JP5724997B2 - Manufacturing method of semiconductor device having vertical MOSFET of super junction structure - Google Patents

Manufacturing method of semiconductor device having vertical MOSFET of super junction structure Download PDF

Info

Publication number
JP5724997B2
JP5724997B2 JP2012268413A JP2012268413A JP5724997B2 JP 5724997 B2 JP5724997 B2 JP 5724997B2 JP 2012268413 A JP2012268413 A JP 2012268413A JP 2012268413 A JP2012268413 A JP 2012268413A JP 5724997 B2 JP5724997 B2 JP 5724997B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
forming
semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012268413A
Other languages
Japanese (ja)
Other versions
JP2014116410A (en
Inventor
浩次 江口
浩次 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012268413A priority Critical patent/JP5724997B2/en
Priority to PCT/JP2013/007064 priority patent/WO2014087633A1/en
Priority to CN201380063128.6A priority patent/CN104838501B/en
Priority to US14/649,595 priority patent/US9496331B2/en
Priority to DE112013005837.5T priority patent/DE112013005837T5/en
Publication of JP2014116410A publication Critical patent/JP2014116410A/en
Application granted granted Critical
Publication of JP5724997B2 publication Critical patent/JP5724997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、第1半導体層に形成したトレンチ内に第2半導体層をエピタキシャル成長させてスーパージャンクション(以下、SJという)構造を形成するSJ構造の縦型MOSFETを備えた半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device including a vertical MOSFET having an SJ structure in which a second semiconductor layer is epitaxially grown in a trench formed in a first semiconductor layer to form a super junction (hereinafter referred to as SJ) structure. It is.

従来より、n型カラムとp型カラムとが交互に繰り返し形成されたSJ構造を有する半導体装置が知られている(例えば、特許文献1参照)。SJ構造の半導体装置を製造する際には、例えば図9(a)に示すように、n+型シリコン基板J1の表面にn-型層J2をエピタキシャル成長させた半導体基板J3を用いて行われている。図9(b)に示すように、n-型層J2にトレンチJ4を形成したのち、図9(c)に示すように、そのトレンチJ4内にp-型層J5をエピタキシャル成長させる。そして、図10(a)に示すように、表面の平坦化研磨によってトレンチJ4の外に形成されたp-型層J5を除去してトレンチJ4内にのみ残す。これにより、n-型層J2からなるn型カラムとp-型層J5からなるp型カラムが交互に繰り返されたPNカラムを有するSJ構造を形成している。 Conventionally, a semiconductor device having an SJ structure in which n-type columns and p-type columns are alternately and repeatedly formed is known (see, for example, Patent Document 1). When manufacturing a semiconductor device having an SJ structure, for example, as shown in FIG. 9A, a semiconductor substrate J3 in which an n type layer J2 is epitaxially grown on the surface of an n + type silicon substrate J1 is used. Yes. As shown in FIG. 9B, after forming a trench J4 in the n -type layer J2, a p -type layer J5 is epitaxially grown in the trench J4 as shown in FIG. 9C. Then, as shown in FIG. 10A, the p -type layer J5 formed outside the trench J4 is removed by planarization of the surface and is left only in the trench J4. Thus, an SJ structure having a PN column in which an n-type column composed of an n -type layer J2 and a p-type column composed of a p -type layer J5 are alternately repeated is formed.

その後、図10(b)に示すように、SJ構造を形成した後で、p-型層J6をエピタキシャル成長させたのち、その後のデバイス形成工程を行う。例えば、図10(c)に示すように、n+型ソース領域J7、トレンチゲート構造J8や表面電極J9および裏面電極J10の形成工程などを従来と同様の手法によって行う。このような手法により、SJ構造の縦型MOSトランジスタを製造している。 Thereafter, as shown in FIG. 10B, after the SJ structure is formed, the p -type layer J6 is epitaxially grown, and then a subsequent device formation step is performed. For example, as shown in FIG. 10C, the n + -type source region J7, the trench gate structure J8, the front surface electrode J9, the back surface electrode J10, and the like are formed by a method similar to the conventional method. A vertical MOS transistor having an SJ structure is manufactured by such a method.

特開2012−064660号公報JP 2012-064660 A

しかしながら、p-型層J5をトレンチJ4内に埋め込むようにエピタキシャル成長させた後で行うp-型層J5およびn-型層J2の表面の平坦化研磨のバラツキが大きく、PNカラムの深さがばらついて精度良く所望の深さにすることができなかった。これは、エピタキシャル成長自体の精度の問題もあるが、それ以上にp-型層J5およびn-型層J2の平坦化研磨が同じ半導体材料(例えばシリコン)の研磨加工となり、狙いの膜厚で研磨ストップを行うのが原理的に難しいためである。そして、このようにPNカラムの深さのバラツキが発生すると、半導体装置の耐圧がばらつき、デバイス特性が悪化するという問題を発生させる。 However, there is a large variation in planarization polishing of the surfaces of the p type layer J5 and the n type layer J2 after epitaxial growth so that the p type layer J5 is buried in the trench J4, and the depth of the PN column varies. Therefore, the desired depth could not be obtained with high accuracy. This is due to the accuracy of the epitaxial growth itself, but the planarization polishing of the p type layer J5 and the n type layer J2 becomes the polishing process of the same semiconductor material (for example, silicon), and the target film thickness is polished. This is because it is difficult in principle to perform the stop. When the variation in the depth of the PN column occurs in this way, there arises a problem that the breakdown voltage of the semiconductor device varies and the device characteristics deteriorate.

また、SJ構造を形成した後でSJ構造の上にp-型層J6をエピタキシャル成長させているが、SJ構造の表面とp-型層J6との構造間の処理によって上側のp-型層J6が異常成長し、デバイス特性を悪化させるという問題もある。ここでいう構造間の処理とは、SJ構造を形成した後で行われるSJ構造の表面の平坦化研磨やp型層の成長前のウェハ洗浄のことであり、この処理次第でp型層が異常成長することがある。 Further, p on the SJ structure after forming the SJ structure - but -type layer J6 are epitaxially grown, the surface of the SJ structure and p - upper by processing between the structure of the mold layer J6 of p - type layer J6 However, there is also a problem that the device characteristics are deteriorated due to abnormal growth. The treatment between structures here refers to planarization polishing of the surface of the SJ structure performed after the SJ structure is formed and wafer cleaning before the growth of the p-type layer. May grow abnormally.

本発明は上記点に鑑みて、デバイス特性の悪化を抑制できるSJ構造の縦型MOSFETを備えた半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a semiconductor device including a vertical MOSFET having an SJ structure capable of suppressing deterioration of device characteristics.

上記目的を達成するため、請求項1に記載の発明では、半導体材料で構成された基板(11)の表面(11a)側に、第1導電型の第1半導体層(12)と第2導電型の第2半導体層(13)が形成された半導体基板(10)を用意したのち、第2半導体層の上にマスク(14)を配置し、該マスクを用いて第2半導体層および第1半導体層をエッチングすることで、第2半導体層を貫通して第1半導体層に達するトレンチ(15)を形成する。そして、マスクのうちの少なくともトレンチの周辺に位置している部分を除去してから、トレンチ内を埋め込みつつ第2半導体層の上に、第2導電型の第3半導体層(16)をエピタキシャル成長させたのち、第3半導体層をトレンチに残しつつ第3半導体層を平坦化研磨し、トレンチ内に残された第3半導体層による第2導電型カラムと第1半導体層による第1導電型カラムとが交互に繰り返されたPNカラムを有するSJ構造を形成する。その後、SJ構造の上に、第導電型のチャネル層(17)と該チャネル層に接する第導電型のソース領域(18)を形成すると共に、チャネル層の表面にゲート絶縁膜(22)を介してゲート電極(23)を形成し、さらに半導体基板の表面側にソース領域に電気的に接続されるソース電極(25)を形成すると共に、半導体基板の裏面側に半導体材料で構成される基板の裏面に接続されるドレイン電極(26)を形成することで縦型MOSFETを形成することを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, the first conductive type first semiconductor layer (12) and the second conductive layer are formed on the surface (11a) side of the substrate (11) made of a semiconductor material. After preparing a semiconductor substrate (10) on which a second semiconductor layer (13) of a type is formed, a mask (14) is disposed on the second semiconductor layer, and the second semiconductor layer and the first semiconductor layer are formed using the mask. By etching the semiconductor layer, a trench (15) penetrating the second semiconductor layer and reaching the first semiconductor layer is formed. Then, after removing at least a portion of the mask located around the trench, the third semiconductor layer (16) of the second conductivity type is epitaxially grown on the second semiconductor layer while filling the trench. After that, the third semiconductor layer is planarized and polished while leaving the third semiconductor layer in the trench, and the second conductivity type column by the third semiconductor layer left in the trench and the first conductivity type column by the first semiconductor layer, Form an SJ structure with PN columns repeated alternately. Thereafter, a second conductivity type channel layer (17) and a first conductivity type source region (18) in contact with the channel layer are formed on the SJ structure, and a gate insulating film (22) is formed on the surface of the channel layer. And a source electrode (25) electrically connected to the source region on the surface side of the semiconductor substrate, and a semiconductor material on the back side of the semiconductor substrate. A vertical MOSFET is formed by forming a drain electrode (26) connected to the back surface of the substrate.

このように、第2導電型カラムを形成するためのトレンチを形成する前に予め第1半導体層の上に第2半導体層を形成しておき、その第2半導体層の表面からトレンチを形成している。そして、トレンチ内および第2半導体層の上に第2導電型カラムを形成するための第3半導体層を形成している。   Thus, before forming the trench for forming the second conductivity type column, the second semiconductor layer is formed in advance on the first semiconductor layer, and the trench is formed from the surface of the second semiconductor layer. ing. A third semiconductor layer for forming the second conductivity type column is formed in the trench and on the second semiconductor layer.

このため、SJ構造を構成してから第3半導体層を形成する場合のように、PNカラムの表面の平坦化研削が行われないし、PNカラムの表面と第3半導体層との構造間の処理を行う必要もない。したがって、第3半導体層を平坦化研磨しても、PNカラムの深さに影響を与えることはない。よって、半導体装置の耐圧がばらつくことを抑制でき、デバイス特性の悪化を抑制することが可能となる。   Therefore, as in the case where the third semiconductor layer is formed after the SJ structure is formed, the surface of the PN column is not flattened and processed between the structure of the PN column surface and the third semiconductor layer. There is no need to do. Therefore, even if the third semiconductor layer is planarized and polished, the depth of the PN column is not affected. Therefore, variation in the breakdown voltage of the semiconductor device can be suppressed, and deterioration of device characteristics can be suppressed.

請求項2に記載の発明は、半導体基板を用意する工程では、第1半導体層のうち縦型MOSFETが形成されるセル領域の周辺領域となる外周領域において凹部(12a)を形成したのち、該凹部内を埋め込むように第1半導体層の上に第2半導体層を形成したものを半導体基板として用意することを特徴としている。   According to the second aspect of the present invention, in the step of preparing the semiconductor substrate, the concave portion (12a) is formed in the outer peripheral region that is the peripheral region of the cell region in which the vertical MOSFET is formed in the first semiconductor layer. A semiconductor substrate is prepared by forming a second semiconductor layer on the first semiconductor layer so as to fill the recess.

このように、第1半導体層に凹部を形成しておき、その凹部内にも第2半導体層を埋め込むようにしている。このため、第3半導体層を平坦化研磨する際に、仮に第2半導体層が除去されて第1半導体層が露出するまで研磨されたとしても、凹部内に第2半導体層を残せる。このため、外周領域において確実にリサーフ層(40)が構成されるようにすることができる。   In this way, a recess is formed in the first semiconductor layer, and the second semiconductor layer is embedded in the recess. Therefore, when the third semiconductor layer is planarized and polished, even if the second semiconductor layer is removed and the first semiconductor layer is exposed, the second semiconductor layer can remain in the recess. For this reason, a RESURF layer (40) can be reliably comprised in an outer peripheral area | region.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows an example of a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の第1実施形態にかかるSJ構造のトレンチゲート型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which has a trench gate type vertical MOSFET of the SJ structure concerning 1st Embodiment of this invention. 図1に続くSJ構造のトレンチゲート型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing a manufacturing process of the semiconductor device having the trench gate type vertical MOSFET of the SJ structure following FIG. 1; 本発明の第2実施形態にかかるSJ構造のプレーナ型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which has the planar type | mold vertical MOSFET of SJ structure concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかるSJ構造のプレーナ型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which has the planar type | mold vertical MOSFET of SJ structure concerning 3rd Embodiment of this invention. 図4に続くSJ構造のプレーナ型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor device having the planar vertical MOSFET having the SJ structure following FIG. 4. 図5に続くSJ構造のプレーナ型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing a manufacturing process of the semiconductor device having the planar vertical MOSFET having the SJ structure following FIG. 5; 図6(a)に示す平坦化研磨において、n-型層12が露出する程度までp-型層13およびp-型層16が除去されたときの様子を示した断面図である。FIG. 7 is a cross-sectional view showing a state when the p -type layer 13 and the p -type layer 16 are removed to the extent that the n -type layer 12 is exposed in the planarization polishing shown in FIG. 他の実施形態にかかるSJ構造のトレンチゲート型の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which has the trench gate type vertical MOSFET of the SJ structure concerning other embodiment. 従来のSJ構造のトレンチゲート構造の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which has the vertical MOSFET of the trench gate structure of the conventional SJ structure. 図9に続くSJ構造のトレンチゲート構造の縦型MOSFETを有する半導体装置の製造工程を示す断面図である。FIG. 10 is a cross-sectional view showing a manufacturing step of the semiconductor device having the vertical MOSFET of the trench gate structure of the SJ structure following FIG. 9.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
本発明の第1実施形態にかかる半導体装置の製造方法について、図1および図2を参照して説明する。なお、ここではSJ構造の縦型MOSFETとして、トレンチゲート型の縦型MOSFETを備えた半導体装置を例に挙げて説明する。
(First embodiment)
A method of manufacturing a semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. Here, a semiconductor device including a trench gate type vertical MOSFET will be described as an example of the vertical MOSFET having the SJ structure.

〔図1(a)に示す工程〕
表面11aおよび裏面11bを有する半導体材料で構成された基板としてのn+型シリコン基板11の表面11aに、第1半導体層に相当するn-型層12と第2半導体層に相当するp-型層13をエピタキシャル成長させた半導体基板10を用意する。n+型シリコン基板11は、ドレイン領域として機能する部分であり、n-型層12よりもn型不純物濃度が高くされている。n-型層12は、ドリフト層として機能と共にPNカラムにおけるn型カラムを構成する部分である。p-型層13は、チャネル形成や図示しないが外周での耐圧構造を構成するためのものであり、例えば3〜7μmの厚みとされている。
[Step shown in FIG. 1 (a)]
An n type layer 12 corresponding to the first semiconductor layer and a p type corresponding to the second semiconductor layer are formed on the surface 11a of the n + type silicon substrate 11 as a substrate made of a semiconductor material having the front surface 11a and the back surface 11b. A semiconductor substrate 10 on which the layer 13 is epitaxially grown is prepared. The n + type silicon substrate 11 functions as a drain region, and has an n type impurity concentration higher than that of the n type layer 12. The n type layer 12 functions as a drift layer and constitutes an n type column in the PN column. The p -type layer 13 is for forming a channel or a breakdown voltage structure on the outer periphery (not shown), and has a thickness of 3 to 7 μm, for example.

〔図1(b)に示す工程〕
半導体基板10の表面側において、p-型層13を覆うようにCVD(Chemical Vapor Deposition)法や熱酸化などによって酸化膜14を0.2〜0.3μmの厚みで形成する。その後、酸化膜14の上に図示しないレジストを配置し、フォトエッチング工程を経てトレンチ形成予定位置においてレジストを開口させると共にその開口位置において酸化膜14を開口させる。そして、レジストを除去し、酸化膜14をマスクとして、RIE(Reactive Ion Etching)法や、O2とC48およびSF6を交互に繰り返し導入して底部エッチングおよびポリマー膜による側壁保護を繰り返し行うBOSCH法などの異方性エッチングを行う。具体的には、p-型層13を貫通してn-型層12を所定深さ、例えばn-型層12の厚みと同等もしくはそれよりも若干浅くエッチングする。これにより、n-型層12の所望位置にSJ構造形成用の例えばストライプ状とされたトレンチ15が形成される。
[Step shown in FIG. 1B]
On the surface side of the semiconductor substrate 10, an oxide film 14 having a thickness of 0.2 to 0.3 μm is formed by a CVD (Chemical Vapor Deposition) method or thermal oxidation so as to cover the p -type layer 13. Thereafter, a resist (not shown) is disposed on the oxide film 14, and the resist is opened at a position where a trench is to be formed through a photoetching process, and the oxide film 14 is opened at the opening position. Then, the resist is removed, and using the oxide film 14 as a mask, the RIE (Reactive Ion Etching) method and O 2 , C 4 F 8 and SF 6 are alternately introduced repeatedly to repeatedly perform bottom etching and side wall protection with a polymer film. An anisotropic etching such as a BOSCH method is performed. Specifically, the n -type layer 12 is etched through the p -type layer 13 to a predetermined depth, for example, equal to or slightly shallower than the thickness of the n -type layer 12. Thus, for example, a stripe-shaped trench 15 for forming the SJ structure is formed at a desired position of the n -type layer 12.

〔図1(c)に示す工程〕
酸化膜14のうちトレンチ15から離れた位置に形成されている部分については残し、トレンチ15の開口部周辺に配置されている部分については除去する。
[Step shown in FIG. 1 (c)]
A portion of the oxide film 14 formed at a position away from the trench 15 is left, and a portion disposed around the opening of the trench 15 is removed.

例えば、酸化膜14の上に再びレジストを配置したのち、半導体基板10のうち縦型MOSFETなどを形成してチップとして利用するメイン領域においてレジストを開口させる。そして、アライメントのターゲットを形成する領域であってダイシング時にカットされるスクライブ領域をレジストで覆った状態でエッチングすることで、酸化膜14をパターニングする。または、水素アニールを行うことで、酸化膜14のうちトレンチ15の開口部周辺に形成された部分を後退させる。例えば、10.6kPa(80Torr)以下の減圧雰囲気において、温度を1100℃とし時間を10分間とした水素アニールや、温度を1170℃とし時間を2分間とした水素アニールを行うことで、酸化膜14のうちのトレンチ15の開口部周辺を除去できる。   For example, after a resist is again arranged on the oxide film 14, a vertical MOSFET or the like is formed in the semiconductor substrate 10, and the resist is opened in a main region used as a chip. Then, the oxide film 14 is patterned by etching in a state where a scribe region which is a region where an alignment target is formed and which is cut during dicing is covered with a resist. Alternatively, a portion of the oxide film 14 formed around the opening of the trench 15 is retreated by performing hydrogen annealing. For example, in a reduced pressure atmosphere of 10.6 kPa (80 Torr) or less, hydrogen annealing is performed at a temperature of 1100 ° C. and a time of 10 minutes, or a hydrogen annealing at a temperature of 1170 ° C. and a time of 2 minutes. The periphery of the opening of the trench 15 can be removed.

その後、半導体基板10の表面側において、トレンチ15内を含めp-型層13の表面に、例えばp型不純物濃度が2×1015〜5×1015cm-3となるように第3半導体層に相当するp-型層16をエピタキシャル成長させる。このとき、各トレンチ15内が完全に埋め込まれるようにしつつ、p-型層13の上にもp-型層16が形成されるようなオーバーエピタキシャル成長とし、例えばp-型層13の上に5〜7μm程度の厚みでp-型層16を形成する。 Thereafter, on the surface side of the semiconductor substrate 10, the third semiconductor layer is formed on the surface of the p -type layer 13 including the inside of the trench 15 so that the p-type impurity concentration is 2 × 10 15 to 5 × 10 15 cm −3 , for example. A p -type layer 16 corresponding to is epitaxially grown. At this time, while as each trench 15 is completely filled, p - also on the p type layer 13 - and over epitaxial growth, such as type layer 16 is formed, for example, p - on the type layer 13 5 The p -type layer 16 is formed with a thickness of about ˜7 μm.

〔図2(a)に示す工程〕
まず、p-型層16のうち酸化膜14よりも半導体基板10から突き出した部分をCMP(Chemical Mechanical Polishing)などの表面の平坦化研磨によって除去する。このときには、研磨対象となるp-型層16と異なる酸化膜14を終点検出用のストッパとして用いることができるため、精度良く平坦化研磨を停止できる。
[Step shown in FIG. 2 (a)]
First, a portion of the p -type layer 16 protruding from the semiconductor substrate 10 rather than the oxide film 14 is removed by planarization polishing of the surface such as CMP (Chemical Mechanical Polishing). At this time, since the oxide film 14 different from the p type layer 16 to be polished can be used as a stopper for detecting the end point, the planarization polishing can be stopped with high accuracy.

続いて、酸化膜14をエッチングする。これにより、スクライブ領域やメイン領域におけるスクライブ領域の近傍において酸化膜14が除去されて、露出したp-型層13とp-型層16との間に段差が形成される。このため、再度CMPなどによる表面の平坦化研磨を行うことで、当該段差が無くなるようにp-型層13およびp-型層16を平坦化研磨する。これにより、SJ構造を構成するp型カラムおよびSJ構造の上にp-型層13が既に形成された構造が完成する。 Subsequently, the oxide film 14 is etched. As a result, the oxide film 14 is removed in the vicinity of the scribe region in the scribe region or the main region, and a step is formed between the exposed p -type layer 13 and the p -type layer 16. For this reason, the p -type layer 13 and the p -type layer 16 are flattened and polished so that the level difference is eliminated by performing planarization polishing of the surface again by CMP or the like. As a result, a p-type column constituting the SJ structure and a structure in which the p -type layer 13 is already formed on the SJ structure are completed.

なお、この表面平坦化の際に、p-型層13およびp-型層16という同じ半導体材料(シリコン)の研磨加工となるため、表面平坦化のストッパとなるものが無い。しかしながら、酸化膜14の膜厚が0.2〜0.3μmと非常に薄いため、ストッパが無くても時間制御などだけで大きなバラツキなく平坦化研磨が行える。また、PNカラムの表面とp-型層13との構造間の処理を行う訳ではないので、仮に多少のバラツキがあったとしても、半導体装置の耐圧が大きくばらつくことも無い。 In addition, since the same semiconductor material (silicon) as the p type layer 13 and the p type layer 16 is polished during the surface flattening, there is no stopper for the surface flattening. However, since the oxide film 14 has a very thin film thickness of 0.2 to 0.3 [mu] m, even if there is no stopper, flattening polishing can be performed without much variation only by time control or the like. Further, since the process between the surface of the PN column and the p type layer 13 is not performed, even if there is some variation, the breakdown voltage of the semiconductor device does not vary greatly.

〔図2(b)に示す工程〕
この後の工程については従来と同様であるが、例えば以下の製造工程を行っている。すなわち、n型カラムを構成するn-型層12の上におけるp-型層13の表層部にp型不純物をイオン注入してp-型チャネル層17を形成する。また、p-型チャネル層17の表層部にn型不純物をイオン注入してn+型ソース領域18を形成する。また、p-型チャネル層17のうちのp-型層16の上に形成された部分を中心としてp型不純物をイオン注入することでp+型ボディ層19を形成すると共に、このp+型ボディ層19の表層部にp+型コンタクト領域20を形成する。また、p-型チャネル層17を貫通してn-型層12のうちn型カラムを構成する部分に達するゲートトレンチ21を形成する。さらに、ゲートトレンチ21の内壁面を覆うようにゲート絶縁膜22を形成すると共に、ゲートトレンチ21内を埋め込むようにゲート絶縁膜22上にゲート電極23を形成する。また、半導体基板10の表面側において、層間絶縁膜24の形成工程やゲート配線およびソース電極25の形成工程を行う。そして、半導体基板10の裏面側において、n+型シリコン基板11の裏面11bに接続されるドレイン電極26の形成工程を行うことにより、nチャネルのトレンチゲート型の縦型MOSFETが形成される。その後、ダイシングによりチップ単位に分割することでSJ構造の縦型MOSFETを備えた半導体装置が完成する。
[Step shown in FIG. 2 (b)]
The subsequent steps are the same as in the prior art, but the following manufacturing steps are performed, for example. That is, the p type channel layer 17 is formed by ion implantation of p type impurities into the surface layer portion of the p type layer 13 on the n type layer 12 constituting the n type column. Further, an n + type source region 18 is formed by ion implantation of n type impurities into the surface layer portion of the p type channel layer 17. In addition, a p + type body layer 19 is formed by ion-implanting a p type impurity around the portion of the p type channel layer 17 formed on the p type layer 16, and this p + type A p + -type contact region 20 is formed in the surface layer portion of the body layer 19. In addition, a gate trench 21 that penetrates the p -type channel layer 17 and reaches a portion of the n -type layer 12 constituting the n-type column is formed. Further, the gate insulating film 22 is formed so as to cover the inner wall surface of the gate trench 21, and the gate electrode 23 is formed on the gate insulating film 22 so as to fill the gate trench 21. Further, on the surface side of the semiconductor substrate 10, an interlayer insulating film 24 forming process and a gate wiring and source electrode 25 forming process are performed. Then, on the back side of the semiconductor substrate 10, a drain electrode 26 connected to the back surface 11 b of the n + -type silicon substrate 11 is formed, whereby an n-channel trench gate type vertical MOSFET is formed. Thereafter, the semiconductor device including the vertical MOSFET having the SJ structure is completed by dividing into chips by dicing.

以上説明した本実施形態にかかる半導体装置の製造方法によれば、p型カラムを形成するためのトレンチ15を形成する前に予めn-型層12の上にp-型層13を形成しておき、そのp-型層13の表面からトレンチ15を形成している。そして、トレンチ15内およびp-型層13の上にp型カラムを形成するためのp-型層16を形成している。 According to the manufacturing method of the semiconductor device according to the present embodiment described above, the p -type layer 13 is formed on the n -type layer 12 in advance before forming the trench 15 for forming the p-type column. The trench 15 is formed from the surface of the p type layer 13. A p type layer 16 for forming a p type column is formed in the trench 15 and on the p type layer 13.

このため、SJ構造を構成してからp-型層13を形成する場合のように、PNカラムの表面の平坦化研磨が行われないし、平坦化研磨やウェハ洗浄などのPNカラムの表面とp-型層13との構造間の処理を行う必要がない。したがって、p-型層16を平坦化研磨しても、PNカラムの深さに影響を与えることはない。よって、半導体装置の耐圧がばらつくことを抑制でき、デバイス特性の悪化を抑制することが可能となる。 Therefore, as in the case where the p type layer 13 is formed after the SJ structure is formed, the surface of the PN column is not flattened, and the surface of the PN column such as flattening polishing or wafer cleaning and the p - there is no need to perform processing between the structure of the mold layer 13. Therefore, even if the p -type layer 16 is planarized and polished, the depth of the PN column is not affected. Therefore, variation in the breakdown voltage of the semiconductor device can be suppressed, and deterioration of device characteristics can be suppressed.

(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して半導体装置に形成される縦型MOSFETをプレーナ型に変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. This embodiment is different from the first embodiment in that the vertical MOSFET formed in the semiconductor device is changed to a planar type with respect to the first embodiment, and the others are the same as the first embodiment. Only the part will be described.

図3を参照して、本実施形態にかかる縦型MOSFETの製造方法について説明する。   With reference to FIG. 3, the manufacturing method of the vertical MOSFET concerning this embodiment is demonstrated.

まず、第1実施形態で説明した図1(a)〜(c)と同様の工程を行った後、図3(a)の工程において、第1実施形態で説明した図2(a)と同様の工程を行う。これにより、SJ構造を構成するp型カラムおよびSJ構造の上にp-型層13が既に形成された構造が形成される。これらの工程は基本的に第1実施形態と全く同じで構わない。ただし、p-型層13の膜厚については、後述するn型接続層30をイオン注入によって形成する際に、p-型層13を貫通してn型接続層30が形成できる程度の膜厚となるようにしている。 First, after performing the same processes as in FIGS. 1A to 1C described in the first embodiment, the process in FIG. 3A is similar to that in FIG. 2A described in the first embodiment. The process is performed. As a result, a p-type column constituting the SJ structure and a structure in which the p -type layer 13 is already formed on the SJ structure are formed. These steps may be basically the same as those in the first embodiment. However, p - the thickness of the mold layer 13, when forming the n-type contact layer 30 to be described later by ion implantation, p - thickness such that type layer 13 n-type contact layer 30 through the can be formed It is trying to become.

そして、図3(b)に示す工程において、プレーナ型の縦型MOSFETの各構成要素を形成するための製造工程を行う。   Then, in the process shown in FIG. 3B, a manufacturing process for forming each component of the planar type vertical MOSFET is performed.

すなわち、p-型層13の表層部にp型不純物をイオン注入してp-型チャネル層17を形成すると共に、p-型チャネル層17の表層部にn型不純物をイオン注入してn+型ソース領域18を形成する。また、p-型チャネル層17のうちp-型層16の上に形成された部分を中心としてp型不純物をイオン注入することでp+型ボディ層19を形成すると共に、このp+型ボディ層19の表層部にp+型コンタクト領域20を形成する。さらに、各p+型コンタクト領域20の間に配置された隣り合うn+型ソース領域18の間において、n+型ソース領域18から所定間隔離間した位置にn型不純物をイオン注入することで、p-型チャネル層17からn-型層12に達するn型接続層30を形成する。このn型接続層30は、p-型チャネル層17におけるチャネル形成部に接しつつp-型層13を貫通してn-型層12のうちのn型カラムを構成する部分に達するように形成される。このため、n型接続層30は、プレーナ型の縦型MOSFETが動作する際の電流経路となってオン抵抗を低減させる役割を果たす。 That is, p-type impurities are ion-implanted into the surface layer portion of the p -type layer 13 to form the p -type channel layer 17, and n-type impurities are ion-implanted into the surface layer portion of the p -type channel layer 17 to form n + A mold source region 18 is formed. Further, a p + type body layer 19 is formed by ion implantation of p type impurities centering on a portion of the p type channel layer 17 formed on the p type layer 16, and this p + type body is also formed. A p + -type contact region 20 is formed in the surface layer portion of the layer 19. Further, n-type impurities are ion-implanted at a predetermined distance from the n + -type source region 18 between adjacent n + -type source regions 18 arranged between the p + -type contact regions 20, An n-type connection layer 30 reaching the n -type layer 12 from the p -type channel layer 17 is formed. This n-type connection layer 30 is formed so as to reach the portion of the n -type layer 12 that constitutes the n-type column through the p -type layer 13 while being in contact with the channel forming portion in the p -type channel layer 17. Is done. For this reason, the n-type connection layer 30 serves as a current path when the planar vertical MOSFET operates, and plays a role of reducing the on-resistance.

さらに、少なくともp-型チャネル層17の表面を覆うゲート絶縁膜22を形成すると共に、ゲート絶縁膜22上にゲート電極23を形成する。また、半導体基板10の表面側において、層間絶縁膜24の形成工程やゲート配線およびソース電極25の形成工程を行う。そして、半導体基板10の裏面側において、n+型シリコン基板11の裏面11bに接続されるドレイン電極26の形成工程を行うことにより、nチャネルのプレーナ型の縦型MOSFETが形成される。その後、ダイシングによりチップ単位に分割することでSJ構造のプレーナ型の縦型MOSFETを備えた半導体装置が完成する。 Further, a gate insulating film 22 that covers at least the surface of the p -type channel layer 17 is formed, and a gate electrode 23 is formed on the gate insulating film 22. Further, on the surface side of the semiconductor substrate 10, an interlayer insulating film 24 forming process and a gate wiring and source electrode 25 forming process are performed. Then, on the back surface side of the semiconductor substrate 10, an n-channel planar vertical MOSFET is formed by performing a process of forming the drain electrode 26 connected to the back surface 11 b of the n + -type silicon substrate 11. Thereafter, the semiconductor device including the planar type vertical MOSFET having the SJ structure is completed by dividing into chips by dicing.

このように、第1実施形態と同様の製造方法をプレーナ型の縦型MOSFETを備えた半導体装置についても適用することができ、第1実施形態と同様の効果を得ることができる。   As described above, the same manufacturing method as that of the first embodiment can be applied to the semiconductor device including the planar type vertical MOSFET, and the same effect as that of the first embodiment can be obtained.

(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第2実施形態に対して半導体装置の外周耐圧構造を考慮に入れた製造方法としたものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present invention will be described. The present embodiment is a manufacturing method that takes into account the peripheral breakdown voltage structure of the semiconductor device with respect to the second embodiment, and is otherwise the same as the second embodiment, and is different from the second embodiment. Only the part will be described.

図4〜図6を参照して、本実施形態にかかる縦型MOSFETの製造方法、つまりSJ構造を有するプレーナ型の縦型MOSFETを備えた半導体装置において、外周耐圧構造の形成工程も含めた製造方法について説明する。   4 to 6, the vertical MOSFET manufacturing method according to the present embodiment, that is, the semiconductor device including the planar vertical MOSFET having the SJ structure, including the step of forming the outer peripheral withstand voltage structure. A method will be described.

まず、図4(a)に示す工程では、表面11aおよび裏面11bを有する半導体材料で構成された基板としてのn+型シリコン基板11の表面11aに、第1半導体層に相当するn-型層12をエピタキシャル成長させたものを用意する。そして、図示しないマスクを用いたフォトエッチング工程により、n-型層12のうち外周領域に相当する部分に凹部12aを形成する。具体的には、縦型MOSFETが形成される領域をセル領域として、その外周領域においてリサーフ層を形成することによって外周耐圧構造とするが、このリサーフ層となる部分において凹部12aを形成している。 First, in the step shown in FIG. 4A, an n -type layer corresponding to the first semiconductor layer is formed on the surface 11a of an n + -type silicon substrate 11 as a substrate made of a semiconductor material having a front surface 11a and a back surface 11b. 12 is prepared by epitaxial growth. Then, a recess 12a is formed in a portion corresponding to the outer peripheral region of the n type layer 12 by a photoetching process using a mask (not shown). Specifically, a region where the vertical MOSFET is formed is a cell region, and a RESURF layer is formed in the outer peripheral region to form an outer peripheral withstand voltage structure. However, a concave portion 12a is formed in a portion serving as the RESURF layer. .

その後、図4(b)に示す工程では、凹部12a内を埋め込むようにn-型層12の表面にp-型層13をエピタキシャル成長させ、必要に応じて表面を平坦化研磨する。このとき、例えばn-型層12の表面にp-型層13が3〜7μmの膜厚で残るようにしている。これにより、凹部12a内において凹部12aが形成されていない部分よりもp-型層13が厚くされた半導体基板10が形成される。 Thereafter, in the step shown in FIG. 4B, the p type layer 13 is epitaxially grown on the surface of the n type layer 12 so as to fill the recess 12a, and the surface is planarized and polished as necessary. At this time, for example, the p type layer 13 remains on the surface of the n type layer 12 with a film thickness of 3 to 7 μm. As a result, the semiconductor substrate 10 is formed in which the p type layer 13 is thicker than the portion of the recess 12a where the recess 12a is not formed.

この後は、図5(a)、(b)、図6(a)、(b)に示す工程において、第1実施形態で説明した図1(b)、(c)および第2実施形態で説明した図3(a)、(b)と同様の工程を行う。これにより、外周耐圧構造として、セル領域よりも外周領域において、p-型層16が深くまで形成されることでリサーフ層40が構成されたSJ構造のプレーナ型の縦型MOSFETを備えた半導体装置が完成する。 Thereafter, in the steps shown in FIGS. 5A, 5B, 6A, and 6B, the steps shown in FIGS. 1B, 1C, and 2 described in the first embodiment are used. The same steps as described in FIGS. 3A and 3B are performed. Thereby, as a peripheral breakdown voltage structure, a semiconductor device provided with a planar vertical MOSFET of SJ structure in which the RESURF layer 40 is formed by forming the p -type layer 16 deeper in the peripheral region than in the cell region. Is completed.

このように、外周耐圧構造としてリサーフ層を形成する場合を考慮した製造方法とすることもできる。このようにしても、第2実施形態と同様の効果を得ることができる。   Thus, it can also be set as the manufacturing method which considered the case where a RESURF layer is formed as an outer periphery pressure | voltage resistant structure. Even if it does in this way, the effect similar to 2nd Embodiment can be acquired.

なお、第2実施形態でも、p-型層13を外周領域にも形成しているため、凹部12aを形成しなくても、第2実施形態に示した製造方法によって外周領域にリサーフ層40を構成することができる。しかしながら、図6(a)に示すp-型層13およびp-型層16の表面の平坦化研磨を行ったときに、例えば、図7(a)に示すように、n-型層12が露出する程度までp-型層13およびp-型層16が除去されてしまうことも有り得る。その場合においても、図7(b)に示すように、図6(b)と同様の工程を行うことで、SJ構造のプレーナ型の縦型MOSFETを備えた半導体装置を製造することができる。その場合、外周領域にp-型層16が残らなくなりリサーフ層40を構成することができなくなる。このため、本実施形態のようにn-型層12に凹部12aを形成しておき、予め外周領域においてセル領域よりもp-型層13を厚く形成しておくことで、確実にリサーフ層40が構成されるようにすることができる。 In the second embodiment, since the p -type layer 13 is also formed in the outer peripheral region, the RESURF layer 40 is formed in the outer peripheral region by the manufacturing method shown in the second embodiment without forming the recess 12a. Can be configured. However, p shown in FIG. 6 (a) - when subjected to flattening polishing of the surface of the mold layer 16, for example, as shown in FIG. 7 (a), n - - -type layer 13 and the p -type layer 12 is The p type layer 13 and the p type layer 16 may be removed to the extent that they are exposed. Even in such a case, as shown in FIG. 7B, a semiconductor device including a planar vertical MOSFET having an SJ structure can be manufactured by performing the same process as in FIG. 6B. In that case, the p -type layer 16 does not remain in the outer peripheral region, and the RESURF layer 40 cannot be formed. Therefore, the recess 12a is formed in the n -type layer 12 as in the present embodiment, and the p -type layer 13 is formed thicker than the cell region in the outer peripheral region in advance, so that the RESURF layer 40 is surely formed. Can be configured.

また、n-型層12の表面が露出する程度まで平坦化研磨を行った場合、n-型層12も研磨され得るのでPNカラムの深さにバラツキが生じる可能性がある。しかしながら、n型接続層30によって低オン抵抗化が図れるため、p-型層13が残るような条件で平坦化研磨を行えば良く、従来のようにn-型層12を露出させることが必須の構成ではない。このため、仮にn-型層12が研磨されたとしても研磨量は非常に少なく、殆どPNカラムの深さのバラツキによる耐圧バラツキは生じないで済む。 Further, when planarization polishing is performed to such an extent that the surface of the n -type layer 12 is exposed, the n -type layer 12 can also be polished, so that the PN column depth may vary. However, since the on-resistance can be reduced by the n-type connection layer 30, planarization polishing may be performed under the condition that the p -type layer 13 remains, and it is essential to expose the n -type layer 12 as in the prior art. It is not a configuration of. For this reason, even if the n -type layer 12 is polished, the amount of polishing is very small, and there is almost no variation in pressure resistance due to variations in the depth of the PN column.

(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and can be appropriately changed within the scope described in the claims.

例えば、上記第3実施形態に示すように外周耐圧構造を考慮に入れた製造方法を第1実施形態に示したようなトレンチゲート型の縦型MOSFETを備えた半導体装置の製造方法に適用することもできる。具体的には、第3実施形態で説明した図3(a)、(b)、図4(a)、(b)および図5(a)と同様の工程を行ったのち、第1実施形態で説明した図2(b)と同様の工程を行うことで、図8に示すようなトレンチゲート型の縦型MOSFETとする。このように、トレンチゲート型の縦型MOSFETを備えた半導体装置を製造する際にも、n-型層12に予め凹部12aを形成しておくことで、平坦化研磨後にも少なくとも凹部12a内にp-型層13が残る。これにより、リサーフ層40が構成されるようにでき、第3実施形態と同様の効果を得ることができる。 For example, as shown in the third embodiment, the manufacturing method taking into account the peripheral withstand voltage structure is applied to the manufacturing method of the semiconductor device including the trench gate type vertical MOSFET as shown in the first embodiment. You can also. Specifically, after performing the same steps as in FIGS. 3A, 3B, 4A, 4B and 5A described in the third embodiment, the first embodiment is performed. A trench gate type vertical MOSFET as shown in FIG. 8 is obtained by performing the same process as that shown in FIG. As described above, also in manufacturing a semiconductor device including a trench gate type vertical MOSFET, by forming the recess 12a in the n type layer 12 in advance, at least in the recess 12a even after the planarization polishing. The p type layer 13 remains. Thereby, the RESURF layer 40 can be comprised and the effect similar to 3rd Embodiment can be acquired.

また、上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプのMOSFETを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのMOSFETに対しても本発明を適用することができる。   In each of the above-described embodiments, an n-channel type MOSFET in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example. The present invention can also be applied to a channel type MOSFET.

10 半導体基板
11 n+型シリコン基板(基板)
12 n-型層(第1半導体層)
12a 凹部
13、16 p-型層(第2半導体層、第3半導体層)
14 酸化膜(マスク)
15 トレンチ
17 p型チャネル層
18 n+型ソース領域
23 ゲート電極
25 ソース電極
26 ドレイン電極
30 n型接続層
10 Semiconductor substrate 11 n + type silicon substrate (substrate)
12 n - -type layer (first semiconductor layer)
12a recesses 13, 16 p - -type layer (a second semiconductor layer, the third semiconductor layer)
14 Oxide film (mask)
15 trench 17 p-type channel layer 18 n + type source region 23 gate electrode 25 source electrode 26 drain electrode 30 n-type connection layer

Claims (4)

半導体材料で構成された基板(11)の表面(11a)側に、第1導電型の第1半導体層(12)が形成されると共に該第1半導体層(12)の上に第2導電型の第2半導体層(13)が形成された半導体基板(10)を用意する工程と、
前記第2半導体層の上にマスク(14)を配置し、該マスクを用いて前記第2半導体層および前記第1半導体層をエッチングすることで、前記第2半導体層を貫通して前記第1半導体層に達するトレンチ(15)を形成する工程と、
前記マスクのうちの少なくとも前記トレンチの周辺に位置している部分を除去したのち、前記トレンチ内を埋め込みつつ前記第2半導体層の上に、第2導電型の第3半導体層(16)をエピタキシャル成長させる工程と、
前記第3半導体層を平坦化研磨し、前記第3半導体層を前記トレンチに残しつつ前記第2半導体層を露出させ、前記トレンチ内に残された前記第3半導体層による第2導電型カラムと前記第1半導体層による第1導電型カラムとが交互に繰り返されたPNカラムを有するスーパージャンクション構造を形成する工程と、
前記スーパージャンクション構造の上に、第導電型のチャネル層(17)と該チャネル層に接する第導電型のソース領域(18)を形成すると共に、前記チャネル層の表面にゲート絶縁膜(22)を介してゲート電極(23)を形成し、さらに前記半導体基板の表面側に前記ソース領域に電気的に接続されるソース電極(25)を形成すると共に、前記半導体基板の裏面側に前記基板の裏面に接続されるドレイン電極(26)を形成することで縦型MOSFETを形成する工程と、を含んでいることを特徴とするスーパージャンクション構造の縦型MOSFETを有する半導体装置の製造方法。
A first semiconductor layer (12) of the first conductivity type is formed on the surface (11a) side of the substrate (11) made of a semiconductor material, and the second conductivity type is formed on the first semiconductor layer (12). Preparing a semiconductor substrate (10) on which the second semiconductor layer (13) is formed;
A mask (14) is disposed on the second semiconductor layer, and the second semiconductor layer and the first semiconductor layer are etched using the mask, thereby penetrating the second semiconductor layer and the first semiconductor layer. Forming a trench (15) reaching the semiconductor layer;
After removing at least a portion of the mask located around the trench, a third semiconductor layer (16) of the second conductivity type is epitaxially grown on the second semiconductor layer while filling the trench. A process of
Planarizing and polishing the third semiconductor layer, exposing the second semiconductor layer while leaving the third semiconductor layer in the trench, and a second conductivity type column formed by the third semiconductor layer remaining in the trench; Forming a super junction structure having a PN column in which the first conductivity type column by the first semiconductor layer is alternately repeated;
A second conductivity type channel layer (17) and a first conductivity type source region (18) in contact with the channel layer are formed on the super junction structure, and a gate insulating film (22) is formed on the surface of the channel layer. ), A source electrode (25) electrically connected to the source region is formed on the front surface side of the semiconductor substrate, and the substrate is formed on the back surface side of the semiconductor substrate. Forming a vertical MOSFET by forming a drain electrode (26) connected to the back surface of the semiconductor device. A method of manufacturing a semiconductor device having a vertical MOSFET having a super junction structure.
前記半導体基板を用意する工程では、
前記第1半導体層のうち前記縦型MOSFETが形成されるセル領域の周辺領域となる外周領域において凹部(12a)を形成したのち、該凹部内を埋め込むように前記第1半導体層の上に前記第2半導体層を形成したものを前記半導体基板として用意することを特徴とする請求項1に記載のスーパージャンクション構造の縦型MOSFETを有する半導体装置の製造方法。
In the step of preparing the semiconductor substrate,
A recess (12a) is formed in an outer peripheral region that is a peripheral region of a cell region in which the vertical MOSFET is formed in the first semiconductor layer, and then the first semiconductor layer is formed on the first semiconductor layer so as to be embedded in the recess. 2. The method of manufacturing a semiconductor device having a vertical MOSFET having a super junction structure according to claim 1, wherein a semiconductor substrate on which a second semiconductor layer is formed is prepared as the semiconductor substrate.
前記縦型MOSFETを形成する工程は、
前記第1半導体層にて構成される第1導電型カラムの上において、第2導電型不純物をイオン注入して前記チャネル層を形成する工程と、
前記チャネル層の表層部に第1導電型不純物をイオン注入して前記ソース領域を形成する工程と、
前記チャネル層を貫通して前記第1導電型カラムに達するゲートトレンチ(21)を形成する工程と、
前記ゲートトレンチの内壁面に前記ゲート絶縁膜を形成すると共に、前記ゲート絶縁膜の表面に前記ゲート電極を形成する工程と、を含む、トレンチゲート型の縦型MOSFETを形成する工程であることを特徴とする請求項1または2に記載のスーパージャンクション構造の縦型MOSFETを有する半導体装置の製造方法。
The step of forming the vertical MOSFET includes:
Forming a channel layer by ion-implanting a second conductivity type impurity on a first conductivity type column composed of the first semiconductor layer;
Forming a source region by ion-implanting a first conductivity type impurity into a surface layer portion of the channel layer;
Forming a gate trench (21) passing through the channel layer and reaching the first conductivity type column;
Forming the gate insulating film on the inner wall surface of the gate trench and forming the gate electrode on the surface of the gate insulating film, and forming a trench gate type vertical MOSFET. 3. A method of manufacturing a semiconductor device having a vertical MOSFET having a super junction structure according to claim 1 or 2.
前記縦型MOSFETを形成する工程は、
前記第1半導体層にて構成される第1導電型カラムの上において、第2導電型不純物をイオン注入して前記チャネル層を形成する工程と、
前記チャネル層の表層部に第1導電型不純物をイオン注入して前記ソース領域を形成する工程と、
前記ソース領域から所定間隔離間した位置に第1導電型不純物をイオン注入して、前記チャネル層から前記第1半導体層に達する第1導電型接続層(30)を形成する工程と、
前記チャネル層の表面に前記ゲート絶縁膜を形成すると共に、前記ゲート絶縁膜の表面に前記ゲート電極を形成する工程と、を含む、プレーナ型の縦型MOSFETを形成する工程であることを特徴とする請求項1または2に記載のスーパージャンクション構造の縦型MOSFETを有する半導体装置の製造方法。
The step of forming the vertical MOSFET includes:
Forming a channel layer by ion-implanting a second conductivity type impurity on a first conductivity type column composed of the first semiconductor layer;
Forming a source region by ion-implanting a first conductivity type impurity into a surface layer portion of the channel layer;
Ion-implanting a first conductivity type impurity at a position spaced apart from the source region to form a first conductivity type connection layer (30) reaching the first semiconductor layer from the channel layer;
Forming the gate insulating film on the surface of the channel layer and forming the gate electrode on the surface of the gate insulating film, and forming a planar type vertical MOSFET. A method of manufacturing a semiconductor device comprising the vertical MOSFET having a super junction structure according to claim 1.
JP2012268413A 2012-12-07 2012-12-07 Manufacturing method of semiconductor device having vertical MOSFET of super junction structure Expired - Fee Related JP5724997B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012268413A JP5724997B2 (en) 2012-12-07 2012-12-07 Manufacturing method of semiconductor device having vertical MOSFET of super junction structure
PCT/JP2013/007064 WO2014087633A1 (en) 2012-12-07 2013-12-03 Semiconductor device having vertical mosfet of super junction structure, and method for production of same
CN201380063128.6A CN104838501B (en) 2012-12-07 2013-12-03 The longitudinal type MOSFET constructed with superjunction semiconductor device and its manufacture method
US14/649,595 US9496331B2 (en) 2012-12-07 2013-12-03 Semiconductor device having vertical MOSFET with super junction structure, and method for manufacturing the same
DE112013005837.5T DE112013005837T5 (en) 2012-12-07 2013-12-03 A semiconductor device having a vertical superfine structure MOSFET and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268413A JP5724997B2 (en) 2012-12-07 2012-12-07 Manufacturing method of semiconductor device having vertical MOSFET of super junction structure

Publications (2)

Publication Number Publication Date
JP2014116410A JP2014116410A (en) 2014-06-26
JP5724997B2 true JP5724997B2 (en) 2015-05-27

Family

ID=51172124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268413A Expired - Fee Related JP5724997B2 (en) 2012-12-07 2012-12-07 Manufacturing method of semiconductor device having vertical MOSFET of super junction structure

Country Status (1)

Country Link
JP (1) JP5724997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161903B2 (en) * 2013-01-21 2017-07-12 ルネサスエレクトロニクス株式会社 Method for manufacturing power MOSFET
JP7207361B2 (en) * 2020-04-22 2023-01-18 株式会社デンソー semiconductor equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790549B2 (en) * 2008-08-20 2010-09-07 Alpha & Omega Semiconductor, Ltd Configurations and methods for manufacturing charge balanced devices
JP5096739B2 (en) * 2006-12-28 2012-12-12 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP4844605B2 (en) * 2008-09-10 2011-12-28 ソニー株式会社 Semiconductor device
JP5568856B2 (en) * 2008-11-13 2014-08-13 富士電機株式会社 Manufacturing method of semiconductor device
JP2010161114A (en) * 2009-01-06 2010-07-22 Shin Etsu Handotai Co Ltd Process of fabricating semiconductor device
JP2011216587A (en) * 2010-03-31 2011-10-27 Renesas Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JP2014116410A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10002944B2 (en) Semiconductor structure
JP6341074B2 (en) Manufacturing method of semiconductor device
US8373224B2 (en) Super-junction trench MOSFET with resurf stepped oxides and trenched contacts
US8067800B2 (en) Super-junction trench MOSFET with resurf step oxide and the method to make the same
JP6354525B2 (en) Method for manufacturing silicon carbide semiconductor device
CN107799591B (en) LDMOS (laterally diffused metal oxide semiconductor) and forming method thereof
US8399921B2 (en) Metal oxide semiconductor (MOS) structure and manufacturing method thereof
JP6179409B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
US9099321B2 (en) Method for fabricating power semiconductor device
TW201503366A (en) Trench type semiconductor power device and fabrication method thereof
JP5767869B2 (en) Manufacturing method of semiconductor device
KR102520058B1 (en) Semiconductor device and manufacturing method thereof
JP2016021547A (en) Semiconductor device manufacturing method
WO2012137412A1 (en) Semiconductor device and method for producing same
US20160204218A1 (en) Semiconductor structure comprising an aluminum gate electrode portion and method for the formation thereof
US9496331B2 (en) Semiconductor device having vertical MOSFET with super junction structure, and method for manufacturing the same
WO2014087633A1 (en) Semiconductor device having vertical mosfet of super junction structure, and method for production of same
US20150054064A1 (en) Power semiconductor device with super junction structure and interlaced, grid-type trench network
US20140302657A1 (en) Method for fabricating power semiconductor device
JP2015056643A (en) Semiconductor device manufacturing method
JP5410055B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5724997B2 (en) Manufacturing method of semiconductor device having vertical MOSFET of super junction structure
JP2009272480A (en) Method of manufacturing semiconductor device
JP5725129B2 (en) Manufacturing method of semiconductor device having vertical MOSFET of super junction structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees