JP5726457B2 - Method for manufacturing titanium product or titanium alloy product - Google Patents

Method for manufacturing titanium product or titanium alloy product Download PDF

Info

Publication number
JP5726457B2
JP5726457B2 JP2010182103A JP2010182103A JP5726457B2 JP 5726457 B2 JP5726457 B2 JP 5726457B2 JP 2010182103 A JP2010182103 A JP 2010182103A JP 2010182103 A JP2010182103 A JP 2010182103A JP 5726457 B2 JP5726457 B2 JP 5726457B2
Authority
JP
Japan
Prior art keywords
titanium
powder
capsule
product
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182103A
Other languages
Japanese (ja)
Other versions
JP2012041583A (en
Inventor
裕樹 池田
裕樹 池田
彰彦 柳谷
彰彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010182103A priority Critical patent/JP5726457B2/en
Publication of JP2012041583A publication Critical patent/JP2012041583A/en
Application granted granted Critical
Publication of JP5726457B2 publication Critical patent/JP5726457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、成形用原料として脱水素化処理工程を経ていないチタン粉末またはチタン合金粉末にて成形体を製造する方法に関するものである。   The present invention relates to a method for producing a molded body from titanium powder or titanium alloy powder that has not undergone a dehydrogenation treatment step as a forming raw material.

従来、チタン合金は比強度が高く、耐熱性、耐食性にも優れており航空機等の材料として理想的な特徴を備えている反面、溶解、鍛造、切削などの加工性に難点があるため、材料コストが高くなっているので低コストな素材製造法が求められている。
そのチタン成形法の一つとして粉末冶金法がある。粉末冶金法では粉末を加熱・加圧処理することで均一かつ目的形状の成形体を作る方法であり、成形体母材としてチタン粉末またはチタン合金粉末を用いる。
Conventionally, titanium alloys have high specific strength, excellent heat resistance and corrosion resistance, and have ideal characteristics as materials for aircraft, etc., but have difficulty in workability such as melting, forging, cutting, etc. Since the cost is high, there is a need for a low-cost material manufacturing method.
One of the titanium forming methods is powder metallurgy. The powder metallurgy method is a method in which a powder is heated and pressurized to form a molded body having a uniform and desired shape, and titanium powder or titanium alloy powder is used as a molded body base material.

このチタン粉末またはチタン合金粉末からチタン製品またはチタン合金製品を製造する
方法としては、金属チタンとして一般に得られるスポンジチタンを機械的に粉砕して粉末とする方法もあるが、スポンジチタンは展延性に富むためこれを直接粉砕して微粉末を得ることは困難であり、また塩素分が多いため粉末冶金用としては適さない。そこで、一般的には溶融チタンをガスで吹き飛ばして粉末を作るアトマイズ法、あるいはチタン電極を回転させ、その電極をプラズマ等で溶融し、遠心力で吹き飛ばして粉末を作る回転電極法がある。この方法によれば比較的純度の高いチタン粉末を得ることができるが、粉末形状、粒度、コスト等に難点がある。
As a method for producing a titanium product or titanium alloy product from this titanium powder or titanium alloy powder, there is also a method of mechanically pulverizing sponge titanium, which is generally obtained as metal titanium, into a powder. Since it is rich, it is difficult to obtain a fine powder by directly pulverizing it, and it is not suitable for powder metallurgy because of its high chlorine content. Therefore, there is generally an atomizing method in which molten titanium is blown off with a gas to produce a powder, or a rotating electrode method in which a titanium electrode is rotated, the electrode is melted with plasma or the like, and blown off with a centrifugal force to produce a powder. According to this method, titanium powder with relatively high purity can be obtained, but there are disadvantages in the powder shape, particle size, cost and the like.

このため、例えば特開平6−10016号公報(特許文献1)に示されるように、チタ
ンまたはチタン合金を水素化処理して、脆弱なチタン水素化物とし、これを機械的に粉砕して粉末にした後、真空加熱等により脱水素してチタンまたはチタン合金粉末を得るHDH法による方法が一般的に採用されている。常温で脆弱なチタン水素化物を得るためには、水素を約3重量%以上吸収させる必要があり、この3重量%以上の水素化物は一般にδ相と言われ、これを粉砕後に真空加熱して300ppm以下に脱水素化して粉末を得ている。
For this reason, for example, as disclosed in JP-A-6-10016 (Patent Document 1), titanium or a titanium alloy is hydrotreated to form a brittle titanium hydride, which is mechanically pulverized into a powder. After that, the HDH method is generally adopted in which titanium or titanium alloy powder is obtained by dehydrogenation by vacuum heating or the like. In order to obtain a fragile titanium hydride at room temperature, it is necessary to absorb about 3% by weight or more of hydrogen, and this 3% by weight or more of hydride is generally called δ phase, and this is crushed and heated under vacuum. The powder is obtained by dehydrogenating to 300 ppm or less.

このHDH法で得られた粉末を、カプセルに充填し、例えばHIPなどで熱間加圧して
固化成形する粉末冶金法にて、成形体が作製される。しかし、この製法では一般な鉄鋼材料に比べてコストが高いため、構造部材として適用するにはコストパフォーマンスが悪く、普及できていない。そこで、水素化し粉砕した状態での粉末を、例えば特許第3100830号公報(特許文献2)に示されるような、粉末充填、熱間押出により固化成形することも考えられる。
特開平6−10016号公報 特許第3100830号公報
A powder is obtained by the powder metallurgy method in which the powder obtained by the HDH method is filled into a capsule and hot-pressed with, for example, HIP to solidify and form. However, since this manufacturing method has a higher cost than general steel materials, the cost performance is poor for application as a structural member, and it cannot be widely used. Therefore, it is also conceivable to solidify and mold the powder in the hydrogenated and pulverized state by powder filling and hot extrusion as disclosed in, for example, Japanese Patent No. 3100280 (Patent Document 2).
JP-A-6-10016 Japanese Patent No. 3100830

しかしながら、上記特許は、酸素低減した金属粉末を熱間押出により固化成形するもので、チタンまたはチタン合金のような水素含有量の高い粉末を、脱水素して熱間押出により固化成形することは考慮されていないため、加熱中に放出される水素がカプセルの膨れや破れ、また加熱や押出時に水素ガスが外部に放出され、大気との反応による燃焼が起こる可能性があるため実用的な製造が困難である。また、Ti−6質量%Al−4質量%Vなどのチタン合金粉を熱間押出により固化成形した事例は見られない。   However, the above-mentioned patent solidifies and forms a metal powder reduced in oxygen by hot extrusion. It is possible to dehydrogenate a powder having a high hydrogen content such as titanium or a titanium alloy and solidify and form it by hot extrusion. Because it is not taken into consideration, hydrogen released during heating may swell or tear capsules, and hydrogen gas may be released to the outside during heating or extrusion, which may cause combustion due to reaction with the atmosphere. Is difficult. Moreover, the example which solidified and formed titanium alloy powder, such as Ti-6 mass% Al-4 mass% V, by hot extrusion is not seen.

上述したような問題を解消するために、発明者らは鋭意、Ti粉末またはTi合金粉末の脱水素過程について検討した結果、90%以下で充填し、キャニング後の脱気を300℃以上850℃以下、かつ0.133Pa以下の雰囲気で行うことで、合金粉末からの水素放出挙動を促進して充填した粉末全部を脱水素化することが可能であることを見出した。更に、前述したHDH−粉末冶金法で必要な、水素化後に粉砕し、その後真空加熱による脱水素化工程が省略して、そのまま熱間押出、HIP、鍛造または圧延により固化成形により、緻密成形体が製造可能なことを見出した。   In order to solve the above-mentioned problems, the inventors diligently studied the dehydrogenation process of Ti powder or Ti alloy powder, and as a result, filled at 90% or less, and deaeration after canning was performed at 300 ° C. or higher and 850 ° C. In the following, it was found that by performing in an atmosphere of 0.133 Pa or less, it is possible to dehydrogenate all of the filled powder by promoting the hydrogen release behavior from the alloy powder. Further, the above-described HDH-powder metallurgy method, which is pulverized after hydrogenation, and thereafter dehydrogenation step by vacuum heating is omitted. Was found to be manufacturable.

その発明の要旨とするところは、
(1)チタン粉末またはチタン合金粉末を、鉄系もしくはチタンまたはチタン合金製のカプセルに充填率90%以下になるように充填し、300〜800℃にて加熱しつつカプセル内を0.133Pa以下に減圧し、その後20℃/min以下の速度で100℃以下に冷却し、該カプセルを密封した後、該カプセルを1〜50℃/minの加熱速度で、800℃以上に加熱して一定時間保持した後、該カプセルを加圧してチタン粉末またはチタン合金粉末を固化成形することを特徴とするチタン製品またはチタン合金製品の製造方法。
The gist of the invention is that
(1) Titanium powder or titanium alloy powder is filled into an iron-based or titanium or titanium alloy capsule so that the filling rate is 90% or less, and the inside of the capsule is 0.133 Pa or less while heating at 300 to 800 ° C. And then cooled to 100 ° C. or less at a rate of 20 ° C./min or less, and after sealing the capsule, the capsule was heated to 800 ° C. or more at a heating rate of 1 to 50 ° C./min for a certain period of time. A method for producing a titanium product or a titanium alloy product, characterized in that after being held, the capsule is pressurized to solidify and form titanium powder or titanium alloy powder.

(2)前記(1)に記載するチタン粉末及びチタン合金粉末の平均粒度を5〜1000μmとすることを特徴とするチタン製品またはチタン合金製品の製造方法。
(3)前記(1)に記載する固化成形を熱間押出により押出比4以上で固化成形することを特徴とするチタン製品またはチタン合金製品の製造方法にある。
(2) A method for producing a titanium product or a titanium alloy product, wherein the average particle size of the titanium powder and the titanium alloy powder described in (1) is 5 to 1000 μm.
(3) The method for producing a titanium product or a titanium alloy product is characterized in that the solidification molding described in (1) above is solidified by hot extrusion at an extrusion ratio of 4 or more.

以上述べたように、本発明方法により得られた部材は構造材として充分な特性を有し、かつ工程省略により安価に製造可能であるTi製品またはTi合金製品を提供することにある。   As described above, the member obtained by the method of the present invention is to provide a Ti product or a Ti alloy product that has sufficient characteristics as a structural material and can be manufactured at low cost by omitting the steps.

以下、本発明について詳細に説明する。
本発明に係る原料は、純Ti、Ti−6質量%Al−4質量%Vなる合金粉末等のTi合金を用いて、HDH法の工程にてチタンまたはチタン合金を水素化し、粉砕後、脱水素工程を省略し水素含有量を3%以上含むチタン粉末またはチタン合金粉末を用いる。粉末の大きさについては、平均粒度5μm未満の微粉末では充填率や作業性が悪くなる。また、平均粒度1000μm以上の粗粉だけになった場合も充填性の悪化を招くことから、その範囲を5〜1000μmとした。好ましくは10〜500μmとする。
Hereinafter, the present invention will be described in detail.
The raw material according to the present invention is pure Ti, Ti alloy such as Ti-6 mass% Al-4 mass% V alloy powder, etc., hydrogenated titanium or titanium alloy in the HDH process, pulverized, dehydrated Titanium powder or titanium alloy powder containing 3% or more of hydrogen content is used by omitting the elementary process. Regarding the size of the powder, a fine powder having an average particle size of less than 5 μm deteriorates the filling rate and workability. In addition, when only the coarse powder having an average particle size of 1000 μm or more is used, the filling property is deteriorated, so the range is set to 5 to 1000 μm. Preferably, the thickness is 10 to 500 μm.

上記、純Ti、Ti−6質量%Al−4質量%Vなる合金粉末等のTi合金粉末を鉄系
もしくはチタンまたはチタン合金製カプセルに90%以下で水素化Ti粉末またはTi合金粉末を充填する。粉末を充填したカプセルを0.133Pa以下で300℃以上に保持して脱水素化する。この状態で密封、1℃〜50℃/minの加熱速度で800℃以上、押出比4以上で熱間押出により固化成形体を得る。この方法で得られた固化成形体は、インゴット法で作製した同一成分と同じ機械的特性を有する。
Ti alloy powder such as pure Ti, Ti-6 mass% Al-4 mass% V or the like alloy powder is filled with iron-based or titanium or titanium alloy capsules at 90% or less with hydrogenated Ti powder or Ti alloy powder. . The capsule filled with the powder is dehydrogenated by holding at 300 ° C. or higher at 0.133 Pa or lower. In this state, a solidified molded body is obtained by hot extrusion at a heating rate of 1 ° C. to 50 ° C./min at 800 ° C. or higher and an extrusion ratio of 4 or higher. The solidified molded body obtained by this method has the same mechanical characteristics as the same component produced by the ingot method.

以下、本発明についての限定理由について説明する。
鉄系もしくはチタンまたはチタン合金製カプセルに充填率90%以下になるように充填する。なお、充填率は、カプセルに充填する粉末の密度を基にして、カプセル内容積から100%充填したときの重量を計算、実際に充填できた重量を測定することで導き出せる。つまり、充填率(%)=実際に充填できた重量/内容積から計算した充填率が100%のときの重量×100、にて表示する。充填率90%を超えると真空加熱脱気処理の際に、水素が抜ける流路を充分に確保できないため、一部粉末に水素を含有したままの状態となり、当該真空加熱脱気処理を施しても水素量が300ppm以下とならない。したがって、上限を90%とする。
Hereinafter, the reasons for limitation of the present invention will be described.
Filled into an iron-based or titanium or titanium alloy capsule so that the filling rate is 90% or less. The filling rate can be derived by calculating the weight when 100% is filled from the capsule internal volume based on the density of the powder filled in the capsule and measuring the actually filled weight. That is, it is displayed as filling rate (%) = weight actually filled / weight when the filling rate calculated from the internal volume is 100% × 100. When the filling rate exceeds 90%, it is not possible to secure a sufficient flow path through which hydrogen escapes during vacuum heating and degassing treatment. Therefore, a part of the powder remains containing hydrogen, and the vacuum heating and degassing treatment is performed. However, the amount of hydrogen does not become 300 ppm or less. Therefore, the upper limit is 90%.

一般的に粉末充填率は球状粉末で70%程度であり、それ以上充填する場合は加圧しながら充填するプレス充填法等が適用される。特に50〜75%とすることにより、その効果が達成される。ただし、充填率が40%以下では固化成形時の変形が大きくなりすぎるため固化成形体の寸法精度を考えると好ましくない。また、カプセルを鉄系もしくはチタンまたはチタン合金製に限定した理由は、ビレット重量が10〜50kg程度の重量であるため銅等では加熱時の表面酸化および変形が大きくなる可能性があり、当該熱処理温度域での強度を考慮したためである。   In general, the powder filling rate is about 70% as a spherical powder, and when filling more than that, a press filling method in which filling is performed while applying pressure is applied. The effect is achieved especially by setting it as 50 to 75%. However, when the filling rate is 40% or less, deformation at the time of solidification molding becomes too large, which is not preferable in view of the dimensional accuracy of the solidified molded body. In addition, the reason why the capsule is limited to iron-based or titanium or titanium alloy is that the billet weight is about 10 to 50 kg, so the surface oxidation and deformation during heating may increase in copper and the like, and the heat treatment This is because the strength in the temperature range is taken into consideration.

粉末を充填したカプセル内部を0.133Pa以下に減圧して、300〜800℃に保持し、かつ加熱状態においてもカプセル内部を0.133Pa以下の減圧を保持することで中の粉末を全て脱水素化できる。これはTi合金粉の水素放出は真空雰囲気では400℃にピークを持ち、当該条件に保持することで水素量を3%から300ppm以下まで低減できるためである。望ましい温度は450℃以上800℃以下である。300℃未満では水素の放出が不十分で、処理後の水素量が300ppmとならない、また、850℃を超えると内部のチタン粉末またはチタン合金粉末の焼結が進み固化成形体に近くなるため、押出力や圧延時の圧下力が高くなり、その分押出する装置が大型化することになる。   The inside of the capsule filled with the powder is depressurized to 0.133 Pa or less and kept at 300 to 800 ° C., and even in the heated state, the inside of the capsule is kept at a reduced pressure of 0.133 Pa or less to completely dehydrogenate the powder inside. Can be This is because the hydrogen release of the Ti alloy powder has a peak at 400 ° C. in a vacuum atmosphere, and the hydrogen content can be reduced from 3% to 300 ppm or less by maintaining the conditions. A desirable temperature is 450 ° C. or higher and 800 ° C. or lower. When the temperature is less than 300 ° C., hydrogen is not sufficiently released, and the amount of hydrogen after treatment does not become 300 ppm. When the temperature exceeds 850 ° C., sintering of the internal titanium powder or titanium alloy powder proceeds and becomes closer to a solidified molded body. The pushing force and the rolling force during rolling are increased, and the size of the extrusion device is increased accordingly.

上記の状態20℃/min以下の速度で冷却したカプセルが100℃以下になった時点で密封し、1℃〜50℃/minの加熱速度で800℃以上に加熱、一定の時間保持した後、例えば1〜3時間保持した後、押出比4以上で押出すことで、粉末同士が充分に密着、相互拡散し、緻密な固化成形体を得ることができる。しかし、温度が800℃未満もしくは押出比4未満となる両方の条件が重なると緻密な固化成形体が出来ず、機械的強度試験の割れや破壊の起点となるため、インゴット法で作製した同一成分の機械的特性に比べて劣る結果となる。また、加熱速度が1℃/min未満では加熱速度が遅すぎて効率が悪く、また、50℃/minより速すぎると、水素の放出挙動が急激に起こるため真空ポンプ等に負荷が掛かり、カプセルの膨れや破れがおきる可能性があるため、上限を50℃/minとした。好ましくは30℃/minとする。   After the capsule cooled at a rate of 20 ° C./min or less in the above state becomes 100 ° C. or less, heated at a heating rate of 1 ° C. to 50 ° C./min to 800 ° C. or more, and held for a certain period of time, For example, after holding for 1 to 3 hours, by extruding at an extrusion ratio of 4 or more, the powders can be sufficiently adhered and mutually diffused to obtain a dense solidified product. However, if both of the conditions where the temperature is less than 800 ° C. or the extrusion ratio is less than 4 are overlapped, a dense solidified molded body cannot be formed, and it becomes the starting point of cracking and breaking in the mechanical strength test. The result is inferior to the mechanical properties of. Also, if the heating rate is less than 1 ° C / min, the heating rate is too slow and the efficiency is poor, and if it is faster than 50 ° C / min, the release behavior of hydrogen occurs suddenly, which places a load on the vacuum pump and the like. Therefore, the upper limit was set to 50 ° C./min. Preferably, it is 30 ° C./min.

押出比4以上で当該加熱したカプセルを成形加工する。押出比は例えば、直径150mmであれば断面積比の逆数が押出比となるため、直径75mmの押出寸法となる。圧延や鍛造でも同様の断面積比の逆数が4以上となるよう圧下による熱間加工を行い、固化成形体を得る。その後の冷却は空冷もしくは徐冷する。また、押出で丸棒のみならず、異形や管の形状も固化成形できる。さらに、固化成形法は押出以外にもHIPやカプセルの鍛造、圧延等によっても良い。しかし、特に押出しによる固化成形の場合には、脱水素化が300ppm以下にならないと、押出時の加熱でカプセルの膨れや破れがおきる可能性があり押出などの固化成形が出来ない。   The heated capsule is molded at an extrusion ratio of 4 or more. For example, if the extrusion ratio is 150 mm in diameter, the reciprocal of the cross-sectional area ratio becomes the extrusion ratio, so that the extrusion dimension is 75 mm in diameter. Even in rolling or forging, hot working by reduction is performed so that the reciprocal of the same cross-sectional area ratio is 4 or more, and a solidified molded body is obtained. Subsequent cooling is air cooling or slow cooling. Moreover, not only round bars but also irregular shapes and tube shapes can be solidified by extrusion. Further, the solidification method may be HIP, capsule forging, rolling or the like in addition to extrusion. However, particularly in the case of solidification molding by extrusion, if dehydrogenation does not become 300 ppm or less, the capsule may swell or tear due to heating during extrusion, and solidification molding such as extrusion cannot be performed.

以下、本発明について、実施例によって具体的に説明する。
表1に示す成分組成のチタンまたはチタン合金を用いて、HDH法の工程にてチタンまたはチタン合金を水素化し、粉砕するものと、脱水素工程を省略し水素含有量を3%以上含むチタン粉末またはチタン合金粉末を用いる。上記粉末を充填率が90%以下になるようにカプセルに充填する。カプセルは直径150mm、長さ400mm、厚み4mmの容器を軟鋼にて作成し、片側の蓋を溶接した状態で、内面を洗浄、脱脂処理した上にて粉末を充填する。場合によっては充填から次の脱気工程に入るまでを、真空もしくは不活性ガスチャンバー内で作業しても良い。
Hereinafter, the present invention will be specifically described by way of examples.
The titanium or titanium alloy having the composition shown in Table 1 is used to hydrogenate and pulverize the titanium or titanium alloy in the HDH process, and the titanium powder contains 3% or more of hydrogen by omitting the dehydrogenation process. Alternatively, titanium alloy powder is used. The above powder is filled into capsules so that the filling rate is 90% or less. The capsule is made of a mild steel container having a diameter of 150 mm, a length of 400 mm, and a thickness of 4 mm, and the inner surface is washed and degreased in a state where a lid on one side is welded and then filled with powder. In some cases, the process from filling to the next degassing step may be performed in a vacuum or an inert gas chamber.

粉末を充分に充填後、もう一方の蓋を溶接にて固定する。その後、蓋の一部に機械加工により穴を開け、ここに粉末が抜けないようにメッシュや多孔質を内部に詰めた軟鋼製のパイプ(例えば直径10mm程度)を溶接にて固定する。このパイプに配管を延長し、真空ポンプで脱気を行ないながら、加熱を行う。加熱はカプセルの酸化を防ぐため雰囲気炉もしくは真空炉が望ましい。まず、真空度が0.133Pa以下となったことを確認し、温度を450℃以上800℃以下とする。加熱するに従い粉末より水素が放出され真空度が劣化する。そのため再び0.133Pa以下になるまで真空ポンプを加熱中も作動させ続ける必要がある。   After sufficiently filling the powder, the other lid is fixed by welding. Then, a hole is made in a part of the lid by machining, and a mild steel pipe (for example, about 10 mm in diameter) filled with a mesh or a porous material is fixed by welding so that the powder does not come out. The pipe is extended to this pipe and heated while degassing with a vacuum pump. In order to prevent the capsule from being oxidized, an atmosphere furnace or a vacuum furnace is desirable for heating. First, it is confirmed that the degree of vacuum is 0.133 Pa or less, and the temperature is set to 450 ° C. or higher and 800 ° C. or lower. As it heats, hydrogen is released from the powder and the degree of vacuum deteriorates. Therefore, it is necessary to continue operating the vacuum pump during heating until it becomes 0.133 Pa or less again.

真空度が充分になった時点で、ポンプを作動させながら、加熱を止め、20℃/min以下で徐冷する。温度が100℃以下になった時点で、パイプを封止して取り出す。一連の工程がライン内で行われる場合はこのまま押出や圧延、鍛造の温度域(800℃以上)に加熱しても良い。加熱方法は1℃〜50℃/minの加熱速度で800℃以上に加熱、全体が充分に均一になるまで当該温度で保持する。加熱速度1℃/min以下は特性には問題ないが加熱に時間が掛かりすぎ量産工程には適用できない。   When the degree of vacuum becomes sufficient, heating is stopped while the pump is operated, and the cooling is slowly performed at 20 ° C./min or less. When the temperature reaches 100 ° C. or lower, the pipe is sealed and taken out. When a series of steps are performed in the line, the temperature may be kept in the temperature range (800 ° C. or higher) for extrusion, rolling, and forging. The heating method is to heat to 800 ° C. or higher at a heating rate of 1 ° C. to 50 ° C./min, and hold at the temperature until the whole becomes sufficiently uniform. A heating rate of 1 ° C./min or less has no problem in characteristics, but takes too much time for heating and cannot be applied to a mass production process.

押出(鍛造、圧延)は押出比4以上で当該加熱したカプセルを成形加工する。押出比は例えば直径150mmであれば断面積比の逆数が押出比となるため、直径75mmの押出寸法となる。圧延や鍛造でも同様の断面積比の逆数が4以上となるよう圧下による熱間加工を行い、固化成形体を得る。その後の冷却は空冷もしくは徐冷する。   In extrusion (forging, rolling), the heated capsule is molded at an extrusion ratio of 4 or more. For example, if the extrusion ratio is 150 mm in diameter, the reciprocal of the cross-sectional area ratio becomes the extrusion ratio, so that the extrusion dimension is 75 mm in diameter. Even in rolling or forging, hot working by reduction is performed so that the reciprocal of the same cross-sectional area ratio is 4 or more, and a solidified molded body is obtained. Subsequent cooling is air cooling or slow cooling.

なお、水素分析は、得られた粉末を粉砕し、不活性ガス融解−非分散型赤外線吸収法にて測定している。表1に原料および原料の水素量、カプセルに充填したときの充填率、並びにカプセル条件は充填容器の材質と、加熱温度および最終真空度、さらに、固化成形体を作成するときの手法およびその加熱条件を示している。得られた固化成形体の特性を評価したものを表2に示す。   In the hydrogen analysis, the obtained powder was pulverized and measured by an inert gas melting-non-dispersive infrared absorption method. Table 1 shows the raw material and the amount of hydrogen in the raw material, the filling rate when the capsule is filled, and the capsule conditions are the material of the filling container, the heating temperature and the final vacuum, and the method and heating of the solidified molded body The conditions are shown. Table 2 shows the properties of the obtained solidified molded body evaluated.

固化成形体の平均粒径は、試験片を割出し後、鏡面仕上げを行い、顕微鏡観察にて10視野の平均粒径を求めた。成形体の強度測定は、JIS−Z2241の引張試験方法による引張強度および破断伸びの値を適用した。試験片は、JIS−Z2201の14号試験片相当(直径=6mm)を用いた。成形体は特許範囲であればインゴットと同じ強度、例えばJIS−H4650に示される純Tiの1種であれば270〜410MPa、伸び27%以上、2種であれば340〜510MPa、伸び23%以上、3種であれば480〜620MPa、伸び18%以上、4種であれば550〜750MPa、伸び15%以上である。   The average particle size of the solidified molded body was determined by mirror finishing after indexing the test piece and obtaining the average particle size of 10 fields of view by microscopic observation. The strength of the molded body was measured by applying the tensile strength and elongation at break according to the tensile test method of JIS-Z2241. As the test piece, a JIS-Z2201 No. 14 test piece equivalent (diameter = 6 mm) was used. The molded body has the same strength as the ingot within the patent range, for example, 270 to 410 MPa, elongation 27% or more for pure Ti shown in JIS-H4650, 340 to 510 MPa, elongation 23% or more for two types. Three types are 480 to 620 MPa and elongation is 18% or more. Four types are 550 to 750 MPa and elongation is 15% or more.

また、Ti−6質量%Al−4質量%V合金であれば引張強度895MPa以上、伸び10%以上の規格を満足できるが、固化成形が十分でないと緻密体とならず、内部の空孔部が応力集中起点となり、規格強度を満足できない。また、脱水素が不十分で300ppm以下とならずに固化成形した場合、水素脆化が起こりやすくなるため、引張試験において伸び規格10%以上を確保できない。さらに、固化成形体の特性として、遠心鋳造法にてインゴットを作製した同一成分の機械的特性と比べて同等またはそれ以上のものを○、劣るものを×とした。   Further, a Ti-6 mass% Al-4 mass% V alloy can satisfy the standards of a tensile strength of 895 MPa or more and an elongation of 10% or more. Is the starting point of stress concentration and cannot satisfy the standard strength. In addition, when solidification molding is performed without sufficient dehydrogenation to 300 ppm or less, hydrogen embrittlement is likely to occur, and therefore, an elongation standard of 10% or more cannot be ensured in a tensile test. Furthermore, as the characteristics of the solidified molded body, the same or more than the mechanical characteristics of the same component in which the ingot was produced by the centrifugal casting method was evaluated as “B”, and the inferior one as “C”.

Figure 0005726457
Figure 0005726457

Figure 0005726457
表1または2に示すように、No1〜11は本発明例、No.12〜18は比較例である。
Figure 0005726457
As shown in Table 1 or 2, Nos. 1 to 11 are examples of the present invention, Nos. 12 to 18 are comparative examples.

表1または2に示す、比較例No.12は、充填率が高いために真空加熱脱気処理の際に、水素が十分に抜けず300ppmを超える含有量があるために、固化成形した場合に水素脆化が起こり引張試験においてTi2種の伸び規格23%以上を確保できない。比較例No.13は、カプセル内条件での圧力が0.133Pa以下に減圧できないために、脱水素化が十分でなく、真空加熱脱気処理の際に、水素が十分に抜けず300ppmを超える含有量があるために、固化成形した場合に水素脆化が起こり引張試験において、Ti2種の伸び規格23%以上を確保できない。また、加熱条件の速度が高いためTi粉末の焼結が進み押出力や圧延時の圧下力が高くなり設備的にも問題がある。   As shown in Table 1 or 2, Comparative Example No. No. 12 has a high filling rate, and in the vacuum heat degassing treatment, hydrogen does not sufficiently escape and there is a content exceeding 300 ppm. The elongation standard of 23% or more cannot be secured. Comparative Example No. No. 13, since the pressure in the capsule condition cannot be reduced to 0.133 Pa or less, dehydrogenation is not sufficient, and during vacuum heat degassing treatment, hydrogen does not escape sufficiently and the content exceeds 300 ppm For this reason, hydrogen embrittlement occurs during solidification molding, and it is not possible to ensure an elongation standard of 23% or more for the Ti2 type in the tensile test. Moreover, since the speed of the heating conditions is high, the sintering of the Ti powder proceeds and the pressing force and the rolling force during rolling are increased, which causes a problem in equipment.

比較例No.14は、カプセル内条件での温度が低いために、脱水素化が十分でなく、真空加熱脱気処理の際に、水素が十分に抜けず300ppmを超える含有量があるために、固化成形した場合に水素脆化が起こり引張試験において、Ti1種の伸び規格27%以上を確保できない。比較例No.15は、加熱温度が低いために、固化成形した場合に緻密な固化成形体ができず、機械的強度試験の割れや破壊に起点となることから、機械特性が劣る。比較例No.16は、充填率が高いために、真空加熱脱気処理の際に、水素は十分に抜けず300ppmを超える含有量があるために、固化成形した場合に水素脆化が起こり引張試験において、Ti6%Al4%Vの伸び規格10%以上を確保できない。   Comparative Example No. No. 14, because the temperature in the capsule was low, dehydrogenation was not sufficient, and in the vacuum heat degassing treatment, hydrogen did not escape sufficiently and contained more than 300 ppm, so it was solidified and molded In some cases, hydrogen embrittlement occurs, and in the tensile test, it is not possible to secure an elongation standard of Ti1 of 27% or more. Comparative Example No. Since No. 15 has a low heating temperature, a dense solidified molded body cannot be formed when solidified and is a starting point for cracking or breaking in a mechanical strength test. Comparative Example No. No. 16 has a high filling rate, and in the vacuum heat degassing treatment, hydrogen does not sufficiently escape and has a content exceeding 300 ppm. Therefore, hydrogen embrittlement occurs when solidified, and in the tensile test, Ti6 % Al4% V elongation standard of 10% or more cannot be secured.

比較例No.17は、カプセル内条件での温度が低いために、脱水素化が十分でなく、真空加熱脱気処理の際に、水素が十分に抜けず300ppmを超える含有量があるために、固化成形した場合に水素脆化が起こり引張試験において、Ti6%Al4%Vの伸び規格10%以上を確保できない。比較例No.18は、加熱温度が低いために、固化成形した場合に緻密な固化成形体ができず、機械的強度試験の割れや破壊に起点となることから、Ti4種の機械特性を満足できない。   Comparative Example No. No. 17 was solidified and molded because the temperature in the capsule was low, so dehydrogenation was not sufficient, and during the vacuum heat degassing treatment, hydrogen did not escape sufficiently and contained more than 300 ppm. In some cases, hydrogen embrittlement occurs, and in the tensile test, it is not possible to secure an elongation standard of 10% or more of Ti6% Al4% V. Comparative Example No. Since No. 18 has a low heating temperature, a dense solidified molded body cannot be formed when solidified, and the mechanical properties of Ti4 cannot be satisfied since it is the starting point for cracking or breaking in a mechanical strength test.

これに対し、本発明例No.1〜15は、いずれも本発明の条件を満たしていることから、真空加熱脱気処理の際に、水素が十分に抜け、処理後の水素量が300ppm以下まで低減することができ、固化成形した場合に水素脆化がなく引張試験において伸び規格10%以上を確保できるものである。   On the other hand, the present invention example No. Nos. 1 to 15 all satisfy the conditions of the present invention, so that during the vacuum heat degassing treatment, hydrogen can be sufficiently removed and the amount of hydrogen after the treatment can be reduced to 300 ppm or less. In this case, there is no hydrogen embrittlement and an elongation standard of 10% or more can be secured in the tensile test.

以上のように、本発明により得られた固化成形体は、インゴット法で作製した同一成分の機械的特性と比べて同等またはそれ以上の機械的特性を有し、かつ工程省略により安価に製造可能とするものであり、押出で丸棒のみならず、異形や管の形状にも固化成形することができる極めて優れた効果を奏するものである。



特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the solidified molded body obtained by the present invention has mechanical characteristics equal to or higher than those of the same component prepared by the ingot method, and can be manufactured at low cost by omitting the process. It has an excellent effect that it can be solidified not only to round bars but also to irregular shapes and tube shapes by extrusion.



Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (3)

チタン粉末またはチタン合金粉末を、鉄系もしくはチタンまたはチタン合金製のカプセルに充填率90%以下になるように充填し、300〜800℃にて加熱しつつカプセル内を0.133Pa以下に減圧し、その後20℃/min以下の速度で100℃以下に冷却し、該カプセルを密封した後、該カプセルを1〜50℃/minの加熱速度で、800℃以上に加熱して一定時間保持した後、該カプセルを加圧してチタン粉末またはチタン合金粉末を固化成形することを特徴とするチタン製品またはチタン合金製品の製造方法。 Titanium powder or titanium alloy powder is filled into an iron-based or titanium or titanium alloy capsule so that the filling rate is 90% or less, and the pressure inside the capsule is reduced to 0.133 Pa or less while heating at 300 to 800 ° C. Then, after cooling to 100 ° C. or less at a rate of 20 ° C./min or less and sealing the capsule, the capsule is heated to 800 ° C. or more at a heating rate of 1 to 50 ° C./min and held for a certain period of time. A method for producing a titanium product or a titanium alloy product, wherein the capsule is pressurized to solidify and form titanium powder or titanium alloy powder. 請求項1に記載するチタン粉末及びチタン合金粉末の平均粒度を5〜1000μmとすることを特徴とするチタン製品またはチタン合金製品の製造方法。 A method for producing a titanium product or a titanium alloy product, wherein the average particle size of the titanium powder and the titanium alloy powder according to claim 1 is 5 to 1000 µm. 請求項1に記載する固化成形を熱間押出により押出比4以上で固化成形することを特徴とするチタン製品またはチタン合金製品の製造方法。 A method for producing a titanium product or a titanium alloy product, comprising solidifying and forming the solidified molding according to claim 1 by hot extrusion at an extrusion ratio of 4 or more.
JP2010182103A 2010-08-17 2010-08-17 Method for manufacturing titanium product or titanium alloy product Active JP5726457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182103A JP5726457B2 (en) 2010-08-17 2010-08-17 Method for manufacturing titanium product or titanium alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182103A JP5726457B2 (en) 2010-08-17 2010-08-17 Method for manufacturing titanium product or titanium alloy product

Publications (2)

Publication Number Publication Date
JP2012041583A JP2012041583A (en) 2012-03-01
JP5726457B2 true JP5726457B2 (en) 2015-06-03

Family

ID=45898221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182103A Active JP5726457B2 (en) 2010-08-17 2010-08-17 Method for manufacturing titanium product or titanium alloy product

Country Status (1)

Country Link
JP (1) JP5726457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855435B2 (en) * 2011-11-29 2016-02-09 東邦チタニウム株式会社 α + β-type or β-type titanium alloy and method for producing the same
JP5759426B2 (en) * 2012-07-24 2015-08-05 東邦チタニウム株式会社 Titanium alloy and manufacturing method thereof
WO2016056607A1 (en) * 2014-10-08 2016-04-14 新日鐵住金株式会社 Titanium encapsulation structure and titanium material
GB2536483B (en) * 2015-03-19 2019-10-09 Avic Beijing Institute Of Aeronautical Mat Avic Biam A method of Forming a Metal Component
WO2017171056A1 (en) * 2016-04-01 2017-10-05 新日鐵住金株式会社 Titanium composite material and method for manufacturing same, and package
TW201805441A (en) * 2016-04-01 2018-02-16 新日鐵住金股份有限公司 Titanium composite material and package
JP6756364B2 (en) * 2016-04-01 2020-09-16 日本製鉄株式会社 Titanium composite and packaging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203733A (en) * 1987-02-17 1988-08-23 Sumitomo Electric Ind Ltd Manufacture of shape memory alloy
JP3100830B2 (en) * 1994-04-27 2000-10-23 山陽特殊製鋼株式会社 Method for producing low oxygen metal powder products
JPH0849069A (en) * 1994-08-03 1996-02-20 Hitachi Metals Ltd Target for sputtering and its production

Also Published As

Publication number Publication date
JP2012041583A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5726457B2 (en) Method for manufacturing titanium product or titanium alloy product
CN103443311B (en) For the production of the method for titanium alloy welding wire
JP5697604B2 (en) Manufacturing method of metal parts
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
KR20210038932A (en) Method for obtaining a cost-effective powder
GB2575005A (en) A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
JP5548578B2 (en) High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
EP2325343B1 (en) Forging deformation of L12 aluminum alloys
JP5772731B2 (en) Aluminum alloy powder forming method and aluminum alloy member
KR101659199B1 (en) Magnesium alloy member and method for manufacturing same
EP2311998A2 (en) Method for fabrication of tubes using rolling and extrusion
CN107931599B (en) Sintering process of titanium-aluminum alloy
JP2017193734A (en) Sintered body of magnesium alloy or aluminum alloy, forging article using the same and manufacturing method therefor
CN106735171A (en) A kind of titanium aluminium pre-alloyed powder puts hydrogen and two step dehydrogenation high temperature insostatic pressing (HIP) manufacturing process
RU2624562C1 (en) METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM
Wang et al. Study on direct hot isostatic pressing technology for superalloy Inconel 625
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
CA2939189C (en) Brazing and soldering alloy wires
GB2536483B (en) A method of Forming a Metal Component
GULSOY et al. Ni-90 superalloy foam processed by space-holder technique: microstructural and mechanical characterization
JP2024013999A (en) Manufacturing method of titanium sintered material
RU2604284C1 (en) Method for production of workpieces (semi-finished products) from fast-crystallised aluminium alloys
Wang et al. Microstructure and properties of Ti6Al4V alloy prepared by hot isostatic pressing
Kamali et al. Two different methods for improving the properties of IC-221M alloy
KR20050073078A (en) Methods for solidfying of metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250