JP5720315B2 - Evaluation method of vapor deposition film - Google Patents

Evaluation method of vapor deposition film Download PDF

Info

Publication number
JP5720315B2
JP5720315B2 JP2011050323A JP2011050323A JP5720315B2 JP 5720315 B2 JP5720315 B2 JP 5720315B2 JP 2011050323 A JP2011050323 A JP 2011050323A JP 2011050323 A JP2011050323 A JP 2011050323A JP 5720315 B2 JP5720315 B2 JP 5720315B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
vapor
deposited
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011050323A
Other languages
Japanese (ja)
Other versions
JP2012184496A (en
Inventor
綾野 町田
綾野 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2011050323A priority Critical patent/JP5720315B2/en
Publication of JP2012184496A publication Critical patent/JP2012184496A/en
Application granted granted Critical
Publication of JP5720315B2 publication Critical patent/JP5720315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガスバリア性を有する蒸着フィルムに係り、より詳しくは、生鮮食品、加工食品、医療品、医療機器、電子部品等の包装用フィルムの少なくとも片面に無機化合物層を形成された蒸着フィルムに関する。   The present invention relates to a vapor-deposited film having gas barrier properties, and more particularly to a vapor-deposited film in which an inorganic compound layer is formed on at least one surface of a packaging film for fresh food, processed food, medical products, medical equipment, electronic parts and the like. .

食品、医療・医薬品などの包装材料分野や液晶、有機ELなどのフラットパネルディスプレイ用樹脂基板等のエレクトロニクス分野においては、高度のガスバリア性をもつことが求められている。この観点からアルミニウムなどの金属、あるいは酸化ケイ素、酸化アルミニウム、酸化マグネシウムなどの金属酸化物を高分子フィルム基材上に真空成膜させたガスバリア性フィルムが使用されている。   In the field of packaging materials such as food, medicine and pharmaceuticals, and electronics such as resin substrates for flat panel displays such as liquid crystal and organic EL, it is required to have a high gas barrier property. From this point of view, a gas barrier film in which a metal such as aluminum or a metal oxide such as silicon oxide, aluminum oxide, and magnesium oxide is vacuum-deposited on a polymer film substrate is used.

ガスバリア性を有する金属酸化物の中でも、酸化ケイ素は特にガスバリア性に優れており、原料であるケイ素は地球上に豊富に存在するため安価で取引され、供給が安定している。   Among metal oxides having gas barrier properties, silicon oxide is particularly excellent in gas barrier properties, and silicon, which is a raw material, is abundant on the earth, so it is traded inexpensively and supply is stable.

一方、真空で成膜する方法には、スパッタリング法、イオンプレーティング法、CVD法、真空蒸着法等が挙げられるが、成膜速度やコスト面において、真空蒸着法が最も優れている。特に電子ビーム式では成膜速度を照射面積や電子ビーム電流等で制御しやすく、材料を局部的に加熱させられるため、短時間で熱を与えられる点で有効である。   On the other hand, sputtering methods, ion plating methods, CVD methods, vacuum deposition methods, and the like can be cited as methods for forming a film in a vacuum, but vacuum deposition methods are the most excellent in terms of film formation speed and cost. In particular, the electron beam method is effective in that the film formation rate can be easily controlled by the irradiation area, the electron beam current, and the like, and the material can be heated locally, so that heat can be applied in a short time.

電子ビーム方式での真空蒸着法による蒸着フィルムの生産では、巻取り式の蒸着機を用いて長尺、広幅の基材フィルムに蒸着し、一度に大量に蒸着フィルムの生産を行うのが一般的である。巻取り式の蒸着機を用いる生産の場合、基材フィルムの巻m数は小型の蒸着機で数百m、大型の蒸着機では数万mにも及ぶ。基材フィルムの幅は小型の蒸着機では1m以内となるが、大型では約2mに及ぶ。   In the production of vapor-deposited films by the electron beam vacuum deposition method, it is common to deposit a large amount of vapor-deposited films at once by depositing on a long and wide base film using a roll-up type vapor deposition machine. It is. In the case of production using a wind-up type vapor deposition machine, the number of windings m of the base film is several hundreds m for a small vapor deposition machine and tens of thousands m for a large vapor deposition machine. The width of the base film is less than 1 m for a small vapor deposition machine, but about 2 m for a large film.

生産にあたっては、バリア性、透明性等の目的に応じて膜厚、光線透過率等を制御しながら加工する必要がある。制御項目には、電子ビームだけでも電流、パターン、照射面積等があり、同じ条件でも材料によって蒸発プロセスが異なる為、制御は容易ではない。特に長尺で加工する際には、成膜開始から終了まで一定の膜にする必要があり、広幅での加工に際しては、幅方向でのばらつきを極力抑えて加工することが望ましい。加えて、コストダウンのために加工時間を短縮すべく、フィルムの巻取速度も可能な限り上げることが望ましい。   In production, it is necessary to process the film while controlling the film thickness, light transmittance, and the like according to the purposes such as barrier properties and transparency. Control items include current, pattern, irradiation area, etc. even with an electron beam alone, and control is not easy because the evaporation process varies depending on the material even under the same conditions. In particular, when processing with a long length, it is necessary to form a constant film from the start to the end of film formation. When processing with a wide width, it is desirable to perform processing while suppressing variations in the width direction as much as possible. In addition, it is desirable to increase the film winding speed as much as possible in order to shorten the processing time for cost reduction.

幅方向の成膜の制御に関して、特許文献1にて提案がなされているが、蒸着加工幅500mm以上に対して電子ビームを2つ以上要するため、プロセスが複雑化する上に、コスト高になることや、蒸着膜質の均一性を確保することにも問題がある。材料面では特許文献2にて、材料中の2種類の蒸着成分の割合に高さ方向で傾斜をつけることが提案されているが、大量生産に向いた手法ではない。   Regarding the control of film formation in the width direction, a proposal has been made in Patent Document 1. However, since two or more electron beams are required for a deposition processing width of 500 mm or more, the process becomes complicated and the cost is increased. In addition, there is a problem in ensuring uniformity of the deposited film quality. In terms of material, Patent Document 2 proposes that the ratio of two kinds of vapor deposition components in the material is inclined in the height direction, but this is not a method suitable for mass production.

一方で、電子ビーム方式の蒸着手法に限らず、蒸発源の蒸発を十分に制御できない場合には、均一な成膜が出来ないだけでなく、スプラッシュが発生しやすくなり、膜の物性に大きな影響を及ぼす。バリア膜に穴が開いてしまうため、バリアの低下につながったり、スプラッシュ痕がフィルム上に残り、その上にインキ等をコーティングする場合には、スプラッシュ痕が模様となって現れたりする。また、蒸着フィルムを特に包装材料として用いる場合には、その後のコーティング工程、ラミネート工程、スリット工程はもとより、
包装袋に加工する際にもフィルムを曲げたり、屈曲させたりしなければならない場合もある。そのような工程があると、蒸着膜をはじめとしたバリア層に負担がかかり、層にクラックが入り、バリア性の著しい低下につながる。これらのクラックは、バリア膜の硬さ等の物性に多少の依存はあるが、大抵は膜が引っ張りの張力に耐えきれずに裂け目が入ることで発生する。このときスプラッシュ痕が膜上に存在すると、スプラッシュ痕から裂け目が入るため、よりクラックが増すことになる。これは製品として当然望ましくない現象であるため、スプラッシュを減らすことは蒸着加工上で重要である。
On the other hand, not only the electron beam evaporation method, but also when the evaporation of the evaporation source cannot be controlled sufficiently, not only uniform film formation but also splash is likely to occur, greatly affecting the physical properties of the film. Effect. Since a hole is formed in the barrier film, the barrier is lowered, or a splash mark remains on the film, and when ink or the like is coated on the film, the splash mark appears as a pattern. In addition, when using a vapor-deposited film as a packaging material, in addition to the subsequent coating process, laminating process, and slitting process,
When processing into a packaging bag, the film may have to be bent or bent. If there is such a process, a burden is applied to the barrier layer including the vapor deposition film, and the layer is cracked, leading to a significant decrease in barrier properties. These cracks are somewhat dependent on physical properties such as the hardness of the barrier film, but are usually generated when the film is unable to withstand the tension of the tension and is torn. At this time, if the splash mark exists on the film, a crack enters from the splash mark, so that the crack is further increased. Since this is an undesirable phenomenon as a product, reducing splash is important in vapor deposition.

また一方で、SiOxを蒸着膜とする蒸着フィルムは、バリア性に優れてコストが安く、アルミやアルミ蒸着品よりはるかに透明性に優れることから、酸化ケイ素やケイ素は汎用の材料として用いられている。しかしながら、SiOxを蒸着膜とする蒸着フィルムは黄色を呈してしまい、包装材料や表示媒体の保護膜として用いた場合に正しい色の把握が困難なものとなってしまう(特許文献3および4参照)。   On the other hand, a vapor deposition film using SiOx as a vapor deposition film has excellent barrier properties and low cost, and is much more transparent than aluminum and aluminum vapor-deposited products. Therefore, silicon oxide and silicon are used as general-purpose materials. Yes. However, a vapor deposition film using SiOx as a vapor deposition film has a yellow color, and when used as a protective film for a packaging material or a display medium, it is difficult to grasp the correct color (see Patent Documents 3 and 4). .

特開平9−287074号公報Japanese Patent Laid-Open No. 9-287074 特開平11−189864号公報JP-A-11-189864 特開平3−100164号公報Japanese Patent Laid-Open No. 3-100164 特開平4−337067号公報JP-A-4-333767

本発明の目的は、高分子フィルム基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOxを成膜された無機化合物層とを備える蒸着フィルムにおいて、低コストで高度なガスバリア性と透明性に優れた、蒸着膜のクラックが発生しにくく、蒸着フィルムを供することである。   It is an object of the present invention to provide a low-cost and high gas barrier property in a deposited film comprising a polymer film substrate and an inorganic compound layer formed by depositing SiOx on at least one surface of the substrate by an electron beam vacuum deposition method. It is excellent in transparency and it is difficult to generate cracks in the deposited film, and a deposited film is provided.

本発明は、上記課題を解決するためのものであり、本発明の請求項1に係る発明は、高分子フィルムから成る基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOを成膜された無機化合物層とを備える蒸着フィルムにおいて、蒸着膜厚が15〜35nmである前記蒸着フィルムを5枚重ねて測定した黄色度(YI)が30以下であり、かつ、前記蒸着膜のクラック発生開始歪量[%]が2.5%以上であることを測定基準とした蒸着フィルムの評価方法である。
The present invention is for solving the above-mentioned problems. The invention according to claim 1 of the present invention is a substrate comprising a polymer film, and at least one surface of the substrate is made of SiO 2 by electron beam vacuum deposition. In a vapor deposition film comprising an inorganic compound layer formed with x , the yellowness (YI) measured by stacking five vapor deposition films having a vapor deposition film thickness of 15 to 35 nm is 30 or less, and the vapor deposition This is a method for evaluating a deposited film , based on the fact that the crack initiation strain [%] of the film is 2.5% or more.

本発明によると、高分子フィルム基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOxを成膜された無機化合物層とを備える蒸着フィルムにおいて、蒸着膜のクラックが発生しにくく、透明性に優れる蒸着フィルムを供することができる。   According to the present invention, in a deposited film comprising a polymer film substrate and an inorganic compound layer in which SiOx is formed on at least one surface of the substrate by an electron beam vacuum deposition method, cracks in the deposited film are less likely to occur. A vapor-deposited film having excellent transparency can be provided.

本発明に係るクラック発生開始歪量(%)を測定する引張試験機の概略図を示す。The schematic of the tensile testing machine which measures the crack generation start distortion amount (%) based on this invention is shown.

以下、本発明の詳細を説明する。本発明の蒸着フィルムは、高分子フィルム基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOxが成膜された蒸着フィルムであって、前記蒸着膜のクラック発生開始歪量(%)が2.5%以上であり、かつ、蒸着フィルムを5枚重ねて測定した黄色度(YI)が30以下であることを特徴とする蒸着フィルムである。   Details of the present invention will be described below. The vapor-deposited film of the present invention is a vapor-deposited film in which SiOx is formed by electron beam vacuum vapor deposition on at least one surface of the polymer film substrate, and the crack initiation strain amount of the vapor-deposited film ( %) Is 2.5% or more, and the yellowness (YI) measured by stacking five deposited films is 30 or less.

蒸着膜のクラック発生を予測する目安となるクラック発生開始歪量(%)については、測定方法などについて具体的に後述するが、経験値からクラック発生開始歪量(%)が2.5%以上であれば極めてクラックの発生が抑えられ高品質が得られる。一方、この値が2.5%未満であると、クラックの発生率が高くなり製品としての品質を保証できない。   The crack initiation strain (%), which is a guideline for predicting the occurrence of cracks in the deposited film, will be described later in detail with respect to the measurement method, etc., but from the experimental value, the crack initiation strain (%) is 2.5% or more. If so, the generation of cracks is extremely suppressed and high quality can be obtained. On the other hand, if this value is less than 2.5%, the occurrence rate of cracks becomes high and the quality as a product cannot be guaranteed.

また、蒸着フィルムの透明性の目安である黄色度(YI)は色度計を用いて計測するが、黄色度(YI)が30以下であれば透明性に優れ、例えば、蒸着後の印刷での色調整も問題なく行える。一方、黄色度(YI)が30を超えると、着色が目視で明らかに判別つくようになり、包装材料等の最終製品となった際の色味が不安定になるため、外観上の管理が困難になる問題があり、また、透明性が高い方が、内容物の鮮度を一般的に良く見せることができる。   In addition, the yellowness (YI), which is a measure of the transparency of the deposited film, is measured using a chromaticity meter. However, if the yellowness (YI) is 30 or less, the transparency is excellent. Can be adjusted without any problems. On the other hand, if the yellowness (YI) exceeds 30, the coloration can be clearly discerned visually, and the color tone when it becomes a final product such as a packaging material becomes unstable. There are problems that become difficult, and the higher the transparency, the better the freshness of the contents.

本発明で使用される高分子フィルム基材は特に限定はされるものではないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリエチレンやポリプロピレンなどのポリオレフィンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリアクリルニトリルフィルム、ポリイミドフィルム等が用いられ、機械的強度や寸法安定性を有するものが良い。特に二軸延伸ポリエチレンテレフタレート(PET)フィルムが好ましく用いられる。   The polymer film substrate used in the present invention is not particularly limited. For example, polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polystyrene A film, a polyamide film, a polyvinyl chloride film, a polycarbonate film, a polyacrylonitrile film, a polyimide film and the like are used, and those having mechanical strength and dimensional stability are preferable. In particular, a biaxially stretched polyethylene terephthalate (PET) film is preferably used.

高分子フィルム基材の表面に、帯電防止剤、紫外線防止剤、可塑剤、滑材などが使用されていても良く、薄膜との密着性を良くするために前処理としてコロナ処理、低温プラズマ処理などを施しておいても良い。   The surface of the polymer film substrate may contain antistatic agents, UV inhibitors, plasticizers, lubricants, etc. Corona treatment, low-temperature plasma treatment as pretreatment to improve adhesion to the thin film You may give it.

また、高分子フィルム基材の表面に、アクリルポリオール、ポリエステル、イソシアネート化合物等の非水性樹脂、ポリビニルアルコール(PVA)、でんぷん、セルロース、ポリアクリル酸、エチレンビニルアルコール樹脂等の水溶性樹脂からなるアンカーコート層を設けても良く、これにより基材と薄膜との密着性を良くするだけでなく、表面を平滑にすることで薄膜を欠陥なく成膜し、さらに蒸着薄膜層の微小なバリア欠陥を補助しバリア性を向上することができる。   In addition, an anchor made of a non-aqueous resin such as acrylic polyol, polyester or isocyanate compound, water-soluble resin such as polyvinyl alcohol (PVA), starch, cellulose, polyacrylic acid or ethylene vinyl alcohol resin on the surface of the polymer film substrate A coating layer may be provided, which not only improves the adhesion between the substrate and the thin film, but also forms a thin film without defects by smoothing the surface, and further eliminates minute barrier defects in the deposited thin film layer. It can assist and improve the barrier property.

SiOxの薄膜層の上にオーバーコート層を設けても良く、オーバーコート層の存在によって、硬く脆い傾向のある蒸着膜を保護し擦れや屈曲によるクラックを防止することが
できる。
An overcoat layer may be provided on the thin film layer of SiOx, and the presence of the overcoat layer protects the vapor-deposited film which tends to be hard and brittle and prevents cracks due to rubbing and bending.

上記高分子フィルム基材の厚みは特に制限を受けるものではないが、包装材料としての適性、他の層を積層する可能性があることを考えると、6〜30μmの厚みが好ましい。   The thickness of the polymer film substrate is not particularly limited, but considering the suitability as a packaging material and the possibility of laminating other layers, a thickness of 6 to 30 μm is preferable.

本発明で成膜されるSiOxの薄膜層は、電子ビーム式真空蒸着の蒸発源に酸化ケイ素ならびにケイ素を用いることによって得ることができる。前記酸化ケイ素は主にSiO、SiOの2種類があるが、SiOはSiOを原料として製造されるためにコスト高となるので、SiOを用いずに成膜するほうが望ましい。粉末の種類を1種類に限定して材料としても良いが、特に価格が安く、Si、SiOの2種類を混合させた材料において、蒸発プロセス及びSiOxのxの値を制御しやすく、すなわち膜厚や透明性を制御しやすい。SiOが昇華性であるのに対し、Si、SiOは溶融し、ガラス化する特徴が影響していると考えられる。そしてSiOを蒸着材料として用いる場合は、通常塊状であり、蒸着中に昇華する際に、塊状のまま吹き飛ぶ場合があり、これがスプラッシュの多さにつながっていると推測される。 The thin film layer of SiOx formed by the present invention can be obtained by using silicon oxide and silicon as an evaporation source for electron beam vacuum deposition. There are mainly two types of silicon oxide, SiO and SiO 2. Since SiO is manufactured using SiO 2 as a raw material, the cost increases. Therefore, it is desirable to form a film without using SiO. The material may be limited to only one type of powder, but the price is particularly low, and in a material in which two types of Si and SiO 2 are mixed, the evaporation process and the value of x of SiOx can be easily controlled, that is, a film Easy to control thickness and transparency. While SiO is sublimable, Si and SiO 2 are considered to be affected by the characteristics of melting and vitrification. When SiO is used as a vapor deposition material, it is usually a lump, and when sublimated during vapor deposition, it may be blown off as a lump, which is presumed to lead to a lot of splash.

前記蒸発源の形状としては、粉末、粒状、成形体等が用いられる。粒状及び成形体は粉状から製造されるため、コストメリットは粉末がベストである。しかしながら、粉末はハンドリング性が悪く、蒸発源を挿入するルツボに均一に充填しにくい為、蒸発源の形状としては安定性に欠けるという問題があり、一般的には成形体が望ましい。   As the shape of the evaporation source, powder, granule, molded body or the like is used. Since the granules and the molded body are manufactured from powder, the best cost merit is powder. However, since powder has poor handling properties and is difficult to uniformly fill the crucible into which the evaporation source is inserted, there is a problem that the shape of the evaporation source is not stable, and a molded body is generally desirable.

用いる粉末の粒径は特に制限しない。一般にSiは平均粒径が約6〜20μm、SiOは約1〜20μm程度のグレードが市販されている。平均粒径や粒度分布の山がシャープかワイドか等の特性は、分散性、材料かさ密度、蒸発のプロセス等に影響を及ぼすため、選定が必要である。また、2種以上のグレードを混合させて用いる場合は、組み合わせに留意しなければならない。 The particle size of the powder used is not particularly limited. In general, Si has an average particle diameter of about 6 to 20 μm, and SiO 2 has a grade of about 1 to 20 μm. The characteristics such as whether the average particle size and the peak of the particle size distribution are sharp or wide affect the dispersibility, material bulk density, evaporation process, etc., so selection is necessary. When two or more grades are mixed and used, attention must be paid to the combination.

前記材料かさ密度に関しては、同じ体積の材料から同じ蒸着膜厚を得る場合、単純にはかさ密度の小さい材料のほうが、材料の体積上の減少が早い。従って、かさ密度が小さいほど、材料が底をつき、電子ビームで底を撃ってしまいやすいといえる。そのため、材料送り速度を早くせざるを得なくなり、蒸着プロセスに影響を及ぼすだけでなく、短時間で材料が無くなるため、長尺で加工することができないケースが生じる。逆にかさ密度が高すぎると、材料の減りは遅くとも、電子ビームでの材料加熱に時間を要し、蒸発開始が遅くなる危険性がある。材料かさ密度は、高すぎても低すぎても不具合を生じるため、生産機や蒸着フィルムの仕様等に合わせて適宜設計することが望ましい。   With respect to the material bulk density, when the same vapor deposition film thickness is obtained from the same volume of material, the material with a smaller bulk density simply decreases more rapidly in the volume of the material. Therefore, it can be said that the smaller the bulk density is, the more the material is bottomed and the bottom is easily shot with an electron beam. For this reason, the material feeding speed must be increased, which not only affects the vapor deposition process, but also causes a case where the material cannot be processed in a long length because the material is lost in a short time. On the other hand, if the bulk density is too high, it takes time to heat the material with an electron beam, even if the material is slowly reduced, and there is a risk that the start of evaporation will be delayed. If the material bulk density is too high or too low, a problem occurs. Therefore, it is desirable that the material bulk density is appropriately designed according to the specifications of the production machine and the vapor deposition film.

前記蒸発源の成形体の製造方法は、流し込み法、ラバープレス法などの成形のみを行う方法と、ホットプレス法、熱間静水圧加圧法(HIP)など成形と同時に加圧焼結を行う方法がある。後者の方法を用いると緻密化の起こる温度が下がり異常粒成長のない均一な粒径からなる高密度な焼結体を得ることができるが、本発明では特に限定しない。また、焼結時の雰囲気としては真空雰囲気、窒素雰囲気、アルゴン雰囲気、大気雰囲気などがある。本発明では特に焼結時の雰囲気を限定しないが、成膜されるSiOxの薄膜層の主成分がSi、Oであるため、雰囲気中のガスと蒸着材料の反応が無いほうが望ましい。   The method of manufacturing the molded body of the evaporation source includes a method of performing only molding such as a casting method and a rubber press method, and a method of performing pressure sintering simultaneously with molding such as a hot press method and a hot isostatic pressing method (HIP). There is. When the latter method is used, the temperature at which densification occurs is lowered and a high-density sintered body having a uniform particle size without abnormal grain growth can be obtained. However, the present invention is not particularly limited. The atmosphere during sintering includes a vacuum atmosphere, a nitrogen atmosphere, an argon atmosphere, an air atmosphere, and the like. In the present invention, the atmosphere during sintering is not particularly limited. However, since the main component of the SiOx thin film layer to be formed is Si or O, it is desirable that the gas in the atmosphere does not react with the vapor deposition material.

成膜されるSiOx薄膜層のxは、薄膜層中のO/Si比であり、1〜2の数値を取る。2に近いほど性質がSiOに近くなり、透明性が増すもののバリア性に欠けてしまうが、1に近いとバリア性は上がるものの膜が黄色を呈して透明性が欠けてしまうという、相反する関係がある。これは、蒸着法の原理として、加熱されて蒸発したSiOxが基材フィルム上に物理的に堆積するためであり、その結果堆積時の隙間がガスバリア性能を決定する因子となる。そのため、xの値が小さいとフィルム上のSiOxの原子間ネットワークが密になってガスバリア性が発現し、反対にxの値が大きいと原子間ネットワークが疎になりガスバリア性が発現しないと推察される。その一方で、xの値が小さいと無機物であるSiが多くなり、xの値が大きいとSiが少なくなるため、膜の硬さとしてxの値が大きいほうが膜に柔軟性が出やすくなる。従って蒸着膜層に力がかかった際の抵抗力として、xの値が大きいほうが強く、割れ、すなわちクラックが入りやすくなるものと考えられる。 X of the SiOx thin film layer to be formed is an O / Si ratio in the thin film layer and takes a numerical value of 1 to 2. The closer the value is to 2, the closer the property is to SiO 2 , but the transparency increases, but the barrier property is lacking. However, when the value is close to 1, the barrier property increases, but the film is yellow and the transparency is lacking. There is a relationship. This is because, as a principle of the vapor deposition method, heated and evaporated SiOx is physically deposited on the base film, and as a result, the gap at the time of deposition becomes a factor that determines the gas barrier performance. Therefore, if the value of x is small, the inter-atomic network of SiOx on the film becomes dense and gas barrier properties appear, and conversely, if the value of x is large, the interatomic network becomes sparse and gas barrier properties do not appear. The On the other hand, if the value of x is small, the amount of Si that is an inorganic substance increases, and if the value of x is large, the amount of Si decreases. Therefore, the larger the value of x as the hardness of the film, the more flexible the film is. Therefore, it is considered that the resistance value when force is applied to the deposited film layer is stronger when the value of x is larger and cracks, that is, cracks are more likely to occur.

本発明でいうクラック発生開始歪量(%)は、図1に示すような、基台2上に固定された固定ステージ3と、基台2上で水平方向に移動可能な可動ステージ4を具備する引張試験機1により測定する。先ず、測定試料として、透明基材102とバリア性薄膜104から構成される本発明の透明バリアフィルム10の一方の端部を、引張試験機1の固定ステージ3に固定し、次に、該試料の他方の端部を、可動ステージ4に固定する。なお、透明基材102の厚さは12μm、バリア性薄膜104の厚さは25nmに設定するのが好ましい。   The crack generation start strain amount (%) in the present invention includes a fixed stage 3 fixed on the base 2 and a movable stage 4 movable in the horizontal direction on the base 2 as shown in FIG. Measured with the tensile tester 1. First, as a measurement sample, one end of the transparent barrier film 10 of the present invention composed of the transparent base material 102 and the barrier thin film 104 is fixed to the fixing stage 3 of the tensile tester 1, and then the sample Is fixed to the movable stage 4. Note that the thickness of the transparent substrate 102 is preferably set to 12 μm, and the thickness of the barrier thin film 104 is preferably set to 25 nm.

次に、可動ステージ4を基台2上で水平方向に下記の歪量が毎秒0.01%となる速度で移動させ、本発明の試料(透明バリアフィルム10)に引張力を印加する。この時の透明基材102上のバリア性薄膜104の状態を、上方に設置された顕微鏡観察装置5により、100倍の倍率にて観察する。可動ステージ4による引張方向に対して垂直方向にクラック破壊が観察された時点で測定を終了する。測定終了時における、試料(透明バリアフィルム10)の歪量、すなわち{(試料10の引張後の長さ−試料10の測定前の長さ)/試料10の測定前の長さ} × 100 (%)を、本発明でいうクラック発生開始歪量(%)とする。   Next, the movable stage 4 is moved on the base 2 in the horizontal direction at a speed at which the following strain amount is 0.01% per second, and a tensile force is applied to the sample (transparent barrier film 10) of the present invention. The state of the barrier thin film 104 on the transparent substrate 102 at this time is observed at a magnification of 100 times by the microscope observation device 5 installed above. The measurement is terminated when crack fracture is observed in a direction perpendicular to the tensile direction by the movable stage 4. The strain amount of the sample (transparent barrier film 10) at the end of measurement, that is, {(length after tension of sample 10−length before measurement of sample 10) / length before measurement of sample 10} × 100 ( %) Is the crack initiation strain (%) in the present invention.

そこで、目的に応じて適切なx値にするべく、蒸着材料の処方設定、真空蒸着の機械条件設定を行う必要がある。例えば蒸着材料では材料のO/Si比が一般に高いほど、蒸着膜のO/Si比も高くなる。機械条件では例えば、真空蒸着中に成膜室に酸素あるいは水を適度に導入し、調整することが可能であるが、成膜室の圧力が電子ビームを使用できなくなるほど上昇してしまう場合もあり、技術確立の難易度が高い。   Therefore, in order to obtain an appropriate x value according to the purpose, it is necessary to set vapor deposition material prescription and vacuum vapor deposition machine conditions. For example, with a vapor deposition material, the higher the O / Si ratio of the material, the higher the O / Si ratio of the deposited film. Under mechanical conditions, for example, oxygen or water can be appropriately introduced and adjusted in the film formation chamber during vacuum deposition, but the pressure in the film formation chamber may increase so that the electron beam cannot be used. Yes, it is difficult to establish technology.

発明者らは鋭意努力の結果、O/Si比が1.4〜1.9の範囲において、蒸着膜のクラックが発生しにくく、且つ、透明性に優れた蒸着フィルムが得られることを見出した。O/Si比が1.4未満の蒸着フィルムは、Siが多いため着色が濃くなる傾向があり、また、O/Si比が1.9を超えると、Oが多いためバリア性が低下する傾向がある。   As a result of diligent efforts, the inventors have found that a vapor-deposited film that is less prone to cracking of the vapor-deposited film and excellent in transparency can be obtained when the O / Si ratio is in the range of 1.4 to 1.9. . The vapor deposition film having an O / Si ratio of less than 1.4 tends to be deeply colored due to a large amount of Si, and when the O / Si ratio exceeds 1.9, the barrier property tends to decrease due to the large amount of O. There is.

以下、実施例を持って本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with examples.

<実施例1>
Si(平均粒径10μm)、SiO(平均粒径8μm)を材料のO/Si比が1.4となるように混合し、更に水、シリカゾルを混合し、スラリーを調整し、このスラリーを型に流し込み、それぞれ成形した。この成形物を乾燥及び熱処理して蒸着材料とした。さらに電子ビーム加熱方式の巻き取り式蒸着装置を用いて、作成した蒸着材料を、12μm厚のポリエステルフィルムに、巻き取り速度200nm・m/s、蒸着巾480mmで真空蒸着させ、実施例1の蒸着フィルムを得た。
<Example 1>
Si (average particle size 10 μm) and SiO 2 (average particle size 8 μm) are mixed so that the O / Si ratio of the material is 1.4, water and silica sol are further mixed, slurry is prepared, Poured into molds and molded respectively. This molded product was dried and heat-treated to obtain a vapor deposition material. Further, using the electron beam heating type wind-up type vapor deposition apparatus, the produced vapor deposition material was vacuum-deposited on a 12 μm thick polyester film at a winding speed of 200 nm · m / s and a vapor deposition width of 480 mm. A film was obtained.

<実施例2>
蒸着材料の粉末のO/Si比が1.75であること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例2の蒸着フィルムを得た。
<Example 2>
Except that the O / Si ratio of the powder of the vapor deposition material was 1.75, a molded body was prepared and vapor-deposited by the same method as in Example 1 to obtain a vapor-deposited film of Example 2.

<実施例3>
蒸着材料の粉末のO/Si比が1.65であること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例3の蒸着フィルムを得た。
<Example 3>
Except that the powder of the vapor deposition material had an O / Si ratio of 1.65, a molded body was prepared and vapor deposited by the same method as in Example 1 to obtain a vapor deposited film of Example 3.

<実施例4>
ポリウレタン系樹脂からなるアンカーコート層を設けられたポリエステルフィルムを蒸着基材として用いたこと以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例4の蒸着フィルムを得た。
<Example 4>
Except having used the polyester film provided with the anchor coat layer which consists of polyurethane-type resins as a vapor deposition base material, the molded object was created and vapor-deposited by the same method as Example 1, and the vapor deposition film of Example 4 was obtained. .

<実施例5>
蒸着膜上に水溶性高分子からなるオーバーコート層を設けたこと以外は実施例4と同じ方法で成形体を作成して蒸着を行い、実施例5の蒸着フィルムを得た。
<Example 5>
Except that an overcoat layer made of a water-soluble polymer was provided on the vapor deposition film, a molded body was prepared and vapor-deposited by the same method as in Example 4 to obtain a vapor deposition film of Example 5.

<比較例1>
蒸着材料の粉末のO/Si比が1.1であること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例1の蒸着フィルムを得た。
<Comparative Example 1>
Except that the O / Si ratio of the vapor deposition material powder was 1.1, a molded body was prepared and vapor deposited by the same method as in Example 1 to obtain a vapor deposition film of Comparative Example 1.

<比較例2>
実施例1の蒸着材料の粉末のうち20%をSiOとしたこと以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例3の蒸着フィルムを得た。
<Comparative Example 2>
Except that 20% of the powder of the vapor deposition material of Example 1 was changed to SiO, a molded body was prepared and vapor-deposited by the same method as Example 1 to obtain a vapor deposition film of Comparative Example 3.

<比較例3>
実施例1の粉末のO/Si比が1.42としたこと以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例5の蒸着フィルムを得た。
<Comparative Example 3>
Except that the powder of Example 1 had an O / Si ratio of 1.42, a molded body was prepared and vapor-deposited by the same method as Example 1 to obtain a vapor-deposited film of Comparative Example 5.

<評価方法>
実施例1〜5および比較例1〜3で得られたそれぞれの蒸着フィルムを用いて、以下の装置、方法にて、O/Si比、酸素透過度、水蒸気透過度、黄色度(YI)とクラック発生開始歪量(%)の測定を行った。得られた結果を表1に示す。
O/Si比〜蒸着幅中央の膜組成をXPS(日本電子製 JPS−90SXV)で計測
酸素透過度(ml/m・day・MPa)〜酸素透過度測定装置
(OXTROXTRAN 2/20、mocon社製、30℃・70%RH)
水蒸気透過度(g/m・day)〜水蒸気透過度測定装置
(PERMATRAN 3/30、mocon社製、40℃・90%RH)
黄色度(YI)〜色差計により測定
クラック発生開始歪量(%)〜引張試験機1にて測定
<Evaluation method>
Using the respective vapor deposition films obtained in Examples 1 to 5 and Comparative Examples 1 to 3, the following apparatus and method were used to measure the O / Si ratio, oxygen permeability, water vapor permeability, yellowness (YI) and The crack initiation strain (%) was measured. The obtained results are shown in Table 1.
O / Si ratio-Measure film composition at center of vapor deposition width with XPS (JPS-90SXV, manufactured by JEOL Ltd.) Oxygen permeability (ml / m 2 · day · MPa)-Oxygen permeability measuring device
(OXTROXTRAN 2/20, manufactured by mocon, 30 ° C, 70% RH)
Water vapor permeability (g / m 2 · day) to water vapor permeability measuring device
(PERMATRAN 3/30, manufactured by mocon, 40 ° C./90% RH)
Yellowness (YI) Measured with a color difference meter Crack initiation strain (%) Measured with tensile tester 1

<比較結果>
実施例1〜5で得られた本発明品は、いずれもYI値が30以下であり、また、クラック発生開始歪量が2.5%以上で、酸素透過率及び水蒸気透過率に優れた結果が得られた。一方、比較例1〜3で得られた比較品は、YI値が30を越え、かつ、クラック発生開始歪量が2.5%未満であり、本発明はいずれも良好な結果を示した。
<Comparison result>
The products of the present invention obtained in Examples 1 to 5 all have a YI value of 30 or less, a crack generation starting strain amount of 2.5% or more, and excellent oxygen permeability and water vapor permeability. was gotten. On the other hand, the comparative products obtained in Comparative Examples 1 to 3 had a YI value exceeding 30 and a crack initiation strain amount of less than 2.5%, and all of the present invention showed good results.

Figure 0005720315
Figure 0005720315

1・・・・引張試験機
2・・・・基台
3・・・・固定ステージ
4・・・・可動式ステージ
5・・・・顕微鏡観察装置
10・・・・試料(透明バリアフィルム)
102・・・・透明基材
104・・・・バリア性薄膜
DESCRIPTION OF SYMBOLS 1 .... Tensile tester 2 .... Base 3 .... Fixed stage 4 .... Movable stage 5 .... Microscope observation device 10 .... Sample (transparent barrier film)
102... Transparent substrate 104... Barrier thin film

Claims (1)

高分子フィルムから成る基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOを成膜された無機化合物層とを備える蒸着フィルムにおいて、蒸着膜厚が15〜35nmである前記蒸着フィルムを5枚重ねて測定した黄色度(YI)が30以下であり、かつ、前記蒸着膜のクラック発生開始歪量[%]が2.5%以上であることを測定基準とした蒸着フィルムの評価方法。 In a vapor deposition film comprising a base material made of a polymer film and an inorganic compound layer in which SiO x is formed on at least one surface of the base material by an electron beam vacuum vapor deposition method, the vapor deposition thickness is 15 to 35 nm. Vapor deposition film having a yellowness (YI) measured by stacking 5 vapor deposition films of 30 or less and a crack generation starting strain [%] of the vapor deposition film being 2.5% or more as a measurement standard. Evaluation method.
JP2011050323A 2011-03-08 2011-03-08 Evaluation method of vapor deposition film Expired - Fee Related JP5720315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050323A JP5720315B2 (en) 2011-03-08 2011-03-08 Evaluation method of vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050323A JP5720315B2 (en) 2011-03-08 2011-03-08 Evaluation method of vapor deposition film

Publications (2)

Publication Number Publication Date
JP2012184496A JP2012184496A (en) 2012-09-27
JP5720315B2 true JP5720315B2 (en) 2015-05-20

Family

ID=47014804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050323A Expired - Fee Related JP5720315B2 (en) 2011-03-08 2011-03-08 Evaluation method of vapor deposition film

Country Status (1)

Country Link
JP (1) JP5720315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188750A (en) * 2013-03-26 2014-10-06 Toppan Printing Co Ltd Gas barrier film and method for manufacturing the same
EP3615707B1 (en) * 2017-04-28 2022-01-05 Tetra Laval Holdings & Finance S.A. Laminated packaging material comprising a barrier film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056826B2 (en) * 1991-05-13 2000-06-26 三菱伸銅株式会社 Method for producing transparent barrier film
JP2900759B2 (en) * 1993-07-20 1999-06-02 信越化学工業株式会社 Silicon oxide deposition material and deposition film
JP3747498B2 (en) * 1995-11-27 2006-02-22 凸版印刷株式会社 Porous vapor deposition material and method for producing the same
JP4371539B2 (en) * 2000-05-31 2009-11-25 電気化学工業株式会社 Method for producing silicon oxide deposited film
JP2002187231A (en) * 2000-10-13 2002-07-02 Dainippon Printing Co Ltd Film having barrier properties and its manufacturing method
JP3892246B2 (en) * 2001-04-13 2007-03-14 三菱樹脂株式会社 Method for producing gas barrier film
JP5050879B2 (en) * 2008-01-29 2012-10-17 凸版印刷株式会社 Method for producing transparent gas barrier film
JP2010138469A (en) * 2008-12-15 2010-06-24 Toppan Printing Co Ltd Vacuum film deposition method and vacuum film deposition apparatus
JP5440005B2 (en) * 2009-07-24 2014-03-12 凸版印刷株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
JP2012184496A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering
TWI607099B (en) Transparent conductive film and its manufacturing method
TWI252325B (en) Plastic substrate having multi-layer structure and method for preparing the same
JP6101214B2 (en) Substrate with transparent electrode and manufacturing method thereof
TWI491754B (en) Method for manufacturing transparent conductive film
CN103314127A (en) Transparent electroconductive film and manufacturing method therefor
JP2009024255A (en) Raw material powder for evaporation source material for ion plating, evaporation source material for ion plating, method for producing the evaporation source material, and gas barrier sheet and method for producing the gas barrier sheet
JP4821925B2 (en) GAS BARRIER FILM, DEVICE, AND METHOD FOR PRODUCING GAS BARRIER FILM
Fortunato et al. New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering
Biswas et al. Nanomechanical properties of dip coated indium tin oxide films on glass
JP5720315B2 (en) Evaluation method of vapor deposition film
JP5050879B2 (en) Method for producing transparent gas barrier film
JP2008195992A (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method, sheet with gas barrier property and its manufacturing method
Zhang et al. Adhesion and thermal stability enhancement of IZO films by adding a primer layer on polycarbonate substrate
JP5617358B2 (en) Method for producing vapor deposition film
JP6171542B2 (en) Gas barrier film and method for producing gas barrier film
JP2009143759A (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method
JP2009138248A (en) Raw powder for ion plating evaporation source material, ion plating evaporation source material and method for producing the same, gas barrier sheet and method for producing the same
JP4936064B2 (en) Gas barrier film and method for producing the same
JP4873168B2 (en) Method for producing gas barrier film
JP2012072456A (en) Vapor deposition material
JP4269664B2 (en) Method for producing barrier film having converting aptitude
JP5206111B2 (en) Raw material powder for ion plating evaporation source material, ion plating evaporation source material and manufacturing method thereof, and gas barrier sheet manufacturing method
TWI540042B (en) Metallic glass-ceramics multilayer film and method for fabricating the same
CN115466926A (en) Silver alloy target material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees