

さらに、下部基板25と放熱用平面部31との間に形成した放熱空間34に電気絶縁性のある熱伝導充填部材36を充填することにより、熱伝導充填部材36を充填しない場合に比べて電気絶縁性を格段に高めることができるため、放熱空間34の絶縁距離d、即ち下部基板25と放熱用平面部31との間隔を狭めることができる。このため、下部基板25が収容されるインバータボックス23の高さ方向の寸法を小さくすることができ、インバータ装置21の小型軽量化を図ることができる。   Further, by filling the heat radiation space 34 formed between the lower substrate 25 and the heat radiation flat portion 31 with the heat conduction filling member 36 having electrical insulation, the heat conduction filling member 36 is more electrically charged than when the heat conduction filling member 36 is not filled. Since the insulation can be remarkably improved, the insulation distance d of the heat radiation space 34, that is, the interval between the lower substrate 25 and the heat radiation flat portion 31 can be reduced. For this reason, the dimension of the height direction of the inverter box 23 in which the lower board | substrate 25 is accommodated can be made small, and size reduction and weight reduction of the inverter apparatus 21 can be achieved.

また、下部基板25が、絶縁体からなる基板本体41と、この基板本体41の厚さ方向に貫通充填された良熱伝導体からなる熱伝導貫通部材42とを備えてなる熱伝導性基板であり、熱伝導貫通部材42の一方の端面が発熱電気部品37,38,39に熱伝達可能に接触し、他方の端面が熱伝導充填部材36に接触している。   The lower substrate 25 is a thermally conductive substrate including a substrate body 41 made of an insulator and a heat conduction penetrating member 42 made of a good heat conductor that is filled in the thickness direction of the substrate body 41. In addition, one end face of the heat conduction penetrating member 42 is in contact with the heat generating electrical components 37, 38, 39 so that heat can be transferred, and the other end face is in contact with the heat conduction filling member 36.

このため、熱伝導貫通部材42と放熱用平面部31との間に柔軟な熱伝導充填部材36が介在して、基板本体41からの熱伝導貫通部材42の突出量にばらつきがあっても、このばらつきが熱伝導充填部材36の柔軟性により吸収される。したがって、熱伝導貫通部材42の突出量のばらつきに拘わらず、発熱電気部品37,38,39の熱を放熱用平面部31側に良好に放熱させることができる。これにより、基板本体41に熱伝導貫通部材42が設けられた構成の熱伝導性基板を、インバータ装置21の制御回路基板として実用化することができる。   For this reason, even if there is a variation in the amount of protrusion of the heat conduction penetrating member 42 from the substrate body 41 by interposing the flexible heat conduction filling member 36 between the heat conduction penetrating member 42 and the heat radiation planar portion 31, This variation is absorbed by the flexibility of the heat conductive filling member 36. Therefore, the heat of the heat generating electrical components 37, 38, 39 can be radiated favorably to the heat radiating flat portion 31 side regardless of variations in the protruding amount of the heat conduction penetrating member 42. Thereby, the heat conductive board | substrate of the structure by which the heat conductive penetration member 42 was provided in the board | substrate body 41 can be utilized as a control circuit board | substrate of the inverter apparatus 21. FIG.

さらに、熱伝導充填部材36は、当初は流動性があり、放熱空間34内に充填された後に硬化して弾性体となる性質があるため、例えば下部基板25を構成する基板本体41の裏面から突出する複数の熱伝導貫通部材42の突出量にばらつきがあっても、これら全ての熱伝導貫通部材42と、基板本体41と、放熱用平面部31とに熱伝導充填部材36が隙間無く接触した状態で充填される。その後、熱伝導充填部材36が硬化することで、上記の充填状態が維持される。このため、下部基板25に搭載される発熱電気部品37,38,39の冷却性と絶縁性を高い状態で維持することができる。   Furthermore, since the heat conduction filling member 36 is initially fluid and has a property of being cured after being filled into the heat radiation space 34 to become an elastic body, for example, from the back surface of the substrate body 41 constituting the lower substrate 25. Even if there are variations in the protruding amounts of the plurality of protruding heat conduction penetrating members 42, the heat conduction filling member 36 is in contact with all of the heat conduction penetrating members 42, the substrate body 41, and the heat radiation planar portion 31 without any gaps. It is filled in the state. Thereafter, the heat conduction filling member 36 is cured, so that the above filling state is maintained. For this reason, the cooling property and insulation of the heat generating electrical components 37, 38, 39 mounted on the lower substrate 25 can be maintained in a high state.

〔第2実施形態〕
図6は、本発明の第2実施形態を示すインバータ装置21の縦断面図である。この実施形態においては、下部基板25(基板本体41)に、放熱空間34に連通する複数の貫通孔51が穿設されている点以外は、図3に示す第1実施形態と同一の構成であるため、各部に同一の符号を付して説明を省略する。貫通孔51は、例えば複数のスイッチング素子39が載置されている熱伝導貫通部材42の間を通るように形成されている。平面視で各スイッチング素子39を取り囲むように貫通孔51を形成してもよい。
[Second Embodiment]
FIG. 6 is a longitudinal sectional view of an inverter device 21 showing a second embodiment of the present invention. This embodiment has the same configuration as that of the first embodiment shown in FIG. 3 except that the lower substrate 25 (substrate body 41) has a plurality of through holes 51 communicating with the heat radiation space 34. Therefore, the same reference numerals are given to the respective parts, and the description thereof is omitted. The through hole 51 is formed so as to pass between the heat conduction penetrating members 42 on which the plurality of switching elements 39 are mounted, for example. The through hole 51 may be formed so as to surround each switching element 39 in a plan view.

このような貫通孔51を下部基板25に形成した場合、下部基板25の組み付け時において、放熱用平面部31の上に熱伝導充填部材36を塗布してから締結ボス部35aの上に下部基板25を設置してビス35で締結する時に、放熱空間34内に残留する空気が貫通孔51から排出される。さらに、余剰な熱伝導充填部材36が貫通孔51から押し出されて出てくる。このため、下部基板25の裏面側に空気を残留させることなく、熱伝導充填部材36が下部基板25の裏面側に隙間無く接触することができ、これによって下部基板25に搭載される発熱電気部品37,38,39の冷却性を良好に保つことができる。   When such a through hole 51 is formed in the lower substrate 25, when the lower substrate 25 is assembled, the heat conduction filling member 36 is applied on the heat radiation flat portion 31, and then the lower substrate is disposed on the fastening boss portion 35a. The air remaining in the heat radiation space 34 is discharged from the through hole 51 when the 25 is installed and fastened with the screw 35. Further, the excessive heat conduction filling member 36 is pushed out from the through hole 51 and comes out. For this reason, the heat conduction filling member 36 can contact the back surface side of the lower substrate 25 without a gap without leaving air on the back surface side of the lower substrate 25, and thereby the heat generating electrical component mounted on the lower substrate 25. The cooling properties of 37, 38 and 39 can be kept good.

しかも、上記のように熱伝導充填部材36の余剰分が貫通孔51から出てくるため、これを組立作業者が目視で確認することができ、これによって熱伝導充填部材36の充填量が不足することを防止し、確実な冷却性を得るとともに、組立のばらつきを排除することができる。   Moreover, since the surplus of the heat conduction filling member 36 comes out of the through hole 51 as described above, this can be visually confirmed by an assembling operator, whereby the amount of filling of the heat conduction filling member 36 is insufficient. It is possible to prevent this, obtain reliable cooling, and eliminate assembling variations.

なお、放熱用平面部31の周囲には、余剰な熱伝導充填部材36を膨出させるための逃げ溝45が形成されているが、この逃げ溝45は省略してもよい。逃げ溝45を省略することにより、放熱用平面部31および放熱空間34の形状をシンプルにしてインバータボックス23(電動機側ハウジング4)の加工を容易にし、製造コストダウンを図ることができる。   In addition, although the escape groove | channel 45 for expanding the excess heat conduction filling member 36 is formed in the circumference | surroundings of the thermal radiation plane part 31, this escape groove | channel 45 may be abbreviate | omitted. By omitting the escape groove 45, the shape of the heat radiation flat portion 31 and the heat radiation space 34 can be simplified, the machining of the inverter box 23 (the motor side housing 4) can be facilitated, and the manufacturing cost can be reduced.

〔第3実施形態〕
図7は、本発明の第3実施形態を示すインバータ装置21の縦断面図である。この実施形態においては、下部基板25に発熱電気部品であるスイッチング素子39が搭載されている付近に対応した位置にのみ放熱空間34が形成されている。即ち、下部基板25がビス35で締結される締結面52の、スイッチング素子39に整合する部分のみが下方に切削されて複数の放熱空間34が凹設され、その各々の底面が放熱用平面部31となっている。また、これら複数の放熱空間34に連通するように、第2実施形態と同様に下部基板25(基板本体41)に複数の貫通孔51が穿設され、放熱空間34の内部には熱伝導充填部材36が充填されている。
[Third Embodiment]
FIG. 7 is a longitudinal sectional view of an inverter device 21 showing a third embodiment of the present invention. In this embodiment, the heat radiation space 34 is formed only at a position corresponding to the vicinity where the switching element 39 which is a heat generating electrical component is mounted on the lower substrate 25. That is, only the portion of the fastening surface 52 to which the lower substrate 25 is fastened by the screw 35 is aligned downward with the switching element 39, and a plurality of heat radiation spaces 34 are formed in the recesses. 31. In addition, as in the second embodiment, a plurality of through holes 51 are formed in the lower substrate 25 (substrate body 41) so as to communicate with the plurality of heat radiation spaces 34, and the heat radiation space 34 is filled with heat conduction. The member 36 is filled.

下部基板25の組み付け時には、まず各放熱空間34に熱伝導充填部材36を充填する。この時には熱伝導充填部材36が締結面52よりもやや盛り上がるように充填する。そして、締結面52の上に下部基板25を設置してビス35で締結する。この時に、第2実施形態の場合と同様に、放熱空間34内に残留する空気が貫通孔51から排出され、さらに、余剰な熱伝導充填部材36が貫通孔51から押し出される。このため、各放熱空間34内に空気が残留することを防止してスイッチング素子39の冷却性を良好に保つことができる。   When the lower substrate 25 is assembled, first, the heat conduction filling members 36 are filled in the heat radiation spaces 34. At this time, the heat conductive filling member 36 is filled so as to rise slightly from the fastening surface 52. Then, the lower substrate 25 is installed on the fastening surface 52 and fastened with screws 35. At this time, as in the case of the second embodiment, the air remaining in the heat radiation space 34 is discharged from the through hole 51, and the excessive heat conduction filling member 36 is pushed out from the through hole 51. For this reason, it is possible to prevent the air from remaining in each heat radiation space 34 and to keep the cooling performance of the switching element 39 favorable.

上記の構造によれば、放熱空間34の容積、即ち熱伝導充填部材36の充填量を必要最低量にできるため、インバータ装置21の低コスト化に貢献することができる。   According to said structure, since the volume of the thermal radiation space 34, ie, the filling amount of the heat conduction filling member 36, can be made into the minimum required amount, it can contribute to the cost reduction of the inverter apparatus 21.

〔第4実施形態〕
図8は、本発明の第4実施形態を示すインバータ装置21の縦断面図である。この実施形態においては、放熱用平面部31と下部基板25との間に厚さ数ミリ程度の板状のスペーサ部材54が介装されている。このスペーサ部材54には、下部基板25に搭載された発熱電気部品であるスイッチング素子39の位置に整合する位置で省かれている。即ち、例えばスペーサ部材54に整合する位置に穴55が穿設されており、この穴55の内側に放熱空間34が形成されている。放熱空間34の形状や容積は、第3実施形態と同様である。また、各放熱空間34に連通するように下部基板25に複数の貫通孔51が穿設され、放熱空間34の内部に熱伝導充填部材36が充填される点も第3実施形態と同様である。
[Fourth Embodiment]
FIG. 8 is a longitudinal sectional view of an inverter device 21 showing a fourth embodiment of the present invention. In this embodiment, a plate-like spacer member 54 having a thickness of about several millimeters is interposed between the heat radiation flat portion 31 and the lower substrate 25. The spacer member 54 is omitted at a position that matches the position of the switching element 39 that is a heat generating electrical component mounted on the lower substrate 25. That is, for example, a hole 55 is formed at a position aligned with the spacer member 54, and the heat radiation space 34 is formed inside the hole 55. The shape and volume of the heat dissipation space 34 are the same as in the third embodiment. Further, the plurality of through holes 51 are formed in the lower substrate 25 so as to communicate with the respective heat radiation spaces 34, and the heat conduction filling member 36 is filled in the heat radiation spaces 34 as in the third embodiment. .

スペーサ部材54の厚みは、第1実施形態で述べた絶縁距離d〔mm〕を基準とし、仮に組み付け後にビス35の締結力等に起因する潰れ等でスペーサ部材54の厚みが薄くなるような材質をスペーサ部材54に用いる場合には、その潰れ代量d〔mm〕を考慮して、スペーサ部材54の厚みをd+d〔mm〕とする。 The thickness of the spacer member 54 is based on the insulation distance d [mm] described in the first embodiment, and the spacer member 54 is made of a material whose thickness becomes thin due to crushing caused by the fastening force of the screw 35 after assembly. Is used for the spacer member 54, the thickness of the spacer member 54 is set to d + d 3 [mm] in consideration of the crushing amount d 3 [mm].

下部基板25の組み付け時には、放熱用平面部31の上にスペーサ部材54を載置し、仮押さえしながら穴55の内側、即ち放熱空間34内に熱伝導充填部材36を充填する。この時には熱伝導充填部材36がスペーサ部材54の上面よりもやや盛り上がるように充填する。そして、スペーサ部材54の上に下部基板25を設置してビス35で締結する。この時、第2、第3実施形態の場合と同様に、放熱空間34内に残留する空気が貫通孔51から排出され、さらに、余剰な熱伝導充填部材36が貫通孔51から押し出される。このため、各放熱空間34内に空気が残留することを防止してスイッチング素子39の冷却性を良好に保つことができる。   When the lower substrate 25 is assembled, the spacer member 54 is placed on the heat radiation flat portion 31, and the heat conduction filling member 36 is filled inside the hole 55, that is, in the heat radiation space 34 while temporarily holding the spacer member 54. At this time, the heat conductive filling member 36 is filled so as to rise slightly from the upper surface of the spacer member 54. Then, the lower substrate 25 is placed on the spacer member 54 and fastened with screws 35. At this time, as in the case of the second and third embodiments, the air remaining in the heat radiation space 34 is discharged from the through hole 51, and the excessive heat conduction filling member 36 is pushed out from the through hole 51. For this reason, it is possible to prevent the air from remaining in each heat radiation space 34 and to keep the cooling performance of the switching element 39 favorable.

上記の構成によれば、下部基板25にスイッチング素子39が搭載されている部位のみスペーサ部材54を省略することによって放熱空間34を形成し、熱伝導充填部材36の充填量を必要最低量にするとともに、放熱用平面部31の面形状を平坦な形状にしてその切削加工を容易にし、インバータ装置21およびインバータ一体型電動圧縮機1の低コスト化を図ることができる。スペーサ部材54は、板状に形成されてスイッチング素子39に整合する位置にのみ穴55が開いた構成であるため、簡単に製造することができる。さらに、スペーサ部材54の厚みを変更することにより、下部基板25と放熱用平面部31との間の間隔(絶縁距離)を自由に調整することができる。   According to the above configuration, the heat radiation space 34 is formed by omitting the spacer member 54 only at the portion where the switching element 39 is mounted on the lower substrate 25, and the filling amount of the heat conduction filling member 36 is set to the necessary minimum amount. At the same time, the surface shape of the heat radiation flat portion 31 is made flat to facilitate the cutting process, and the cost of the inverter device 21 and the inverter-integrated electric compressor 1 can be reduced. Since the spacer member 54 is formed in a plate shape and has a hole 55 only at a position where it is aligned with the switching element 39, the spacer member 54 can be easily manufactured. Furthermore, by changing the thickness of the spacer member 54, the distance (insulating distance) between the lower substrate 25 and the heat radiation flat portion 31 can be freely adjusted.

〔第5実施形態〕
図9は、本発明の第5実施形態を示す熱伝導貫通部材42付近の縦断面図である。この実施形態において、放熱用平面部31には、下部基板25から下方に突出する熱伝導貫通部材42と対向する部位に、熱伝導貫通部材42の端部形状に沿う凹部形状58が形成されている。この凹部形状58は、放熱用平面部31から突出して熱伝導貫通部材42の先端の周囲を取り巻く形状を有しており、その内面と熱伝導貫通部材42の先端部との間には、熱伝導貫通部材42の冷却性と絶縁性を両立できるように所定の絶縁距離dが設けられている。下部基板25と放熱用平面部31との間、および熱伝導貫通部材42と凹部形状58との間には熱伝導充填部材36が充填される。
[Fifth Embodiment]
FIG. 9 is a longitudinal sectional view of the vicinity of the heat conduction penetrating member 42 showing the fifth embodiment of the present invention. In this embodiment, the heat radiating flat surface portion 31 is formed with a concave shape 58 along the end shape of the heat conduction penetrating member 42 at a portion facing the heat conduction penetrating member 42 protruding downward from the lower substrate 25. Yes. The recessed portion 58 has a shape that protrudes from the heat radiation flat surface portion 31 and surrounds the periphery of the front end of the heat conduction penetrating member 42. A predetermined insulation distance d is provided so that both the cooling property and the insulation property of the conductive penetrating member 42 can be achieved. The heat conduction filling member 36 is filled between the lower substrate 25 and the heat radiation flat portion 31 and between the heat conduction penetrating member 42 and the recessed portion 58.

上記の構成によれば、熱伝導貫通部材42から発せられる熱が、凹部形状58によって広い面積で受熱され、放熱用平面部31側に放熱される。このため、下部基板25に搭載された図示しない発熱電気部品の冷却性を向上させることができる。   According to the above configuration, the heat generated from the heat conduction penetrating member 42 is received in a wide area by the recessed portion 58 and is radiated to the heat radiating flat portion 31 side. For this reason, it is possible to improve the cooling performance of a heat generating electrical component (not shown) mounted on the lower substrate 25.

また、凹部形状58の周壁部の高さ寸法を大きくすることにより、熱伝導貫通部材42の絶縁性を確保しながら、熱伝導貫通部材42の先端形状の全体に亘って放熱用平面部31との距離、つまり絶縁距離dを小さくしてインバータ装置21およびインバータボックス23の高さを低くし、ひいてはインバータ一体型電動圧縮機1の小型、軽量化を図ることができる。   Further, by increasing the height dimension of the peripheral wall portion of the concave shape 58, the heat radiation flat member 31 and the heat dissipating flat member 31 are formed over the entire tip shape of the heat conductive penetrating member 42 while ensuring the insulation of the heat conductive penetrating member 42. , That is, the insulation distance d can be reduced to reduce the height of the inverter device 21 and the inverter box 23, and thus the inverter-integrated electric compressor 1 can be reduced in size and weight.

〔第6実施形態〕
図10は、本発明の第6実施形態を示す熱伝導貫通部材42付近の縦断面図である。この実施形態では、熱伝導貫通部材42の、放熱用平面部31と対向する面、即ち下端面に凹凸形状42aが設けられている。こうすれば、熱伝導貫通部材42の下端面の表面積が大きくなり、熱伝導充填部材36と広い面積で接することができるため、熱伝導貫通部材42の反対側に設置された発熱電気部品の放熱性、即ち冷却性を向上させることができる。
[Sixth Embodiment]
FIG. 10 is a longitudinal sectional view of the vicinity of the heat conduction penetrating member 42 showing the sixth embodiment of the present invention. In this embodiment, an uneven shape 42 a is provided on the surface of the heat conduction penetrating member 42 facing the heat radiation flat portion 31, that is, the lower end surface. In this way, the surface area of the lower end surface of the heat conduction penetrating member 42 is increased, and the heat conduction filling member 36 can be brought into contact with a large area. Therefore, the heat dissipation of the heat generating electrical component installed on the opposite side of the heat conduction penetrating member 42 is achieved. Performance, that is, cooling performance can be improved.

〔第7実施形態〕
図11は、本発明の第7実施形態を示すインバータ装置の縦断面図である。この実施形態においては、放熱空間34に設けられている熱伝導充填部材60が柔軟なシート状である点以外は、図3に示す第1実施形態と同一の構成であるため、各部に同一の符号を付して説明を省略する。熱伝導充填部材60の自由時の厚みは、放熱空間34の絶縁距離dよりも若干大きくするのが好ましい。こうすることにより、放熱用平面部31に熱伝導充填部材60を敷設し、その上から下部基板25を載置してビス35で締結する際に、ビス35の締結力によって熱伝導充填部材60が放熱用平面部31と下部基板25との間で圧迫され、熱伝導充填部材60の上下両面が下部基板25と放熱用平面部31の両面に隙間なく密着する。このため、下部基板25に搭載されたスイッチング素子39等の発熱電気部品の熱が熱伝導充填部材60を経て放熱用平面部31側に良好に放熱され、発熱電気部品の冷却性が高められる。
[Seventh Embodiment]
FIG. 11 is a longitudinal sectional view of an inverter device showing a seventh embodiment of the present invention. In this embodiment, since the heat conduction filling member 60 provided in the heat radiation space 34 has the same configuration as that of the first embodiment shown in FIG. The reference numerals are attached and the description is omitted. The free thickness of the heat conduction filling member 60 is preferably slightly larger than the insulation distance d of the heat radiation space 34. Thus, when the heat conduction filling member 60 is laid on the heat radiation flat portion 31 and the lower substrate 25 is placed thereon and fastened with the screws 35, the heat conduction filling member 60 is brought about by the fastening force of the screws 35. Is pressed between the heat dissipating flat part 31 and the lower substrate 25, and the upper and lower surfaces of the heat conduction filling member 60 are in close contact with both surfaces of the lower substrate 25 and the heat dissipating flat part 31. For this reason, the heat of the heat generating electrical components such as the switching element 39 mounted on the lower substrate 25 is radiated well to the side of the heat radiating flat portion 31 through the heat conduction filling member 60, and the cooling performance of the heat generating electrical components is improved.

熱伝導充填部材60は柔軟なシート状であるため、第1実施形態の熱伝導充填部材36のように放熱空間34に流し込むことなく設置することができる。このため、インバータ装置の組立工数の低減を図ることができ、インバータ一体型電動圧縮機の製造コストダウンにも貢献することができる。   Since the heat conduction filling member 60 has a flexible sheet shape, the heat conduction filling member 60 can be installed without flowing into the heat radiation space 34 like the heat conduction filling member 36 of the first embodiment. For this reason, it is possible to reduce the assembly man-hour of the inverter device, and it is possible to contribute to a reduction in manufacturing cost of the inverter-integrated electric compressor.

〔第8実施形態〕
図12は本発明の第8実施形態を示すインバータ一体型電動圧縮機の縦断面図である。このインバータ一体型電動圧縮機61において、インバータ装置62周り以外の構成は、図1に示す第1実施形態のインバータ一体型電動圧縮機1と同様であるため、各部に同符号を付して説明を省略する。
[Eighth Embodiment]
FIG. 12 is a longitudinal sectional view of an inverter-integrated electric compressor showing an eighth embodiment of the present invention. In this inverter-integrated electric compressor 61, the configuration other than the periphery of the inverter device 62 is the same as that of the inverter-integrated electric compressor 1 of the first embodiment shown in FIG. Is omitted.

このインバータ一体型電動圧縮機61は、インバータ装置62が収容されるインバータボックス63が、ハウジング2(電動機側ハウジング4)の後端面に設けられているタイプである。このようにインバータボックス63をハウジング2の後端面に設ける主な理由は、ハイブリッド車両や電動車両等のエンジンルーム内にインバータ一体型電動圧縮機61を設置する場合に、略円柱形状であるハウジング2の外周面にインバータボックス63が突出していないスリムな形状であった方がレイアウト的に搭載しやすいからである。   This inverter-integrated electric compressor 61 is a type in which an inverter box 63 in which an inverter device 62 is accommodated is provided on the rear end face of the housing 2 (motor-side housing 4). The main reason for providing the inverter box 63 on the rear end surface of the housing 2 is that the housing 2 having a substantially columnar shape when the inverter-integrated electric compressor 61 is installed in an engine room of a hybrid vehicle or an electric vehicle. This is because it is easier to mount in a layout if the inverter box 63 has a slim shape that does not protrude from the outer peripheral surface.

電動機側ハウジング4の外壁を構成する後端面には平坦な放熱用平面部64が形成されており、この放熱用平面部64を覆うようにして、金属または樹脂で形成されたカバー状のインバータボックス63が気密的に被装され、放熱用平面部64とインバータボックス63との間の空間にインバータ装置62が収容されている。インバータ装置62の基本構成は、第1実施形態におけるインバータ装置21と同様であるため、各部に同符号を付して説明を簡略する。   A flat heat radiation flat portion 64 is formed on the rear end surface constituting the outer wall of the motor-side housing 4, and a cover-like inverter box formed of metal or resin so as to cover the heat radiation flat portion 64. 63 is hermetically covered, and the inverter device 62 is accommodated in a space between the heat radiation flat portion 64 and the inverter box 63. Since the basic configuration of the inverter device 62 is the same as that of the inverter device 21 in the first embodiment, the same reference numerals are given to the respective parts to simplify the description.

インバータ装置62を構成する下部基板25と上部基板26の面方向は放熱用平面部64の面方向に平行しており、第1実施形態におけるインバータ装置21と同様に、基板本体41と熱伝導貫通部材42とを備えてなる熱伝導性基板である下部基板25が、放熱用平面部64との間に放熱空間34を介して設置され、放熱空間34の内部には熱伝導充填部材36が充填されている。熱伝導充填部材36の性質等は第1実施形態のものと同様である。   The surface directions of the lower substrate 25 and the upper substrate 26 constituting the inverter device 62 are parallel to the surface direction of the heat radiation flat portion 64, and the substrate main body 41 and the heat conduction penetrating as in the inverter device 21 in the first embodiment. A lower substrate 25, which is a heat conductive substrate provided with a member 42, is installed between the heat radiation flat portion 64 via a heat radiation space 34, and a heat conduction filling member 36 is filled in the heat radiation space 34. Has been. The properties and the like of the heat conduction filling member 36 are the same as those of the first embodiment.

下部基板25には、発熱電気部品である平滑コンデンサ37やスイッチング素子39等が下部基板25に対して熱伝達可能に搭載されている。そして、これらの電気部品37,39の熱が下部基板25の熱伝導貫通部材42と熱伝導充填部材36を経て放熱用平面部64側に放熱され、電気部品37,39が冷却されるようになっている。   On the lower substrate 25, a smoothing capacitor 37, a switching element 39, and the like, which are heat generating electrical components, are mounted so as to be able to transfer heat to the lower substrate 25. Then, the heat of the electric components 37 and 39 is radiated to the heat radiation flat portion 64 side through the heat conduction penetrating member 42 and the heat conduction filling member 36 of the lower substrate 25 so that the electric components 37 and 39 are cooled. It has become.

上記構成によれば、インバータ装置62がインバータ一体型電動圧縮機61の後端面に設けられている場合において、インバータ一体型電動圧縮機61の長さ方向のコンパクト化と軽量化を図ることができる。   According to the above configuration, when the inverter device 62 is provided on the rear end surface of the inverter-integrated electric compressor 61, the inverter-integrated electric compressor 61 can be reduced in length and weight. .

なお、本発明は上記の第1から第8実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、第1から第8実施形態の構成を組み合わせる等してもよい。   The present invention is not limited to the configurations of the first to eighth embodiments described above, and can be appropriately modified or improved without departing from the gist of the present invention. Embodiments with improvements are also included in the scope of rights of the present invention. For example, the configurations of the first to eighth embodiments may be combined.

また、上記の第1から第8実施形態に記載した基板の冷却構造は、インバータ一体型電動圧縮機への適用以外に、例えば温水ヒータ、車両走行用インバータ、車両・家庭・店舗・事務所等の空調用インバータおよび空調用ファンモータ制御装置、各種電気機器の電源装置等にも幅広く適用することができる。   In addition to the application to the inverter integrated electric compressor, the substrate cooling structure described in the first to eighth embodiments described above is, for example, a hot water heater, a vehicle traveling inverter, a vehicle / home / store / office, etc. The present invention can also be widely applied to air conditioning inverters, air conditioning fan motor control devices, power supply devices for various electrical devices, and the like.

1,61 インバータ一体型電動圧縮機
2 ハウジング
8 圧縮機構
10 電動機
21 インバータ装置
23 インバータボックス
25 下部基板(制御回路基板)
31 放熱用平面部
34 放熱空間
36,60 熱伝導充填部材
37 平滑コンデンサ(発熱電気部品)
38 コイル(発熱電気部品)
39 スイッチング素子(発熱電気部品)
41 基板本体
42 熱伝導貫通部材
42a 凹凸形状
51 貫通孔
54 スペーサ部材
58 凹部形状
d 絶縁距離
制御回路基板からの熱伝導貫通部材の突き出し量
R 熱伝導充填部材の熱抵抗
S 熱伝導貫通部材の放熱用平面部側への放熱面積
V 熱伝導充填部材の絶縁電圧
1,61 Inverter-integrated electric compressor 2 Housing 8 Compression mechanism 10 Electric motor 21 Inverter device 23 Inverter box 25 Lower substrate (control circuit substrate)
31 Flat part for heat radiation 34 Heat radiation space 36, 60 Heat conduction filling member 37 Smoothing capacitor (heat generating electrical component)
38 Coils (Heat-generating electrical parts)
39 Switching elements (heat generating electrical parts)
41 Substrate body 42 Heat conduction penetrating member 42a Concavity and convexity 51 Through hole 54 Spacer member 58 Recessed shape d Insulation distance d 1 Protrusion amount of heat conduction penetrating member from control circuit board R Thermal resistance of heat conduction filling member S Heat conduction penetrating member Heat dissipation area V to the heat radiation flat surface side V Insulation voltage of heat conduction filler

Claims (8)

冷媒の圧縮機構および該圧縮機構を駆動する電動機が内蔵されるハウジングの外面に設けられたインバータボックスと、
制御回路基板を有して前記インバータボックス内に収納設置されるインバータ装置と、
前記制御回路基板に搭載されて前記インバータ装置を構成する発熱電気部品と、を備え、
前記インバータボックスの内部に、前記ハウジングの外壁を構成する放熱用平面部が形成され、
前記発熱電気部品の熱を、前記放熱用平面部側に放熱させることによって冷却するように構成されたインバータ一体型電動圧縮機であって、
前記制御回路基板を熱伝導性基板とし、
該制御回路基板の一方の面に前記発熱電気部品を熱伝達可能に設置し、
該制御回路基板の他方の面を前記放熱用平面部に対し放熱空間を介して対向させ、
前記放熱空間内に柔軟で電気絶縁性および熱伝導性のある熱伝導充填部材を充填し
前記制御回路基板は、
絶縁体からなる基板本体と、
前記基板本体の厚さ方向に貫通充填された良熱伝導体からなる熱伝導貫通部材と、を備えてなり、
前記熱伝導貫通部材の厚みは、前記基板本体の厚みよりも大きく設定され、
前記熱伝導貫通部材の一方の端面が前記発熱電気部品に熱伝達可能に接触し、
前記熱伝導貫通部材の他方の端面が前記基板本体から突出して前記熱伝導充填部材に接触し、
前記放熱空間の絶縁距離をdとした場合、前記絶縁距離dは下記の式から求められることを特徴とするインバータ一体型電動圧縮機。
min /β+d 1_max ≦d≦R max ・α・S+d 1_min
但し、d は制御回路基板からの熱伝導貫通部材の突き出し量、Sは熱伝導貫通部材の放熱用平面部側への放熱面積、Rは熱伝導充填部材の熱抵抗、Vはインバータ装置に必要な熱伝導充填部材の絶縁電圧値、αは熱伝導充填部材の熱伝導率、βは熱伝導充填部材の絶縁破壊電圧。
An inverter box provided on an outer surface of a housing in which a refrigerant compression mechanism and an electric motor for driving the compression mechanism are incorporated;
An inverter device having a control circuit board and housed in the inverter box;
A heating electric component mounted on the control circuit board and constituting the inverter device,
Inside the inverter box, a heat radiating flat part constituting the outer wall of the housing is formed,
An inverter-integrated electric compressor configured to cool the heat generated by dissipating heat from the heat-generating electrical component to the heat-dissipating flat surface side,
The control circuit board is a thermally conductive board,
The heat generating electrical component is installed on one surface of the control circuit board so that heat can be transferred,
The other surface of the control circuit board is opposed to the heat radiating flat portion through a heat radiation space,
Filling the heat dissipation space with a heat conductive filling member that is flexible, electrically insulating and thermally conductive ,
The control circuit board is
A substrate body made of an insulator;
A heat conduction penetrating member made of a good heat conductor that is through-filled in the thickness direction of the substrate body, and
The thickness of the heat conduction penetrating member is set larger than the thickness of the substrate body,
One end face of the heat conduction penetrating member is in contact with the heat generating electrical component so as to be able to transfer heat,
The other end face of the heat conduction penetrating member protrudes from the substrate body and contacts the heat conduction filling member,
Inverter-integrated electric compressor , wherein d is the insulation distance of the heat radiation space, and the insulation distance d is obtained from the following equation .
V min / β + d 1_max ≦ d ≦ R max · α · S + d 1_min
However, the protrusion amount of heat conduction through member from d 1 is the control circuit board, S is the heat dissipation area of the heat-dissipating flat portion of the heat conduction through member, R represents the thermal resistance of the heat conducting filler member, V is the inverter device The necessary insulation voltage value of the heat conduction filling member, α is the heat conductivity of the heat conduction filling member, and β is the dielectric breakdown voltage of the heat conduction filling member.
前記熱伝導充填部材は、当初は流動性があり、前記放熱空間内に充填された後に硬化して弾性体となる性質であることを特徴とする請求項1に記載のインバータ一体型電動圧縮機。  2. The inverter-integrated electric compressor according to claim 1, wherein the heat conductive filling member is initially fluid and has a property of being cured after being filled in the heat radiation space to become an elastic body. . 前記制御回路基板に、前記放熱空間に連通する貫通孔が穿設されていることを特徴とする請求項1または2に記載のインバータ一体型電動圧縮機。  The inverter-integrated electric compressor according to claim 1, wherein a through hole communicating with the heat radiation space is formed in the control circuit board. 前記放熱空間は、前記制御回路基板に前記発熱電気部品が搭載されている付近にのみ形成されていることを特徴とする請求項1から3のいずれかに記載のインバータ一体型電動圧縮機。  4. The inverter-integrated electric compressor according to claim 1, wherein the heat radiation space is formed only in the vicinity of the control circuit board where the heat generating electrical component is mounted. 5. 前記放熱用平面部と前記制御回路基板との間にスペーサ部材が介装され、前記制御回路基板に前記発熱電気部品が搭載されている部位では前記スペーサ部材が省略されることによって前記放熱空間が形成されていることを特徴とする請求項1から4のいずれかに記載のインバータ一体型電動圧縮機。  A spacer member is interposed between the heat radiation flat portion and the control circuit board. The spacer member is omitted at a portion where the heat generating electrical component is mounted on the control circuit board, whereby the heat radiation space is formed. The inverter-integrated electric compressor according to any one of claims 1 to 4, wherein the inverter-integrated electric compressor is formed. 前記放熱用平面部の、前記熱伝導貫通部材と対向する部位に、前記熱伝導貫通部材の端部形状に沿う凹部形状を形成したことを特徴とする請求項1から5のいずれかに記載のインバータ一体型電動圧縮機。  The recessed part shape which followed the edge part shape of the said heat conduction penetrating member was formed in the site | part which opposes the said heat conduction penetrating member of the said heat radiation flat part, The Claim 1 characterized by the above-mentioned. Inverter-integrated electric compressor. 前記熱伝導貫通部材の、前記放熱用平面部と対向する面に凹凸形状を設けたことを特徴とする請求項1から6のいずれかに記載のインバータ一体型電動圧縮機。  The inverter-integrated electric compressor according to any one of claims 1 to 6, wherein an uneven shape is provided on a surface of the heat conduction penetrating member facing the heat radiation flat portion. 前記熱伝導充填部材は、柔軟なシート状であることを特徴とする請求項1,4,5,6,7のいずれかに記載のインバータ一体型電動圧縮機。  The inverter-integrated electric compressor according to any one of claims 1, 4, 5, 6, and 7, wherein the heat conduction filling member has a flexible sheet shape.
JP2011247972A 2011-11-11 2011-11-11 Inverter-integrated electric compressor Active JP5730176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247972A JP5730176B2 (en) 2011-11-11 2011-11-11 Inverter-integrated electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247972A JP5730176B2 (en) 2011-11-11 2011-11-11 Inverter-integrated electric compressor

Publications (2)

Publication Number Publication Date
JP2013106421A JP2013106421A (en) 2013-05-30
JP5730176B2 true JP5730176B2 (en) 2015-06-03

Family

ID=48625583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247972A Active JP5730176B2 (en) 2011-11-11 2011-11-11 Inverter-integrated electric compressor

Country Status (1)

Country Link
JP (1) JP5730176B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118052B2 (en) * 2012-09-05 2017-04-19 アスモ株式会社 Vehicle motor unit
JP6405625B2 (en) * 2013-12-19 2018-10-17 株式会社デンソー Liquid pump
JP2015121196A (en) * 2013-12-25 2015-07-02 株式会社豊田自動織機 Semiconductor device for motor compressor
JP6682741B2 (en) * 2014-06-23 2020-04-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Circuit board and circuit board assembly
JP6265072B2 (en) * 2014-07-11 2018-01-24 株式会社豊田自動織機 Electric compressor
JP2016140147A (en) 2015-01-26 2016-08-04 株式会社デンソー Rotary electric machine
JP6540986B2 (en) * 2015-01-26 2019-07-10 株式会社デンソー Electric rotating machine
DE102015112031B4 (en) 2015-07-23 2017-08-17 Halla Visteon Climate Control Corporation Arrangement for improving a current-carrying capacity of printed conductors
US10935028B2 (en) 2016-06-20 2021-03-02 Pierburg Pump Technology Gmbh Electric fluid pump for a motor vehicle
JP2018061357A (en) * 2016-10-05 2018-04-12 株式会社デンソー Motor device
CN208369332U (en) * 2017-05-17 2019-01-11 德昌电机(深圳)有限公司 A kind of engine cooling mould group of motor, the circuit board and application motor
JP7002904B2 (en) * 2017-09-29 2022-01-20 日本電産株式会社 motor
JP7215402B2 (en) * 2019-11-28 2023-01-31 株式会社豊田自動織機 semiconductor equipment
CN114289396A (en) * 2021-12-02 2022-04-08 东莞声索电子有限公司 Industrial ultrasonic frequency-tracking cleaning machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535385A (en) * 1983-04-22 1985-08-13 Cray Research, Inc. Circuit module with enhanced heat transfer and distribution
JP2004100683A (en) * 2002-07-15 2004-04-02 Toyota Industries Corp Electric compressor
JP2006280089A (en) * 2005-03-29 2006-10-12 Jtekt Corp Motor controller
JP4665825B2 (en) * 2006-05-09 2011-04-06 株式会社デンソー Motor drive device for vehicle
JP2009021445A (en) * 2007-07-12 2009-01-29 Toshiba Corp Inverter apparatus
JP2009240023A (en) * 2008-03-26 2009-10-15 Nidec Shibaura Corp Motor controller, brushless motor, and power tool
JP5839769B2 (en) * 2009-03-06 2016-01-06 三菱重工業株式会社 Inverter module and inverter-integrated electric compressor
JP5493995B2 (en) * 2010-02-25 2014-05-14 三菱電機株式会社 Inverter device, compressor, and refrigerant cycle device
JP2011214432A (en) * 2010-03-31 2011-10-27 Denso Corp Electric compressor

Also Published As

Publication number Publication date
JP2013106421A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5730176B2 (en) Inverter-integrated electric compressor
JP5687027B2 (en) Inverter-integrated electric compressor
JP5479139B2 (en) Inverter-integrated electric compressor and assembly method thereof
JP5517650B2 (en) Inverter-integrated electric compressor
EP1926361B1 (en) Inverter attached to an electric compressor
JP5517652B2 (en) Inverter-integrated electric compressor and assembly method thereof
CN101187364B (en) Inverter-integrated electric compressor
US10156239B2 (en) Inverter-integrated electrical compressor
US9309886B2 (en) Inverter-integrated electric compressor
KR102257795B1 (en) Electric compressor
JP4884841B2 (en) Inverter-integrated electric compressor
WO2016121382A1 (en) Electric compressor and electronic component
JP2008175067A (en) Electric compressor
JP4879772B2 (en) Electrical equipment
JP2008163767A (en) Electric compressor
JP2008163765A (en) Electric compressor
JP5686992B2 (en) Inverter-integrated electric compressor
KR102191125B1 (en) Heat radiation element assembly and electric compressor include the same
EP2191991A1 (en) Electric compressor integrated with inverter
KR101043246B1 (en) Electromotive compressor having inverter
JP4830848B2 (en) Electric compressor
JP2008175069A (en) Electric compressor
JP2008157170A (en) Motor-driven compressor
JP2008163766A (en) Electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R151 Written notification of patent or utility model registration

Ref document number: 5730176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151