JP5726579B2 - Secondary battery protection IC inspection method - Google Patents

Secondary battery protection IC inspection method Download PDF

Info

Publication number
JP5726579B2
JP5726579B2 JP2011056014A JP2011056014A JP5726579B2 JP 5726579 B2 JP5726579 B2 JP 5726579B2 JP 2011056014 A JP2011056014 A JP 2011056014A JP 2011056014 A JP2011056014 A JP 2011056014A JP 5726579 B2 JP5726579 B2 JP 5726579B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
current value
secondary battery
battery protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011056014A
Other languages
Japanese (ja)
Other versions
JP2012195992A (en
Inventor
橋本 博
博 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Electronic Devices Co Ltd
Original Assignee
Ricoh Electronic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Electronic Devices Co Ltd filed Critical Ricoh Electronic Devices Co Ltd
Priority to JP2011056014A priority Critical patent/JP5726579B2/en
Publication of JP2012195992A publication Critical patent/JP2012195992A/en
Application granted granted Critical
Publication of JP5726579B2 publication Critical patent/JP5726579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、携帯電話やノートパソコン、PDA(Personal Digital Assistance)等の各種電子機器に用いる電池パックのリチウム(Li)イオン/リチウム(Li)ポリマー二次電池等の二次電池を過充電や過放電、充電過電流、放電過電流から保護するための二次電池保護用IC(Integrated circuit)の検査方法に関するものである。   The present invention provides an overcharge or overcharge of a secondary battery such as a lithium (Li) ion / lithium (Li) polymer secondary battery of a battery pack used in various electronic devices such as a mobile phone, a notebook computer, and a PDA (Personal Digital Assistance). The present invention relates to an inspection method for a secondary battery protection IC (Integrated Circuit) for protecting against discharge, charge overcurrent, and discharge overcurrent.

携帯電話やノートパソコン、PDA等の各種電子機器に用いられる電池パックにおける二次電池を過充電や過放電、充電過電流、放電過電流から保護するための技術として、二次電池保護用ICが搭載された二次電池保護モジュールを備えた電池パックがある(例えば特許文献1を参照)。   Secondary battery protection IC is a technology for protecting secondary batteries in battery packs used in various electronic devices such as mobile phones, notebook computers and PDAs from overcharge, overdischarge, charge overcurrent, and discharge overcurrent. There is a battery pack including a mounted secondary battery protection module (see, for example, Patent Document 1).

図7は、二次電池保護用ICが搭載された二次電池保護モジュールを備えた電池パックを説明するためのブロック図である。図8は二次電池保護用ICの概略的な外観図である。
電池パック1は、リチウムイオン二次電池やリチウムポリマー二次電池等の二次電池3と、二次電池保護モジュール5で構成されている。二次電池保護モジュール5は4つの端子BATT+,BATT−,OUT+,OUT−を備えている。端子BATT+,BATT−は二次電池3に接続されている。端子OUT+,OUT−は充電器7、又は携帯電話やノートパソコン、PDA等の負荷に接続される。
FIG. 7 is a block diagram for explaining a battery pack including a secondary battery protection module on which a secondary battery protection IC is mounted. FIG. 8 is a schematic external view of a secondary battery protection IC.
The battery pack 1 includes a secondary battery 3 such as a lithium ion secondary battery or a lithium polymer secondary battery, and a secondary battery protection module 5. The secondary battery protection module 5 includes four terminals BATT +, BATT−, OUT +, and OUT−. Terminals BATT + and BATT− are connected to the secondary battery 3. The terminals OUT + and OUT− are connected to the charger 7 or a load such as a mobile phone, a notebook computer, or a PDA.

二次電池保護モジュール5は、二次電池保護用IC9、充電制御用FET(field effect transistor)Q1、放電制御用FETQ2、抵抗素子R1,R2、容量素子C1等を備えている。
二次電池保護モジュール5の主要部を構成する二次電池保護用IC9は、おおまかには過充電検出回路11、過放電検出回路13、放電過電流検出回路15、充電過電流検出回路17、短絡検出回路19、発振回路21とカウンタ23で構成される遅延回路25、論理回路27,29、レベルシフト回路31及び遅延回路33で構成されている。二次電池保護用IC9は、外部接続端子として電源電圧端子VDD、グランド端子VSS、過充電検出出力端子COUT、過放電検出出力端子DOUT及び充電器マイナス電位入力端子V−を備えている。
The secondary battery protection module 5 includes a secondary battery protection IC 9, a charge control FET (field effect transistor) Q1, a discharge control FET Q2, resistance elements R1 and R2, a capacitance element C1, and the like.
The secondary battery protection IC 9 constituting the main part of the secondary battery protection module 5 is roughly composed of an overcharge detection circuit 11, an overdischarge detection circuit 13, a discharge overcurrent detection circuit 15, a charge overcurrent detection circuit 17, and a short circuit. The delay circuit 25 includes a detection circuit 19, an oscillation circuit 21 and a counter 23, logic circuits 27 and 29, a level shift circuit 31, and a delay circuit 33. The secondary battery protection IC 9 includes a power supply voltage terminal VDD, a ground terminal VSS, an overcharge detection output terminal COUT, an overdischarge detection output terminal DOUT, and a charger minus potential input terminal V− as external connection terminals.

二次電池保護用IC9の基本的な動作を説明する。
過充電検出回路11、過放電検出回路13、放電過電流検出回路15、充電過電流検出回路17又は短絡検出回路19により、過充電、過放電、放電過電流、充電過電流又は短絡が検出されると、発振回路21が動作を開始し、カウンタ23が計数を始める。
カウンタ23によって、それぞれの検出時に予め設定されている遅延時間がカウントされると、過充電又は充電過電流の場合は論理回路27及びレベルシフト回路31を通して過充電検出出力端子COUTの出力がローレベルになって充電制御用FETQ1がオフにされ、過放電、放電過電流、又は短絡の場合は論理回路29を通して過放電検出出力端子DOUTの出力がローレベルになり放電制御用FETQ2がオフにされる。
The basic operation of the secondary battery protection IC 9 will be described.
The overcharge detection circuit 11, overdischarge detection circuit 13, discharge overcurrent detection circuit 15, charge overcurrent detection circuit 17 or short circuit detection circuit 19 detects overcharge, overdischarge, discharge overcurrent, charge overcurrent or short circuit. Then, the oscillation circuit 21 starts operation, and the counter 23 starts counting.
When the counter 23 counts a preset delay time at each detection, the output of the overcharge detection output terminal COUT is low level through the logic circuit 27 and the level shift circuit 31 in the case of overcharge or charge overcurrent. The charge control FET Q1 is turned off, and in the case of overdischarge, discharge overcurrent, or short circuit, the output of the overdischarge detection output terminal DOUT goes low through the logic circuit 29, and the discharge control FET Q2 is turned off. .

このように、一般的に、二次電池保護用IC9には、過充電、過放電、放電過電流、充電過電流又は短絡が検出された際の動作に対して遅延時間が設定されている。   Thus, in general, in the secondary battery protection IC 9, a delay time is set for the operation when overcharge, overdischarge, discharge overcurrent, charge overcurrent, or short circuit is detected.

二次電池保護用ICに対して、半導体ウエハ上で又はパッケージングされた半導体チップの状態で、過充電検出電圧、過放電検出電圧、充電過電流検出電圧、放電過電流検出電圧についてテストが行なわれる。
各検出電圧を測定する際には、設定されている遅延時間分だけ待ちながら測定を行なわなければならず、二次電池保護用ICのテストに長時間を要するという問題があった。
The secondary battery protection IC is tested for overcharge detection voltage, overdischarge detection voltage, charge overcurrent detection voltage, and discharge overcurrent detection voltage on a semiconductor wafer or in the state of a packaged semiconductor chip. It is.
When measuring each detection voltage, the measurement must be performed while waiting for the set delay time, and there is a problem that it takes a long time to test the secondary battery protection IC.

図9は、従来の過充電検出電圧検査時の測定時間を説明するための図である。縦軸は電源電圧端子VDDの電圧(VDD電圧)と過充電検出出力端子COUTの電圧(COUT電圧)を示し、横軸は時間を示す。   FIG. 9 is a diagram for explaining a measurement time during a conventional overcharge detection voltage test. The vertical axis represents the voltage at the power supply voltage terminal VDD (VDD voltage) and the voltage at the overcharge detection output terminal COUT (COUT voltage), and the horizontal axis represents time.

図8も参照して説明すると、過充電検出電圧テストに際して、グランド端子VSSは接地電位に接続され、充電器マイナス電位入力端子V−には所定の電圧が供給される。過放電検出出力端子DOUTの電圧は電源電圧端子VDDと同じ電圧になる。過充電検出出力端子COUTの電圧を監視しつつ、電源電圧端子VDDの電圧が過充電検出電圧の設計値よりも低い電圧(テスト開始時電圧)から段階的に上げられる。電源電圧端子VDDの電圧が段階的に上げられるときの時間間隔(1ステップの時間)は、二次電池保護用ICに設定されている過充電検出遅延時間tVDET1である。過充電検出出力端子COUTの電圧が電源電圧端子VDDの電圧から充電器マイナス電位入力端子V−の電圧へ変化したときの電源電圧端子VDDの電圧が過充電検出電圧である。   Referring also to FIG. 8, in the overcharge detection voltage test, the ground terminal VSS is connected to the ground potential, and a predetermined voltage is supplied to the charger minus potential input terminal V−. The voltage of the overdischarge detection output terminal DOUT is the same voltage as the power supply voltage terminal VDD. While monitoring the voltage of the overcharge detection output terminal COUT, the voltage of the power supply voltage terminal VDD is raised stepwise from a voltage (test start voltage) lower than the design value of the overcharge detection voltage. The time interval (time of one step) when the voltage of the power supply voltage terminal VDD is raised stepwise is the overcharge detection delay time tVDET1 set in the secondary battery protection IC. The voltage at the power supply voltage terminal VDD when the voltage at the overcharge detection output terminal COUT changes from the voltage at the power supply voltage terminal VDD to the voltage at the charger minus potential input terminal V− is the overcharge detection voltage.

図10は、従来の放電過電流検出電圧検査時の測定時間を説明するための図である。縦軸は充電器マイナス電位入力端子V−の電圧(V−電圧)と過放電検出出力端子DOUTの電圧(DOUT電圧)を示し、横軸は時間を示す。   FIG. 10 is a diagram for explaining the measurement time during the conventional discharge overcurrent detection voltage test. The vertical axis represents the voltage at the charger minus potential input terminal V− (V−voltage) and the voltage at the overdischarge detection output terminal DOUT (DOUT voltage), and the horizontal axis represents time.

図8も参照して説明すると、放電過電流検出電圧テストに際して、グランド端子VSSは接地電位に接続され、電源電圧端子VDDには所定の電圧が供給される。過充電検出出力端子COUTの電圧は電源電圧端子VDDと同じ電圧になる。過放電検出出力端子DOUTの電圧を監視しつつ、充電器マイナス電位入力端子V−の電圧が放電過電流検出電圧の設計値よりも低い電圧(テスト開始時電圧)から段階的に上げられる。充電器マイナス電位入力端子V−の電圧が段階的に上げられるときの時間間隔(1ステップの時間)は、二次電池保護用ICに設定されている放電過電流検出遅延時間tVDET3である。過放電検出出力端子DOUTの電圧が電源電圧端子VDDの電圧からグランド端子VSSの電圧へ変化したとき又は発振したときの充電器マイナス電位入力端子V−の電圧が放電過電流検出電圧である。   Referring also to FIG. 8, in the discharge overcurrent detection voltage test, the ground terminal VSS is connected to the ground potential, and a predetermined voltage is supplied to the power supply voltage terminal VDD. The voltage of the overcharge detection output terminal COUT is the same voltage as the power supply voltage terminal VDD. While monitoring the voltage at the overdischarge detection output terminal DOUT, the voltage at the charger minus potential input terminal V− is increased stepwise from a voltage (test start voltage) lower than the design value of the discharge overcurrent detection voltage. The time interval (one step time) when the voltage of the charger minus potential input terminal V− is increased stepwise is the discharge overcurrent detection delay time tVDET3 set in the secondary battery protection IC. The voltage at the charger minus potential input terminal V− when the voltage at the overdischarge detection output terminal DOUT changes from the voltage at the power supply voltage terminal VDD to the voltage at the ground terminal VSS or oscillates is the discharge overcurrent detection voltage.

図11は、従来の充電過電流検出電圧検査時の測定時間を説明するための図である。縦軸は充電器マイナス電位入力端子V−の電圧(V−電圧)と過充電検出出力端子COUTの電圧(COUT電圧)を示し、横軸は時間を示す。   FIG. 11 is a diagram for explaining a measurement time during a conventional charge overcurrent detection voltage test. The vertical axis represents the voltage at the charger negative potential input terminal V− (V−voltage) and the voltage at the overcharge detection output terminal COUT (COUT voltage), and the horizontal axis represents time.

図8も参照して説明すると、放電過電流検出電圧テストに際して、グランド端子VSSは接地電位に接続され、電源電圧端子VDDには所定の電圧が供給される。過放電検出出力端子DOUTの電圧は電源電圧端子VDDと同じ電圧になる。過充電検出出力端子COUTの電圧を監視しつつ、充電器マイナス電位入力端子V−の電圧が充電過電流検出電圧の設計値よりも高い電圧(テスト開始時電圧)から段階的に下げられる。充電器マイナス電位入力端子V−の電圧が段階的に下げられるときの時間間隔(1ステップの時間)は、二次電池保護用ICに設定されている充電過電流検出遅延時間tVDET4である。過充電検出出力端子COUTの電圧が電源電圧端子VDDの電圧からグランド端子VSSの電圧へ変化したとき又は発振したときの充電器マイナス電位入力端子V−の電圧が充電過電流検出電圧である。   Referring also to FIG. 8, in the discharge overcurrent detection voltage test, the ground terminal VSS is connected to the ground potential, and a predetermined voltage is supplied to the power supply voltage terminal VDD. The voltage of the overdischarge detection output terminal DOUT is the same voltage as the power supply voltage terminal VDD. While monitoring the voltage of the overcharge detection output terminal COUT, the voltage of the charger minus potential input terminal V− is lowered stepwise from a voltage (test start voltage) higher than the design value of the charge overcurrent detection voltage. The time interval (one step time) when the voltage at the charger minus potential input terminal V− is lowered stepwise is the charge overcurrent detection delay time tVDET4 set in the secondary battery protection IC. The voltage at the charger minus potential input terminal V− when the voltage at the overcharge detection output terminal COUT changes from the voltage at the power supply voltage terminal VDD to the voltage at the ground terminal VSS or oscillates is the charge overcurrent detection voltage.

従来の過充電検出電圧テストの場合、電源電圧端子VDDの電圧を1ステップ分上げるごとに少なくとも過充電検出遅延時間tVDET1だけ待つ必要がある。同様に、放電過電流検出電圧テスト及び充電過電流検出電圧テストの場合、充電器マイナス電位入力端子V−の電圧を変化させる際に少なくとも放電過電流検出遅延時間tVDET3又は充電過電流検出遅延時間tVDET4だけ待つ必要がある。   In the case of the conventional overcharge detection voltage test, it is necessary to wait for at least the overcharge detection delay time tVDET1 every time the voltage of the power supply voltage terminal VDD is increased by one step. Similarly, in the case of the discharge overcurrent detection voltage test and the charge overcurrent detection voltage test, at least the discharge overcurrent detection delay time tVDET3 or the charge overcurrent detection delay time tVDET4 when changing the voltage of the charger minus potential input terminal V−. You just have to wait.

過充電検出電圧の測定時間は過充電検出遅延時間tVDET1とステップ数により決まる。例えば、過充電検出遅延時間tVDET1が50ミリ秒、ステップ数が20回の場合、「50ミリ秒×20回=1000ミリ秒=1秒」の時間が過充電検出電圧測定に際して必要になる。
同様に、放電過電流検出電圧の測定時間及び充電過電流検出電圧の測定時間は放電過電流検出遅延時間tVDET3又は充電過電流検出遅延時間tVDET4とステップ数により決まる。例えば、放電過電流検出遅延時間tVDET3及び充電過電流検出遅延時間tVDET4が10ミリ秒、ステップ数が20回の場合、「10ミリ秒×20回=200ミリ秒」の時間が放電過電流検出電圧測定及び充電過電流検出電圧測定に際してそれぞれ必要になる。
The measurement time of the overcharge detection voltage is determined by the overcharge detection delay time tVDET1 and the number of steps. For example, when the overcharge detection delay time tVDET1 is 50 milliseconds and the number of steps is 20, a time of “50 milliseconds × 20 times = 1000 milliseconds = 1 second” is required for measuring the overcharge detection voltage.
Similarly, the measurement time of the discharge overcurrent detection voltage and the measurement time of the charge overcurrent detection voltage are determined by the discharge overcurrent detection delay time tVDET3 or the charge overcurrent detection delay time tVDET4 and the number of steps. For example, when the discharge overcurrent detection delay time tVDET3 and the charge overcurrent detection delay time tVDET4 are 10 milliseconds and the number of steps is 20, the time of “10 milliseconds × 20 times = 200 milliseconds” is the discharge overcurrent detection voltage. Necessary for measurement and charge overcurrent detection voltage measurement.

従来技術では、検出遅延時間を短縮するため、二次電池保護用ICの内部回路にテストモード回路と呼ばれる検出遅延時間の短縮が可能な回路を備えている二次電池保護用ICもある。
しかし、テストモード回路による検出遅延時間の短縮には限界がある。また、テストモード回路を用いた場合、真の測定値から多少なりともズレがあるため、歩留まりを低下させるという問題もあった。
In the prior art, there is also a secondary battery protection IC in which an internal circuit of the secondary battery protection IC includes a circuit called a test mode circuit capable of shortening the detection delay time in order to shorten the detection delay time.
However, there is a limit to shortening the detection delay time by the test mode circuit. Further, when the test mode circuit is used, there is a problem that the yield is lowered because there is a slight deviation from the true measurement value.

本発明は、二次電池保護用ICの過充電検出電圧検査、放電過電流検出電圧検査及び充電過電流検出電圧検査について、検査時間を短縮することを目的とするものである。   An object of the present invention is to shorten the inspection time for overcharge detection voltage inspection, discharge overcurrent detection voltage inspection, and charge overcurrent detection voltage inspection of a secondary battery protection IC.

本発明にかかる二次電池保護用ICの検査方法の一局面は過充電検出電圧の測定に関する。具体的には、本発明の第1局面は、二次電池の過充電を検出するための過充電検出回路と、過充電の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて過充電検出電圧を測定するための二次電池保護用ICの検査方法であって、上記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、連続的に又は上記遅延時間よりも短い時間間隔で段階的に、上記電源電圧端子の電圧を過充電検出電圧の設計値よりも低い電圧から上昇させ、上記電源電圧端子の電流値の変化に基づいて過充電検出電圧を測定する。   One aspect of the inspection method of the secondary battery protection IC according to the present invention relates to the measurement of the overcharge detection voltage. Specifically, the first aspect of the present invention includes an overcharge detection circuit for detecting overcharge of the secondary battery, and a delay circuit for delaying the overcharge detection time by a predetermined delay time. A secondary battery protection IC inspection method for measuring an overcharge detection voltage for a secondary battery protection IC, and continuously monitoring a current value at a power supply voltage terminal of the secondary battery protection IC. Or stepwise at a time interval shorter than the delay time, the voltage of the power supply voltage terminal is increased from a voltage lower than the design value of the overcharge detection voltage, and based on the change in the current value of the power supply voltage terminal Measure the overcharge detection voltage.

本発明にかかる二次電池保護用ICの検査方法の他の局面は放電過電流検出電圧の測定に関する。具体的には、本発明の第2局面は、二次電池の放電過電流を検出するための放電過電流検出回路と、放電過電流の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて放電過電流検出電圧を測定するための二次電池保護用ICの検査方法であって、上記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、連続的に又は上記遅延時間よりも短い時間間隔で段階的に、上記二次電池保護用ICの充電器マイナス電位入力端子の電圧を放電過電流検出電圧の設計値よりも高い電圧から降下させ、上記電源電圧端子の電流値の変化に基づいて放電過電流検出電圧を測定する。   Another aspect of the inspection method of the secondary battery protection IC according to the present invention relates to the measurement of the discharge overcurrent detection voltage. Specifically, the second aspect of the present invention includes a discharge overcurrent detection circuit for detecting a discharge overcurrent of a secondary battery, and a delay circuit for delaying a discharge overcurrent detection time by a predetermined delay time. A secondary battery protection IC inspection method for measuring a discharge overcurrent detection voltage for a secondary battery protection IC comprising: monitoring a current value at a power supply voltage terminal of the secondary battery protection IC However, the voltage of the charger minus potential input terminal of the secondary battery protection IC is increased from a voltage higher than the design value of the discharge overcurrent detection voltage continuously or stepwise at a time interval shorter than the delay time. The discharge overcurrent detection voltage is measured based on the change in the current value of the power supply voltage terminal.

本発明にかかる二次電池保護用ICの検査方法のさらに他の局面は充電過電流検出電圧の測定に関する。具体的には、本発明の第2局面は、二次電池の充電過電流を検出するための充電過電流検出回路と、充電過電流の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて充電過電流検出電圧を測定するための二次電池保護用ICの検査方法であって、上記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、連続的に又は上記遅延時間よりも短い時間間隔で段階的に、上記二次電池保護用ICの充電器マイナス電位入力端子の電圧を充電過電流検出電圧の設計値よりも低い電圧から上昇させ、上記電源電圧端子の電流値の変化に基づいて充電過電流検出電圧を測定する。   Still another aspect of the inspection method for the secondary battery protection IC according to the present invention relates to the measurement of the charge overcurrent detection voltage. Specifically, the second aspect of the present invention includes a charge overcurrent detection circuit for detecting a charge overcurrent of a secondary battery, and a delay circuit for delaying a detection time of the charge overcurrent by a predetermined delay time. A secondary battery protection IC inspection method for measuring a charge overcurrent detection voltage for a secondary battery protection IC comprising: a current value at a power supply voltage terminal of the secondary battery protection IC However, the voltage of the charger minus potential input terminal of the secondary battery protection IC is changed from a voltage lower than the design value of the charge overcurrent detection voltage continuously or stepwise at a time interval shorter than the delay time. The charge overcurrent detection voltage is measured based on the change in the current value of the power supply voltage terminal.

本願発明者は、二次電池保護用ICで過充電検出機能、放電過電流検出機能及び放電過充電検出機能が働く際に電源電圧端子の電流が多く流れる方向に変化することを見出した。二次電池保護用ICが過充電や放電過電流、放電過電流を検出したとき、その検出信号が出力されるまでには上述のように遅延時間が設定されているが、過充電検出機能や放電過電流検出機能、放電過電流検出機能が働いた際の電源電圧端子の電流値変化には遅延時間はない。したがって、本発明は、電源電圧端子の電圧又は充電器マイナス電位入力端子の電圧を各検出電圧に対する遅延時間以上の時間間隔をもって変化させなくても、電源電圧端子の電流値変化を監視しつつ、連続的に又は遅延時間未満の時間間隔で段階的に電源電圧端子の電圧又は充電器マイナス電位入力端子を変化させることにより、過充電検出電圧、放電過電流検出電圧又は充電過電流検出電圧を測定できる。   The inventor of the present application has found that when the overcharge detection function, the discharge overcurrent detection function, and the discharge overcharge detection function work in the secondary battery protection IC, the power supply voltage terminal changes in a direction in which a large amount of current flows. When the secondary battery protection IC detects overcharge, discharge overcurrent, or discharge overcurrent, the delay time is set as described above until the detection signal is output. There is no delay time in the current value change of the power supply voltage terminal when the discharge overcurrent detection function and the discharge overcurrent detection function are activated. Therefore, the present invention monitors the current value change of the power supply voltage terminal without changing the voltage of the power supply voltage terminal or the voltage of the charger minus potential input terminal with a time interval equal to or longer than the delay time for each detection voltage, Measure the overcharge detection voltage, discharge overcurrent detection voltage or charge overcurrent detection voltage by changing the voltage of the power supply voltage terminal or the charger minus potential input terminal continuously or stepwise at time intervals less than the delay time it can.

本発明の各局面において、上記遅延時間よりも短い時間間隔で段階的に上記電源電圧端子の電圧又は上記充電器マイナス電位入力端子の電圧を上昇又は降下させる場合、当該電圧を所定量だけ上昇又は降下させるステップを電圧上昇ステップ又は電圧降下ステップとし、前記電源電圧端子の電流値の変化を検出するための基準値として1回前の電圧上昇ステップ又は電圧降下ステップにおける電流値を用いる上記電源電圧端子の電流値の変化を検出するための基準値として1ステップ前の電流値を用いる例を挙げることができる。ただし、電源電圧端子の電流値の変化を検出するための基準値は、これに限定されるものではなく、例えば、測定開始時における電源電圧端子の電流値であってもよいし、予め設定された所定の電流値であってもよい。   In each aspect of the present invention, when the voltage of the power supply voltage terminal or the voltage of the charger minus potential input terminal is increased or decreased step by step at a time interval shorter than the delay time, the voltage is increased or decreased by a predetermined amount. The power supply voltage terminal using the current value in the previous voltage rise step or voltage drop step as a reference value for detecting a change in the current value of the power supply voltage terminal as a voltage rise step or a voltage drop step. An example in which the current value one step before is used as a reference value for detecting a change in the current value. However, the reference value for detecting the change in the current value of the power supply voltage terminal is not limited to this, and may be, for example, the current value of the power supply voltage terminal at the start of measurement, or set in advance. It may be a predetermined current value.

電源電圧端子の電流値の変化は、例えば、電流値の基準値に対する変化率もしくは差分にしきい値を設定しておくことにより、又は、電流値に検出しきい値を予め設定しておくことにより、検出することができる。なお、過充電検出機能や放電過電流検出機能、放電過電流検出機能が働いたことに起因する電源電圧端子の電流値の変化の検出方法はこれらに限定されない。   The change in the current value of the power supply voltage terminal is, for example, by setting a threshold value for the rate of change or difference of the current value with respect to the reference value, or by setting a detection threshold value for the current value in advance. Can be detected. Note that the detection method of the change in the current value of the power supply voltage terminal caused by the overcharge detection function, the discharge overcurrent detection function, and the discharge overcurrent detection function is not limited to these.

本発明の二次電池保護用ICの検査方法は、電源電圧端子の電圧又は充電器マイナス電位入力端子の電圧を各検出電圧に対する遅延時間以上の時間間隔をもって変化させなくても、電源電圧端子の電流値変化を監視しつつ、連続的に又は遅延時間未満の時間間隔で段階的に電源電圧端子の電圧又は充電器マイナス電位入力端子を変化させることにより、過充電検出電圧、放電過電流検出電圧又は充電過電流検出電圧を測定できるので、二次電池保護用ICの過充電検出電圧検査、放電過電流検出電圧検査及び充電過電流検出電圧検査について、検査時間を短縮することができる。
電源電圧端子の電流値変化の監視は電流計を用いることにより行なうことができるので、本発明は、特別な測定機能を用いることなく、安価で低機能な半導体検査装置でも実現できる。
さらに、本発明は、テストモード回路を用いる必要がないので、二次電池保護用ICの回路構成の複雑化及び歩留まりの低下を防止できる。
The method for inspecting a secondary battery protection IC according to the present invention allows the voltage of the power supply voltage terminal or the voltage of the charger minus potential input terminal to be changed without changing the voltage of the power supply voltage terminal with a time interval greater than the delay time for each detection voltage. While monitoring the current value change, overcharge detection voltage, discharge overcurrent detection voltage by changing the voltage of the power supply voltage terminal or the charger minus potential input terminal continuously or stepwise at time intervals less than the delay time. Alternatively, since the charge overcurrent detection voltage can be measured, the inspection time can be shortened for the overcharge detection voltage inspection, the discharge overcurrent detection voltage inspection, and the charge overcurrent detection voltage inspection of the secondary battery protection IC.
Since the change in the current value of the power supply voltage terminal can be monitored by using an ammeter, the present invention can be realized by an inexpensive and low-functional semiconductor inspection apparatus without using a special measurement function.
Furthermore, since it is not necessary to use a test mode circuit, the present invention can prevent the circuit configuration of the secondary battery protection IC from being complicated and the yield from being lowered.

本発明の各局面で、遅延時間よりも短い時間間隔で段階的に電源電圧端子の電圧又は充電器マイナス電位入力端子の電圧を上昇又は降下させる場合、当該電圧を所定量だけ上昇又は降下させるステップを電圧上昇ステップ又は電圧降下ステップとし、電源電圧端子の電流値の変化を検出するための基準値として1回前の電圧上昇ステップ又は電圧降下ステップにおける電流値を用いるようにしてもよい。電圧を段階的に変化させている間にも電流値は徐々に減っていき、テスト開始時電流値と検出時の電流測定値を比較する場合においてはテスト開始時電流値と検出時の電流測定値が同じくらいになってしまう場合も想定されるが、この局面はそのような誤測定になってしまうことを回避できるので、より正確な測定が可能になる。   In each aspect of the present invention, when the voltage of the power supply voltage terminal or the voltage of the charger minus potential input terminal is increased or decreased step by step at a time interval shorter than the delay time, the step of increasing or decreasing the voltage by a predetermined amount May be used as a voltage rise step or a voltage drop step, and the current value in the previous voltage rise step or voltage drop step may be used as a reference value for detecting a change in the current value of the power supply voltage terminal. The current value gradually decreases while the voltage is gradually changed. When comparing the current value at the start of the test with the current value at the time of detection, the current value at the start of the test and the current value at the time of detection are measured. Although it may be assumed that the values will be the same, this situation can avoid such erroneous measurement, so that more accurate measurement is possible.

過充電検出電圧を測定するための一実施例を説明するためのフローチャートである。It is a flowchart for demonstrating one Example for measuring an overcharge detection voltage. 同実施例における過充電検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the overcharge detection voltage test | inspection in the Example. 放電過電流検出電圧を測定するための一実施例を説明するためのフローチャートである。It is a flowchart for demonstrating one Example for measuring a discharge overcurrent detection voltage. 同実施例における放電過電流検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the discharge overcurrent detection voltage test | inspection in the Example. 充電過電流検出電圧を測定するための一実施例を説明するためのフローチャートである。It is a flowchart for demonstrating one Example for measuring a charge overcurrent detection voltage. 同実施例における充電過電流検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the charge overcurrent detection voltage test | inspection in the Example. 二次電池保護用ICが搭載された二次電池保護モジュールを備えた電池パックを説明するためのブロック図である。It is a block diagram for demonstrating the battery pack provided with the secondary battery protection module by which IC for secondary battery protection is mounted. 二次電池保護用ICの概略的な外観図である。It is a schematic external view of IC for secondary battery protection. 従来の過充電検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the conventional overcharge detection voltage test | inspection. 従来の放電過電流検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the conventional discharge overcurrent detection voltage test | inspection. 従来の充電過電流検出電圧検査時の測定時間を説明するための図である。It is a figure for demonstrating the measurement time at the time of the conventional charge overcurrent detection voltage test | inspection.

図1は、過充電検出電圧を測定するための一実施例を説明するためのフローチャートである。図2は、この実施例における過充電検出電圧検査時の測定時間を説明するための図である。図2で、縦軸は電源電圧端子VDDの電圧(VDD電圧)と電流(VDD電流)を示し、横軸は時間を示す。図7及び図8も参照してこの実施例を説明する。   FIG. 1 is a flowchart for explaining an embodiment for measuring an overcharge detection voltage. FIG. 2 is a diagram for explaining the measurement time during the overcharge detection voltage inspection in this embodiment. In FIG. 2, the vertical axis indicates the voltage (VDD voltage) and current (VDD current) of the power supply voltage terminal VDD, and the horizontal axis indicates time. This embodiment will be described with reference to FIGS.

ステップS1:過充電検出電圧の設計値よりも低い電圧(テスト開始時電圧)を電源電圧端子VDDに供給する。二次電池保護用IC9のグランド端子VSSを接地電位に接続する。充電器マイナス電位入力端子V−に所定の電圧を供給する。過充電検出出力端子COUT及び過放電検出出力端子DOUTの電圧は電源電圧端子VDDと同じ電圧になる。電源電圧端子VDDの電流値の変化を監視する。
例えば、過充電検出電圧の設計値は4.2V、電源電圧端子VDDに供給するテスト開始時電圧は4.193V、充電器マイナス電位入力端子V−に供給する電圧は−3Vであり、このときの電源電圧端子VDDの電流値(テスト開始時電流)は約4.0μA(マイクロアンペア)である。
Step S1: Supply a voltage (test start voltage) lower than the design value of the overcharge detection voltage to the power supply voltage terminal VDD. The ground terminal VSS of the secondary battery protection IC 9 is connected to the ground potential. A predetermined voltage is supplied to the charger minus potential input terminal V−. The voltages of the overcharge detection output terminal COUT and the overdischarge detection output terminal DOUT are the same voltage as the power supply voltage terminal VDD. Changes in the current value of the power supply voltage terminal VDD are monitored.
For example, the design value of the overcharge detection voltage is 4.2V, the test start voltage supplied to the power supply voltage terminal VDD is 4.193V, and the voltage supplied to the charger minus potential input terminal V− is −3V. The current value of the power supply voltage terminal VDD (current at the start of the test) is about 4.0 μA (microamperes).

ステップS2:電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。例えば、所定の電流値変化は、テスト開始時の電流値(約4.0μA)に対して0.3μA以上上昇したときと設定される。電源電圧端子VDDにテスト開始時電圧が供給されている状態では電源電圧端子VDDの電流値に変化は生じていないので(No)、ステップ3に進む。なお、テスト開始時の電流値や、所定の電流値変化を検出するための基準値は一例であり、これらの値は被検査対象の二次電池保護用ICの種類や製造プロセスでのパラメータ等によって異なることは言うまでもない。   Step S2: It is determined whether or not a predetermined current value change has occurred in the current value of the power supply voltage terminal VDD with respect to the current value at the start of the test. For example, the predetermined current value change is set when the current value at the start of the test (about 4.0 μA) increases by 0.3 μA or more. In the state where the test start voltage is supplied to the power supply voltage terminal VDD, the current value of the power supply voltage terminal VDD does not change (No), so the process proceeds to Step 3. The current value at the start of the test and the reference value for detecting a predetermined current value change are examples, and these values are the type of secondary battery protection IC to be inspected, parameters in the manufacturing process, etc. It goes without saying that it varies depending on the situation.

ステップS3:電源電圧端子VDDの電圧を所定量だけ上昇させる(電圧上昇ステップ)。例えば、電源電圧端子VDDの電圧を1.0mV(ミリボルト)上昇させる。このとき、電源電圧端子VDDの電流値は約10nA(ナノアンペア)減少する。ステップS2に戻って、電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。二次電池保護用IC9の電源電圧端子VDDの電圧が過充電検出電圧以上になって過充電検出機能(例えば図7の過充電検出回路11、ならびに発振回路21及びカウンタ23で構成される遅延回路25)が動作すると、電源電圧端子VDDの電流値は例えば約4.4μAに上昇する。ステップS2で電源電圧端子VDDに所定の電流値変化が生じるまでステップS3及びステップS2を繰り返す。電源電圧端子VDDの電圧を上昇させる時間間隔は、例えば1ミリ秒以下、ここでは500マイクロ秒(μS)である。ただし、この時間間隔はこれらの時間に限定されない。この時間間隔は二次電池保護用IC9に設定された過充電検出遅延時間よりも短ければよく、例えば数百マイクロ秒であってもよい。また、電源電圧端子VDDの電圧を連続的に上昇させてもよい。二次電池保護用IC9が過充電を検出したとき、その検出信号が過充電検出出力端子COUTに出力されるまでには過充電検出遅延時間を要するが、過充電検出機能が働いた際の電源電圧端子VDDの電流値変化には遅延時間はないので、電源電圧端子VDDの電圧を上昇させる時間間隔を過充電検出遅延時間よりも短くすることができる。   Step S3: Increase the voltage of the power supply voltage terminal VDD by a predetermined amount (voltage increase step). For example, the voltage of the power supply voltage terminal VDD is increased by 1.0 mV (millivolt). At this time, the current value of the power supply voltage terminal VDD decreases by about 10 nA (nanoampere). Returning to step S2, it is determined whether or not a predetermined current value change has occurred in the current value of the power supply voltage terminal VDD with respect to the current value at the start of the test. A delay circuit composed of an overcharge detection function (for example, the overcharge detection circuit 11, the oscillation circuit 21 and the counter 23 in FIG. 7) when the voltage of the power supply voltage terminal VDD of the secondary battery protection IC 9 exceeds the overcharge detection voltage. When 25) operates, the current value of the power supply voltage terminal VDD rises to, for example, about 4.4 μA. Steps S3 and S2 are repeated until a predetermined current value change occurs at the power supply voltage terminal VDD in step S2. The time interval for increasing the voltage of the power supply voltage terminal VDD is, for example, 1 millisecond or less, here 500 microseconds (μS). However, this time interval is not limited to these times. This time interval may be shorter than the overcharge detection delay time set in the secondary battery protection IC 9 and may be several hundred microseconds, for example. Further, the voltage of the power supply voltage terminal VDD may be continuously increased. When the secondary battery protection IC 9 detects overcharge, an overcharge detection delay time is required until the detection signal is output to the overcharge detection output terminal COUT, but the power supply when the overcharge detection function is activated Since there is no delay time for the current value change of the voltage terminal VDD, the time interval for increasing the voltage of the power supply voltage terminal VDD can be made shorter than the overcharge detection delay time.

ステップS4:ステップS2で電源電圧端子VDDに所定の電流値変化を検出したとき(Yes)に電源電圧端子VDDに供給されている電圧を過充電検出電圧とする。このように、この実施例では、電源電圧端子VDDの電流値変化を監視しつつ、過充電検出遅延時間未満の時間間隔(500マイクロ秒間隔)で段階的に電源電圧端子VDDの電圧を上昇させることにより、過充電検出電圧を測定できる。   Step S4: When a predetermined current value change is detected at the power supply voltage terminal VDD in Step S2 (Yes), the voltage supplied to the power supply voltage terminal VDD is set as the overcharge detection voltage. Thus, in this embodiment, while monitoring the change in the current value of the power supply voltage terminal VDD, the voltage of the power supply voltage terminal VDD is increased stepwise at a time interval (500 microsecond intervals) less than the overcharge detection delay time. Thus, the overcharge detection voltage can be measured.

例えば、電源電圧端子VDDの電圧を上昇させる時間間隔が500マイクロ秒、ステップ数が20回の場合、過充電検出電圧測定に必要な時間は「500マイクロ秒×20回=10000マイクロ秒=10ミリ秒」である。従来技術は、過充電検出電圧測定に際して、電源電圧端子VDDの電圧を上昇させる時間間隔について過充電検出遅延時間(例えば50ミリ秒)以上の時間が必要であり、ステップ数が20回の場合、少なくとも「50ミリ秒×20回=1000ミリ秒=1秒」の時間が必要であった。したがって、この実施例は、従来技術に比べて、過充電検出電圧測定時間を約1/100に短縮することができる。過充電検出電圧測定には、プログラムの命令文における時間情報や測定値情報を読み取る時間などが含まれるため、実際には測定時間は1/100にはならないが、この実施例は、1回の測定当り、従来技術では1秒かかっていた時間を10ミリ秒に短縮、すなわち990ミリ秒の測定時間の短縮を実現できる。   For example, when the time interval for raising the voltage of the power supply voltage terminal VDD is 500 microseconds and the number of steps is 20, the time required for the overcharge detection voltage measurement is “500 microseconds × 20 times = 10000 microseconds = 10 milliseconds. Seconds ". In the prior art, when measuring the overcharge detection voltage, the time interval for increasing the voltage of the power supply voltage terminal VDD requires a time longer than the overcharge detection delay time (for example, 50 milliseconds), and when the number of steps is 20, At least “50 milliseconds × 20 times = 1000 milliseconds = 1 second” was required. Therefore, this embodiment can shorten the overcharge detection voltage measurement time to about 1/100 compared with the prior art. The overcharge detection voltage measurement includes time information and time information reading time in the program statement, so the measurement time does not actually become 1/100. Per measurement, the time required for 1 second in the prior art can be reduced to 10 milliseconds, that is, the measurement time can be reduced to 990 milliseconds.

図3は、放電過電流検出電圧を測定するための一実施例を説明するためのフローチャートである。図4は、この実施例における放電過電流検出電圧検査時の測定時間を説明するための図である。図4で、縦軸は充電器マイナス電位入力端子V−の電圧(V−電圧)と電源電圧端子VDDの電流(VDD電流)を示し、横軸は時間を示す。図7及び図8も参照してこの実施例を説明する。   FIG. 3 is a flowchart for explaining an embodiment for measuring the discharge overcurrent detection voltage. FIG. 4 is a diagram for explaining the measurement time at the time of the discharge overcurrent detection voltage inspection in this embodiment. In FIG. 4, the vertical axis represents the voltage at the charger minus potential input terminal V− (V−voltage) and the current at the power supply voltage terminal VDD (VDD current), and the horizontal axis represents time. This embodiment will be described with reference to FIGS.

ステップS11:放電過電流検出電圧の設計値よりも低い電圧(テスト開始時電圧)を充電器マイナス電位入力端子V−に供給する。二次電池保護用IC9のグランド端子VSSを接地電位に接続する。電源電圧端子VDDに所定の電圧を供給する。過充電検出出力端子COUT及び過放電検出出力端子DOUTの電圧は電源電圧端子VDDと同じ電圧になる。電源電圧端子VDDの電流値の変化を監視する。
例えば、放電過電流検出電圧の設計値は0.2V、充電器マイナス電位入力端子V−に供給するテスト開始時電圧は0.193V、電源電圧端子に供給する電圧は3Vであり、このときの電源電圧端子VDDの電流値(テスト開始時電流)は約4.0μAである。
Step S11: Supply a voltage (test start voltage) lower than the design value of the discharge overcurrent detection voltage to the charger minus potential input terminal V−. The ground terminal VSS of the secondary battery protection IC 9 is connected to the ground potential. A predetermined voltage is supplied to the power supply voltage terminal VDD. The voltages of the overcharge detection output terminal COUT and the overdischarge detection output terminal DOUT are the same voltage as the power supply voltage terminal VDD. Changes in the current value of the power supply voltage terminal VDD are monitored.
For example, the design value of the discharge overcurrent detection voltage is 0.2 V, the test start voltage supplied to the charger minus potential input terminal V− is 0.193 V, and the voltage supplied to the power supply voltage terminal is 3 V. The current value of the power supply voltage terminal VDD (current at the start of the test) is about 4.0 μA.

ステップS12:電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。例えば、所定の電流値変化は、テスト開始時の電流値(約4.0μA)に対して0.3μA以上上昇したときと設定される。充電器マイナス電位入力端子V−にテスト開始時電圧が供給されている状態では電源電圧端子VDDの電流値に変化は生じていないので(No)、ステップ13に進む。なお、テスト開始時の電流値や、所定の電流値変化を検出するための基準値は一例であり、これらの値は被検査対象の二次電池保護用ICの種類や製造プロセスでのパラメータ等によって異なることは言うまでもない。   Step S12: It is determined whether or not a predetermined current value change has occurred in the current value at the power supply voltage terminal VDD with respect to the current value at the start of the test. For example, the predetermined current value change is set when the current value at the start of the test (about 4.0 μA) increases by 0.3 μA or more. In the state where the voltage at the start of the test is supplied to the charger minus potential input terminal V−, the current value of the power supply voltage terminal VDD has not changed (No). The current value at the start of the test and the reference value for detecting a predetermined current value change are examples, and these values are the type of secondary battery protection IC to be inspected, parameters in the manufacturing process, etc. It goes without saying that it varies depending on the situation.

ステップS13:充電器マイナス電位入力端子V−の電圧を所定量だけ上昇させる(電圧上昇ステップ)。例えば、電源電圧端子VDDの電圧を1.0mV上昇させる。ステップS12に戻って、電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。二次電池保護用IC9の充電器マイナス電位入力端子V−の電圧が放電過電流検出電圧以上になって放電過電流検出機能(例えば図7の放電過電流検出回路15、ならびに発振回路21及びカウンタ23で構成される遅延回路25)が動作すると、電源電圧端子VDDの電流値は例えば約4.4μAに上昇する。ステップS12で電源電圧端子VDDに所定の電流値変化が生じるまでステップS13及びステップS12を繰り返す。充電器マイナス電位入力端子V−の電圧を上昇させる時間間隔は、例えば1ミリ秒以下、ここでは500マイクロ秒(μS)である。ただし、この時間間隔はこれらの時間に限定されない。この時間間隔は二次電池保護用IC9に設定された放電過電流検出遅延時間よりも短ければよく、例えば数百マイクロ秒であってもよい。また、充電器マイナス電位入力端子V−の電圧を連続的に上昇させてもよい。二次電池保護用IC9が放電過電流を検出したとき、その検出信号が過放電検出出力端子DOUTに出力されるまでには放電過電流検出遅延時間を要するが、放電過電流検出機能が働いた際の電源電圧端子VDDの電流値変化には遅延時間はないので、充電器マイナス電位入力端子V−の電圧を上昇させる時間間隔を放電過電流検出遅延時間よりも短くすることができる。   Step S13: The voltage at the charger minus potential input terminal V- is increased by a predetermined amount (voltage increase step). For example, the voltage of the power supply voltage terminal VDD is increased by 1.0 mV. Returning to step S12, it is determined whether or not a predetermined current value change has occurred in the current value of the power supply voltage terminal VDD with respect to the current value at the start of the test. The voltage of the charger minus potential input terminal V− of the secondary battery protection IC 9 becomes equal to or higher than the discharge overcurrent detection voltage, so that a discharge overcurrent detection function (for example, the discharge overcurrent detection circuit 15 of FIG. When the delay circuit 25) composed of 23 operates, the current value of the power supply voltage terminal VDD rises to about 4.4 μA, for example. Steps S13 and S12 are repeated until a predetermined current value change occurs at the power supply voltage terminal VDD in step S12. The time interval for increasing the voltage at the charger minus potential input terminal V− is, for example, 1 millisecond or less, and here, 500 microseconds (μS). However, this time interval is not limited to these times. This time interval may be shorter than the discharge overcurrent detection delay time set in the secondary battery protection IC 9 and may be several hundred microseconds, for example. Further, the voltage of the charger minus potential input terminal V− may be continuously increased. When the secondary battery protection IC 9 detects a discharge overcurrent, it takes a discharge overcurrent detection delay time until the detection signal is output to the overdischarge detection output terminal DOUT, but the discharge overcurrent detection function has worked. Since there is no delay time in changing the current value of the power supply voltage terminal VDD at this time, the time interval for increasing the voltage at the charger minus potential input terminal V− can be made shorter than the discharge overcurrent detection delay time.

ステップS14:ステップS12で電源電圧端子VDDに所定の電流値変化を検出したとき(Yes)に充電器マイナス電位入力端子V−に供給されている電圧を放電過電流検出電圧とする。このように、この実施例では、電源電圧端子VDDの電流値変化を監視しつつ、放電過電流検出遅延時間未満の時間間隔(500マイクロ秒間隔)で段階的に充電器マイナス電位入力端子V−の電圧を上昇させることにより、放電過電流検出電圧を測定できる。   Step S14: When a predetermined current value change is detected at the power supply voltage terminal VDD in Step S12 (Yes), the voltage supplied to the charger minus potential input terminal V− is set as the discharge overcurrent detection voltage. As described above, in this embodiment, while monitoring the change in the current value of the power supply voltage terminal VDD, the charger minus potential input terminal V− is stepwise at time intervals (500 microsecond intervals) less than the discharge overcurrent detection delay time. The discharge overcurrent detection voltage can be measured by increasing the voltage.

例えば、充電器マイナス電位入力端子V−の電圧を上昇させる時間間隔が500マイクロ秒、ステップ数が20回の場合、放電過電流検出電圧測定に必要な時間は「500マイクロ秒×20回=10000マイクロ秒=10ミリ秒」である。従来技術は、放電過電流検出電圧測定に際して、充電器マイナス電位入力端子V−の電圧を上昇させる時間間隔について放電過電流検出遅延時間(例えば10ミリ秒)以上の時間が必要であり、ステップ数が20回の場合、少なくとも「10ミリ秒×20回=200ミリ秒」の時間が必要であった。したがって、この実施例は、1回の測定当り、従来技術では200ミリ秒かかっていた時間を10ミリ秒に短縮、すなわち190ミリ秒の測定時間の短縮を実現できる。   For example, when the time interval for increasing the voltage of the charger minus potential input terminal V− is 500 microseconds and the number of steps is 20, the time required for the discharge overcurrent detection voltage measurement is “500 microseconds × 20 times = 10000”. Microseconds = 10 milliseconds ”. In the prior art, when measuring the discharge overcurrent detection voltage, the time interval for increasing the voltage at the charger minus potential input terminal V- requires a time longer than the discharge overcurrent detection delay time (for example, 10 milliseconds), and the number of steps Is 20 times, at least “10 milliseconds × 20 times = 200 milliseconds” is required. Therefore, in this embodiment, it is possible to reduce the time which has been 200 milliseconds in the prior art to 10 milliseconds per measurement, that is, to shorten the measurement time by 190 milliseconds.

図5は、充電過電流検出電圧を測定するための一実施例を説明するためのフローチャートである。図6は、この実施例における充電過電流検出電圧検査時の測定時間を説明するための図である。図6で、縦軸は充電器マイナス電位入力端子V−の電圧(V−電圧)と電源電圧端子VDDの電流(VDD電流)を示し、横軸は時間を示す。図7及び図8も参照してこの実施例を説明する。   FIG. 5 is a flowchart for explaining an embodiment for measuring the charge overcurrent detection voltage. FIG. 6 is a diagram for explaining the measurement time at the time of the charge overcurrent detection voltage inspection in this embodiment. In FIG. 6, the vertical axis represents the voltage at the charger minus potential input terminal V− (V−voltage) and the current at the power supply voltage terminal VDD (VDD current), and the horizontal axis represents time. This embodiment will be described with reference to FIGS.

ステップS21:充電過電流検出電圧の設計値よりも高い電圧(テスト開始時電圧)を充電器マイナス電位入力端子V−に供給する。二次電池保護用IC9のグランド端子VSSを接地電位に接続する。電源電圧端子VDDに所定の電圧を供給する。過充電検出出力端子COUT及び過放電検出出力端子DOUTの電圧は電源電圧端子VDDと同じ電圧になる。電源電圧端子VDDの電流値の変化を監視する。
例えば、充電過電流検出電圧の設計値は−0.2V、充電器マイナス電位入力端子V−に供給するテスト開始時電圧は−0.193V、電源電圧端子に供給する電圧は3Vであり、このときの電源電圧端子VDDの電流値(テスト開始時電流)は約4.0μAである。
Step S21: Supply a voltage (test start voltage) higher than the design value of the charge overcurrent detection voltage to the charger minus potential input terminal V−. The ground terminal VSS of the secondary battery protection IC 9 is connected to the ground potential. A predetermined voltage is supplied to the power supply voltage terminal VDD. The voltages of the overcharge detection output terminal COUT and the overdischarge detection output terminal DOUT are the same voltage as the power supply voltage terminal VDD. Changes in the current value of the power supply voltage terminal VDD are monitored.
For example, the design value of the charge overcurrent detection voltage is -0.2V, the test start voltage supplied to the charger minus potential input terminal V- is -0.193V, and the voltage supplied to the power supply voltage terminal is 3V. The current value of the power supply voltage terminal VDD (current at the start of the test) is about 4.0 μA.

ステップS22:電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。例えば、所定の電流値変化は、テスト開始時の電流値(約4.0μA)に対して0.3μA以上上昇したときと設定される。充電器マイナス電位入力端子V−にテスト開始時電圧が供給されている状態では電源電圧端子VDDの電流値に変化は生じていないので(No)、ステップ23に進む。なお、テスト開始時の電流値や、所定の電流値変化を検出するための基準値は一例であり、これらの値は被検査対象の二次電池保護用ICの種類や製造プロセスでのパラメータ等によって異なることは言うまでもない。   Step S22: It is determined whether or not a predetermined current value change has occurred in the current value at the power supply voltage terminal VDD with respect to the current value at the start of the test. For example, the predetermined current value change is set when the current value at the start of the test (about 4.0 μA) increases by 0.3 μA or more. In the state where the voltage at the start of the test is supplied to the charger minus potential input terminal V−, the current value of the power supply voltage terminal VDD has not changed (No). The current value at the start of the test and the reference value for detecting a predetermined current value change are examples, and these values are the type of secondary battery protection IC to be inspected, parameters in the manufacturing process, etc. It goes without saying that it varies depending on the situation.

ステップS23:充電器マイナス電位入力端子V−の電圧を所定量だけ降下させる(電圧降下ステップ)。例えば、電源電圧端子VDDの電圧を1.0mV降下させる。ステップS22に戻って、電源電圧端子VDDの電流値に、テスト開始時の電流値に対して所定の電流値変化が生じたかどうかを判断する。二次電池保護用IC9の充電器マイナス電位入力端子V−の電圧が充電過電流検出電圧以下になって充電過電流検出機能(例えば図7の充電過電流検出回路17、ならびに発振回路21及びカウンタ23で構成される遅延回路25)が動作すると、電源電圧端子VDDの電流値は例えば約4.4μAに上昇する。ステップS22で電源電圧端子VDDに所定の電流値変化が生じるまでステップS23及びステップS22を繰り返す。充電器マイナス電位入力端子V−の電圧を降下させる時間間隔は、例えば1ミリ秒以下、ここでは500マイクロ秒(μS)である。ただし、この時間間隔はこれらの時間に限定されない。この時間間隔は二次電池保護用IC9に設定された充電過電流検出遅延時間よりも短ければよく、例えば数百マイクロ秒であってもよい。また、充電器マイナス電位入力端子V−の電圧を連続的に効果させてもよい。二次電池保護用IC9が充電過電流を検出したとき、その検出信号が過充電検出出力端子COUTに出力されるまでには充電過電流検出遅延時間を要するが、充電過電流検出機能が働いた際の電源電圧端子VDDの電流値変化には遅延時間はないので、充電器マイナス電位入力端子V−の電圧を降下させる時間間隔を充電過電流検出遅延時間よりも短くすることができる。   Step S23: The voltage of the charger minus potential input terminal V- is lowered by a predetermined amount (voltage drop step). For example, the voltage of the power supply voltage terminal VDD is lowered by 1.0 mV. Returning to step S22, it is determined whether or not a predetermined current value change has occurred in the current value of the power supply voltage terminal VDD with respect to the current value at the start of the test. The voltage of the charger minus potential input terminal V− of the secondary battery protection IC 9 becomes equal to or lower than the charge overcurrent detection voltage, so that a charge overcurrent detection function (for example, the charge overcurrent detection circuit 17 of FIG. When the delay circuit 25) composed of 23 operates, the current value of the power supply voltage terminal VDD rises to about 4.4 μA, for example. Steps S23 and S22 are repeated until a predetermined current value change occurs at the power supply voltage terminal VDD in step S22. The time interval for dropping the voltage at the charger minus potential input terminal V− is, for example, 1 millisecond or less, and here, 500 microseconds (μS). However, this time interval is not limited to these times. This time interval may be shorter than the charge overcurrent detection delay time set in the secondary battery protection IC 9, and may be several hundred microseconds, for example. Further, the voltage at the charger minus potential input terminal V− may be continuously applied. When the secondary battery protection IC 9 detects a charge overcurrent, it takes a charge overcurrent detection delay time until the detection signal is output to the overcharge detection output terminal COUT, but the charge overcurrent detection function has worked. Since there is no delay time for the current value change of the power supply voltage terminal VDD at this time, the time interval for dropping the voltage of the charger minus potential input terminal V− can be made shorter than the charge overcurrent detection delay time.

ステップS24:ステップS22で電源電圧端子VDDに所定の電流値変化を検出したとき(Yes)に充電器マイナス電位入力端子V−に供給されている電圧を充電過電流検出電圧とする。このように、この実施例では、電源電圧端子VDDの電流値変化を監視しつつ、充電過電流検出遅延時間未満の時間間隔(500マイクロ秒間隔)で段階的に充電器マイナス電位入力端子V−の電圧を降下させることにより、充電過電流検出電圧を測定できる。   Step S24: The voltage supplied to the charger minus potential input terminal V− when the predetermined current value change is detected at the power supply voltage terminal VDD in step S22 is set as the charge overcurrent detection voltage. As described above, in this embodiment, while monitoring the change in the current value of the power supply voltage terminal VDD, the charger minus potential input terminal V− is stepwise at time intervals (500 microsecond intervals) less than the charge overcurrent detection delay time. The charging overcurrent detection voltage can be measured by lowering the voltage.

例えば、充電器マイナス電位入力端子V−の電圧を降下させる時間間隔が500マイクロ秒、ステップ数が20回の場合、充電過電流検出電圧測定に必要な時間は「500マイクロ秒×20回=10000マイクロ秒=10ミリ秒」である。従来技術は、充電過電流検出電圧測定に際して、充電器マイナス電位入力端子V−の電圧を降下させる時間間隔について充電過電流検出遅延時間(例えば10ミリ秒)以上の時間が必要であり、ステップ数が20回の場合、少なくとも「10ミリ秒×20回=200ミリ秒」の時間が必要であった。したがって、この実施例は、1回の測定当り、従来技術では200ミリ秒かかっていた時間を10ミリ秒に短縮、すなわち190ミリ秒の測定時間の短縮を実現できる。   For example, when the time interval for dropping the voltage of the charger minus potential input terminal V− is 500 microseconds and the number of steps is 20, the time required for the charge overcurrent detection voltage measurement is “500 microseconds × 20 times = 10000”. Microseconds = 10 milliseconds ”. In the prior art, when measuring the charge overcurrent detection voltage, the time interval for dropping the voltage of the charger minus potential input terminal V- requires a time longer than the charge overcurrent detection delay time (for example, 10 milliseconds), and the number of steps Is 20 times, at least “10 milliseconds × 20 times = 200 milliseconds” is required. Therefore, in this embodiment, it is possible to reduce the time which has been 200 milliseconds in the prior art to 10 milliseconds per measurement, that is, to shorten the measurement time by 190 milliseconds.

以上、本発明の実施例を説明したが、上記実施例における電圧値、電流値、時間設定、回路構成等は一例であり、本発明はこれらに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
例えば、上記実施例は、電源電圧端子の電流値変化を検出するための基準値として、測定開始時の電源電圧端子の電流値を用いているが、当該基準値はこれに限定されない。例えば、当該基準値は、1回前の電圧上昇ステップ又は電圧降下ステップにおける電流値であってもよいし、予め設定された所定の電流値であってもよい。
Although the embodiments of the present invention have been described above, the voltage values, current values, time settings, circuit configurations, etc. in the above embodiments are merely examples, and the present invention is not limited to these, and is within the scope of the claims. Various modifications are possible within the scope of the described invention.
For example, in the above embodiment, the current value at the power supply voltage terminal at the start of measurement is used as the reference value for detecting the change in the current value at the power supply voltage terminal. However, the reference value is not limited to this. For example, the reference value may be a current value in the previous voltage rise step or voltage drop step, or may be a predetermined current value set in advance.

また、上記実施例は、電源電圧端子の電流値変化を、電流値の基準値に対する差分にしきい値を設定しておくことにより検出しているが、電源電圧端子の電流値変化の検出方法はこれに限定されない。例えば、電源電圧端子の電流値変化の検出は、電流値の基準値に対する変化率を求めて行なってもよいし、電流値に検出しきい値を予め設定しておくことにより行なってもよい。   Moreover, although the said Example detects the current value change of a power supply voltage terminal by setting a threshold value to the difference with respect to the reference value of a current value, the detection method of the current value change of a power supply voltage terminal is It is not limited to this. For example, the change in the current value of the power supply voltage terminal may be detected by obtaining a rate of change of the current value with respect to the reference value, or by setting a detection threshold value for the current value in advance.

また、上記実施例は、図7及び図8を参照して説明した二次電池保護用IC9を用いているが、本発明が適用される二次電池保護用ICはこれに限定されるものではなく、過充電検出回路、放電過電流検出回路、充電過電流検出回路、及びそれらの検出遅延時間を設定する遅延回路を備えた二次電池保護用ICに本発明を適用できる。なお、過充電検出回路、放電過電流検出回路、充電過電流検出回路及びそれらの検出遅延時間を設定する遅延回路の回路構成は問わない。   Moreover, although the said Example uses secondary battery protection IC9 demonstrated with reference to FIG.7 and FIG.8, secondary battery protection IC to which this invention is applied is not limited to this. The present invention can be applied to a secondary battery protection IC including an overcharge detection circuit, a discharge overcurrent detection circuit, a charge overcurrent detection circuit, and a delay circuit for setting the detection delay time thereof. The circuit configuration of the overcharge detection circuit, the discharge overcurrent detection circuit, the charge overcurrent detection circuit, and the delay circuit that sets the detection delay time thereof is not limited.

本発明は、携帯電話やノートパソコン、PDA等の各種電子機器に用いられる電池パックにおける二次電池を過充電や過放電、充電過電流、放電過電流から保護するための二次電池保護用ICの検査に応用される。   The present invention relates to a secondary battery protection IC for protecting a secondary battery in a battery pack used in various electronic devices such as a mobile phone, a notebook computer, and a PDA from overcharge, overdischarge, charge overcurrent, and discharge overcurrent. It is applied to inspection.

3 二次電池
9 二次電池保護用IC
11 過充電検出回路
15 放電過電流検出回路
17 充電過電流検出回路
25 遅延回路
VDD 電源電圧端子
V− 充電器マイナス電位入力端子
3 Secondary battery 9 Secondary battery protection IC
11 Overcharge detection circuit 15 Discharge overcurrent detection circuit 17 Charge overcurrent detection circuit 25 Delay circuit VDD Power supply voltage terminal V− Charger minus potential input terminal

特開2002−176730号公報JP 2002-176730 A

Claims (3)

二次電池の過充電を検出するための過充電検出回路と、過充電の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて過充電検出電圧を測定するための二次電池保護用ICの検査方法において、
前記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、前記遅延時間よりも短い時間間隔で段階的に、前記電源電圧端子の電圧を過充電検出電圧の設計値よりも低い電圧から上昇させ、前記電源電圧端子の電流値の変化に基づいて過充電検出電圧を測定する際に、
前記遅延時間よりも短い時間間隔で段階的に前記電源電圧端子の電圧を上昇させるときに当該電圧を所定量だけ上昇させるステップを電圧上昇ステップとし、前記電源電圧端子の電流値の変化を検出するための基準値として1回前の電圧上昇ステップにおける電流値を用いることを特徴とする二次電池保護用ICの検査方法。
An overcharge detection voltage is provided for a secondary battery protection IC having an overcharge detection circuit for detecting overcharge of the secondary battery and a delay circuit for delaying the overcharge detection time by a predetermined delay time. In the inspection method of the secondary battery protection IC for measurement,
While monitoring the current value of the power supply voltage terminal of the rechargeable battery protection IC, stepwise at a time interval shorter than the previous SL delay time, less than the design value of the voltage of the power supply voltage terminal overcharge detection voltage When measuring the overcharge detection voltage based on the change in the current value of the power supply voltage terminal, rising from the voltage ,
A step of increasing the voltage by a predetermined amount when increasing the voltage of the power supply voltage terminal stepwise at a time interval shorter than the delay time is defined as a voltage increase step, and a change in the current value of the power supply voltage terminal is detected. A method for inspecting a secondary battery protection IC, wherein the current value in the previous voltage rise step is used as a reference value for the purpose .
二次電池の放電過電流を検出するための放電過電流検出回路と、放電過電流の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて放電過電流検出電圧を測定するための二次電池保護用ICの検査方法において、
前記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、前記遅延時間よりも短い時間間隔で段階的に、前記二次電池保護用ICの充電器マイナス電位入力端子の電圧を放電過電流検出電圧の設計値よりも高い電圧から降下させ、前記電源電圧端子の電流値の変化に基づいて放電過電流検出電圧を測定する際に、
前記遅延時間よりも短い時間間隔で段階的に前記充電器マイナス電位入力端子の電圧を降下させるときに当該電圧を所定量だけ降下させるステップを電圧降下ステップとし、前記電源電圧端子の電流値の変化を検出するための基準値として1回前の電圧降下ステップにおける電流値を用いることを特徴とする二次電池保護用ICの検査方法。
A secondary battery protection IC having a discharge overcurrent detection circuit for detecting a discharge overcurrent of a secondary battery and a delay circuit for delaying a discharge overcurrent detection time by a predetermined delay time In the inspection method of the secondary battery protection IC for measuring the current detection voltage,
While monitoring the current value of the power supply voltage terminal of the rechargeable battery protection IC, stepwise at a time interval shorter than the previous SL delay time, a voltage of the charger negative potential input terminal of the rechargeable battery protection IC When measuring the discharge overcurrent detection voltage based on the change in the current value of the power supply voltage terminal by dropping from a voltage higher than the design value of the discharge overcurrent detection voltage ,
The step of dropping the voltage by a predetermined amount when dropping the voltage of the charger minus potential input terminal stepwise at a time interval shorter than the delay time is defined as a voltage drop step, and the change in the current value of the power supply voltage terminal A method for inspecting a secondary battery protection IC, wherein a current value at a voltage drop step one time before is used as a reference value for detecting battery.
二次電池の充電過電流を検出するための充電過電流検出回路と、充電過電流の検出時間を所定の遅延時間で遅延させるための遅延回路とを備えた二次電池保護用ICについて充電過電流検出電圧を測定するための二次電池保護用ICの検査方法において、
前記二次電池保護用ICの電源電圧端子の電流値を監視しつつ、前記遅延時間よりも短い時間間隔で段階的に、前記二次電池保護用ICの充電器マイナス電位入力端子の電圧を充電過電流検出電圧の設計値よりも低い電圧から上昇させ、前記電源電圧端子の電流値の変化に基づいて充電過電流検出電圧を測定する際に、
前記遅延時間よりも短い時間間隔で段階的に前記充電器マイナス電位入力端子の電圧を上昇させるときに当該電圧を所定量だけ上昇させるステップを電圧上昇ステップとし、前記電源電圧端子の電流値の変化を検出するための基準値として1回前の電圧上昇ステップにおける電流値を用いることを特徴とする二次電池保護用ICの検査方法。
A secondary battery protection IC comprising a charge overcurrent detection circuit for detecting a charge overcurrent of a secondary battery and a delay circuit for delaying a charge overcurrent detection time by a predetermined delay time In the inspection method of the secondary battery protection IC for measuring the current detection voltage,
While monitoring the current value of the power supply voltage terminal of the rechargeable battery protection IC, stepwise at a time interval shorter than the previous SL delay time, a voltage of the charger negative potential input terminal of the rechargeable battery protection IC When the charge overcurrent detection voltage is raised from a voltage lower than the design value of the charge overcurrent detection voltage and the charge overcurrent detection voltage is measured based on the change in the current value of the power supply voltage terminal ,
A step of increasing the voltage by a predetermined amount when the voltage of the charger minus potential input terminal is increased stepwise in a time interval shorter than the delay time is defined as a voltage increase step, and a change in the current value of the power supply voltage terminal A method for inspecting a secondary battery protection IC, wherein a current value in a voltage increase step one time before is used as a reference value for detecting a battery voltage .
JP2011056014A 2011-03-14 2011-03-14 Secondary battery protection IC inspection method Expired - Fee Related JP5726579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056014A JP5726579B2 (en) 2011-03-14 2011-03-14 Secondary battery protection IC inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056014A JP5726579B2 (en) 2011-03-14 2011-03-14 Secondary battery protection IC inspection method

Publications (2)

Publication Number Publication Date
JP2012195992A JP2012195992A (en) 2012-10-11
JP5726579B2 true JP5726579B2 (en) 2015-06-03

Family

ID=47087425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056014A Expired - Fee Related JP5726579B2 (en) 2011-03-14 2011-03-14 Secondary battery protection IC inspection method

Country Status (1)

Country Link
JP (1) JP5726579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586242B (en) * 2017-09-29 2020-03-10 昆山国显光电有限公司 Circuit protection method, protection circuit and circuit protection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396825B2 (en) * 2008-11-14 2014-01-22 ミツミ電機株式会社 Protection circuit

Also Published As

Publication number Publication date
JP2012195992A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP4591560B2 (en) Battery pack and control method
EP2022155B1 (en) Charge/discharge protection circuit, battery pack embedding the charge/discharge protection circuit, electronic apparatus using the battery pack
KR101975395B1 (en) Battery pack, and controlling method of the same
TWI398069B (en) Battery pack, method of charging secondary battery and battery charger
JP5652802B2 (en) Internal short circuit detection device and internal short circuit detection method for secondary battery
KR100983566B1 (en) Semiconductor unit for protecting secondary battery, battery pack having the semiconductor unit built-in and electronic apparatus using it
KR102049148B1 (en) Battery device and battery protection method
CN110764015A (en) Battery control apparatus and method for detecting internal short circuit of battery
US8581556B2 (en) Protection circuit and battery pack having current varying circuit to vary current flowing through power terminal
US9774062B2 (en) Storage battery, control method of storage battery, control device, and control method
JP2008021417A (en) Battery pack and detecting method
JP2015095094A (en) Semiconductor device, battery pack, and mobile terminal
JP2014143914A (en) Protection monitoring circuit and battery pack
EP3675303A1 (en) Power source protection apparatus and terminal using same
JP4535910B2 (en) Secondary battery protection circuit, battery pack and electronic device
JP2009133676A (en) Battery pack and charge/discharge method
KR100781792B1 (en) The intergrated circuit to measure the remaining capacity
KR20120103937A (en) Battery management system and battery pack comprising the same
KR102291537B1 (en) Battery protection circuit for common use of csr supporting ic
JP2005168159A (en) Overcurrent protection circuit and charging type battery pack
JP3948435B2 (en) Secondary battery protection IC and battery pack and electronic device using the same
KR101192010B1 (en) System for controlling charging of battery and battery pack comprising the same
JP5726579B2 (en) Secondary battery protection IC inspection method
CN113169385B (en) Battery pack, circuit system for measuring battery current and equipment for measuring battery current
JP2021157980A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees