JP5722739B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5722739B2
JP5722739B2 JP2011211492A JP2011211492A JP5722739B2 JP 5722739 B2 JP5722739 B2 JP 5722739B2 JP 2011211492 A JP2011211492 A JP 2011211492A JP 2011211492 A JP2011211492 A JP 2011211492A JP 5722739 B2 JP5722739 B2 JP 5722739B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
air
facing
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211492A
Other languages
Japanese (ja)
Other versions
JP2013073760A (en
Inventor
堀田 信行
信行 堀田
大野 猛
大野  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011211492A priority Critical patent/JP5722739B2/en
Publication of JP2013073760A publication Critical patent/JP2013073760A/en
Application granted granted Critical
Publication of JP5722739B2 publication Critical patent/JP5722739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、平板状の燃料電池セルを複数枚積層して構成される燃料電池に関する。   The present invention relates to a fuel cell configured by laminating a plurality of flat fuel cells.

従来、図24に示したように、平板状の燃料電池セル100を複数枚積層してなる積層体101と、該積層体101の周縁部近傍に設けられて該積層体101を積層方向に締め付ける締め部材102と、を備えた燃料電池103が、例えば特許文献1に記載されている。この燃料電池103の締め部材102は、ボルト102aとナット102bの組み合わせであって、前記積層体101の周縁部近傍に設けられた貫通孔104にボルト102aを通してナット102bで締め付け、そうして図24に示したようにボルト102aに引張荷重F1を作用させると共にその反力F2で積層体101を押さえ込むようにしている。   Conventionally, as shown in FIG. 24, a laminate 101 formed by laminating a plurality of flat fuel cells 100 and a laminate 101 provided in the vicinity of the peripheral edge of the laminate 101 are clamped in the laminating direction. A fuel cell 103 including a fastening member 102 is described in Patent Document 1, for example. The fastening member 102 of the fuel cell 103 is a combination of a bolt 102a and a nut 102b. The fastening member 102 is fastened with a nut 102b through a bolt 102a through a through hole 104 provided in the vicinity of the peripheral edge of the laminate 101, and FIG. As shown in FIG. 5, the tensile load F1 is applied to the bolt 102a and the laminate 101 is pressed by the reaction force F2.

特開2009−117208号公報(段落0033 図4)JP 2009-117208 A (paragraph 0033 FIG. 4)

燃料電池103において燃料電池セル100のシール性能は重要であり、そのシール性能を高めるためには締め部材102のボルト102aに掛かる引張荷重F1を大きくして積層体101をしっかり押さえ込む必要がある。
一方、ボルト102aに掛かる引張荷重F1を大きくすると、山谷形状のボルト102aを発電時の高温環境下で強く引っ張り続けることになるため、クリープ変形やクリープ破断の問題が生じ得る。
したがって、締め部材102の締め付け力をあまり大きくすることができないため、燃料電池セル100のシール性能も頭打ちの状況になっていた。
In the fuel cell 103, the sealing performance of the fuel cell 100 is important, and in order to improve the sealing performance, it is necessary to increase the tensile load F1 applied to the bolt 102a of the fastening member 102 and firmly hold the laminate 101.
On the other hand, when the tensile load F1 applied to the bolt 102a is increased, the peak-and-valley shaped bolt 102a is continuously pulled in a high temperature environment during power generation, which may cause a problem of creep deformation or creep rupture.
Therefore, the tightening force of the tightening member 102 cannot be increased so much that the sealing performance of the fuel cell 100 has reached its peak.

本発明は上記に鑑みなされたもので、その目的は、燃料電池セルの積層体を積層方向に強く締め付け得る締め部材を提供し、そうして燃料電池のシール性能の向上を図ることにある。   The present invention has been made in view of the above, and an object thereof is to provide a fastening member capable of strongly fastening a stack of fuel cells in the stacking direction, thereby improving the sealing performance of the fuel cell.

上記の目的を達成するため本発明は、平板状の燃料電池セルを複数枚積層してなる積層体と、前記積層体の周縁部近傍に設けられて該積層体を積層方向に締め付ける締め部材と、を備えた燃料電池であって、
前記締め部材は、前記積層体の積層方向の周縁部上面に対向する第1対向部と、前記積層体の積層方向の周縁部下面に対向する第2対向部と、前記第1対向部の端部と前記第2対向部の端部を一体に連結して前記積層体の側面に対向すると共に該積層体の側面と平行な方向の横幅が(W)であり、それと直交する方向の厚さが(T)である断面長方形の連結部と、中心軸が前記積層体の上面又は下面に対して略垂直になるように前記第1対向部と前記第2対向部の少なくとも一方に形成される雌貫通ネジ孔と、前記雌貫通ネジ孔に螺合すると共に前記積層体の上面又は下面に先端が当接し、前記雌貫通ネジ孔への締め込みによって前記積層体を積層方向に締め付け得るネジ部材と、を備え、
さらに、前記連結部は、前記積層体の積層方向に直交する方向における断面積(A1)が、前記ネジ部材の山径(D)を基準にした断面積(A2)より大きく設定され、前記連結部の厚さ(T)が、(A2/D)より大きく且つ前記連結部の横幅(W)より小さく設定されている燃料電池を提供する。
In order to achieve the above object, the present invention provides a laminate formed by laminating a plurality of flat fuel cells, and a fastening member provided in the vicinity of the peripheral portion of the laminate to fasten the laminate in the stacking direction. A fuel cell comprising:
The fastening member includes a first opposing portion that opposes the upper surface of the peripheral portion in the stacking direction of the laminate, a second opposing portion that opposes the lower surface of the peripheral portion in the stacking direction of the laminate, and an end of the first opposing portion. And a width in a direction parallel to the side surface of the laminated body and parallel to the side surface of the laminated body, and a thickness in a direction perpendicular thereto it is formed on at least one of the second opposed portion and the first opposing portion so as to be substantially perpendicular but the connecting portion of the rectangular cross section is a (T), the central axis relative to the upper surface or lower surface of the laminate A female through screw hole and a screw member screwed into the female through screw hole and having a tip abutting against the upper surface or the lower surface of the laminated body and tightening the laminated body in the laminating direction by tightening into the female through screw hole And comprising
Further, the connecting portion has a cross-sectional area (A1) in a direction orthogonal to the stacking direction of the laminate, which is set to be larger than a cross-sectional area (A2) based on a mountain diameter (D) of the screw member. Provided is a fuel cell in which the thickness (T) of the portion is set larger than (A2 / D) and smaller than the lateral width (W) of the connecting portion.

また、請求項2に記載したように、前記第1対向部又は前記第2対向部と前記連結部とで構成される角部の内側が滑らかな曲面で形成されている請求項1記載の燃料電池を提供する。   Further, as described in claim 2, the fuel according to claim 1, wherein an inner side of a corner portion constituted by the first facing portion or the second facing portion and the connecting portion is formed with a smooth curved surface. Provide batteries.

また、請求項3に記載されているように、前記積層体は、積層方向に貫通する貫通孔と、前記貫通孔に挿入されたボルトと、を有し、前記ボルトには、前記燃料電池セルに供給される原料ガスまたは前記燃料電池セルから排出される排出ガスを流通させるガス流路が形成されている請求項1又は2に記載の燃料電池を提供する。   In addition, as described in claim 3, the stacked body includes a through-hole penetrating in the stacking direction and a bolt inserted into the through-hole, and the bolt includes the fuel cell unit. The fuel cell according to claim 1, wherein a gas flow path is formed through which the raw material gas supplied to the fuel cell or the exhaust gas discharged from the fuel cell is circulated.

本発明の燃料電池の締め部材は、第1対向部と第2対向部の間に積層体の周縁部近傍を嵌め入れ、第1対向部及び/又は第2対向部に取り付けたネジ部材を締め込むことで積層体を積層方向に締め付けるものであるため、ネジ部材に圧縮応力が作用する。このように山谷形状のネジ部材を圧縮場にすることで、ネジ部材のクリープひずみの軽減とクリープ破断を防止することができる。
一方、ネジ部材に圧縮力が加わる反作用として連結部に従来型のネジ部材と同様の引張り力が加わるが、連結部は積層体の外部にあって設計自由度が高いため、連結部の断面積(A1)をネジ部材の断面積(A2)より大きく設定することができ、そうすることにより従来型のネジ部材が受けていた引張り応力より連結部に加わる引張り応力を小さくすることができる。したがって、連結部のクリープひずみも小さく抑えることができ、総合的に従来型のネジ部材に比べて締め部材のクリープの影響を軽減することができる。
The fastening member of the fuel cell according to the present invention is configured such that the vicinity of the peripheral portion of the laminate is fitted between the first facing portion and the second facing portion, and the screw member attached to the first facing portion and / or the second facing portion is tightened. Since the laminated body is tightened in the laminating direction, compressive stress acts on the screw member. In this way, by using the crest-and-valve screw member as a compression field, the creep strain of the screw member can be reduced and creep rupture can be prevented.
On the other hand, a tensile force similar to that of a conventional screw member is applied to the connecting part as a reaction to which a compressive force is applied to the screw member. However, since the connecting part is outside the laminate and has a high degree of freedom in design, the cross-sectional area of the connecting part is high. (A1) can be set larger than the cross-sectional area (A2) of the screw member, so that the tensile stress applied to the connecting portion can be made smaller than the tensile stress received by the conventional screw member. Therefore, the creep distortion of the connecting portion can be suppressed to a small level, and the influence of creep of the fastening member can be reduced as compared with the conventional screw member.

また、締め部材の連結部は、厚さ(T)を厚くするほど断面積(A1)が大きくなって締め付け力を大きくすることができるが、反面、連結部が肥大化して熱容量の増大により燃料電池の起動・停止に時間が掛かったり、燃料電池の外寸法が大きくなる、等のマイナス面が顕著になる。
これに対し本発明は、連結部の厚さ(T)の上限を横幅(W)より小さくすることにより連結部の肥大化リスクが回避可能であり、一方、連結部の厚さ(T)の下限を(A2/D)より大きくすることによりネジ部材の締め付けによる第1対向部と第2対向部の開きが抑制される。
なお、連結部の厚さ(T)の下限を(A2/D)より大きくした点は、上記の記載より、
(i)A1>A2
(ii)A1=TW
(iii)W=D ※連結部の横幅Wの理論上の最小値は、ネジ部材の山径Dである。
の関係であるため、(i)と(ii)よりTW>A2であり、これに(iii)を代入するとTD>A2だからT>A2/Dとして求められる。もちろんネジ部材の強度の基準は、最小径である谷径とするのが一般的であるが、ここでは敢えて山径(D)を基準とすることによって、強度上余裕を持たせた安全な設計が行えるようにしている。
In addition, as the thickness (T) of the coupling portion of the fastening member increases, the cross-sectional area (A1) increases and the fastening force can be increased. However, on the other hand, the coupling portion is enlarged and fuel is increased due to an increase in heat capacity. Negative aspects such as taking time to start and stop the battery and increasing the outer dimensions of the fuel cell become prominent.
On the other hand, the present invention can avoid the risk of enlargement of the connecting portion by making the upper limit of the thickness (T) of the connecting portion smaller than the lateral width (W), while the thickness (T) of the connecting portion can be avoided. By making the lower limit larger than (A2 / D), the opening of the first facing portion and the second facing portion due to tightening of the screw member is suppressed.
In addition, the point which made the minimum of the thickness (T) of a connection part larger than (A2 / D) from the said description,
(I) A1> A2
(Ii) A1 = TW
(Iii) W = D * The theoretical minimum value of the lateral width W of the connecting portion is the thread diameter D of the screw member.
Therefore, TW> A2 from (i) and (ii), and if (iii) is substituted into this, TD> A2 and T> A2 / D is obtained. Of course, the standard of the strength of the screw member is generally the minimum diameter of the valley, but here, the safe design with a sufficient margin in strength by deliberately using the peak diameter (D) as a reference. Can be done.

また、請求項2に記載の燃料電池は、第1対向部又は第2対向部と連結部とで構成される角部の内側を滑らかな曲面で形成したため、発電時の熱によるネジ部材の緩みが軽減される。また、締め部材は、電気的なショートを防止するために連結部と積層体の間に隙間を設けることが好ましいが、前記角部の内側を曲面とすることでそのような隙間を確実に形成することができる。   Further, in the fuel cell according to claim 2, since the inside of the corner portion constituted by the first facing portion or the second facing portion and the connecting portion is formed with a smooth curved surface, the screw member is loosened by heat during power generation. Is reduced. The fastening member is preferably provided with a gap between the connecting portion and the laminated body in order to prevent an electrical short, but such a gap is reliably formed by making the inside of the corner portion a curved surface. can do.

また、請求項3に記載の燃料電池は、請求項1又は2に記載の締め部材で積層体がしっかり固定されているため、ボルトにガス流路を形成しても積層体全体の締め付け強度に影響しない。したがってガス流路を形成する設計の自由度が向上する。   Further, in the fuel cell according to claim 3, since the laminate is firmly fixed by the fastening member according to claim 1 or 2, even if the gas flow path is formed in the bolt, the fastening strength of the entire laminate is increased. It does not affect. Therefore, the degree of freedom in designing the gas flow path is improved.

燃料電池の斜視図である。It is a perspective view of a fuel cell. 燃料電池の平面図である。It is a top view of a fuel cell. 一部を断面にして中間を省略した燃料電池の正面図である。FIG. 3 is a front view of a fuel cell, partly in section and omitting the middle. 燃料電池セルの斜視図である。It is a perspective view of a fuel cell. 燃料電池セルの分解斜視図である。It is a disassembled perspective view of a fuel cell. 分解パーツを絞った燃料電池セルの分解斜視図である。It is a disassembled perspective view of the fuel battery cell which narrowed down decomposition parts. 燃料電池セルの中間を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted the middle of the fuel cell. 図7を分解して示す縦断面図である。It is a longitudinal cross-sectional view which decomposes | disassembles and shows FIG. 図7のA−A線断面図である。It is the sectional view on the AA line of FIG. 図7のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 集電部材の斜視図である。It is a perspective view of a current collection member. (a)はスペーサーの斜視図、(b)は集電部材のスペーサー装着前の斜視図である。(A) is a perspective view of a spacer, (b) is a perspective view before mounting the spacer of a current collection member. 図12(b)の変形例を示す集電部材の斜視図である。It is a perspective view of the current collection member which shows the modification of FIG.12 (b). 変形例を示す燃料電池セルの中間を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted the middle of the fuel battery cell which shows a modification. 変形例を示す燃料電池セルの中間を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted the middle of the fuel battery cell which shows a modification. 変形例を示す燃料電池セルの中間を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted the middle of the fuel battery cell which shows a modification. 変形例を示す燃料電池セルの中間を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted the middle of the fuel battery cell which shows a modification. (a)は締め部材の斜視図、(b)は断面積A1、A2を示す締め部材の切断分離斜視図である。(A) is a perspective view of a fastening member, (b) is a cut-separated perspective view of the fastening member showing cross-sectional areas A1 and A2. (a)は締め部材の正面図、(b)は締め部材の平面図である。(A) is a front view of a fastening member, (b) is a top view of a fastening member. 変位量(λ)を示すコ字状主体の正面図である。It is a front view of the U-shaped main body which shows displacement amount ((lambda)). 連結部の厚さ(T)と変位量(λ)の関係を示すグラフである。It is a graph which shows the relationship between the thickness (T) of a connection part, and displacement ((lambda)). 曲面の半径(R)とネジ部材の緩みの関係を示すグラフである。It is a graph which shows the relationship between the radius (R) of a curved surface, and the looseness of a screw member. 他の形態を示す燃料電池の斜視図である。It is a perspective view of the fuel cell which shows another form. 従来技術を示す燃料電池の要部断面図である。It is principal part sectional drawing of the fuel cell which shows a prior art.

以下に本発明の実施の形態を図面を参照しつつ説明する。
現在、燃料電池には電解質の材質により大別して、高分子電解質膜を電解質とする固体高分子形燃料電池(PEFC)と、リン酸を電解質とするリン酸形燃料電池(PAFC)と、Li−Na/K系炭酸塩を電解質とする溶融炭酸塩形燃料電池(MCFC)と、例えばZrO系セラミックを電解質とする固体酸化物形燃料電池(SOFC)の4タイプがある。各タイプは、作動温度(イオンが電解質中を移動できる温度)が異なるのであって、現時点において、PEFCは常温〜約90℃、PAFCは約150℃〜200℃、MCFCは約650℃〜700℃、SOFCは約700℃〜1000℃である。
Embodiments of the present invention will be described below with reference to the drawings.
Currently, fuel cells are roughly classified according to the material of the electrolyte. The polymer electrolyte membrane is used as a polymer electrolyte fuel cell (PEFC), the phosphoric acid fuel cell (PAFC) using phosphoric acid as an electrolyte, and Li- There are four types: a molten carbonate fuel cell (MCFC) using Na / K carbonate as an electrolyte and a solid oxide fuel cell (SOFC) using ZrO 2 ceramic as an electrolyte, for example. Each type has a different operating temperature (the temperature at which ions can move through the electrolyte). At present, PEFC is at room temperature to about 90 ° C, PAFC is about 150 ° C to 200 ° C, and MCFC is about 650 ° C to 700 ° C. , SOFC is about 700 ° C to 1000 ° C.

図1〜図20に示した実施形態の燃料電池1は、例えばZrO系セラミックを電解質2とし、例えば水素(以下、「燃料ガス」という。)と空気を原料ガスとするSOFCである。この燃料電池1は、発電の最小単位である燃料電池セル3と、該燃料電池セル3に空気を供給する空気供給用のガス流路(以下、「空気供給流路」という。)4と、その空気を外部に排出する空気排気用のガス流路(以下、「空気排気流路」という。)5と、同じく燃料電池セル3に燃料ガスを供給する燃料供給用のガス流路(以下、「燃料供給流路」という。)6と、その燃料ガスを外部に排出する燃料排気用のガス流路(以下、「燃料排気流路」という。)7と、該燃料電池セル3を複数枚積層してなる積層体8と、該積層体8を積層方向に締め付けて固定する締め部材9と、から概略構成される。 The fuel cell 1 of the embodiment shown in FIGS. 1 to 20 is an SOFC using, for example, a ZrO 2 ceramic as the electrolyte 2 and using, for example, hydrogen (hereinafter referred to as “fuel gas”) and air as source gases. The fuel cell 1 includes a fuel cell 3 as a minimum unit of power generation, an air supply gas passage (hereinafter referred to as “air supply passage”) 4 for supplying air to the fuel cell 3, and An air exhaust gas flow path (hereinafter referred to as “air exhaust flow path”) 5 that discharges the air to the outside, and a fuel supply gas flow path (hereinafter referred to as “air exhaust flow path”) that supplies fuel gas to the fuel cell 3 similarly. (Referred to as “fuel supply flow path”) 6, a fuel exhaust gas flow path (hereinafter referred to as “fuel exhaust flow path”) 7 for discharging the fuel gas to the outside, and a plurality of the fuel cells 3. The laminated body 8 is generally composed of a laminated body 8 and a fastening member 9 that fastens and fixes the laminated body 8 in the stacking direction.

[燃料電池セル]
燃料電池セル3は平面視正方形の平板状であり、図5に示したように、四角い板形態で導電性を有するフェライト系ステンレス等で形成された上(※ここでの「上」又は「下」は図面の記載を基準とするが、これはあくまでも説明の便宜上のものであって絶対的な上下を意味しない。以下同じ。)のインターコネクタ12と、同じく四角い板形態で導電性を有するフェライト系ステンレス等で形成された下のインターコネクタ13と、上下のインターコネクタ12,13のほぼ中間に位置すると共に電解質2の上のインターコネクタ12の内面(下面)に対向する面に空気極14を形成すると共に下のインターコネクタ13の内面(上面)に対向する面に燃料極15を形成したセル本体20と、上のインターコネクタ12と空気極14との間に形成された空気室16と、下のインターコネクタ13と燃料極15との間に形成された燃料室17と、空気室16の内部に配置され空気極14と上のインターコネクタ12とを電気的に接続する空気極14側の集電部材18と、前記燃料室17の内部に配置され燃料極15と下のインターコネクタ13とを電気的に接続する燃料極15側の集電部材19と、を有する。
[Fuel battery cell]
The fuel cell 3 has a square plate shape in plan view, and is formed of a ferritic stainless steel having conductivity in a square plate shape as shown in FIG. ”Is based on the description in the drawing, but this is merely for convenience of explanation and does not mean absolute top and bottom. The same shall apply hereinafter.) And a ferrite having conductivity in the form of a square plate. The air electrode 14 is disposed on the surface of the lower interconnector 13 formed of a stainless steel and the upper and lower interconnectors 12 and 13 and facing the inner surface (lower surface) of the interconnector 12 above the electrolyte 2. The cell body 20 formed and formed with the fuel electrode 15 on the surface facing the inner surface (upper surface) of the lower interconnector 13, and between the upper interconnector 12 and the air electrode 14 The formed air chamber 16, the fuel chamber 17 formed between the lower interconnector 13 and the fuel electrode 15, and the air electrode 14 disposed in the air chamber 16 and the upper interconnector 12 are electrically connected. A current collecting member 18 on the air electrode 14 side connected to the fuel electrode 15, a current collecting member 19 on the fuel electrode 15 side disposed inside the fuel chamber 17 and electrically connecting the fuel electrode 15 and the lower interconnector 13; Have

[電解質]
前記電解質2は、ZrO系セラミックの他、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック、CaZrO系セラミック等で形成される。
[Electrolytes]
The electrolyte 2 is made of LaGaO 3 ceramic, BaCeO 3 ceramic, SrCeO 3 ceramic, SrZrO 3 ceramic, CaZrO 3 ceramic, etc. in addition to ZrO 2 ceramic.

[燃料極]
前記燃料極15の材質は、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック、CeO系セラミック等のセラミックのうちの少なくとも1種との混合物が挙げられる。また、燃料極15の材質は、Pt、Au、Ag、Pb、Ir、Ru、Rh、Ni及びFe等の金属でもよく、これらの金属は1種のみでもよいし、2種以上の合金にしてもよい。さらに、これらの金属及び/又は合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む。)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物等が挙げられる。
[Fuel electrode]
The material of the fuel electrode 15 is made of a metal such as Ni and Fe and a ceramic such as ZrO 2 ceramic such as zirconia stabilized by at least one kind of rare earth elements such as Sc and Y, and CeO 2 ceramic. A mixture with at least one of them is mentioned. The material of the fuel electrode 15 may be a metal such as Pt, Au, Ag, Pb, Ir, Ru, Rh, Ni and Fe. These metals may be only one kind, or two or more kinds of alloys. Also good. Furthermore, a mixture (including cermet) of these metals and / or alloys and at least one of each of the above ceramics may be mentioned. Moreover, the mixture etc. of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic are mentioned.

[空気極]
前記空気極14の材質は、例えば各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。前記金属としてはPt、Au、Ag、Pb、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。さらに、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1−XSrCoO系複酸化物、La1−XSrFeO系複酸化物、La1−XSrCo1−yFeO系複酸化物、La1−XSrMnO系複酸化物、Pr1−XBaCoO系複酸化物及びSm1−XSrCoO系複酸化物等)が挙げられる。
[Air electrode]
As the material of the air electrode 14, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pb, Ir, Ru, and Rh, or alloys containing two or more metals. Further, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-X Sr X CoO 3 -based double oxide, La 1-X Sr X FeO 3 -based double oxide, La 1-X Sr X Co 1-y FeO 3 -based double oxide, La 1-X Sr X MnO 3 -based double oxide, Pr 1-X Ba X CoO 3 -based double oxide And Sm 1-X Sr X CoO 3 -based double oxide).

[燃料室]
前記燃料室17は、図5〜図8に示したように、集電部材19の周りを囲う状態にして下のインターコネクタ13の上面に設置された額縁形態の燃料極ガス流路形成用絶縁フレーム(以下、「燃料極絶縁フレーム」ともいう。)21と、額縁形態であって前記燃料極絶縁フレーム21の上面に設置される燃料極フレーム22と、によって四角い部屋状に形成されている。
[Fuel chamber]
As shown in FIGS. 5 to 8, the fuel chamber 17 surrounds the current collecting member 19 and is installed on the upper surface of the lower interconnector 13 for frame-shaped fuel electrode gas flow path formation insulation. The frame (hereinafter also referred to as “fuel electrode insulating frame”) 21 and a fuel electrode frame 22 which is in the form of a frame and installed on the upper surface of the fuel electrode insulating frame 21 are formed in a square room shape.

[燃料室側の集電部材]
燃料室17側の集電部材19は、例えば真空中1000℃で1時間の熱処理をして焼き鈍し(HV硬度で200以下)を行ったNiの板材で形成されており、下のインターコネクタ13に当接するコネクタ当接部19aと、セル本体20の燃料極15に当接するセル本体当接部19bと、コネクタ当接部19aとセル本体当接部19bとをつなぐU字状の連接部19cとが一連に形成され、該連接部19cのU字に曲がった部分の弾性によりコネクタ当接部19aとセル本体当接部19bがそれぞれインターコネクタ13とセル本体20に向けて付勢され、なおかつ、温度サイクルや燃料圧・空気圧などの変動によるセル本体20の変形に柔軟に追従し得る。
[Current collector on the fuel chamber side]
The current collecting member 19 on the fuel chamber 17 side is formed of, for example, a Ni plate material that has been heat-treated in a vacuum at 1000 ° C. for 1 hour and annealed (HV hardness is 200 or less). A connector abutting portion 19a that abuts, a cell body abutting portion 19b that abuts the fuel electrode 15 of the cell body 20, and a U-shaped connecting portion 19c that connects the connector abutting portion 19a and the cell body abutting portion 19b. Are formed in series, and the connector abutting portion 19a and the cell main body abutting portion 19b are urged toward the interconnector 13 and the cell main body 20 by the elasticity of the U-shaped portion of the connecting portion 19c, respectively, and It is possible to flexibly follow the deformation of the cell body 20 due to variations in temperature cycle, fuel pressure, air pressure, and the like.

なお、燃料室17側の集電部材19は、前記のように板材で形成する場合の他、例えばNi製の多孔質金属又は金網又はワイヤーで形成するようにしてもよい。また、燃料室17側の集電部材19は、Niの他、Ni合金やステンレス鋼など酸化に強い金属で形成するようにしてもよい。   Note that the current collecting member 19 on the fuel chamber 17 side may be formed of, for example, a porous metal made of Ni, a metal mesh, or a wire in addition to the case of forming the plate as described above. Further, the current collecting member 19 on the fuel chamber 17 side may be formed of a metal resistant to oxidation such as Ni alloy or stainless steel in addition to Ni.

この集電部材19は、燃料室17に数十〜百個程度(もちろん燃料室の大きさにより異なる。)設けられており、それらを個々にインターコネクタ13上に並べて溶接(例えばレーザー溶接や抵抗溶接)するようにしてもよいが、好ましくは図12(b)に示したように前記板材を燃料室17に整合する四角い平板190に加工し、この平板190にセル本体当接部19bと連接部19cに対応する切込線19dを形成し、そうして図11の拡大部に示したように連接部19cをU字状に曲げてセル本体当接部19bがコネクタ当接部19aの上方に間隔s(図7拡大部参照)を空けて被さるようにしてある。したがって、セル本体当接部19bを曲げ起こして残った穴あき状態の平板190がコネクタ当接部19aの集合体であり、実施形態では平板190のコネクタ当接部19aが下のインターコネクタ13にレーザー溶接や抵抗溶接により接合されている。   The current collecting member 19 is provided in the fuel chamber 17 with several tens to hundreds (of course, depending on the size of the fuel chamber), and these are individually arranged on the interconnector 13 and welded (for example, laser welding or resistance). However, preferably, as shown in FIG. 12B, the plate material is processed into a square flat plate 190 aligned with the fuel chamber 17, and the flat plate 190 is connected to the cell main body contact portion 19b. A cut line 19d corresponding to the portion 19c is formed, and as shown in the enlarged portion of FIG. 11, the connecting portion 19c is bent into a U shape so that the cell body contact portion 19b is located above the connector contact portion 19a. Is covered with a gap s (see the enlarged portion in FIG. 7). Therefore, the perforated flat plate 190 left by bending the cell main body contact portion 19b is an assembly of the connector contact portions 19a. In the embodiment, the connector contact portion 19a of the flat plate 190 is attached to the lower interconnector 13. Joined by laser welding or resistance welding.

なお、集電部材19の前記切込線19dは、図13に示したように、セル本体当接部19bと連接部19cを列単位で纏めた形にしてもよい。こうすることによりセル本体当接部19bと連接部19cの加工が効率よく行える。   Note that the cut line 19d of the current collecting member 19 may have a shape in which the cell main body contact portion 19b and the connecting portion 19c are grouped as shown in FIG. By doing so, the cell main body contact portion 19b and the connecting portion 19c can be processed efficiently.

[スペーサー]
前記集電部材19には、図7に示したようにスペーサー58が併設されている。該スペーサー58は、セル本体20と下のインターコネクタ13の間の燃料室17内において、コネクタ当接部19aとセル本体当接部19bを隔てるように両者の間に配置され、少なくとも燃料電池作動温度域での該スペーサー58の熱膨張によってセル本体当接部19bとコネクタ当接部19aをそれぞれの当接方向、すなわちセル本体当接部19bをセル本体20に向けて、一方、コネクタ当接部19aをインターコネクタ13に向けて押圧し得るようにするべく、燃料電池作動温度域である700℃〜1000℃において、熱膨張によって拡大する前記間隔sをさらなる熱膨張によって上回る厚みと材質で形成されている。
[spacer]
The current collecting member 19 is provided with a spacer 58 as shown in FIG. The spacer 58 is disposed in the fuel chamber 17 between the cell body 20 and the lower interconnector 13 so as to separate the connector abutting portion 19a and the cell body abutting portion 19b, and at least the fuel cell operation. Due to the thermal expansion of the spacer 58 in the temperature range, the cell body contact portion 19b and the connector contact portion 19a are brought into contact with each other, that is, the cell body contact portion 19b faces the cell body 20, while the connector contact. In order to be able to press the portion 19a toward the interconnector 13, in the fuel cell operating temperature range of 700 ° C. to 1000 ° C., it is formed with a thickness and material that exceeds the interval s that is expanded by thermal expansion by further thermal expansion. Has been.

なお、スペーサー58の厚みは、燃料電池作動温度域での状態でセル本体当接部19bとコネクタ当接部19aの間隔sを上回るものであればよいが、好ましくは燃料電池非作動時の常温状態で少なくともセル本体当接部19bとコネクタ当接部19aの間隔sとほぼ同じにするかまたは若干大きく設定するのがよい。そうすることにより発電開始から作動温度域に達するまでの間においても、スペーサー58によってコネクタ当接部19aとインターコネクタ13及びセル本体当接部19bとセル本体20の接触を安定的にすることができる。   The spacer 58 may have a thickness that exceeds the distance s between the cell main body contact portion 19b and the connector contact portion 19a in the fuel cell operating temperature range, but is preferably room temperature when the fuel cell is not operating. In this state, it is preferable that at least the distance s between the cell main body contact portion 19b and the connector contact portion 19a is set to be substantially the same or slightly larger. By doing so, the contact between the connector abutting portion 19a and the interconnector 13 and the cell main body abutting portion 19b and the cell body 20 can be stabilized by the spacer 58 even during the period from the start of power generation to the operating temperature range. it can.

また、スペーサー58は、集電部材19より柔軟な材質、つまり集電部材19より荷重に対する反発力が弱い材質が選定されており、温度サイクルや燃料圧・空気圧の変化による燃料室17の間隔の変動に対し集電部材19の動きに追従して該集電部材19の機敏な動きを妨げないようにしてある。   The spacer 58 is selected from a material that is more flexible than the current collecting member 19, that is, a material that has a lower repulsive force against the load than the current collecting member 19. By following the movement of the current collecting member 19 against fluctuations, the agile movement of the current collecting member 19 is not hindered.

また、スペーサー58は、燃料電池作動温度域で集電部材19と焼結しない性質を持った材料で形成されており、したがって、セル本体当接部19bとコネクタ当接部19aとが直接触れ合って焼結するおそれがないことはもちろん、セル本体当接部19bとコネクタ当接部19aがスペーサー58を介して焼結するおそれもない。   The spacer 58 is formed of a material that does not sinter with the current collecting member 19 in the fuel cell operating temperature range. Therefore, the cell main body contact portion 19b and the connector contact portion 19a are in direct contact with each other. Of course, there is no risk of sintering, and there is no risk of the cell body contact portion 19b and the connector contact portion 19a being sintered via the spacer 58.

以上の条件を満たすスペーサー58の材質としては、マイカ、アルミナ、バーミキュライト、カーボン繊維、炭化珪素繊維、シリカの何れか自体か、或は少なくとも何れか1種を主成分とするものでもよい。また、これらを例えばマイカのような薄い板状体の積層構造にしておけば、積層方向への荷重に対し適度な弾性が付与されるため好ましい。これらの材質の熱膨張率は、前記締め部材9の後述するコ字状主体90aの熱膨張率より高い。   As a material of the spacer 58 satisfying the above conditions, any one of mica, alumina, vermiculite, carbon fiber, silicon carbide fiber, and silica may be used as a main component. In addition, it is preferable to use a laminated structure of thin plate-like bodies such as mica because moderate elasticity is imparted to the load in the stacking direction. The thermal expansion coefficient of these materials is higher than the thermal expansion coefficient of the U-shaped main body 90a described later of the fastening member 9.

なお、実施形態の集電部材19は、前記のようにコネクタ当接部19aの集合体である平板190でつながった一体構造になっており、これに合わせてスペーサー58も図12(a)に示したように、平板190とほぼ同幅で平板190より若干短い(具体的には、1つの(セル本体当接部19b+連接部19c)の長さ相当分短い)四角形にした1枚の材料シートから、セル本体当接部19bと連接部19cに対応する部分を横1列分ずつ纏めて切り抜いて横格子状に形成されている。
そして、このスペーサー58を集電部材19の加工前の図12(b)に示した平板190に重ね、その状態で図11拡大部に示したように連接部19cをU字状に曲げるようにすれば、予めスペーサー58を組み込んだ集電部材19ができる。
ところで、図11拡大部では、セル本体当接部19bが左角部に位置するものから右に向かって段階的に曲げられる状態になっているが、これは専ら加工手順を説明するために描いたものであり、セル本体当接部19bの曲げ加工は全部を一斉に行ってもよいし、加工上都合の良い部分から順に行ってもよい。
Note that the current collecting member 19 of the embodiment has an integrated structure connected by the flat plate 190 that is an assembly of the connector contact portions 19a as described above, and the spacer 58 is also shown in FIG. As shown, a single piece of rectangular material that is approximately the same width as the flat plate 190 and slightly shorter than the flat plate 190 (specifically, one (shorter than the length of one cell main body contact portion 19b + connecting portion 19c)). The portions corresponding to the cell main body contact portion 19b and the connecting portion 19c are cut out from the sheet by one horizontal row and formed in a horizontal lattice shape.
Then, this spacer 58 is overlaid on the flat plate 190 shown in FIG. 12B before the current collector 19 is processed, and in this state, the connecting portion 19c is bent into a U shape as shown in the enlarged portion of FIG. By doing so, the current collecting member 19 in which the spacer 58 is previously incorporated is formed.
By the way, in the enlarged portion of FIG. 11, the cell main body abutting portion 19b is bent in a stepwise manner from the one located at the left corner portion, but this is drawn only for explaining the processing procedure. Therefore, the bending of the cell main body contact portion 19b may be performed all at once, or may be performed in order from the portion convenient for processing.

[空気室]
前記空気室16は、図5〜図7に示したように、四角い額縁形態であって下面に前記電解質2が取着された導電性を有する薄い金属製のセパレータ23と、該セパレータ23と上のインターコネクタ12との間に設置されて集電部材18の周りを囲う額縁形態の空気極ガス流路形成用絶縁フレーム(以下、「空気極絶縁フレーム」ともいう。)24と、によって四角い部屋状に形成されている。
[Air chamber]
As shown in FIGS. 5 to 7, the air chamber 16 has a rectangular frame shape and has a conductive thin metal separator 23 with the electrolyte 2 attached to the lower surface thereof, and the separator 23 and the upper side. A frame-shaped insulating frame for forming an air electrode gas flow path (hereinafter also referred to as “air electrode insulating frame”) 24 that is installed between the interconnector 12 and surrounds the current collecting member 18. It is formed in a shape.

[空気室側の集電部材]
空気室16側の集電部材18は、細長い角材形状で、緻密な導電部材である例えばステンレス材で形成され、電解質2の上面の空気極14と上のインターコネクタ12の下面(内面)に当接する状態にして複数本を平行に且つ一定の間隔をおいて配設されている。なお、空気室16側の集電部材18は、燃料室17側の集電部材19と同じ構造にしてもよい。
[Current collector on the air chamber side]
The current collecting member 18 on the air chamber 16 side has a long and narrow rectangular shape and is formed of a dense conductive member such as stainless steel, and contacts the air electrode 14 on the upper surface of the electrolyte 2 and the lower surface (inner surface) of the upper interconnector 12. Plural pieces are arranged in parallel and at a constant interval in contact with each other. The current collecting member 18 on the air chamber 16 side may have the same structure as the current collecting member 19 on the fuel chamber 17 side.

以上のように燃料電池セル3は、下のインターコネクタ13と、燃料極絶縁フレーム21と、燃料極フレーム22と、セパレータ23と、空気極絶縁フレーム24と、上のインターコネクタ12と、の組合せによって燃料室17と空気室16を形成し、その燃料室17と空気室16を電解質2で仕切って相互に独立させ、さらに、燃料極絶縁フレーム21と空気極絶縁フレーム24で燃料極15側と空気極14側を電気的に絶縁している。   As described above, the fuel cell 3 includes a combination of the lower interconnector 13, the fuel electrode insulating frame 21, the fuel electrode frame 22, the separator 23, the air electrode insulating frame 24, and the upper interconnector 12. To form the fuel chamber 17 and the air chamber 16, partition the fuel chamber 17 and the air chamber 16 with the electrolyte 2 to make them independent from each other, and further, connect the fuel electrode insulating frame 21 and the air electrode insulating frame 24 to the fuel electrode 15 side. The air electrode 14 side is electrically insulated.

また、燃料電池セル3は、空気室16の内部に空気を供給する空気供給流路4を含む空気供給部25と、空気室16から空気を外部に排出する空気排気流路5を含む空気排気部26と、燃料室17の内部に燃料ガスを供給する燃料供給流路6を含む燃料供給部27と、燃料室17から燃料ガスを外部に排出する燃料排気流路7を含む燃料排気部28と、を備えている。   The fuel cell 3 also includes an air supply unit 25 including an air supply channel 4 that supplies air into the air chamber 16, and an air exhaust including an air exhaust channel 5 that discharges air from the air chamber 16 to the outside. A fuel supply unit 27 including a fuel supply channel 6 for supplying fuel gas to the inside of the fuel chamber 17 and a fuel exhaust unit 28 including a fuel exhaust channel 7 for discharging the fuel gas from the fuel chamber 17 to the outside. And.

[空気供給部]
空気供給部25は、四角い燃料電池セル3の一辺側中央に上下方向に開設した空気供給用の貫通孔(以下、「空気供給通孔」という。)29と、該空気供給通孔29に連通するように空気極絶縁フレーム24に開設した長孔状の空気供給連絡室30と、該空気供給連絡室30と空気室16の間を仕切る隔壁31の上面を複数個等間隔に窪ませて形成した空気供給連絡部32と、前記空気供給通孔29に挿入されたボルト400に形成されて外部から前記空気供給連絡室30に空気を供給する前記空気供給流路4と、を備えている。
[Air supply section]
The air supply unit 25 communicates with the air supply through hole 29 (hereinafter referred to as “air supply through hole”) 29 opened in the vertical direction at the center of one side of the square fuel cell 3. In this way, a long hole-shaped air supply communication chamber 30 established in the air electrode insulating frame 24 and a plurality of upper surfaces of the partition walls 31 partitioning between the air supply communication chamber 30 and the air chamber 16 are recessed at equal intervals. And the air supply flow path 4 that is formed in the bolt 400 inserted into the air supply through hole 29 and supplies air to the air supply communication chamber 30 from the outside.

[空気排気部]
空気排気部26は、燃料電池セル3の空気供給部25の反対側の一辺側中央に上下方向に開設した空気排気用の貫通孔(以下、「空気排気通孔」という。)33と、該空気排気通孔33に連通するように空気極絶縁フレーム24に開設した長孔状の空気排気連絡室34と、該空気排気連絡室34と空気室16の間を仕切る隔壁35の上面を複数個等間隔に窪ませて形成した空気排気連絡部36と、前記空気排気通孔33に挿入されたボルト500に形成されて空気排気連絡室34から外部に空気を排出する管状の前記空気排気流路5と、を備えている。
[Air exhaust part]
The air exhaust part 26 is an air exhaust through-hole (hereinafter referred to as “air exhaust through-hole”) 33 opened in the vertical direction at the center of one side opposite to the air supply part 25 of the fuel cell 3. A plurality of air exhaust communication chambers 34 formed in the air electrode insulating frame 24 so as to communicate with the air exhaust communication holes 33 and a plurality of upper surfaces of the partition walls 35 that partition the air exhaust communication chambers 34 and the air chambers 16 are provided. The tubular air exhaust passage formed in the air exhaust communication portion 36 formed to be recessed at equal intervals and the bolt 500 inserted into the air exhaust through hole 33 and exhausting air from the air exhaust communication chamber 34 to the outside. 5 is provided.

[燃料供給部]
燃料供給部27は、四角い燃料電池セル3の残り二辺のうちの一辺側中央に上下方向に開設した燃料供給用の貫通孔(以下、「燃料供給通孔」という。)37と、該燃料供給通孔37に連通するように燃料極絶縁フレーム21に開設した長孔状の燃料供給連絡室38と、該燃料供給連絡室38と燃料室17の間を仕切る隔壁39の上面を複数個等間隔に窪ませて形成した燃料供給連絡部40と、前記燃料供給通孔37に挿入されたボルト600に形成されて外部から前記燃料供給連絡室38に燃料ガスを供給する管状の前記燃料供給流路6と、を備えている。
[Fuel supply section]
The fuel supply unit 27 includes a fuel supply through-hole (hereinafter referred to as a “fuel supply through-hole”) 37 opened in the vertical direction at the center of one side of the remaining two sides of the square fuel cell 3, and the fuel. A long hole fuel supply communication chamber 38 formed in the fuel electrode insulation frame 21 so as to communicate with the supply through hole 37, and a plurality of upper surfaces of partition walls 39 partitioning the fuel supply communication chamber 38 and the fuel chamber 17 are provided. The tubular fuel supply flow formed in the fuel supply communication portion 40 formed to be depressed at intervals and the bolt 600 inserted into the fuel supply through-hole 37 to supply the fuel gas to the fuel supply communication chamber 38 from the outside. Road 6 is provided.

[燃料排気部]
燃料排気部28は、燃料電池セル3の燃料供給部27の反対側の一辺側中央に上下方向に開設した燃料排気用の貫通孔(以下、「燃料排気通孔」という。)41と、該燃料排気通孔41に連通するように燃料極絶縁フレーム21に開設した長孔状の燃料排気連絡室42と、該燃料排気連絡室42と燃料室17の間を仕切る隔壁43の上面を複数個等間隔に窪ませて形成した燃料排気連絡部44と、前記燃料排気通孔41に挿入されたボルト700に形成されて燃料排気連絡室42から外部に燃料ガスを排出する管状の燃料排気流路7と、を備えている。
[Fuel exhaust part]
The fuel exhaust section 28 is a fuel exhaust through-hole (hereinafter referred to as “fuel exhaust passage hole”) 41 opened in the vertical direction at the center of one side opposite to the fuel supply section 27 of the fuel cell 3. A plurality of upper surfaces of a long-hole fuel exhaust communication chamber 42 formed in the fuel electrode insulating frame 21 so as to communicate with the fuel exhaust communication hole 41 and a partition wall 43 that partitions the fuel exhaust communication chamber 42 and the fuel chamber 17 are provided. Tubular fuel exhaust passages that are formed in fuel exhaust communication portions 44 that are recessed at equal intervals and bolts 700 that are inserted into the fuel exhaust passage holes 41 to discharge fuel gas from the fuel exhaust communication chamber 42 to the outside. 7.

[積層体]
積層体8は、前記燃料電池セル3を複数枚積層すると共にその上下を一対のエンドプレート45a,45bで挟んでその周囲を複数(実施形態では各辺に2個ずつで合計8個)の締め部材9,9…で固定したものである。なお、燃料電池セル3を複数枚積層した場合において、下に位置する燃料電池セル3の上のインターコネクタ12と、その上に載る燃料電池セル3の下のインターコネクタ13は、一体にして上下の燃料電池セル3,3同士で共有する。
[Laminate]
The stacked body 8 is formed by stacking a plurality of the fuel cells 3 and sandwiching the upper and lower sides thereof with a pair of end plates 45a and 45b, and a plurality of the surroundings (in the embodiment, two on each side, a total of eight). It is fixed by members 9, 9. When a plurality of fuel cells 3 are stacked, the interconnector 12 above the fuel cell 3 positioned below and the interconnector 13 below the fuel cell 3 placed thereon are integrated vertically. The fuel cells 3 and 3 are shared.

[締め部材]
積層体8を固定する複数の締め部材9は、図18、図19に示したように、コ字状主体90aと、ネジ部材90bで構成される。
[Fastening member]
As shown in FIGS. 18 and 19, the plurality of fastening members 9 that fix the stacked body 8 include a U-shaped main body 90 a and a screw member 90 b.

コ字状主体90aは、例えばNi合金のインコネル601等の金属で形成されており、積層体8の積層方向の周縁部上面に対向する第1対向部91aと、積層体8の積層方向の周縁部下面に対向する第2対向部92aと、第1対向部91aの端部と第2対向部92aの端部を一体に連結して積層体8の側面との間に適度な隙間を空けて対向する連結部93aと、を備えており、さらに第1対向部91aと連結部93aとで構成される角部の内側と、第2対向部92aと連結部93aとで構成される角部の内側とが滑らかな曲面94aで形成されている。
また、前記第1対向部91aには、中心軸が積層体8の上面に対して略垂直になる向きにして雌貫通ネジ孔95aが形成されている。
The U-shaped main body 90a is made of, for example, a metal such as Inconel 601 made of an Ni alloy, and includes a first facing portion 91a facing the upper surface of the peripheral portion in the stacking direction of the stacked body 8, and a peripheral edge in the stacking direction of the stacked body 8 The second facing portion 92a facing the lower surface of the portion, the end portion of the first facing portion 91a and the end portion of the second facing portion 92a are integrally connected, and an appropriate gap is provided between the side surfaces of the stacked body 8. And a connecting portion 93a facing each other, and further inside the corner portion constituted by the first facing portion 91a and the connecting portion 93a, and the corner portion constituted by the second facing portion 92a and the connecting portion 93a. The inner side is formed with a smooth curved surface 94a.
In addition, a female through screw hole 95a is formed in the first facing portion 91a so that the central axis is substantially perpendicular to the upper surface of the laminate 8.

一方、ネジ部材90bは、例えばNi合金のインコネル601等の金属で形成されており、雄ネジ軸91bの頂部に六角穴付きの円柱頭部92bを一体に有する。このネジ部材90bは、雄ネジ軸91bが前記雌貫通ネジ孔95aに螺合しており、第1対向部91aから出た先端が積層体8の上面(具体的には上のエンドプレート45aの上面)に当接し、雌貫通ネジ孔95aへの締め込み具合を調節することによって、積層体8を第2対向部92aとの間に挟んだ状態で締め付け得る。   On the other hand, the screw member 90b is made of, for example, a metal such as Inconel 601 made of Ni alloy, and integrally includes a cylindrical head portion 92b with a hexagonal hole at the top of the male screw shaft 91b. In the screw member 90b, the male screw shaft 91b is screwed into the female through screw hole 95a, and the tip protruding from the first opposing portion 91a is the upper surface of the stacked body 8 (specifically, the upper end plate 45a of the upper plate 45a). The laminated body 8 can be tightened in a state of being sandwiched between the second facing portion 92a by adjusting the tightening to the female through screw hole 95a.

また、コ字状主体90aの連結部93aは、積層体8の側面と平行な方向の横幅を(W)、それと直交する方向の厚さを(T)とする断面長方形の帯板形状であり、図18(b)に示したように、積層体8の積層方向に直交する方向における断面積(T×W)=(A1)が、前記ネジ部材90bの山径(D)を基準にした断面積(πD/4)=(A2)より大きく設定され、さらに厚さ(T)が、(A2/D)より大きく且つ前記連結部の横幅(W)より小さい範囲の中で適宜に設定されている。なお、締め部材9の具体例は、実施例1〜4として後述する。 Further, the connecting portion 93a of the U-shaped main body 90a has a rectangular strip shape in which the lateral width in the direction parallel to the side surface of the laminated body 8 is (W) and the thickness in the direction perpendicular to the lateral width is (T). As shown in FIG. 18B, the cross-sectional area (T × W) = (A1) in the direction orthogonal to the stacking direction of the stacked body 8 is based on the mountain diameter (D) of the screw member 90b. It is larger than the cross-sectional area (πD 2/4) = ( A2), further thickness (T), set appropriately in width (W) smaller than a range of large and the connecting portion than the (A2 / D) Has been. In addition, the specific example of the fastening member 9 is later mentioned as Examples 1-4.

[原料ガスの供給流路]
以上の積層体8に対し前記空気供給用のボルト400は、エンドプレート45a,45bの通孔(図示せず)と積層体8の前記空気供給通孔29を上下に貫く状態にして取り付けられており、管状流路の端部を閉じ前記空気供給連絡室30毎に対応させて図9に示したように空気供給流路4に通じる横孔48を設けることにより、該横孔48を介して空気供給連絡室30に空気が供給されるようになっている。
同様に燃料供給用のボルト600は、エンドプレート45a,45bの通孔(図示せず)と積層体8の前記燃料供給通孔37を上下に貫く状態にして取り付けられており、管状流路の端部を閉じ前記燃料供給連絡室38毎に対応させて図10に示したように燃料供給流路6に通じる横孔50を設けることにより、該横孔50を介して燃料供給連絡室38に燃料ガスが供給されるようになっている。
[Source gas supply channel]
The air supply bolt 400 is attached to the laminated body 8 so as to penetrate the through holes (not shown) of the end plates 45a and 45b and the air supply through hole 29 of the laminated body 8 vertically. In addition, by closing the end of the tubular flow channel and corresponding to each of the air supply communication chambers 30, as shown in FIG. 9, a horizontal hole 48 that leads to the air supply flow channel 4 is provided. Air is supplied to the air supply communication chamber 30.
Similarly, the fuel supply bolt 600 is attached in such a manner as to vertically penetrate the through holes (not shown) of the end plates 45a and 45b and the fuel supply through holes 37 of the laminated body 8, and As shown in FIG. 10, the end portion is closed to correspond to each of the fuel supply communication chambers 38, and as shown in FIG. 10, a horizontal hole 50 that leads to the fuel supply flow path 6 is provided. Fuel gas is supplied.

[排出ガスの排気流路]
同様に空気排気流路5は図9に示したように空気排気連絡室34毎に対応させたボルト500の横孔49から空気を取り込んで外部に排出し、燃料排気流路7は図10に示したように燃料排気連絡室42毎に対応させたボルト700の横孔51から排出ガスを取り込んで外部に排出する。
[Exhaust gas exhaust passage]
Similarly, as shown in FIG. 9, the air exhaust passage 5 takes in air from the lateral hole 49 of the bolt 500 corresponding to each air exhaust communication chamber 34 and discharges it outside, and the fuel exhaust passage 7 is shown in FIG. As shown, exhaust gas is taken in from the lateral hole 51 of the bolt 700 corresponding to each fuel exhaust communication chamber 42 and discharged to the outside.

[発電]
上記燃料電池1の空気供給流路4に空気を供給すると、その空気は、図9の右側から左側に流れ、右側の空気供給流路4と、空気供給連絡室30と、空気供給連絡部32とからなる空気供給部25を通って空気室16に供給され、この空気室16の集電部材18同士の間のガス流路56を通り抜け、さらに空気排気連絡部36と、空気排気連絡室34と、空気排気流路5とからなる空気排気部26を通って外部に排出される。
[Power generation]
When air is supplied to the air supply channel 4 of the fuel cell 1, the air flows from the right side to the left side in FIG. 9, and the right air supply channel 4, the air supply communication chamber 30, and the air supply communication unit 32. Is supplied to the air chamber 16 through the air supply unit 25, passes through the gas flow path 56 between the current collecting members 18 of the air chamber 16, and further, the air exhaust communication unit 36 and the air exhaust communication chamber 34. Then, the air is discharged to the outside through the air exhaust portion 26 including the air exhaust passage 5.

同時に燃料電池1の燃料供給流路6に燃料ガスを供給すると、その燃料ガスは、図10の上側から下側に流れ、上側の燃料供給流路6と、燃料供給連絡室38と、燃料供給連絡部40とからなる燃料供給部27を通って燃料室17に供給され、この燃料室17の集電部材19,19…の間、厳密にはセル本体当接部19b,19b…同士の間のガス流路57(図10において、燃料室17内の非斜線部参照)を拡散しながら通り抜け、さらに燃料排気連絡部44と、燃料排気連絡室42と、燃料排気流路7とからなる燃料排気部28を通って外部に排気される。
なお、このとき集電部材19が前記のように多孔質金属又は金網又はワイヤーで形成されていると、ガス流路57の表面が凸凹になるため燃料ガスの拡散性が向上する。
At the same time, when fuel gas is supplied to the fuel supply channel 6 of the fuel cell 1, the fuel gas flows from the upper side to the lower side in FIG. 10, and the upper fuel supply channel 6, the fuel supply communication chamber 38, and the fuel supply The fuel is supplied to the fuel chamber 17 through the fuel supply portion 27 including the connecting portion 40, and strictly between the current collecting members 19, 19 ... of the fuel chamber 17, between the cell main body contact portions 19b, 19b ... The fuel gas passage 57 (see the non-hatched portion in the fuel chamber 17 in FIG. 10) diffuses and passes through the gas passage 57, and further comprises a fuel exhaust communication portion 44, a fuel exhaust communication chamber 42, and a fuel exhaust flow passage 7. It is exhausted to the outside through the exhaust part 28.
At this time, if the current collecting member 19 is formed of a porous metal, a metal mesh, or a wire as described above, the surface of the gas flow path 57 becomes uneven, so that the diffusibility of the fuel gas is improved.

このような空気と燃料ガスの供給・排気を行いつつ全燃料電池セル3の温度を700℃〜1000℃にまで上昇させると、空気と燃料ガスが空気極14と電解質2と燃料極15を介して反応を起こすため、空気極14を正極、燃料極15を負極とする直流の電気エネルギが発生する。なお、燃料電池セル3内で電気エネルギが発生する原理は周知であるため説明を省略する。   When the temperature of all the fuel cells 3 is raised to 700 ° C. to 1000 ° C. while supplying and exhausting such air and fuel gas, the air and fuel gas pass through the air electrode 14, the electrolyte 2 and the fuel electrode 15. Therefore, direct current electric energy is generated with the air electrode 14 as a positive electrode and the fuel electrode 15 as a negative electrode. In addition, since the principle which an electrical energy generate | occur | produces in the fuel cell 3 is known, description is abbreviate | omitted.

前記のように空気極14は、集電部材18を介して上のインターコネクタ12に電気的に接続され、一方、燃料極15は、集電部材19を介して下のインターコネクタ13に電気的に接続されており、また、積層体8は複数の燃料電池セル3を積層して直列に接続された状態であるから、上のエンドプレート45aが正極で、下のエンドプレート45bが負極になる。   As described above, the air electrode 14 is electrically connected to the upper interconnector 12 via the current collecting member 18, while the fuel electrode 15 is electrically connected to the lower interconnector 13 via the current collecting member 19. In addition, since the stacked body 8 is in a state in which a plurality of fuel cells 3 are stacked and connected in series, the upper end plate 45a is a positive electrode and the lower end plate 45b is a negative electrode. .

なお、締め部材9を介して両エンドプレート45a,45b間で電気的にショートするトラブルを防止するため、図3に破線で示したように一部の締め部材9(例えば、積層体8の隣り合う2辺に取り付けたもの全て。)のネジ部材90bと上のエンドプレート45aの間に絶縁部材11が設けられ、残りの締め部材9の第2対向部92aと下のエンドプレート45bの間に絶縁部材11が設けられている。こうすることにより、複数の締め部材9を正極と負極に分けることができるため、該締め部材9を電気エネルギーの出力端子として利用し得る。   In addition, in order to prevent the trouble of being electrically short-circuited between both end plates 45a and 45b via the fastening member 9, as shown by a broken line in FIG. 3, a part of the fastening members 9 (for example, adjacent to the laminate 8). The insulating member 11 is provided between the screw member 90b and the upper end plate 45a, and the other end plate 45b between the second facing portion 92a of the remaining fastening member 9 and the lower end plate 45b. An insulating member 11 is provided. By doing so, since the plurality of fastening members 9 can be divided into a positive electrode and a negative electrode, the fastening members 9 can be used as an output terminal for electric energy.

以上のように燃料電池は、発電時に温度が上昇し、発電停止により温度が下降する、という温度サイクルを繰り返す。したがって、燃料室17や空気室16を構成する全ての部材や前記締め部材9について熱膨張と収縮が繰り返され、それに伴い燃料室17や空気室16の間隔も拡大と縮小を繰り返す。
また、燃料圧や空気圧も変動する場合があり、その圧力の変動でセル本体20が変形することによっても燃料室17や空気室16の間隔が拡大又は縮小する。
このような燃料室17や空気室16の拡大方向の変化に対して、実施形態では燃料室17側の集電部材19が、連接部19cの弾性と、スペーサー58の積層方向の弾性と熱膨張によってセル本体20を押圧するため電気的接続が安定的に維持される。この集電部材19によるセル本体20の押圧は空気室16側にも影響するため、空気室16の電気的接続も安定的に維持される。
また、燃料室17や空気室16の縮小方向の変化に対して、燃料室17側の集電部材19の連接部19cの弾性と、スペーサー58の収縮によってセル本体20に加わる応力が緩和される。
As described above, the fuel cell repeats a temperature cycle in which the temperature rises during power generation and the temperature drops due to power generation stop. Accordingly, thermal expansion and contraction are repeated for all the members constituting the fuel chamber 17 and the air chamber 16 and the fastening member 9, and accordingly, the intervals between the fuel chamber 17 and the air chamber 16 are repeatedly expanded and contracted.
Further, the fuel pressure and air pressure may also fluctuate, and the space between the fuel chamber 17 and the air chamber 16 is expanded or reduced by the deformation of the cell body 20 due to the fluctuation of the pressure.
In response to such a change in the expansion direction of the fuel chamber 17 and the air chamber 16, in the embodiment, the current collecting member 19 on the fuel chamber 17 side has elasticity of the connecting portion 19c and elasticity and thermal expansion of the spacer 58 in the stacking direction. As a result, the cell body 20 is pressed, so that the electrical connection is stably maintained. Since the pressing of the cell body 20 by the current collecting member 19 also affects the air chamber 16 side, the electrical connection of the air chamber 16 is also stably maintained.
Further, the stress applied to the cell body 20 due to the elasticity of the connecting portion 19c of the current collecting member 19 on the fuel chamber 17 side and the contraction of the spacer 58 is relieved with respect to changes in the shrinking direction of the fuel chamber 17 and the air chamber 16. .

また、燃料極15側の集電部材19がNiか又はNi合金であると、発電時の高温環境下でセル本体当接部19bが燃料極15中のNiと拡散接合して一体になる。したがって集電部材19による電気的接続がより安定的に維持される。
なお、好ましくは燃料極15にNiOペーストを塗布して接合層を形成しておくとよい。そうすることによりH中の通電でNiOがNiになるから集電部材19と燃料極15の接合性がさらに向上する。前記接合層は、燃料極15にPtペーストを塗布することによって形成してもよい。
If the current collecting member 19 on the fuel electrode 15 side is Ni or Ni alloy, the cell main body abutting portion 19b is diffused and joined with Ni in the fuel electrode 15 in a high temperature environment during power generation. Therefore, the electrical connection by the current collecting member 19 is more stably maintained.
It is preferable to apply a NiO paste to the fuel electrode 15 to form a bonding layer. By doing so, NiO is changed to Ni by energization in H 2 , so that the joining property of the current collecting member 19 and the fuel electrode 15 is further improved. The bonding layer may be formed by applying a Pt paste to the fuel electrode 15.

また、実施形態では下のインターコネクタ13にコネクタ当接部19aの集合体である平板190を溶接して接合するようにしたが、該インターコネクタ13と平板190の材質を発電時の高温環境下で拡散接合し得る組み合わせ(例えばCrofer22HとNi)にするか、或は下のインターコネクタ13の内面側に前記のような接合層を形成するようにしておけば、発電時の高温環境下でインターコネクタ13と集電部材19を接合して一体にすることができる。   In the embodiment, the lower interconnector 13 is joined by welding the flat plate 190 which is an assembly of the connector contact portions 19a. However, the interconnector 13 and the flat plate 190 are made of a material in a high temperature environment during power generation. If a combination (for example, Crofer 22H and Ni) that allows diffusion bonding is used, or a bonding layer as described above is formed on the inner surface side of the lower interconnector 13, the interface can be connected in a high temperature environment during power generation. The connector 13 and the current collecting member 19 can be joined together.

[変形例]
図14〜図17は集電部材19の変形例を示す燃料電池セル3の中間省略縦断面図である。実施形態の集電部材19は、連接部19cをU字状に曲げてコネクタ当接部19aの上方にセル本体当接部19bを配置すると共にコネクタ当接部19aとセル本体当接部19bの間にスペーサー58を介在させるようにしたが、変形例では連接部19cを斜めにして、図14のようにコネクタ当接部19aとセル本体当接部19bの上下位置を完全に異ならせるか又は図15のように集電部材19を断面略Z字状にしてコネクタ当接部19aとセル本体当接部19bの一部が上下位置を違えて重なるように配置し、そうしてコネクタ当接部19aとセル本体20及びセル本体当接部19bとインターコネクタ13を隔てるように前記スペーサー58を配置したものである。また、図16のようにスペーサー58をコネクタ当接部19aとセル本体20を隔てるように介在させるか、或は図17のようにスペーサー58をセル本体当接部19bとインターコネクタ13を隔てるように介在させるようにすることもできる。
前記した実施形態と変形例の構成の相違は以上のとおりであり、それ以外の点については実施形態と同じであるため詳細な説明を省略する。
[Modification]
14 to 17 are longitudinally omitted sectional views of the fuel cell 3 showing a modification of the current collecting member 19. In the current collecting member 19 of the embodiment, the connecting portion 19c is bent in a U shape so that the cell main body abutting portion 19b is disposed above the connector abutting portion 19a, and the connector abutting portion 19a and the cell main body abutting portion 19b are arranged. The spacer 58 is interposed between them, but in the modification, the connecting portion 19c is inclined, and the vertical positions of the connector contact portion 19a and the cell body contact portion 19b are completely different as shown in FIG. As shown in FIG. 15, the current collecting member 19 has a substantially Z-shaped cross section and is arranged so that the connector abutting portion 19a and a part of the cell main body abutting portion 19b overlap with each other at different vertical positions. The spacer 58 is disposed so as to separate the part 19a from the cell body 20 and the cell body contact part 19b from the interconnector 13. Further, as shown in FIG. 16, a spacer 58 is interposed so as to separate the connector abutting portion 19a and the cell body 20, or as shown in FIG. 17, the spacer 58 is separated from the cell body abutting portion 19b and the interconnector 13. It can also be made to intervene.
The difference between the configuration of the above-described embodiment and the modification is as described above, and the other points are the same as those of the embodiment, and detailed description thereof is omitted.

実施例1は、180mm×180mm×80.5mmの積層体8の各辺に、図1、図2に示したように2個ずつ締め部材9,9…を装着して締め付けるものである。使用する締め部材9は、図19に示したように、コ字状主体90aについて、材質=インコネル、連結部93aの厚さ(T)=8mm、横幅(W)=30mm、断面積(A1)=240mm 、全高(H)=105mm、第1対向部91aと第2対向部92aの厚さ(T1,T2)=8mm、曲面94aの半径(R)=5mmであり、ネジ部材90bについて、呼び径M10、材質=インコネル、山径(D)=10mm、断面積(A2)=55mm 、雄ネジ軸91bの長さ(L)=40mmである。 In the first embodiment, two fastening members 9, 9... Are attached to each side of the laminate 8 of 180 mm × 180 mm × 80.5 mm as shown in FIGS. As shown in FIG. 19, the fastening member 9 to be used is a U-shaped main body 90 a with a material = Inconel, a thickness (T) of the connecting portion 93 a = 8 mm, a lateral width (W) = 30 mm, and a cross-sectional area (A1). = 240 mm 2 , total height (H) = 105 mm, thicknesses (T1, T2) of the first facing portion 91a and the second facing portion 92a = 8 mm, radius (R) of the curved surface 94a = 5 mm, and the screw member 90b, Nominal diameter M10, material = Inconel, mountain diameter (D) = 10 mm, cross-sectional area (A2) = 55 mm 2 , and length (L) of male screw shaft 91b = 40 mm.

実施例2は、締め部材9のコ字状主体90aについて、連結部93aの厚さ(T)=10mm、横幅(W)=30mm、断面積(A1)=300mm 、第1対向部91aと第2対向部92aの厚さ(T1,T2)=10mmであり、それ以外の点については実施例1と同じである。 In Example 2, with respect to the U-shaped main body 90a of the fastening member 9, the thickness (T) of the connecting portion 93a = 10 mm, the lateral width (W) = 30 mm, the cross-sectional area (A1) = 300 mm 2 , The thickness (T1, T2) of the second facing portion 92a is 10 mm, and the other points are the same as in the first embodiment.

実施例3は、締め部材9のコ字状主体90aについて、曲面94aの半径(R)=3mmであり、それ以外の点については実施例2と同じである。   In the third embodiment, the radius (R) of the curved surface 94a of the U-shaped main body 90a of the fastening member 9 is 3 mm, and the other points are the same as those of the second embodiment.

[積層時のコ字状主体の変位量]
実施例1〜3の締め部材9について、ネジ部材90bを10N・mの締め付けトルクで締め付けて積層体8を固定し、その状態でのコ字状主体90aの開き方向の変位量(λ)(図20参照)を実測した。なお、実測に用いた積層体8は、上下のエンドプレート45a,45bに相当する厚さ10mmのステンレス板の間に、厚さ0.5mmのマイカ板41枚と、厚さ1mmのステンレス板40枚を交互に積層して全高80.5mmとした擬似的なものである。
[Displacement of U-shaped main body during lamination]
About the fastening member 9 of Examples 1 to 3, the laminated member 8 is fixed by fastening the screw member 90b with a fastening torque of 10 N · m, and the displacement amount (λ) in the opening direction of the U-shaped main body 90a in that state (λ) ( (See FIG. 20). The laminate 8 used for the actual measurement includes 41 mica plates having a thickness of 0.5 mm and 40 stainless plates having a thickness of 1 mm between stainless steel plates having a thickness of 10 mm corresponding to the upper and lower end plates 45a and 45b. It is a pseudo one that is alternately laminated to a total height of 80.5 mm.

[加熱後のネジ部材の緩み測定]
上記実施例1〜3の締め部材9で固定した上記の擬似的積層体について、800℃の電気炉中に250時間放置し、その後室温にまで冷却した後、ネジ部材90bを緩めてその時のトルク(緩みトルク)を実測した。
[Measurement of looseness of screw member after heating]
About said pseudo laminated body fixed with the fastening member 9 of the said Examples 1-3, after leaving to stand in an electric furnace of 800 degreeC for 250 hours, and cooling to room temperature after that, the screw member 90b is loosened and the torque at that time (Loose torque) was measured.

[比較例]
比較のため、締め部材9のコ字状主体90aを次のように設定した比較例1〜4を作成し、その比較例1〜4についても上記と同様に前記変位量(λ)と緩みトルクを実測した。なお、比較例1〜4のコ字状主体90aの材質と横幅(W)と全高(H)及びネジ部材90bは、実施例1〜3と同一である。
比較例1:連結部93aと第1対向部91aと第2対向部92aの厚さ(T,T1,T2)=4mm
:断面積(A1)=120mm
:曲面94aの半径(R)=5mm
比較例2:連結部93aと第1対向部91aと第2対向部92aの厚さ(T,T1,T2)=6mm
:断面積(A1)=180mm
:曲面94aの半径(R)=5mm
比較例3:連結部93aと第1対向部91aと第2対向部92aの厚さ(T,T1,T2)=30mm
:断面積(A1)=900mm
:曲面94aの半径(R)=5mm
比較例4:連結部93aと第1対向部91aと第2対向部92aの厚さ(T,T1,T2)=10mm
:断面積(A1)=300mm
:曲面94aの半径(R)=0mm
[Comparative example]
For comparison, Comparative Examples 1 to 4 in which the U-shaped main body 90a of the fastening member 9 is set as follows are created, and the displacement amount (λ) and the loosening torque are also applied to Comparative Examples 1 to 4 in the same manner as described above. Was actually measured. The material, width (W), total height (H), and screw member 90b of the U-shaped main body 90a of Comparative Examples 1 to 4 are the same as those of Examples 1 to 3.
Comparative Example 1: Thickness (T, T1, T2) of connecting part 93a, first opposing part 91a, and second opposing part 92a = 4 mm
: Cross-sectional area (A1) = 120 mm 2
: Radius (R) of the curved surface 94a = 5 mm
Comparative Example 2: Thickness (T, T1, T2) = 6 mm of the connecting portion 93a, the first facing portion 91a, and the second facing portion 92a
: Sectional area (A1) = 180 mm 2
: Radius (R) of the curved surface 94a = 5 mm
Comparative Example 3: Thickness (T, T1, T2) of the connecting portion 93a, the first facing portion 91a, and the second facing portion 92a = 30 mm
: Cross-sectional area (A1) = 900 mm 2
: Radius (R) of the curved surface 94a = 5 mm
Comparative Example 4: Thickness (T, T1, T2) = 10 mm of the connecting portion 93a, the first facing portion 91a, and the second facing portion 92a
: Sectional area (A1) = 300 mm 2
: Radius (R) of curved surface 94a = 0 mm

以上のようにして実測した実施例1〜3と比較例1〜4の前記変位量(λ)と、実施例1〜3と比較例1〜4のネジ部材90bの締め付けトルクに対する緩みトルクの比を表1と表2に示した。   The displacement amount (λ) of Examples 1 to 3 and Comparative Examples 1 to 4 actually measured as described above, and the ratio of the loosening torque to the tightening torque of the screw members 90b of Examples 1 to 3 and Comparative Examples 1 to 4 Are shown in Tables 1 and 2.

Figure 0005722739
Figure 0005722739

Figure 0005722739
Figure 0005722739

表1は、曲面94aの半径(R)の大きさが同一で連結部93aの厚さ(T)が相違するグループを纏めて連結部93aの厚さ(T)と変位量(λ)の関係を示したものであり、これをグラフにしたのが図21である。この図21のグラフより明らかなように、(A2/D)=7.85の値を境にしてそれより連結部93aの厚さ(T)を大きくした場合には変位量(λ)が小さいが、それより連結部93aの厚さ(T)を小さくした場合には変位量(λ)が急激に増加していることが判る。この変位量(λ)が大きいと、連結部93aに作用する応力が高くなり、高温でのクリープ変形が起きやすくなる。
一方、比較例3は、変位量(λ)については十分小さいものの、連結部93aの厚さ(T)が大きすぎることより熱容量が大きくなって燃料電池の起動・停止時間が長くなる、というマイナス面が大きい。
Table 1 shows the relationship between the thickness (T) of the connecting portion 93a and the amount of displacement (λ) for groups in which the radius (R) of the curved surface 94a is the same and the thickness (T) of the connecting portion 93a is different. FIG. 21 is a graph showing the above. As is apparent from the graph of FIG. 21, when the value (A2 / D) = 7.85 is used as a boundary and the thickness (T) of the connecting portion 93a is increased, the displacement (λ) is small. However, it can be seen that when the thickness (T) of the connecting portion 93a is made smaller than that, the displacement (λ) increases rapidly. When this displacement amount (λ) is large, the stress acting on the connecting portion 93a increases, and creep deformation at high temperatures tends to occur.
On the other hand, in Comparative Example 3, although the displacement amount (λ) is sufficiently small, the heat capacity becomes larger and the start / stop time of the fuel cell becomes longer because the thickness (T) of the connecting portion 93a is too large. The surface is big.

表2は、曲面94aの半径(R)が相違するグループを纏めて加熱後のネジ部材90bの緩み具合と曲面94aの半径(R)との関係を示したものであり、これをグラフにしたのが図22である。この結果より曲面94aのない比較例4のネジ部材90bが最も緩んでいることが判る。これは角部の曲面94aによってクリープひずみが小さくなるためであると考えられる。   Table 2 shows the relationship between the degree of looseness of the screw member 90b after heating and the radius (R) of the curved surface 94a by grouping different groups with different radiuses (R) of the curved surface 94a. This is shown in FIG. From this result, it can be seen that the screw member 90b of Comparative Example 4 having no curved surface 94a is most loose. This is presumably because the creep strain is reduced by the curved surface 94a at the corner.

以上本発明を実施形態について説明したが、もちろん本発明は上記実施形態に限定されるものではない。例えば、実施形態ではネジ部材90bを第1対向部91aのみに設けたが、第2対向部92aのみに設けてもよいし、第1対向部91aと第2対向部92aの両方に設けてもよい。
また、実施形態では、1つの締め部材9に1本のネジ部材90bを設けたが、図23に示したように、1つの締め部材9に複数本のネジ部材90b,90b…を設けるようにしてもよい。その場合、前記断面積(A2)を1つの締め部材9に対応する全ネジ部材90b,90b…の総和とするだけでよい。
また、実施形態では、コ字状主体90aの角部の曲面94aを第1対向部91aと第2対向部92aのそれぞれに形成したが、何れか一方の角部に曲面94aを設けるだけでもよい。
Although the present invention has been described above with reference to the embodiment, it is needless to say that the present invention is not limited to the above embodiment. For example, in the embodiment, the screw member 90b is provided only in the first facing portion 91a, but may be provided only in the second facing portion 92a, or may be provided in both the first facing portion 91a and the second facing portion 92a. Good.
In the embodiment, one screw member 90b is provided on one fastening member 9, but a plurality of screw members 90b, 90b... Are provided on one fastening member 9 as shown in FIG. May be. In that case, the cross-sectional area (A2) only needs to be the sum of all the screw members 90b, 90b... Corresponding to one fastening member 9.
In the embodiment, the curved surface 94a at the corner of the U-shaped main body 90a is formed on each of the first facing portion 91a and the second facing portion 92a. However, the curved surface 94a may be provided only on one of the corners. .

1 …燃料電池
3 …燃料電池セル
4,5,6,7 …ガス流路
8 …積層体
9 …締め部材
91a …第1対向部
92a …第2対向部
93a …連結部
94a …曲面
95a …雌貫通ネジ孔
90b …ネジ部材
29,33,37,41 …貫通孔
400,500,600,700 …ボルト
D …山径
T …連結部の厚さ
W …連結部の横幅
A1 …連結部の断面積
A2 …山径を基準とするネジ部材の断面積
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 3 ... Fuel cell 4 4, 5, 6, 7 ... Gas flow path 8 ... Laminated body 9 ... Fastening member 91a ... 1st opposing part 92a ... 2nd opposing part 93a ... Connection part 94a ... Curved surface 95a ... Female Through screw hole 90b ... Screw member 29, 33, 37, 41 ... Through hole 400, 500, 600, 700 ... Bolt D ... Mountain diameter T ... Thickness of connecting part W ... Lateral width of connecting part A1 ... Cross-sectional area of connecting part A2 ... Cross-sectional area of the screw member based on the crest diameter

Claims (3)

平板状の燃料電池セルを複数枚積層してなる積層体と、
前記積層体の周縁部近傍に設けられて該積層体を積層方向に締め付ける締め部材と、を備えた燃料電池であって、
前記締め部材は、
前記積層体の積層方向の周縁部上面に対向する第1対向部と、
前記積層体の積層方向の周縁部下面に対向する第2対向部と、
前記第1対向部の端部と前記第2対向部の端部を一体に連結して前記積層体の側面に対向すると共に該積層体の側面と平行な方向の横幅が(W)であり、それと直交する方向の厚さが(T)である断面長方形の連結部と、
中心軸が前記積層体の上面又は下面に対して略垂直になるように前記第1対向部と前記第2対向部の少なくとも一方に形成される雌貫通ネジ孔と、
前記雌貫通ネジ孔に螺合すると共に前記積層体の上面又は下面に先端が当接し、前記雌貫通ネジ孔への締め込みによって前記積層体を積層方向に締め付け得るネジ部材と、を備え、
さらに、前記連結部は、
前記積層体の積層方向に直交する方向における断面積(A1)が、前記ネジ部材の山径(D)を基準にした断面積(A2)より大きく設定され、
前記連結部の厚さ(T)が、(A2/D)より大きく且つ前記連結部の横幅(W)より小さく設定されていることを特徴とする燃料電池。
A laminate formed by laminating a plurality of flat fuel cells, and
A fastening member that is provided in the vicinity of the peripheral edge of the laminated body and fastens the laminated body in the laminating direction,
The fastening member is
A first facing portion facing the upper surface of the peripheral edge in the stacking direction of the stacked body;
A second facing portion facing the lower surface of the peripheral edge in the stacking direction of the stacked body;
The end portion of the first facing portion and the end portion of the second facing portion are integrally connected to face the side surface of the stacked body, and the lateral width in a direction parallel to the side surface of the stacked body is (W), A connecting portion having a rectangular cross section having a thickness (T) in a direction perpendicular thereto;
A female through screw hole formed in at least one of the first facing portion and the second facing portion so that a central axis is substantially perpendicular to the upper surface or the lower surface of the laminate,
A screw member that is screwed into the female through screw hole and has a tip abutting against an upper surface or a lower surface of the laminated body, and capable of fastening the laminated body in a laminating direction by tightening into the female through screw hole,
Furthermore, the connecting portion is
The cross-sectional area (A1) in the direction perpendicular to the stacking direction of the laminate is set larger than the cross-sectional area (A2) based on the thread diameter (D) of the screw member;
The fuel cell, wherein a thickness (T) of the connecting portion is set larger than (A2 / D) and smaller than a lateral width (W) of the connecting portion.
前記第1対向部又は前記第2対向部と前記連結部とで構成される角部の内側が滑らかな曲面で形成されていることを特徴とする請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein an inner side of a corner portion constituted by the first facing portion or the second facing portion and the connecting portion is formed with a smooth curved surface. 前記積層体は、
積層方向に貫通する貫通孔と、
前記貫通孔に挿入されたボルトと、を有し、
前記ボルトには、前記燃料電池セルに供給される原料ガスまたは前記燃料電池セルから排出される排出ガスを流通させるガス流路が形成されていることを特徴とする請求項1又は2に記載の燃料電池。
The laminate is
A through hole penetrating in the stacking direction;
A bolt inserted into the through hole,
The gas flow path which distribute | circulates the raw material gas supplied to the said fuel cell, or the exhaust gas discharged | emitted from the said fuel cell is formed in the said volt | bolt. Fuel cell.
JP2011211492A 2011-09-27 2011-09-27 Fuel cell Expired - Fee Related JP5722739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211492A JP5722739B2 (en) 2011-09-27 2011-09-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211492A JP5722739B2 (en) 2011-09-27 2011-09-27 Fuel cell

Publications (2)

Publication Number Publication Date
JP2013073760A JP2013073760A (en) 2013-04-22
JP5722739B2 true JP5722739B2 (en) 2015-05-27

Family

ID=48478109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211492A Expired - Fee Related JP5722739B2 (en) 2011-09-27 2011-09-27 Fuel cell

Country Status (1)

Country Link
JP (1) JP5722739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6150219B2 (en) * 2014-04-18 2017-06-21 トヨタ自動車株式会社 Manufacturing method of fuel cell stack
JP2020042980A (en) * 2018-09-11 2020-03-19 住友精密工業株式会社 Fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063929A (en) * 2000-08-14 2002-02-28 Sony Corp Stack structure of fuel cell
JP2004362940A (en) * 2003-06-04 2004-12-24 Yuasa Corp Cell stack of fuel battery
JP5072310B2 (en) * 2006-09-29 2012-11-14 三洋電機株式会社 Fuel cell
JP5106934B2 (en) * 2007-07-04 2012-12-26 株式会社神戸製鋼所 Packing method of metal plate

Also Published As

Publication number Publication date
JP2013073760A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5330577B2 (en) Fuel cell and fuel cell stack
JP5696233B2 (en) Fuel cell and fuel cell stack
JP5685348B2 (en) Fuel cell and fuel cell stack
JP5346402B1 (en) Fuel cell and fuel cell stack
JP5696234B2 (en) Fuel cell and fuel cell stack
US9935321B2 (en) Fuel cell and fuel cell stack
JP5739943B2 (en) Fuel cell and fuel cell stack
JP5722739B2 (en) Fuel cell
JP2014026974A5 (en)
JP6072554B2 (en) Fuel cell
JP5722742B2 (en) Fuel cell
JP2013225422A (en) Fuel cell
JP2014149930A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5722739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees