JP5728856B2 - Manufacturing method of member - Google Patents

Manufacturing method of member Download PDF

Info

Publication number
JP5728856B2
JP5728856B2 JP2010199829A JP2010199829A JP5728856B2 JP 5728856 B2 JP5728856 B2 JP 5728856B2 JP 2010199829 A JP2010199829 A JP 2010199829A JP 2010199829 A JP2010199829 A JP 2010199829A JP 5728856 B2 JP5728856 B2 JP 5728856B2
Authority
JP
Japan
Prior art keywords
less
steel
rolling
rolled
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010199829A
Other languages
Japanese (ja)
Other versions
JP2012057197A (en
Inventor
金晴 奥田
金晴 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010199829A priority Critical patent/JP5728856B2/en
Publication of JP2012057197A publication Critical patent/JP2012057197A/en
Application granted granted Critical
Publication of JP5728856B2 publication Critical patent/JP5728856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、主に自動車用に使用される部材、特に衝撃吸収性能に優れる部材の製造方法に関わり、冷延鋼板をプレス成形し、次いで熱処理が施されるものである。   The present invention relates to a method for producing a member mainly used for automobiles, particularly a member excellent in impact absorbing performance, and is formed by press-forming a cold-rolled steel sheet and then performing a heat treatment.

近年、地球環境保全の観点から、COの排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。
自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を低減することによる軽量化が効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, there has been a demand for improved fuel efficiency of automobiles. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centered on the collision characteristics of the automobile body.
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that weight reduction by reducing the plate thickness is effective in increasing the strength of component materials within a range where rigidity does not matter. Tensile steel plates are actively used in automotive parts.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、従来は、プレス成形し部品となった後の延性や加工硬化能については着目されていなかった。 ドアインパクトビームなど変形しないような部位は別として、車体に組み込まれたのちの延性を確保しておかないと、衝突時に割れが発生し、十分な衝突エネルギーが確保できないという問題がある。さらに、延性といっても、局部延性だけでは、衝突時の変形によりすぐに局部くびれ現象が生じ、衝突性能にも影響を与えることが考えられる。   On the other hand, since many automotive parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, conventionally, attention has not been paid to ductility and work hardening ability after press forming into a part. Aside from the parts that do not deform, such as the door impact beam, there is a problem that if the ductility after being incorporated in the vehicle body is not ensured, cracking occurs at the time of collision, and sufficient collision energy cannot be secured. Furthermore, even if it is said to be ductile, it is conceivable that local constriction occurs immediately due to deformation at the time of collision only by local ductility, and impact performance is also affected.

生産性に優れる連続焼鈍を用いて低炭素アルミキルド鋼板において成形能を上げる手段として、非特許文献1では、焼鈍後に300から350℃付近で十分過時効処理を行い、フェライト中の固溶Cをセメンタイトとして析出させることで、耐時効性にも優れ、延性にも富む鋼板を得ることを達成している。
しかしながら、この場合、加工すると均一伸びが急激に低下してしまうという問題があった。
In Non-Patent Document 1, as a means for improving the forming ability of low carbon aluminum killed steel sheet using continuous annealing with excellent productivity, in Non-Patent Document 1, after annealing, sufficient overaging treatment is performed at around 300 to 350 ° C., and solid solution C in ferrite is cementite. As a result, it is possible to obtain a steel sheet having excellent aging resistance and high ductility.
However, in this case, there is a problem that the uniform elongation sharply decreases when processed.

また、特許文献1では、加工性を有しながら高い焼き付け硬化性を得る自動車用鋼板として、C:0.003〜0.01% N:0.003%以下で、固溶Cが0.002%以上で、結晶粒度番号が9.5番以上のフェライト単相とする鋼板が開示されており、100MPaを超えるBHが達成されている。同様に、特許文献2では、C:0.008〜0.010%、Si:0.01〜1%、 Mn:0.05〜2%、 P:0.005〜0.1%を含み、フェライト主体とした組織を呈することで、加工性および焼付処理条件の変動による影響を受けにくい焼付硬化性に優れた自動車車体内板用鋼板が開示されている。しかし、プレス時の成形性に注目し、部品となってからの延性については言及されていない。   Moreover, in patent document 1, as a steel plate for motor vehicles which obtains high bake hardenability while having workability, C: 0.003-0.01% N: 0.003% or less, and solid solution C is 0.002. %, A steel sheet having a ferrite single phase with a grain size number of 9.5 or more is disclosed, and BH exceeding 100 MPa is achieved. Similarly, Patent Document 2 includes C: 0.008 to 0.010%, Si: 0.01 to 1%, Mn: 0.05 to 2%, P: 0.005 to 0.1%, A steel plate for an automobile body inner plate is disclosed that exhibits a structure mainly composed of ferrite and is excellent in bake hardenability that is not easily affected by variations in workability and bake treatment conditions. However, paying attention to the formability at the time of pressing, no mention is made of the ductility after becoming a part.

また、特許文献3では、C:0.01〜0.02%で固溶Cと固溶Nを合計で0.0015%とし、平均結晶粒径10μm以下のフェライト相とすることで、歪時効性、耐衝撃性、耐二次加工脆性および加工性に優れたTS440MPa以上の高張力鋼板が開示されている。また、製造方法として、製品板を1〜15%スキンパスまたはレベラー加工を行い、その後焼き付け塗装相当処理を行うことで、TSの上昇と、高速引張での吸収エネルギーが増加することが示されている。しかしながら、素材強度と部材の吸収エネルギーのバランスという観点からは、不十分なものであった。   Further, in Patent Document 3, strain aging is achieved by setting C: 0.01 to 0.02% to a total solid solution C and solid solution N of 0.0015% and a ferrite phase having an average crystal grain size of 10 μm or less. A high-tensile steel plate of TS440 MPa or more that is excellent in heat resistance, impact resistance, secondary work brittleness resistance and workability is disclosed. In addition, as a manufacturing method, it is shown that the product plate is subjected to 1-15% skin pass or leveler processing, and then subjected to baking coating equivalent processing, thereby increasing TS and absorbing energy in high-speed tension. . However, this is insufficient from the viewpoint of the balance between the strength of the material and the energy absorbed by the member.

特開2006−199997号公報JP 2006-199997 A 特開2005−126793号公報JP 2005-126793 A 特開2001−335889号公報JP 2001-335889 A

西山記念技術講座「第88・89回ストリップの連続焼鈍技術の 進歩」日本鉄鋼協会(1983)Nishiyama Memorial Technology Course "Progress in Continuous Annealing Technology of the 88th and 89th Strips" Japan Iron and Steel Institute (1983)

このように、従来は焼鈍後の成形性、プレス加工性や焼付け硬化性等が追求されてきたが、プレス成形後の焼付塗装処理を行った状態での衝撃吸収能については、従来十分には検討されてこなかった。
本発明は、省合金成分の高張力鋼板をプレス成形し、引き続く熱処理(焼付塗装処理)を行った状態での衝撃吸収能に優れる部材の製造方法を提供することを課題とする。
Thus, conventionally, the formability after annealing, press workability, bake hardenability, etc. have been pursued, but the impact absorption ability in the state where the baking coating treatment after press molding has been performed has been sufficient in the past. It has not been examined.
An object of the present invention is to provide a method for producing a member having excellent impact absorbing ability in a state in which a high-strength steel plate having an alloy-saving component is press-formed and subsequently subjected to a heat treatment (baking coating treatment).

この発明は、上記のような課題を解決すべく鋭意検討を進めたところ、焼鈍後の鋼板のミクロ組織と、母相中の固溶Cの制御をすることと、焼鈍後の歪量と、部材成形後の熱処理条件を最適化することで、衝撃吸収能に優れる低コストの部材が製造可能であることを見出した。   The present invention has been intensively studied to solve the above-mentioned problems.The microstructure of the steel sheet after annealing, the control of the solid solution C in the matrix, and the amount of strain after annealing, It has been found that by optimizing the heat treatment conditions after forming the member, it is possible to manufacture a low-cost member having excellent shock absorption capability.

そこで、本発明は、上記の課題を解決するために以下の手段を採用する。
[1]質量%で、
C:0.005〜0.03%、
Mn:0.05〜1.5%以下、
Si:1.5%以下、
P:0.10%以下、
S:0.0100%以下、
Al:0.02〜0.80%以下、
N:0.0100%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブを1050℃以上に加熱し、粗圧延した後に仕上圧延を、仕上圧延出側温度がAr変態点〜950℃で行って、600℃以下で巻き取ったのち、酸洗して冷間圧延を行い、次いで、700℃〜Ac変態点の温度範囲で焼鈍を行い、引き続き、700から250℃までの平均冷却速度を15℃/s以上として冷却したのち、調圧率15〜30%の調質圧延を行うことにより得た、組織が面積率で95%以上のフェライト相からなる鋼板を、プレス成形したのち、140〜300℃で熱処理を行うことを特徴とする吸収エネルギー比が1.4以上である部材の製造方法。
[2]前記鋼スラブがさらに質量%で、
Ti:0.05%以下、
Nb:0.05%以下、
Cr:0.2%以下、
Mo:0.2%以下
の1種以上を含むことを特徴とする、[1]に記載の吸収エネルギー比が1.4以上である部材の製造方法。
[3]前記鋼スラブがさらに質量%で、
B:0.0030%以下
を含むことを特徴とする、[1]または[2]に記載の吸収エネルギー比が1.4以上である部材の製造方法。
Therefore, the present invention employs the following means in order to solve the above problems.
[1] By mass%
C: 0.005 to 0.03%,
Mn: 0.05 to 1.5% or less,
Si: 1.5% or less,
P: 0.10% or less,
S: 0.0100% or less,
Al: 0.02 to 0.80% or less,
N: 0.0100% or less, and a steel slab having a composition composed of the balance Fe and inevitable impurities is heated to 1050 ° C. or more and subjected to finish rolling and finish rolling, and the finish rolling exit temperature is the Ar 3 transformation point. ˜950 ° C., wound at 600 ° C. or lower, pickled and cold-rolled, then annealed in a temperature range of 700 ° C. to Ac 1 transformation point, and subsequently from 700 to 250 ° C. After cooling at an average cooling rate of 15 ° C./s or higher, a steel sheet made of a ferrite phase having a structure with an area ratio of 95% or more obtained by temper rolling with a pressure regulation ratio of 15 to 30% is pressed. A method for producing a member having an absorbed energy ratio of 1.4 or more, wherein heat treatment is performed at 140 to 300 ° C. after molding.
[2] The steel slab is further mass%,
Ti: 0.05% or less,
Nb: 0.05% or less,
Cr: 0.2% or less,
Mo: One or more types of 0.2% or less are included, The manufacturing method of the member whose absorption energy ratio as described in [1] is 1.4 or more .
[3] The steel slab is further mass%,
B: The manufacturing method of the member whose absorption energy ratio as described in [1] or [2] is 1.4 or more characterized by including 0.0030% or less.

焼鈍後の冷延鋼板のミクロ組織と、母相中の固溶Cの制御をすることと、焼鈍後の歪量と、部材成形後の熱処理条件等を最適化することで、衝撃吸収能に優れる部材を製造することができる。本発明によれば、例えば自動車のフロントサイドメンバー、リアサイドメンバーなどの衝撃吸収を受け持つ自動車用部材の衝撃吸収能を大きく向上させることができ、自動車体の衝突特性を向上できる。   By controlling the microstructure of the cold-rolled steel sheet after annealing and the solid solution C in the matrix, optimizing the amount of strain after annealing, the heat treatment conditions after forming the member, etc. An excellent member can be manufactured. ADVANTAGE OF THE INVENTION According to this invention, the impact absorption capability of the member for motor vehicles which takes charge of impact absorption, such as a front side member of a motor vehicle, a rear side member, for example can be improved greatly, and the collision characteristic of a motor vehicle body can be improved.

本発明者らは、焼鈍後の鋼板組織をフェライト主相とし、母相フェライト中に固溶Cを十分確保した状態で、焼鈍後のスキンパス量(調圧率)を従来よりも高くして調質圧延した冷延鋼板を、プレス成形後に適切な温度で部材成形後に熱処理を施すことで、衝撃時に、材料は十分な加工硬化性を発揮することで、吸収エネルギーを確保することができることを見出した。   The inventors set the steel plate structure after annealing as a ferrite main phase and adjusted the skin pass amount (pressure regulation rate) after annealing higher than before in a state where sufficient solid solution C was secured in the matrix phase ferrite. We have found that heat-treated cold-rolled steel sheets are heat-treated after forming members at an appropriate temperature after press forming, so that when the material is impacted, the material can exhibit sufficient work-hardening properties to ensure absorbed energy. It was.

これは、連続焼鈍まま材の延性を確保するために、過時効処理を十分に行うと、炭素がセメンタイトとして析出し、高スキンパス条件では、加工硬化できない材料になってしまうが、固溶炭素が十分に存在すると、強加工を行い、転位が多量に導入されたあとも、熱処理により、多量に存在する固溶Cが転位を固着し、再び転位を増殖させることで、衝撃時の吸収エネルギーを増加させるためと考えられる。   This is because, when sufficient aging treatment is performed to ensure the ductility of the material while being continuously annealed, carbon precipitates as cementite, and under high skin pass conditions, it becomes a material that cannot be work hardened. If there is enough, strong processing is performed, and even after a large amount of dislocations are introduced, the solid solution C that exists in large amounts is fixed by the heat treatment, and the dislocations are propagated again by heat treatment, so that the absorbed energy at the time of impact is increased. It is thought to increase.

以下に本発明を詳細に説明する。
以下において特に断らない限り、元素の含有量の「%」は「質量%」を指している。
最初に、本発明における鋼スラブの成分組成(化学成分)を限定した理由について説明する。なお、本発明における鋼板の成分組成は該鋼スラブの成分組成と同様である。
The present invention is described in detail below.
Unless otherwise specified below, “%” of the element content indicates “mass%”.
First, the reason for limiting the component composition (chemical component) of the steel slab in the present invention will be described. In addition, the component composition of the steel plate in this invention is the same as that of this steel slab.

・C:0.005〜0.03%
Cは焼鈍後の固溶Cの確保に重要であり、0.005%以上の含有が必要である。しかしながら、その含有量が過剰に多くなると、焼鈍時に未溶解のセメンタイトが存在し、焼鈍後の固溶Cが低下してしまうため、上限を0.03%とする。好ましくは0.02%以下である。
・ C: 0.005 to 0.03%
C is important for securing solid solution C after annealing, and it is necessary to contain 0.005% or more. However, if the content is excessively large, undissolved cementite exists at the time of annealing, and the solid solution C after annealing decreases, so the upper limit is made 0.03%. Preferably it is 0.02% or less.

・Mn:0.05〜1.5%
MnはSによる熱間割れを防止するのに有効な元素でもある。このような観点からMnは0.05%以上含有する必要がある。但し、過剰な添加は、変態点を低下させ、組織を複合組織化して、プレス加工して塗装焼付け後の延性を上昇させる効果が薄れることに加え、フェライト中の固溶Cの低減してしまうので、Mnの含有量は1.5%以下とする。好ましくは0.8%以下である。
Mn: 0.05 to 1.5%
Mn is also an effective element for preventing hot cracking due to S. From such a viewpoint, it is necessary to contain Mn 0.05% or more. However, excessive addition lowers the transformation point, reduces the effect of increasing the ductility after press baking by forming a composite structure and reducing solid solution C in ferrite. Therefore, the Mn content is 1.5% or less. Preferably it is 0.8% or less.

・Si:1.5%以下
Siは成形性を損なうことなく固溶強化させるのに有効な元素であり、1.5%以下の範囲で含有させる。この効果を得るためには、Siは0.01%以上含有することが好ましく、より好ましくは0.05%以上である。一方、1.5%を超えて含有させると、変態点温度が高くなり、熱間圧延をオーステナイト単相域で仕上げることができなくなり、延性の低下を招くのでよくない。また、スケール起因の表面外観性も悪くし、しかも化成処理性の劣化を招くので、Si含有量は1.5%以下とする。好ましくは1.0%以下である。
Si: 1.5% or less Si is an element effective for strengthening solid solution without impairing moldability, and is contained in a range of 1.5% or less. In order to acquire this effect, it is preferable to contain Si 0.01% or more, More preferably, it is 0.05% or more. On the other hand, if the content exceeds 1.5%, the transformation point temperature becomes high, and hot rolling cannot be finished in the austenite single-phase region, resulting in a decrease in ductility. Further, the surface appearance due to the scale is also deteriorated and the chemical conversion treatment is deteriorated, so the Si content is set to 1.5% or less. Preferably it is 1.0% or less.

・P:0.10%以下
Pは、0.10%を越える過剰な含有では粒界に偏析し、耐二次加工脆性および溶接性を劣化させるので、上限を0.10%とした。
・S:0.0100%以下
Sは不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減することが好ましいが、0.0100%までは許容できるため、0.0100%以下とする。
-P: 0.10% or less P is segregated at the grain boundary if it is excessively contained in excess of 0.10%, and the secondary work brittleness resistance and weldability are deteriorated. Therefore, the upper limit was made 0.10%.
S: 0.0100% or less S is an impurity, which causes hot cracking and is present as an inclusion in steel and deteriorates various properties of the steel sheet. Since up to 0100% is acceptable, it is set to 0.0100% or less.

・Al:0.02〜0.80%
Alは鋼の脱酸元素として有用であるため、0.02%以上含有させる。一方、その含有量が0.80%を越えると、変態点温度が高くなり、熱間圧延をオーステナイト単相域で仕上げることができなくなり、延性の低下を招くので好ましくない。また高合金コストを招き、さらに溶接性を低下させるので、0.80%以下とする。
-Al: 0.02-0.80%
Since Al is useful as a deoxidizing element for steel, it is contained in an amount of 0.02% or more. On the other hand, if the content exceeds 0.80%, the transformation point temperature becomes high, hot rolling cannot be finished in the austenite single phase region, and ductility is lowered, which is not preferable. Moreover, since a high alloy cost is caused and weldability is further reduced, it is made 0.80% or less.

・N:0.0100%以下
本発明では、固溶Cの活用するため、N含有量は特に規定するものではないが、0.0100%を越えると、プレス加工後に変形させた場合に、侵入型固溶元素の総量と焼鈍後の歪導入量とのバランスが崩れ、不均一変形が生じやすくなり、均一伸びの評価が困難となるので上限を0.0100%とする。
-N: 0.0100% or less In the present invention, since the solute C is used, the N content is not particularly specified. However, if it exceeds 0.0100%, it penetrates when deformed after pressing. Since the balance between the total amount of the solid solution element and the amount of strain introduced after annealing is lost, nonuniform deformation is likely to occur, and evaluation of uniform elongation becomes difficult, so the upper limit is made 0.0100%.

・Ti:0.05%以下、Nb:0.05%以下、Cr:0.2%以下、Mo:0.2以下の1種以上
Ti、Nb、Cr、Moは、炭化物形成元素であり、固溶C、Nを低減するため、多量の添加は好ましくないが、細粒化により強度延性バランスを向上させるので、Ti:0.05%以下、Nb:0.05%以下、Cr:0.2%以下、Mo:0.2%以下であれば、これらの元素を1種以上含有させても問題ない。なお、上記効果を得る上では、Ti、Nb、Cr、Moの含有量は各々Ti:0.005%以上、Nb:0.005%以上、Cr:0.1%以上、Mo:0.05%以上とすることが好ましい。
Ti: 0.05% or less, Nb: 0.05% or less, Cr: 0.2% or less, Mo: 0.2 or less, one or more types Ti, Nb, Cr, Mo are carbide forming elements, Addition of a large amount is not preferable in order to reduce the solid solution C and N, but the strength ductility balance is improved by fine graining, so that Ti: 0.05% or less, Nb: 0.05% or less, Cr: 0.00. If it is 2% or less and Mo: 0.2% or less, there is no problem even if one or more of these elements are contained. In order to obtain the above effects, the contents of Ti, Nb, Cr, and Mo are Ti: 0.005% or more, Nb: 0.005% or more, Cr: 0.1% or more, Mo: 0.05 % Or more is preferable.

・B:0.0030%以下
Bは鋼の微細化や焼付け硬化性を向上する作用をもつ元素であり、必要に応じて含有できる。しかし、その含有量が0.0030%を超えるとその効果が飽和するため0.003%以下とする。なお、上記効果を得る上では、Bは0.0003%以上とすることが好ましい。
B: 0.0030% or less B is an element having an effect of improving the refinement and bake hardenability of steel, and can be contained as required. However, if the content exceeds 0.0030%, the effect is saturated, so the content is made 0.003% or less. In order to obtain the above effect, B is preferably 0.0003% or more.

以上が本発明鋼の基本成分であるが、その他Ca、REM等を、通常の鋼組成範囲内であれば含有しても何ら問題はない。
CaおよびREMは硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果はCaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を越えると飽和するのでこれ以下とすることが好ましい。
The above are the basic components of the steel of the present invention, but there is no problem even if Ca, REM, etc. are contained within the normal steel composition range.
Ca and REM have an action of controlling the form of sulfide inclusions, thereby preventing deterioration of various properties of the steel sheet. Since such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, it is preferable to make it less than this.

またその他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。   Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: The range is 0.01% or less and Co: 0.1% or less.

次に、本発明における鋼板の組織を限定した理由について、説明する。
・組織:面積率で95%以上のフェライト相
本発明のような、調質圧延率(調圧率)を高くした後に、時効処理をすることで均一伸びを向上させるためにはフェライト単相が好ましい。マルテンサイトやベイナイトなどを含んだ複合組織の場合は、その効果が低減するので、少なくともマルテンサイトやベイナイトなどの第2相分率は面積率で5%以下とする。すなわち、フェライト相の面積率は95%以上とする。
Next, the reason why the structure of the steel sheet in the present invention is limited will be described.
-Structure: ferrite phase with an area ratio of 95% or more In order to improve uniform elongation by increasing the temper rolling ratio (pressure regulation ratio) as in the present invention, the ferrite single phase must be preferable. In the case of a composite structure containing martensite, bainite, etc., the effect is reduced, so at least the second phase fraction of martensite, bainite, etc. is 5% or less in terms of area ratio. That is, the area ratio of the ferrite phase is 95% or more.

次に、上記組織を有する本発明に用いる鋼板の製造方法について説明する。
本発明に用いる鋼板の製造方法で使用する鋼スラブは上記の組成を有する。該鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法により製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、或いはわずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
Next, the manufacturing method of the steel plate used for this invention which has the said structure | tissue is demonstrated.
The steel slab used in the steel sheet manufacturing method used in the present invention has the above composition. The steel slab is desirably manufactured by a continuous casting method in order to prevent macro segregation of components, but may be manufactured by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, direct feed rolling in which the steel slab is charged without being cooled and charged in a heating furnace and hot-rolled, or a little heat retention Energy-saving processes such as direct-rolling and direct rolling, which are hot-rolled immediately after carrying out, can be applied without any problem.

・スラブ加熱温度:1050℃以上
本発明に用いる鋼板は、上記した範囲内の組成を有するスラブを素材とし、該素材に熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を施し冷延鋼板とする冷間圧延工程と、該冷延鋼板に再結晶と複合組織化を達成する焼鈍工程とを順次施すことにより製造することができる。この場合、スラブ加熱温度は、後述する仕上げ温度を確保するため1050℃以上が好ましい。しかしながら、1300℃を超えると加熱時の析出が十分でなく、γ粒の粒成長が生じることや、加熱温度の上昇によるコストアップ、スケールロスの観点から1300℃以下で加熱することが好ましい。
-Slab heating temperature: 1050 ° C or higher The steel sheet used in the present invention is a slab having a composition within the above-mentioned range, and a hot rolling process in which the raw material is hot rolled to form a hot rolled sheet, and the hot rolling It can be manufactured by subjecting a plate to pickling and cold rolling to form a cold rolled steel sheet, and sequentially subjecting the cold rolled steel sheet to an annealing process for achieving recrystallization and complexing. In this case, the slab heating temperature is preferably 1050 ° C. or higher in order to secure the finishing temperature described later. However, when the temperature exceeds 1300 ° C., precipitation during heating is not sufficient, and it is preferable to heat at 1300 ° C. or less from the viewpoint of γ grain growth, cost increase due to an increase in heating temperature, and scale loss.

上記条件で加熱されたスラブは粗圧延によりシートバーに成形される。粗圧延の条件は特に規定する必要はなく、常法に従っておこなえばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する所謂シートバーヒーターを活用することもできる。   The slab heated under the above conditions is formed into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. Further, from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, a so-called sheet bar heater for heating the sheet bar can be used.

・仕上圧延出側温度:Ar変態点〜950℃
次いで、シートバーを、仕上圧延出側温度(FT)をAr以上変態点以上として仕上圧延して熱延板とする。FTがAr未満ではフェライト域の高温域の圧延により熱延組織が粗大化し、成形性が低下する。また、FTが高すぎると、スケール欠陥などの表面性状の問題が生じるため950℃以下とする。なお、Ar変態点は加工フォーマスタを用いて熱膨張曲線を測定することにより求めることができる。
· Finish rolling delivery temperature: Ar 3 transformation point ~950 ℃
Subsequently, the sheet bar is finish-rolled with a finish rolling outlet temperature (FT) of Ar 3 or more and the transformation point or more to obtain a hot-rolled sheet. If the FT is less than Ar 3 , the hot rolled structure becomes coarse due to rolling in the high temperature region of the ferrite region, and the formability decreases. On the other hand, if the FT is too high, surface property problems such as scale defects occur. The Ar 3 transformation point can be obtained by measuring a thermal expansion curve using a processing formaster.

なお、熱間圧延時の圧延荷重を低減するため仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延をおこなうことは鋼板形状の均一化や材質の均質化の観点からも有効である。潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。   In addition, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Lubrication rolling is effective from the viewpoint of uniform steel plate shape and uniform material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined and finish-rolled continuously. It is desirable to apply the continuous rolling process from the viewpoint of the operational stability of hot rolling.

・巻取温度:600℃以下
仕上圧延後の熱延板はコイルに巻き取られる。コイル巻取温度(CT)は600℃以下とする。特にCTが600℃を越えると結晶粒が粗大化し強度低下を招くことになるとともに、セメンタイトが粗大化し、焼鈍時の固溶Cの確保が困難になる。好ましくは500〜580℃とする。
-Winding temperature: 600 degrees C or less The hot-rolled sheet after finish rolling is wound up by a coil. The coil winding temperature (CT) is 600 ° C. or lower. In particular, when CT exceeds 600 ° C., the crystal grains are coarsened and the strength is lowered, and cementite is coarsened, so that it is difficult to ensure solid solution C during annealing. Preferably it is set to 500-580 degreeC.

・冷間圧延
次いで、該熱延板を酸洗した後、冷間圧延を行い冷延鋼板とする。酸洗は通常の条件にておこなえばよい。冷間圧延条件は所望の寸法形状の冷延鋼板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は少なくとも50%以上とすることが好ましく、より好ましくは60%以上とする。一方、この発明では冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を越えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷も高まるため、上限を90%とすることが好ましい。
-Cold rolling Next, after pickling the hot-rolled sheet, it is cold-rolled to obtain a cold-rolled steel sheet. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold rolled steel sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably at least 50% or more, more preferably 60% or more. To do. On the other hand, in the present invention, the r value increases as the cold rolling reduction is increased up to 90%, but if it exceeds 90%, not only the effect is saturated, but also the load on the roll during rolling increases. The upper limit is preferably 90%.

・焼鈍温度:700℃〜Ac変態点
冷間圧延後の冷延鋼板は焼鈍処理が施される。焼鈍処理により再結晶を完了させないと、延性が大きく低下し、異方性も大きくなるので好ましくない。その意味で焼鈍温度は700℃以上にする必要がある。しかしながら、Ac変態点を超える温度とすると、鋼板の組織が複合組織化し、面積率で95%以上のフェライト相からなる鋼板を得ることができなくなり、プレス成形後、塗装焼付け後の均一伸びを確保できないのでAc点以下とする。なお、Ac変態点はフォーマスタを用いて熱膨張曲線を測定することにより求めることができる。
-Annealing temperature: 700 degreeC-Ac 1 transformation point The cold-rolled steel plate after cold rolling is annealed. If recrystallization is not completed by annealing, the ductility is greatly reduced and the anisotropy is also increased, which is not preferable. In that sense, the annealing temperature needs to be 700 ° C. or higher. However, if the temperature exceeds the Ac 1 transformation point, the structure of the steel sheet becomes a composite structure, and it becomes impossible to obtain a steel sheet composed of a ferrite phase with an area ratio of 95% or more. Since it cannot be secured, Ac is set to 1 point or less. The Ac 1 transformation point can be obtained by measuring a thermal expansion curve using a Formaster.

・焼鈍に続く冷却工程において700℃から250℃までの平均冷却速度:15℃/s以上
焼鈍後の冷延鋼板は焼鈍後の固溶Cを確保するために冷却される。700℃から250℃までの平均冷却速度が15℃/s未満では、セメンタイトが析出して、固溶Cが十分確保できないため、700℃から250℃までの平均冷却速度は15℃/s以上とする。
-Average cooling rate from 700 degreeC to 250 degreeC in the cooling process following annealing: 15 degree-C / s or more The cold-rolled steel plate after annealing is cooled in order to ensure the solid solution C after annealing. When the average cooling rate from 700 ° C. to 250 ° C. is less than 15 ° C./s, cementite is precipitated and sufficient solute C cannot be secured. Therefore, the average cooling rate from 700 ° C. to 250 ° C. is 15 ° C./s or more. To do.

・調質圧延:調圧率15〜30%の調質圧延
焼鈍後に冷却された冷延鋼板は、調質圧延しプレス加工に付与されるが、調圧率が15%未満では、常温時効性が懸念される。また、プレス成形後の歪量が少ない場合に、プレス成形後の熱処理をした後の加工硬化が期待できなくなる。逆に30%超では、固溶Cが十分に存在しても、熱処理(焼付処理)後の均一伸びが低下してしまう。好ましくは25%以下とする。
次いで、上記のように製造して得た鋼板(冷延鋼板)を部材形状にプレス成形した後、熱処理を施す。
-Temper rolling: Temper rolling with a pressure regulation ratio of 15-30% Cold-rolled steel sheet cooled after annealing is temper-rolled and applied to press work. If the pressure regulation ratio is less than 15%, normal temperature aging is achieved. Is concerned. Further, when the amount of strain after press molding is small, work hardening after heat treatment after press molding cannot be expected. On the other hand, if it exceeds 30%, even if solid solution C is sufficiently present, the uniform elongation after the heat treatment (baking treatment) is lowered. Preferably it is 25% or less.
Next, the steel plate (cold rolled steel plate) obtained as described above is press-formed into a member shape, and then subjected to heat treatment.

・熱処理温度:140〜300℃
冷延鋼板はプレス成形されて成形部品となった後に塗装焼付けなどの熱処理をおこなわないと加工歪が導入されただけなので延性が低い。固溶Cの転位への固着を十分に行わせるために、熱処理温度は、140℃以上が必要である。300℃を超えると、調質圧延やプレス加工により導入された転位が回復して強度の低下を招くとともに、セメンタイト析出による強度低下も大きくなるので、衝撃吸収能が低下してしまう。好ましくは170〜250℃である。
-Heat treatment temperature: 140-300 ° C
Cold-rolled steel sheet has low ductility because it only introduces processing strain unless heat treatment such as paint baking is performed after it is pressed to form a molded part. In order to sufficiently fix the solid solution C to the dislocation, the heat treatment temperature needs to be 140 ° C. or higher. When the temperature exceeds 300 ° C., dislocations introduced by temper rolling or press work are recovered, resulting in a decrease in strength, and a decrease in strength due to cementite precipitation is increased, resulting in a decrease in impact absorption capability. Preferably it is 170-250 degreeC.

また、本発明は冷延鋼板に関わるが、適宜亜鉛めっき等のめっき処理を施してもよい。但し、冷却過程での700℃から250℃までの平均冷却速度を15℃/s以上とする観点から、例えば亜鉛めっきの場合、電気亜鉛めっき、溶融亜鉛めっき(合金化なし)が好ましい。   Moreover, although this invention is related to a cold-rolled steel plate, you may perform plating processes, such as galvanization suitably. However, from the viewpoint of setting the average cooling rate from 700 ° C. to 250 ° C. in the cooling process to 15 ° C./s or more, for example, in the case of zinc plating, electrogalvanizing and hot dip galvanizing (no alloying) are preferable.

次に、本発明の実施例について説明する。
表1に示す組成(鋼A〜K)の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで表2に示す条件で仕上圧延により熱延板とし、コイルに巻き取った。次いで、これらの熱延板を酸洗および圧下率65%の冷間圧延工程により冷延鋼板とした。引き続きこれらの冷延鋼板を連続焼鈍ラインにて、表2に示す条件で連続焼鈍し、引き続き冷却をおこなった。このようにして得られた鋼板にさらに表2に示す調圧率(伸び率)の調質圧延を施した。なお、調質圧延後の板厚は1.2mmとした。
Next, examples of the present invention will be described.
Molten steel having the composition (steel A to K) shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, then hot rolled into finish bars under the conditions shown in Table 2, and wound around coils. Subsequently, these hot-rolled sheets were made into cold-rolled steel sheets by pickling and a cold rolling process with a rolling reduction of 65%. Subsequently, these cold-rolled steel sheets were continuously annealed in the continuous annealing line under the conditions shown in Table 2, and subsequently cooled. The steel sheet thus obtained was further subjected to temper rolling at a pressure regulation rate (elongation rate) shown in Table 2. The plate thickness after temper rolling was 1.2 mm.

(1)引張特性
上記の調質圧延後の鋼板にプレス成形に相当する圧延歪(伸び率5%)を与えて、表2の熱処理条件で塗装焼付け処理に相当する熱処理をおこなった鋼板についてJIS5号引張試験片にて、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強さ(TS)、均一伸び(Uel)、全伸び(Tel)を求めた。
(1) Tensile properties JIS5 is applied to a steel plate that has been subjected to a heat treatment equivalent to a paint baking process under the heat treatment conditions shown in Table 2 by applying a rolling strain (elongation rate 5%) corresponding to press forming to the steel sheet after the temper rolling. Tensile test specimens were subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with JIS Z 2241, yield stress (YS), tensile strength (TS), uniform elongation (Uel), total elongation ( Tel).

(2)フェライト分率
上記(1)での試験片と同じ材料について、400倍の光学顕微鏡写真にて黒く腐食される相を第2相と判断し、のこりのフェライト相の面積率を測定した。
(2) Ferrite fraction For the same material as the test piece in (1) above, the phase that was corroded black in the optical microscope photograph of 400 times was judged as the second phase, and the area ratio of the remaining ferrite phase was measured. .

(3)衝撃吸収能
調質圧延後の鋼板試験片を、断面40×40mm、5Rで長さ300mmのハット型形状の部材(ハット部材)にプレス成形し、同一材料を背板にスポット溶接した。ナゲット径は板厚をtとした時、4√t、スポットの間隔は30mmとした。これに表2に示す熱処理条件の温度で20分の熱処理を行った。
そして、作製したハット部材の両端を厚み5mmの熱延板で固定したのち、上から20km/hrの等速で衝撃試験を行い、荷重―変位曲線を測定した。吸収エネルギーは、15cm変位したときまでのエネルギーを、同板厚の鋼Hである一般低炭素鋼板の焼鈍材の値(表2のNo.13)に対する比で評価した。
(3) Impact absorption capacity The steel sheet specimen after temper rolling was press-formed into a hat-shaped member (hat member) having a cross section of 40 × 40 mm, 5R and a length of 300 mm, and the same material was spot welded to the back plate. . The nugget diameter was 4√t when the plate thickness was t, and the spot spacing was 30 mm. This was heat treated for 20 minutes at the temperature of the heat treatment conditions shown in Table 2.
And after fixing the both ends of the produced hat member with the hot rolled sheet of thickness 5mm, the impact test was done from the top at a constant speed of 20km / hr, and the load-displacement curve was measured. The absorbed energy was evaluated by the ratio of the energy up to the time of displacement of 15 cm to the value of the annealed material (No. 13 in Table 2) of a general low carbon steel plate that is steel H having the same thickness.

Figure 0005728856
Figure 0005728856

Figure 0005728856
Figure 0005728856

表2に基づいて、実施例No.1〜16を説明する。
比較例のNo.1は、組成は鋼Aであり本発明の範囲内であるが、プレス成形後の熱処理が行われていないため、加工歪が導入されたままの状態であり、引張強さ(TS)は高いが、伸び〔一様伸び(Uel)、全伸び(Tel)〕が著しく低く、吸収エネルギー比が1を下回り、衝撃吸収能に劣る。
Based on Table 2, Example No. 1 to 16 will be described.
Comparative Example No. 1 has a composition of steel A, which is within the scope of the present invention, but is not subjected to heat treatment after press molding, so that the processing strain is still introduced, and the tensile strength (TS) is high. However, the elongation [uniform elongation (Uel), total elongation (Tel)] is remarkably low, the absorption energy ratio is less than 1, and the shock absorbing ability is inferior.

これに対して、170℃で熱処理が行われている本発明例のNo.2およびNo.3は、組成は鋼BでありNo.1と同様に本発明の範囲内であり、170℃、200℃で熱処理が施されており、組成以外の製造条件は比較例のNo.1と概ね同じであるが、引張強さが高く、かつ伸びが高く、吸収エネルギー比も1を大きく上回り、衝撃吸収能に優れる。   On the other hand, No. of the example of this invention currently heat-processed at 170 degreeC. 2 and no. No. 3 has a composition of steel B and 1 and within the scope of the present invention, heat treatment was performed at 170 ° C. and 200 ° C., and the production conditions other than the composition were No. in Comparative Example. Although it is substantially the same as 1, the tensile strength is high, the elongation is high, the absorption energy ratio is much higher than 1, and the shock absorbing ability is excellent.

組成が鋼Bである比較例のNo.4は、仕上圧延出側温度(FT)がAr点より低く(表1の「Ar」参照)、また組成が鋼AであるNo.5は巻取温度(CT)が高く、組織や結晶粒が粗大化し、いずれもTS、伸びともにやや低く、吸収エネルギー比も1.2であり、衝撃吸収能にやや劣る。また、組成が鋼AであるNo.6は、焼鈍後の冷却速度が3℃/sと本発明の範囲外であり、固溶Cが十分確保できず、均一伸び(Uel)が著しく低く、吸収エネルギー比が1を下回り、衝撃吸収能に劣る。 No. of the comparative example whose composition is steel B. No. 4 in which the finish rolling exit temperature (FT) is lower than the Ar 3 point (see “Ar 3 ” in Table 1) and the composition is No. 4 steel A. No. 5 has a high coiling temperature (CT), the structure and crystal grains become coarse, both TS and elongation are slightly low, the absorption energy ratio is 1.2, and the shock absorption capacity is slightly inferior. In addition, No. whose composition is steel A. No. 6 is a cooling rate after annealing of 3 ° C./s outside the range of the present invention, solid solution C cannot be sufficiently secured, uniform elongation (Uel) is extremely low, absorption energy ratio is less than 1, and shock absorption Inferior to Noh.

本発明例のNo.7〜No.11は、組成が本発明の範囲内のそれぞれ鋼C〜Gであり、製造条件もいずれも本発明の条件を満たしており、No.2、No.3と同様に、TSが高く、吸収エネルギー比も1を大きく上回り、衝撃吸収能に優れる。   No. of the example of the present invention. 7-No. No. 11 is a steel C to G having a composition within the scope of the present invention, and the production conditions all satisfy the conditions of the present invention. 2, no. Similar to 3, TS is high, the absorbed energy ratio is much higher than 1, and the shock absorbing ability is excellent.

比較例のNo.12は、組成がGであり組成は本発明の範囲内であるが、調圧率が2%と本発明の条件を外れており、加工硬化量が少なく、吸収エネルギー比が1.1となり衝撃吸収能にやや劣る。
比較例のNo.13は、組成が鋼HでありC量が本発明外であり、製造条件でも、焼鈍後の冷却速度が5℃/sであり、熱処理が行われず、本発明の条件を外れている。すでに記載したように、No.13は従来の一般低炭素鋼板の焼鈍材であり、吸収エネルギーの評価の基準としたので、吸収エネルギー比は1となっている。
Comparative Example No. No. 12, the composition is G and the composition is within the range of the present invention, but the pressure regulation rate is 2%, which is outside the conditions of the present invention, the work hardening amount is small, the absorbed energy ratio is 1.1, and the impact Slightly inferior in absorption capacity.
Comparative Example No. No. 13 has a composition of steel H and the amount of C is outside the scope of the present invention, and even under the production conditions, the cooling rate after annealing is 5 ° C./s, heat treatment is not performed, and is outside the conditions of the present invention. As already described, no. Reference numeral 13 is a conventional annealing material for a general low-carbon steel sheet, and the absorption energy ratio is 1 because it is used as a reference for evaluating the absorption energy.

比較例のNo.14は、組成が鋼Iであり、Cr量が本発明の範囲を超え、フェライト分率が本発明の範囲を下回る94%であり、マルテンサイトやベイナイトを含む複合組織となっているため、均一伸びが低く、吸収エネルギー比が1.1であり、衝撃吸収能がやや劣る。   Comparative Example No. No. 14 has a composition of Steel I, the amount of Cr exceeds the range of the present invention, the ferrite fraction is 94% lower than the range of the present invention, and has a composite structure including martensite and bainite. The elongation is low, the absorbed energy ratio is 1.1, and the shock absorbing ability is slightly inferior.

比較例のNo.15、No.16も鋼組成がそれぞれJ、Kであり、本発明を外れ、いずれも、フェライト分率が低く、本発明の範囲外であり、No.14と同様に均一伸びが低く、吸収エネルギー比が1前後であり、衝撃吸収能がやや劣るか、あるいは劣る。
以上のとおり、本発明例では、TSも十分に高く、かつ部材の吸収エネルギーが、比較例に比べて、顕著に高くなって、衝撃吸収能が優れる。
Comparative Example No. 15, no. No. 16 also has a steel composition of J and K, respectively, which is outside the scope of the present invention, both of which have a low ferrite fraction and are outside the scope of the present invention. Similar to 14, the uniform elongation is low, the absorption energy ratio is around 1, and the shock absorbing ability is slightly inferior or inferior.
As described above, in the example of the present invention, TS is sufficiently high, and the absorbed energy of the member is significantly higher than that of the comparative example, and the shock absorbing ability is excellent.

本発明によれば、プレス成形後の衝撃吸収能に優れる部材を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。
According to the present invention, it is possible to stably and inexpensively manufacture a member having excellent shock absorption capacity after press molding, and there is a remarkable industrial effect.

Claims (3)

質量%で、
C:0.005〜0.03%、
Mn:0.05〜1.5%以下、
Si:1.5%以下、
P:0.10%以下、
S:0.0100%以下、
Al:0.02〜0.80%以下、
N:0.0100%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブを1050℃以上に加熱し、粗圧延した後に仕上圧延を、仕上圧延出側温度がAr変態点〜950℃で行って、600℃以下で巻き取ったのち、酸洗して冷間圧延を行い、次いで、700℃〜Ac変態点の温度範囲で焼鈍を行い、引き続き、700から250℃までの平均冷却速度を15℃/s以上として冷却したのち、調圧率15〜30%の調質圧延を行うことにより得た、組織が面積率で95%以上のフェライト相からなる鋼板を、プレス成形したのち、140〜300℃で熱処理を行うことを特徴とする吸収エネルギー比が1.4以上である部材の製造方法。
% By mass
C: 0.005 to 0.03%,
Mn: 0.05 to 1.5% or less,
Si: 1.5% or less,
P: 0.10% or less,
S: 0.0100% or less,
Al: 0.02 to 0.80% or less,
N: 0.0100% or less, and a steel slab having a composition composed of the balance Fe and inevitable impurities is heated to 1050 ° C. or more and subjected to finish rolling and finish rolling, and the finish rolling exit temperature is the Ar 3 transformation point. ˜950 ° C., wound at 600 ° C. or lower, pickled and cold-rolled, then annealed in a temperature range of 700 ° C. to Ac 1 transformation point, and subsequently from 700 to 250 ° C. After cooling at an average cooling rate of 15 ° C./s or higher, a steel sheet made of a ferrite phase having a structure with an area ratio of 95% or more obtained by temper rolling with a pressure regulation ratio of 15 to 30% is pressed. A method for producing a member having an absorbed energy ratio of 1.4 or more, wherein heat treatment is performed at 140 to 300 ° C. after molding.
前記鋼スラブがさらに質量%で、
Ti:0.05%以下、
Nb:0.05%以下、
Cr:0.2%以下、
Mo:0.2%以下
の1種以上を含むことを特徴とする、請求項1に記載の吸収エネルギー比が1.4以上である部材の製造方法。
The steel slab is further mass%,
Ti: 0.05% or less,
Nb: 0.05% or less,
Cr: 0.2% or less,
Mo: One or more types of 0.2% or less are included, The manufacturing method of the member whose absorption energy ratio of Claim 1 is 1.4 or more characterized by the above-mentioned.
前記鋼スラブがさらに質量%で、
B:0.0030%以下
を含むことを特徴とする、請求項1または2に記載の吸収エネルギー比が1.4以上である部材の製造方法。
The steel slab is further mass%,
B: 0.0030% or less is included, The manufacturing method of the member whose absorption energy ratio of Claim 1 or 2 is 1.4 or more characterized by the above-mentioned.
JP2010199829A 2010-09-07 2010-09-07 Manufacturing method of member Active JP5728856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199829A JP5728856B2 (en) 2010-09-07 2010-09-07 Manufacturing method of member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199829A JP5728856B2 (en) 2010-09-07 2010-09-07 Manufacturing method of member

Publications (2)

Publication Number Publication Date
JP2012057197A JP2012057197A (en) 2012-03-22
JP5728856B2 true JP5728856B2 (en) 2015-06-03

Family

ID=46054645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199829A Active JP5728856B2 (en) 2010-09-07 2010-09-07 Manufacturing method of member

Country Status (1)

Country Link
JP (1) JP5728856B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262918A (en) * 1984-06-08 1985-12-26 Kawasaki Steel Corp Manufacture of surface treating raw sheet without causing stretcher strain
JP3303931B2 (en) * 1992-10-06 2002-07-22 川崎製鉄株式会社 High-strength steel sheet for baking having hardenability and its manufacturing method
JP3959934B2 (en) * 2000-05-29 2007-08-15 Jfeスチール株式会社 High-tensile cold-rolled steel sheet excellent in strain age hardening characteristics, impact resistance characteristics and workability, and a method for producing the same
JP4839527B2 (en) * 2000-05-31 2011-12-21 Jfeスチール株式会社 Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
CA2380377C (en) * 2000-05-31 2007-01-09 Kawasaki Steel Corporation Cold-rolled steel sheets with superior strain-aging hardenability

Also Published As

Publication number Publication date
JP2012057197A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
EP3034641A1 (en) Ultrahigh-strength steel sheet and manufacturing method therefor
KR101353787B1 (en) Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
JP2009545676A (en) High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof
EP2762581A1 (en) Hot-rolled steel sheet and method for producing same
JP7244716B2 (en) High-strength steel sheet with excellent collision resistance and method for manufacturing the same
KR101449134B1 (en) Ultra high strength cold rolled steel sheet having excellent weldability and bendability and method for manufacturinf the same
JP4306078B2 (en) High tensile hot-rolled steel sheet excellent in bake hardenability and impact resistance and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP4802682B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
JP4788291B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
KR20160074623A (en) High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing mehtod therefor
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP6606906B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4465805B2 (en) Hot-rolled steel sheet excellent in room temperature aging resistance and strain aging characteristics and method for producing the same
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5728856B2 (en) Manufacturing method of member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5728856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250