JP5617358B2 - Method for producing vapor deposition film - Google Patents

Method for producing vapor deposition film Download PDF

Info

Publication number
JP5617358B2
JP5617358B2 JP2010130737A JP2010130737A JP5617358B2 JP 5617358 B2 JP5617358 B2 JP 5617358B2 JP 2010130737 A JP2010130737 A JP 2010130737A JP 2010130737 A JP2010130737 A JP 2010130737A JP 5617358 B2 JP5617358 B2 JP 5617358B2
Authority
JP
Japan
Prior art keywords
film
silicon oxide
electron beam
vapor deposition
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010130737A
Other languages
Japanese (ja)
Other versions
JP2011256419A (en
Inventor
綾野 町田
綾野 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010130737A priority Critical patent/JP5617358B2/en
Publication of JP2011256419A publication Critical patent/JP2011256419A/en
Application granted granted Critical
Publication of JP5617358B2 publication Critical patent/JP5617358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica

Description

本発明は、ガスバリア性を有する蒸着フィルムに係り、より詳しくは、例えば生鮮食品、加工食品、医療品、医療機器、電子部品等の包装用フィルムの少なくとも片面に無機化合物層を形成された蒸着フィルムおよびその製造方法に関する。   The present invention relates to a vapor-deposited film having gas barrier properties, and more specifically, for example, a vapor-deposited film in which an inorganic compound layer is formed on at least one surface of a packaging film such as fresh food, processed food, medical products, medical equipment, and electronic parts. And a manufacturing method thereof.

食品、医療・医薬品などの包装材料分野や液晶、有機ELなどのフラットパネルディスプレイ用樹脂基板等のエレクトロニクス分野においては、高度のガスバリア性をもつことが求められている。この観点からアルミニウムなどの金属、あるいは酸化ケイ素、酸化アルミニウム、酸化マグネシウムなどの金属酸化物を高分子フィルム基材上に真空成膜させたガスバリア性フィルムが使用されている。
ガスバリア性を有する金属酸化物の中でも、酸化ケイ素は特にガスバリア性に優れており、原料であるケイ素は地球上に豊富に存在するため安価で取引され、供給が安定している。
一方、真空で成膜する方法には、スパッタ法、イオンプレーティング法、CVD法、真空蒸着法等が挙げられるが、成膜速度やコスト面において、真空蒸着法が最も優れている。特に電子ビーム式では成膜速度を照射面積や電子ビーム電流等で制御しやすく、材料を局部的に加熱させられるため、短時間で熱を与えられる点で有効である。
酸化ケイ素を蒸発源として、電子ビーム方式の真空蒸着法で蒸着フィルムを作成する手法は、多数提案されてきた(例えば、下記特許文献1〜5を参照)。
In the field of packaging materials such as food, medicine and pharmaceuticals, and electronics such as resin substrates for flat panel displays such as liquid crystal and organic EL, it is required to have a high gas barrier property. From this point of view, a gas barrier film in which a metal such as aluminum or a metal oxide such as silicon oxide, aluminum oxide, and magnesium oxide is vacuum-deposited on a polymer film substrate is used.
Among metal oxides having gas barrier properties, silicon oxide is particularly excellent in gas barrier properties, and silicon, which is a raw material, is abundant on the earth, so it is traded inexpensively and supply is stable.
On the other hand, examples of the method for forming a film in a vacuum include a sputtering method, an ion plating method, a CVD method, and a vacuum evaporation method, but the vacuum evaporation method is most excellent in terms of film formation speed and cost. In particular, the electron beam method is effective in that the film formation rate can be easily controlled by the irradiation area, the electron beam current, and the like, and the material can be heated locally, so that heat can be applied in a short time.
Many methods have been proposed for producing a deposited film by an electron beam vacuum deposition method using silicon oxide as an evaporation source (see, for example, Patent Documents 1 to 5 below).

電子ビーム方式での真空蒸着によって蒸着フィルムを生産する場合において、巻取り式の蒸着機を用いて長尺、広幅のフィルムに蒸着し、一度に大量に蒸着フィルムの生産を行うのが一般的である。巻取り式の蒸着機において生産を行う場合、基材フィルムの巻m数は小型の蒸着機で数百m、大型の蒸着機では数万mにも及ぶ。基材フィルムの幅は小型の蒸着機では1m以内となるが、大型では約2mに及ぶ。
生産にあたっては、バリア性、透明性等の目的に応じて膜厚、光線透過率等を制御しながら加工する必要がある。制御項目には、電子ビームだけでも電流、パターン、照射面積等があり、同じ条件でも材料によって蒸発プロセスが異なる為、制御は容易ではない。特に長尺で加工する際には、成膜開始から終了まで一定の膜にする必要があり、広幅での加工に際しては、幅方向でのばらつきを極力抑えて加工することが望ましい。いずれもフィルムの歩留まりを上げるためである。加えて、コストダウンのために加工時間を短縮すべく、フィルムの巻取速度も可能な限り上げることが望ましい。
幅方向の成膜の制御に関して、特許文献6にて提案がなされているが、蒸着加工幅500mm以上に対して電子ビームを2つ以上要するため、プロセスが複雑化する上に、コストがかかってしまう。そして膜質の均一性を確保するには至っていない。
材料面では特許文献7にて、材料中の2種類の蒸着成分の割合に高さ方向で傾斜をつけることが提案されているが、大量生産に向いた手法ではない。
When producing a vapor-deposited film by electron beam vacuum deposition, it is common to deposit a large amount of vapor-deposited film at once by depositing it on a long and wide film using a wind-up type vapor deposition machine. is there. When production is performed in a wind-up type vapor deposition machine, the number of m of the base film is several hundreds of meters for a small vapor deposition machine, and several tens of thousands m for a large vapor deposition machine. The width of the base film is less than 1 m for a small vapor deposition machine, but about 2 m for a large film.
In production, it is necessary to process the film while controlling the film thickness, light transmittance, and the like according to the purposes such as barrier properties and transparency. Control items include current, pattern, irradiation area, etc. even with an electron beam alone, and control is not easy because the evaporation process varies depending on the material even under the same conditions. In particular, when processing with a long length, it is necessary to form a constant film from the start to the end of film formation. When processing with a wide width, it is desirable to perform processing while suppressing variations in the width direction as much as possible. Both are for increasing the film yield. In addition, it is desirable to increase the film winding speed as much as possible in order to shorten the processing time for cost reduction.
Regarding the control of film formation in the width direction, a proposal has been made in Patent Document 6. However, since two or more electron beams are required for a deposition processing width of 500 mm or more, the process is complicated and costly. End up. And the film quality uniformity has not been ensured.
In terms of materials, Patent Document 7 proposes that the ratio of two kinds of vapor deposition components in a material is inclined in the height direction, but this is not a method suitable for mass production.

特許第3230370号公報Japanese Patent No. 3230370 特許第3747498号公報Japanese Patent No. 3747498 特開平9−169075号公報Japanese Patent Laid-Open No. 9-169075 特開平7−34224号公報JP-A-7-34224 特開昭63−166965号公報JP-A 63-166965 特開平9−287074号公報Japanese Patent Laid-Open No. 9-287074 特開平11−189864号公報JP-A-11-189864

本発明の目的は、酸化ケイ素を蒸発源とした電子ビーム式の真空蒸着装置にて高分子フィルムからなる基材上に無機化合物層を成膜する場合において、巾方向での膜質が安定した蒸着フィルムを提供することにある。   An object of the present invention is to deposit a film having a stable film quality in the width direction when an inorganic compound layer is formed on a substrate made of a polymer film by an electron beam vacuum deposition apparatus using silicon oxide as an evaporation source. To provide a film.

上記の課題を解決するための手段として、請求項1に記載の発明は、高分子フィルムからなる基材の少なくとも片面に、蒸発源として酸化ケイ素、または、ケイ素と酸化ケイ素との混合物を用いた電子ビーム式真空蒸着法により、SiOxからなる無機化合物層を形成する、前記基材の巾方向でのO/Si比分布において最大値と最小値の差が0.1以下である蒸着フィルムの製造方法において、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端25%の密度が、1.0〜1.6g/cm 3 であり、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%の密度が、前記両端の密度と比較して10〜40%低く、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端の25%のO/Si比が、1.2以上1.7以下であり、かつ、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%のO/Si比が、前記両端の25%のO/Si比と比較して10〜40%高い
ことを特徴とする蒸着フィルムの製造方法である。
As means for solving the above-mentioned problems, the invention according to claim 1 uses silicon oxide or a mixture of silicon and silicon oxide as an evaporation source on at least one side of a substrate made of a polymer film. In the method for producing a deposited film, wherein an inorganic compound layer made of SiOx is formed by an electron beam vacuum deposition method, and the difference between the maximum value and the minimum value is 0.1 or less in the O / Si ratio distribution in the width direction of the substrate. ,
In the silicon oxide that is the evaporation source or a mixture of silicon and silicon oxide, the density of 25% at both ends of the electron beam irradiation width is 1.0 to 1.6 g / cm 3 ,
In the silicon oxide that is the evaporation source or a mixture of silicon and silicon oxide, the density of the center 50% of the electron beam irradiation width is 10 to 40% lower than the density of the both ends,
In the silicon oxide as the evaporation source or a mixture of silicon and silicon oxide, the 25% O / Si ratio at both ends of the electron beam irradiation width is 1.2 or more and 1.7 or less, and
In the silicon oxide that is the evaporation source or a mixture of silicon and silicon oxide, the O / Si ratio of the center 50% of the electron beam irradiation width is 10 to 10% compared with the O / Si ratio of 25% at both ends. 40% higher
It is the manufacturing method of the vapor deposition film characterized by the above-mentioned.

本発明によれば、酸化ケイ素を蒸発源とした電子ビーム式の真空蒸着装置にて高分子フィルムからなる基材上に無機化合物層を成膜する場合において、巾方向での膜質が安定した蒸着フィルムを提供することができる。   According to the present invention, when an inorganic compound layer is formed on a substrate made of a polymer film with an electron beam vacuum deposition apparatus using silicon oxide as an evaporation source, deposition with stable film quality in the width direction is performed. A film can be provided.

以下、本発明の詳細を説明する。
本発明の蒸着フィルムは、高分子フィルムからなる基材と、この基材の少なくとも片面に電子ビーム式真空蒸着法によりSiOxが成膜された無機化合物層とを備える蒸着フィルムにおいて、前記無機化合物層のO/Si比(原子比)が1.65以上1.95以下であり、かつ、前記基材の巾方向でのO/Si比分布において最大値と最小値の差が0.1以下であることを特徴とする蒸着フィルムである。
Details of the present invention will be described below.
The vapor-deposited film of the present invention is a vapor-deposited film comprising a substrate made of a polymer film and an inorganic compound layer in which SiOx is formed on at least one surface of the substrate by an electron beam vacuum vapor deposition method. The O / Si ratio (atomic ratio) is 1.65 or more and 1.95 or less, and the difference between the maximum value and the minimum value is 0.1 or less in the O / Si ratio distribution in the width direction of the substrate. It is a deposited film.

本発明で使用される基材は、高分子フィルムであり、特に限定はされない。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリエチレンやポリプロピレンなどのポリオレフィンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリアクリルニトリルフィルム、ポリイミドフィルム等が用いられ、延伸、未延伸のどちらでも良く、また機械的強度や寸法安定性を有するものが良い。特に二軸方向に任意に延伸されたPETが好ましく用いられる。
基材の表面に、帯電防止剤、紫外線防止剤、可塑剤、滑材などが使用されていても良く、薄膜との密着性を良くするために前処理としてコロナ処理、低温プラズマ処理などを施しておいても良い。
The substrate used in the present invention is a polymer film and is not particularly limited. For example, polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polystyrene films, polyamide films, polyvinyl chloride films, polycarbonate films, polyacrylonitrile films, polyimide films, etc. It is used and may be either stretched or unstretched, and has mechanical strength and dimensional stability. In particular, PET arbitrarily stretched in the biaxial direction is preferably used.
The surface of the base material may be used with antistatic agents, anti-ultraviolet agents, plasticizers, lubricants, etc. Corona treatment, low-temperature plasma treatment, etc. are performed as pretreatments to improve adhesion to the thin film. You can keep it.

また、基材と下記で説明する無機化合物層との間にアクリルポリオール、ポリエステル、イソシアネート化合物等の非水性樹脂、ポリビニルアルコール(PVA)、でんぷん、セルロース、ポリアクリル酸、エチレンビニルアルコール樹脂等の水溶性樹脂からなるアンカーコート層を設けても良く、これにより基材と無機化合物層との密着性を良くするだけでなく、表面を平滑にすることで無機化合物層を欠陥なく成膜し、さらに無機化合物層の微小なバリア欠陥を補助しバリア性を向上することができる。   Also, non-aqueous resins such as acrylic polyol, polyester and isocyanate compounds, polyvinyl alcohol (PVA), starch, cellulose, polyacrylic acid, ethylene vinyl alcohol resin, etc. between the base material and the inorganic compound layer described below An anchor coat layer made of a functional resin may be provided, whereby not only the adhesion between the base material and the inorganic compound layer is improved, but also the inorganic compound layer is formed without defects by smoothing the surface. The barrier property can be improved by assisting minute barrier defects in the inorganic compound layer.

無機化合物層の上にオーバーコート層を設けても良く、オーバーコート層の存在によって、硬く脆い傾向のある蒸着膜を保護し擦れや屈曲によるクラックを防止することができる。   An overcoat layer may be provided on the inorganic compound layer, and the presence of the overcoat layer can protect a vapor-deposited film that tends to be hard and brittle and prevent cracks due to rubbing and bending.

上記基材の厚みは特に制限を受けるものではないが、包装材料としての適性、他の層を積層する可能性があることを考えると、6〜30μmの厚みが好ましい。   The thickness of the base material is not particularly limited, but considering the suitability as a packaging material and the possibility of laminating other layers, a thickness of 6 to 30 μm is preferable.

本発明で成膜されるSiOxの無機化合物層は、電子ビーム式真空蒸着の蒸発源に酸化ケイ素ならびに必要に応じてケイ素を用いることによって得ることができ、酸化ケイ素には主にSiO、SiO2の2種類がある。但し、SiOはSiO2を原料として製造されるために原料費が高く、SiOを用いずに成膜できるほうが、少なくとも原料費の上ではコストダウンとなり、望ましい。粉末の種類を1種類に限定して材料としても良いが、特に価格が安く、Si、SiO2の2種類を混合させた材料において、蒸発プロセス及びSiOxのxの値を制御しやすく、すなわち膜厚や透明性を制御しやすい。 Inorganic compound layer of SiOx is deposited in the present invention may optionally oxidized silicon and necessary to the evaporation source of the electron-beam vacuum deposition can be obtained by using a silicon mainly SiO is silicon oxide, SiO 2 There are two types. However, since SiO is produced using SiO 2 as a raw material, the cost of the raw material is high, and it is desirable that the film can be formed without using SiO at least in terms of the raw material cost. The material may be limited to only one type of powder, but the price is particularly low, and in a material in which two types of Si and SiO 2 are mixed, it is easy to control the evaporation process and the value of x of SiOx, that is, a film Easy to control thickness and transparency.

蒸発源となる蒸着材料の形状としては、粉状、粒状、成形体等が考えられる。粒状及び成形体は粉末から製造されるため、粉状が原料費の上では最もコストを抑えられるが、ハンドリング性に乏しいためにるつぼ中に均一に充填しにくく、安定性を出しにくい場合があり、一般に電子ビーム式の真空蒸着に最も適した形状は成形体と考えられる。   As the shape of the vapor deposition material serving as the evaporation source, powder, granule, molded body, and the like can be considered. Granules and compacts are manufactured from powder, so powder is the least expensive in terms of raw material costs, but because of poor handling properties, it may be difficult to fill the crucible uniformly and stability may not be achieved. In general, a shape most suitable for electron beam vacuum deposition is considered to be a molded body.

用いる粉末は、粒径は特に制限しない。一般にSiは平均粒径が約6〜20μm、SiO2は約1〜20μm程度のグレードが市販されている。平均粒径や粒度分布の山がシャープかワイドか等の特性は、分散性、材料かさ密度、蒸発のプロセス等に影響を及ぼすため、選定が必要である。2種以上のグレードを混合させて用いる場合は組み合わせに留意しなければならない。 The particle size of the powder used is not particularly limited. In general, Si has an average particle diameter of about 6 to 20 μm, and SiO 2 has a grade of about 1 to 20 μm. The characteristics such as whether the average particle size and the peak of the particle size distribution are sharp or wide affect the dispersibility, material bulk density, evaporation process, etc., so selection is necessary. When using a mixture of two or more grades, attention must be paid to the combination.

このうち材料かさ密度に関しては、同じ体積の材料から同じ蒸着膜厚を得る場合、単純にはかさ密度の小さい材料のほうが、材料の体積上の減少が早い。従って、かさ密度が小さいほど、材料が底をつき、電子ビームで底を撃ってしまいやすいといえる。そのため、材料送り速度を早くせざるを得なくなり、蒸着プロセスに影響を及ぼすだけでなく、短時間で材料が無くなるため、長尺で加工することができないケースが生じる。逆にかさ密度が高すぎると、材料の減りは遅くとも、電子ビームでの材料加熱に時間を要し、蒸発開始が遅くなる危険性がある。材料かさ密度は、高すぎても低すぎても不具合を生じるため、生産機や蒸着フィルムの仕様等に合わせて適宜設計することが望ましい。   Among these, regarding the material bulk density, when the same vapor deposition film thickness is obtained from the same volume of material, the material with a lower bulk density simply decreases more rapidly in the volume of the material. Therefore, it can be said that the smaller the bulk density is, the more the material is bottomed and the bottom is easily shot with an electron beam. For this reason, the material feeding speed must be increased, which not only affects the vapor deposition process, but also causes a case where the material cannot be processed in a long length because the material is lost in a short time. On the other hand, if the bulk density is too high, it takes time to heat the material with an electron beam, even if the material is slowly reduced, and there is a risk that the start of evaporation will be delayed. If the material bulk density is too high or too low, a problem occurs. Therefore, it is desirable that the material bulk density is appropriately designed according to the specifications of the production machine and the vapor deposition film.

さて、成形体の製造方法は、流し込み法、ラバープレス法などの成形のみを行う方法と、ホットプレス法、熱間静水圧加圧法(HIP)など成形と同時に加圧焼結を行う方法があり、後者の方法を用いると緻密化の起こる温度が下がり異常粒成長のない均一な粒径からなる高密度な焼結体を得ることができるが、本発明では特に限定しない。焼結時の雰囲気としては真空雰囲気、窒素雰囲気、アルゴン雰囲気、大気雰囲気などがある。本発明では特に限定しないが、無機化合物層の主成分をSi、Oとするため、雰囲気中のガスと蒸着材料の反応が無いほうが望ましい。かさ密度を調整する方法としては、選択する粉末の粒径のほか、粉末を成形体とする際の製造方法によって調整することができる。例えば、水等と混合してスラリー状とする場合は、水分との混合比により調整される。また、プレス法などで押し固める場合は、その圧力により調整される。また、バインダーとして添加剤を用いる場合には、添加剤が空隙に充填されて、密度を高くさせることができる。   There are two methods for producing a molded body: a method of performing only molding such as a casting method and a rubber press method, and a method of performing pressure sintering simultaneously with molding such as a hot press method and a hot isostatic pressing method (HIP). When the latter method is used, a high-density sintered body having a uniform particle size with no abnormal grain growth can be obtained because the temperature at which densification occurs, but the present invention is not particularly limited. The atmosphere during sintering includes a vacuum atmosphere, a nitrogen atmosphere, an argon atmosphere, an air atmosphere, and the like. Although not particularly limited in the present invention, since the main component of the inorganic compound layer is Si or O, it is desirable that the gas in the atmosphere does not react with the vapor deposition material. As a method for adjusting the bulk density, in addition to the particle size of the powder to be selected, the bulk density can be adjusted by a production method for forming the powder into a molded body. For example, when mixing with water etc. and making it into a slurry form, it adjusts with the mixing ratio with a water | moisture content. Moreover, when pressing and hardening by the press method etc., it adjusts with the pressure. Moreover, when using an additive as a binder, an additive is filled in a space | gap and it can make a density high.

成膜される無機化合物層であるSiOxのxは膜のO/Si比であり、1.65〜1.95の数値を取ることが好ましい。1.95より大きい場合、性質がSiO2に近くなり、透明性が増すが、バリア性に欠けてしまうが、1.65より小さい場合、バリア性は上がるが、膜が黄色を呈して透明性が欠けてしまうという、相反する関係がある。これは、蒸着法の原理として、加熱されて蒸発したSiOxが基材上に物理的に堆積するためであり、その結果堆積時の隙間がガスバリア性能を決定する因子となる。そのため、xの値が小さいとフィルム上のSiOxの原子間ネットワークが密になってガスバリア性が発現し、反対にxの値が大きいと原子間ネットワークが疎になりガスバリア性が発現しないと推察される。
そこで、目的に応じて適切なx値にするべく、蒸着材料の処方設定、真空蒸着の機械条件設定を行う必要がある。例えば蒸着材料では材料のO/Si比が一般に高いほど、蒸着膜のO/Si比も高くなる。機械条件では例えば、真空蒸着中に成膜室に酸素あるいは水を適度に導入し、調整することが可能であるが、成膜室の圧力が電子ビームを使用できなくなるほど上昇してしまう場合もあり、技術確立の難易度が高い。
The x of SiOx that is the inorganic compound layer to be formed is the O / Si ratio of the film, and preferably takes a numerical value of 1.65 to 1.95. If it is larger than 1.95, the property becomes close to SiO 2 and the transparency is increased, but the barrier property is lacking, but if it is smaller than 1.65, the barrier property is increased, but the film exhibits a yellow color and lacks transparency. There is a conflicting relationship. This is because, as a principle of the vapor deposition method, heated and evaporated SiOx is physically deposited on the substrate, and as a result, the gap during the deposition becomes a factor determining the gas barrier performance. Therefore, if the value of x is small, the interatomic network of SiOx on the film becomes dense and gas barrier properties appear, and conversely, if the value of x is large, the interatomic network becomes sparse and gas barrier properties do not appear. The
Therefore, in order to obtain an appropriate x value according to the purpose, it is necessary to set vapor deposition material prescription and vacuum vapor deposition machine conditions. For example, in vapor deposition materials, the higher the O / Si ratio of the material, the higher the O / Si ratio of the deposited film. Under mechanical conditions, for example, oxygen or water can be appropriately introduced and adjusted in the film formation chamber during vacuum deposition, but the pressure in the film formation chamber may increase so that the electron beam cannot be used. Yes, it is difficult to establish technology.

ところで、蒸着フィルムを大量に生産する場合の真空蒸着は、歩留まり向上のため出来るだけ長尺、広幅での加工が望ましい。しかし電子ビームの数に対して、加工の必要な蒸着幅が長いと、巾方向に膜厚、膜質ともに精度良く成膜することが難しくなる。
まず、膜厚を等しくするためには、単純に考えた場合には基材の真下の材料の蒸発量が等しくなれば良い訳であるが、それのみでは、蒸着幅の中央の膜厚が厚くなり、両端の膜厚は薄くなってしまう。蒸発した材料は、真上だけに成膜されるのではなく、真上を中心とした蒸着幅全体に成膜され、膜厚に分布が生じるためである。そのため、材料及び蒸着幅の両端の蒸発量を増やす必要が出てくるが、手段としては電子ビームの軌道のうち、端の照射時間を増やすことが一例に考えられる。しかしその場合、端の蒸発が多い、すなわち材料の減りが早くなってしまうことになる。材料が底をつくと、蒸発量が減るのはもちろん、スプラッシュが発生しやすくなり、基材に微小な孔や凹凸を作ることにもつながる。材料の送り速度を速めることで、底をつくことは防止可能であるが、その場合には材料の中央部分が余剰になってしまい、材料の歩留まりを下げることになる。部分的に照射時間を過剰に長くすると、材料にかかる熱量も過剰になり、それが突沸や材料の飛散につながり、スプラッシュの発生に至る危険性が高くなる。
By the way, in the case of producing a large amount of vapor-deposited films, it is desirable that the vacuum vapor-deposition is performed as long and wide as possible to improve the yield. However, if the deposition width required for processing is long with respect to the number of electron beams, it is difficult to form a film with high accuracy in both the film thickness and film quality in the width direction.
First, in order to make the film thicknesses equal, it is only necessary that the amount of evaporation of the material immediately below the base material be equal when considered simply. However, with that alone, the film thickness at the center of the deposition width is thick. Thus, the film thickness at both ends becomes thin. This is because the evaporated material does not form a film directly above, but forms a film over the entire vapor deposition width centering directly above, resulting in a distribution of film thickness. For this reason, it is necessary to increase the amount of evaporation at both ends of the material and the vapor deposition width. However, as an example, it is conceivable to increase the irradiation time at the end of the electron beam trajectory. However, in that case, the evaporation at the edge is large, that is, the material is rapidly reduced. If the material reaches the bottom, not only will the amount of evaporation decrease, but it will also be more likely to generate splash, leading to the creation of minute holes and irregularities in the substrate. Increasing the feed rate of the material can prevent bottoming, but in that case, the central portion of the material becomes redundant, and the yield of the material is lowered. If the irradiation time is partially increased excessively, the amount of heat applied to the material also becomes excessive, which leads to bumping and scattering of the material, and increases the risk of causing splash.

また、電子ビームの数に対する蒸着幅が広いほど、ガスバリア性や透明性などの膜質にも分布が発生しやすい。理由として、蒸発した材料が基材に到達する向きが巾方向で異なるため、蒸着膜が成長する方向が変化すること、また、蒸着材料への電子ビームの照射条件が巾方向で等しくないため、照射角度や材料の蒸発プロセスが巾方向で異なり、成膜される物質の物性が異なってしまうこと等が考えられる。
電子ビームの数を増やすと、巾方向の分布は減らしやすくなるものの、装置上のコストダウンの観点から、無闇に増すことなく分布を減らすことができるほうが望ましい。
In addition, the wider the deposition width with respect to the number of electron beams, the more easily the distribution occurs in the film quality such as gas barrier properties and transparency. The reason is that the direction in which the evaporated material reaches the substrate is different in the width direction, the direction in which the vapor deposition film grows changes, and the irradiation condition of the electron beam to the vapor deposition material is not equal in the width direction. It is conceivable that the irradiation angle and the material evaporation process are different in the width direction, and the physical properties of the substances to be formed are different.
Increasing the number of electron beams makes it easier to reduce the distribution in the width direction, but from the viewpoint of cost reduction on the apparatus, it is desirable that the distribution can be reduced without increasing it.

そこで、本発明は、O/Si比または密度の異なる無機化合物層の蒸発源を、電子ビーム照射巾方向に配置することで、巾方向の分布を減らすことができる。
具体的には、蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端25%の密度が、1.0〜1.6g/cm3であり、蒸発源である酸化ケイ素における、電子ビーム照射巾の中央50%の密度が、前記両端の密度と比較して10〜40%低いことが好ましい。また、蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端の25%のO/Si比が、1.2以上1.7以下であり、かつ、前記蒸発源である酸化ケイ素における、電子ビーム照射巾の中央50%のO/Si比が、前記両端の25%のO/Si比と比較して10〜40%高いことが好ましい。
ここで、電子ビーム照射巾の両端25%とは、例えば、蒸発源への電子ビームの照射巾が480mmの場合、電子ビーム照射巾の両端から中央に向かって120mm(電子ビーム照射巾の25%に相当)の位置まで範囲のことをいう。また、電子ビーム照射巾の中央50%とは、例えば、蒸発源への電子ビームの照射巾が480mmの場合、電子ビーム照射巾の中央から両端に向かってそれぞれ120mm(電子ビーム照射巾の25%に相当)位置までの範囲のことをいう。
上述のように、蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端25%の密度が、1.0〜1.6g/cm3であり、蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%の密度が、前記両端の密度と比較して10〜40%低い場合、および/または、蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端の25%のO/Si比が、1.2以上1.7以下であり、かつ、前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%のO/Si比が、前記両端の25%のO/Si比と比較して10〜40%高いことにより、膜成分のO/Si比の分布を抑え、歩留まり向上と色味のばらつき防止を図ることができる。
Therefore, according to the present invention, the distribution in the width direction can be reduced by arranging the evaporation sources of the inorganic compound layers having different O / Si ratios or densities in the electron beam irradiation width direction.
Specifically, the density of 25% at both ends of the electron beam irradiation width in a silicon oxide that is an evaporation source or a mixture of silicon and silicon oxide is 1.0 to 1.6 g / cm 3 , and an oxidation that is an evaporation source. It is preferable that the density at the center of the electron beam irradiation width in silicon is 10 to 40% lower than the density at both ends. Further, in the silicon oxide as the evaporation source or a mixture of silicon and silicon oxide, the O / Si ratio of 25% at both ends of the electron beam irradiation width is 1.2 or more and 1.7 or less, and the evaporation source In the silicon oxide, it is preferable that the O / Si ratio of the center 50% of the electron beam irradiation width is 10 to 40% higher than the O / Si ratio of 25% at both ends.
Here, 25% of both ends of the electron beam irradiation width is, for example, 120 mm from the both ends of the electron beam irradiation width to the center when the irradiation width of the electron beam to the evaporation source is 480 mm (25% of the electron beam irradiation width) It corresponds to the range of position). Also, the center 50% of the electron beam irradiation width means that, for example, when the electron beam irradiation width to the evaporation source is 480 mm, the distance from the center of the electron beam irradiation width to both ends is 120 mm (25% of the electron beam irradiation width). It corresponds to the range up to the position.
As described above, the density of 25% at both ends of the electron beam irradiation width in the silicon oxide as the evaporation source or a mixture of silicon and silicon oxide is 1.0 to 1.6 g / cm 3 , and the oxidation as the evaporation source Silicon or a mixture of silicon and silicon oxide, when the density of the center 50% of the electron beam irradiation width is 10 to 40% lower than the density at both ends, and / or silicon oxide as an evaporation source Or, in a mixture of silicon and silicon oxide, the O / Si ratio of 25% at both ends of the electron beam irradiation width is 1.2 or more and 1.7 or less, and the silicon oxide that is the evaporation source or silicon and oxidation In the mixture with silicon, the O / Si ratio of the center 50% of the electron beam irradiation width is 10 to 40% higher than the O / Si ratio of 25% at both ends, so that the O / Si ratio of the film components Distribution can be suppressed, yield can be improved, and variation in color can be prevented.

以下、本発明を実施例及び比較例によりさらに説明するが、本発明は下記例に制限されない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

Si(平均粒径10μm)、SiO2(平均粒径8μm)を材料のO/Si比が1.3及び1.5となるように混合し、更に水、シリカゾルを混合し、スラリーを調整し、このスラリーを型に流し込み、それぞれ成形した。この成形物を乾燥及び熱処理して蒸着材料とし、かさ密度を測定した後に、材料粉末のO/Si比をエネルギー分散型X線分光分析装置(JDE-2300 JEOL社製)を用いて求めた。測定した結果を表1に示す。
さらに電子ビーム加熱方式の巻き取り式蒸着装置を用いて、作成した蒸着材料を、12μm厚のポリエステルフィルムに、巻き取り速度200nm・m/s、蒸着巾480mm、ビーム数1つで真空蒸着させ、実施例1の蒸着フィルムを得た。このとき、O/Si比の大きい材料(1.5)をビーム中央の300mmに配置し(蒸着巾480mm中、両端部90mmを除く中央部分の巾300mmに相当する部分)、小さい材料(1.3)をその両端に配置した(前記両端部90mm相当する部分)。
次に、得られた蒸着フィルムの酸素透過度(ml/m2・day・MPa)及び水蒸気透過度(g/m2・day)を、酸素透過度測定装置(OXTRAN 2/20、mocon社製、30℃70%RH)または水蒸気透過度測定装置(PERMATRAN 3/30、mocon社製、40℃90%RH)で測定した。得られた結果を表1に示す。また、膜組成を蒸着巾の中央(0mm)および中央からポンプ側(P側)に向かって40mm、90mm、140mm、190mm、中央からギア側(G側)に向かって40mm、90mm、140mm、190mm、の9点をXPS(日本電子製 JPS-90SXV)にて計測し、O/Si比を求めた。得られた結果を表1及び表2に示す。
Si (average particle size 10 μm) and SiO 2 (average particle size 8 μm) are mixed so that the O / Si ratio of the material is 1.3 and 1.5, and water and silica sol are further mixed to prepare a slurry. Poured into molds and molded respectively. This molded product was dried and heat-treated to form a vapor deposition material, and after measuring the bulk density, the O / Si ratio of the material powder was determined using an energy dispersive X-ray spectrometer (manufactured by JDE-2300 JEOL). Table 1 shows the measurement results.
Furthermore, using the electron beam heating type wind-up type vapor deposition device, the created vapor deposition material was vacuum-deposited on a 12 μm thick polyester film with a winding speed of 200 nm · m / s, a vapor deposition width of 480 mm, and one beam. The vapor deposition film of Example 1 was obtained. At this time, a material (1.5) having a large O / Si ratio is arranged at 300 mm in the center of the beam (a portion corresponding to a width of 300 mm at the central portion excluding both ends 90 mm in the deposition width 480 mm), and a small material (1.3) It arrange | positioned at both ends (the part corresponded to the said both ends 90mm).
Next, the oxygen permeability (ml / m 2 · day · MPa) and water vapor permeability (g / m 2 · day) of the vapor-deposited film thus obtained were measured using an oxygen permeability measuring device (OXTRAN 2/20, manufactured by mocon). , 30 ° C. and 70% RH) or a water vapor permeability measuring device (PERMATRAN 3/30, manufactured by mocon, 40 ° C. and 90% RH). The obtained results are shown in Table 1. In addition, the film composition is 40mm, 90mm, 140mm, 190mm from the center (0mm) and from the center to the pump side (P side), and 40mm, 90mm, 140mm, 190mm from the center to the gear side (G side). 9 points were measured with XPS (JPS-90SXV manufactured by JEOL Ltd.) to obtain the O / Si ratio. The obtained results are shown in Tables 1 and 2.

蒸着材料の粉末のO/Si比が1.4及び1.75であること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例2の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   A molded body was prepared and vapor-deposited by the same method as in Example 1 except that the O / Si ratio of the powder of the vapor-deposited material was 1.4 and 1.75, and a vapor-deposited film of Example 2 was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

蒸着材料の粉末のO/Si比が1.5及び1.65であること、ポリエステルフィルムの厚みが12μmであること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例3の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Except that the powder of the vapor deposition material has an O / Si ratio of 1.5 and 1.65, and the thickness of the polyester film is 12 μm, a molded body is prepared and vapor-deposited by the same method as in Example 1, and the vapor deposition of Example 3 A film was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

蒸着材料の粉末のO/Si比が1.5及び1.7であること、蒸着巾が1020mmであること、ビームの数が2つであること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例4の蒸着フィルムを得た。なおこのとき、O/Si比の大きい材料(1.7)をビーム中央の300mm、すなわち2ヶ所に配置し、小さい材料(1.5)をその両端及びO/Si比の大きい材料の間に配置した。成形体及び蒸着フィルムの評価は、膜組成を蒸着巾の中央(0mm)および中央からポンプ側(P側)に向かって60mm、160mm、260mm、360mm、460mm、中央からギア側(G側)に向かって60mm、160mm、260mm、360mm、460mm、の11点を実施例1と同じ方法で行った。各測定値は表3に示す。   Vapor deposition material powder with O / Si ratio of 1.5 and 1.7, vapor deposition width of 1020mm, and the number of beams is two. Then, the vapor deposition film of Example 4 was obtained. At this time, the material (1.7) having a large O / Si ratio was arranged at 300 mm in the center of the beam, that is, at two places, and the material (1.5) having a small O / Si ratio was arranged between both ends and a material having a large O / Si ratio. Evaluation of molded body and vapor deposition film is as follows: film composition is 60mm, 160mm, 260mm, 360mm, 460mm from center to gear side (G side) from the center of vapor deposition width (0mm) to the pump side (P side) Eleven points of 60 mm, 160 mm, 260 mm, 360 mm, and 460 mm were performed in the same manner as in Example 1. Each measured value is shown in Table 3.

ポリウレタン系樹脂からなるアンカーコート層を設けられたポリエステルフィルムを蒸着基材として用いたこと以外は実施例1と同じ方法で成形体を作成して蒸着を行い、実施例5の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Except that a polyester film provided with an anchor coat layer made of a polyurethane resin was used as a vapor deposition base material, a molded body was prepared and vapor-deposited by the same method as in Example 1 to obtain a vapor-deposited film of Example 5. . The molded body and the deposited film were evaluated in the same manner as in Example 1.

蒸着膜上に水溶性高分子からなるオーバーコート層を設けたこと以外は実施例5と同じ方法で成形体を作成して蒸着を行い、実施例6の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Except that an overcoat layer made of a water-soluble polymer was provided on the vapor-deposited film, a molded body was prepared and vapor-deposited by the same method as in Example 5 to obtain a vapor-deposited film of Example 6. The molded body and the deposited film were evaluated in the same manner as in Example 1.

比較例1Comparative Example 1

蒸着材料の粉末のO/Si比が1.6及び1.8であること以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例1の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   A molded body was prepared and vapor-deposited by the same method as in Example 1 except that the O / Si ratio of the powder of the vapor deposition material was 1.6 and 1.8, and a vapor deposition film of Comparative Example 1 was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

比較例2Comparative Example 2

蒸着材料の粉末のO/Si比が1.75のみで、かさ密度の異なる成形体を2つ作成したこと以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例2の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Except that two compacts with different bulk densities were created with the O / Si ratio of the vapor deposition material powder of only 1.75, the compact was prepared and vapor-deposited in the same manner as in Example 1, and the vapor deposition of Comparative Example 2 A film was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

比較例3Comparative Example 3

O/Si比の大きい材料(1.5)をビーム中央の200mmに配置し、小さい材料(1.3)をその両端に配置した以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例3の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Compared to the material with the large O / Si ratio (1.5) placed at 200mm in the center of the beam and with the small material (1.3) placed at both ends, the molded body was prepared and vapor-deposited in the same way as in Example 1 for comparison. The deposited film of Example 3 was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

比較例4Comparative Example 4

O/Si比の大きい材料(1.5)をビーム中央の400mmに配置し、小さい材料(1.3)をその両端に配置した以外は実施例1と同じ方法で成形体を作成して蒸着を行い、比較例4の蒸着フィルムを得た。成形体及び蒸着フィルムの評価は実施例1と同じ方法で行った。   Compared with a material with a large O / Si ratio (1.5) placed at 400 mm in the center of the beam and with a small material (1.3) placed at both ends, a molded body was prepared and vapor-deposited in the same manner as in Example 1 for comparison. The deposited film of Example 4 was obtained. The molded body and the deposited film were evaluated in the same manner as in Example 1.

Figure 0005617358
Figure 0005617358

Figure 0005617358
Figure 0005617358

Figure 0005617358
Figure 0005617358

表1からわかるように、実施例1〜6の蒸着材料はいずれも、膜成分のO/Si比が1.65以上1.95以下であり、かつ、巾方向での分布が±0.05の範囲である蒸着バリアフィルムであり、酸素透過度および水蒸気透過度が、比較例に対して優れていた。   As can be seen from Table 1, each of the vapor deposition materials of Examples 1 to 6 has a vapor deposition barrier in which the O / Si ratio of the film components is 1.65 or more and 1.95 or less and the distribution in the width direction is in the range of ± 0.05. The film was superior in oxygen permeability and water vapor permeability to the comparative example.

Claims (1)

高分子フィルムからなる基材の少なくとも片面に、蒸発源として酸化ケイ素、または、ケイ素と酸化ケイ素との混合物を用いた電子ビーム式真空蒸着法により、SiOxからなる無機化合物層を形成する、前記基材の巾方向でのO/Si比分布において最大値と最小値の差が0.1以下である蒸着フィルムの製造方法において、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端25%の密度が、1.0〜1.6g/cm3であり
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%の密度が、前記両端の密度と比較して10〜40%低く、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の両端の25%のO/Si比が、1.2以上1.7以下であり、かつ、
前記蒸発源である酸化ケイ素、または、ケイ素と酸化ケイ素との混合物における、電子ビーム照射巾の中央50%のO/Si比が、前記両端の25%のO/Si比と比較して10〜40%高い
ことを特徴とする蒸着フィルムの製造方法。
On at least one surface of a substrate made of a polymer film, silicon oxide as an evaporation source, or by electron beam vacuum deposition method using a mixture of silicon and silicon oxide to form an inorganic compound layer composed of SiOx, wherein the group In the method for producing a deposited film in which the difference between the maximum value and the minimum value is 0.1 or less in the O / Si ratio distribution in the width direction of the material ,
In the silicon oxide that is the evaporation source or a mixture of silicon and silicon oxide, the density of 25% at both ends of the electron beam irradiation width is 1.0 to 1.6 g / cm 3 ,
The evaporation source is a silicon oxide or a in the mixture of silicon and silicon oxide, the density of the central 50% of the electron beam irradiation width is 10-40% rather low compared to the density of said end,
In the silicon oxide as the evaporation source or a mixture of silicon and silicon oxide, the 25% O / Si ratio at both ends of the electron beam irradiation width is 1.2 or more and 1.7 or less, and
In the silicon oxide that is the evaporation source or a mixture of silicon and silicon oxide, the O / Si ratio of the center 50% of the electron beam irradiation width is 10 to 10% compared with the O / Si ratio of 25% at both ends. A method for producing a deposited film characterized by being 40% higher .
JP2010130737A 2010-06-08 2010-06-08 Method for producing vapor deposition film Active JP5617358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130737A JP5617358B2 (en) 2010-06-08 2010-06-08 Method for producing vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130737A JP5617358B2 (en) 2010-06-08 2010-06-08 Method for producing vapor deposition film

Publications (2)

Publication Number Publication Date
JP2011256419A JP2011256419A (en) 2011-12-22
JP5617358B2 true JP5617358B2 (en) 2014-11-05

Family

ID=45472928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130737A Active JP5617358B2 (en) 2010-06-08 2010-06-08 Method for producing vapor deposition film

Country Status (1)

Country Link
JP (1) JP5617358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650191B2 (en) 2011-03-31 2017-05-16 Mitsubishi Plastics, Inc. Vapor-deposited film having barrier performance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421064B2 (en) * 1992-12-11 2003-06-30 株式会社アルバック Method and apparatus for producing gas barrier film
JP4539789B2 (en) * 1999-10-26 2010-09-08 東洋紡績株式会社 Vacuum deposition equipment
JP5050879B2 (en) * 2008-01-29 2012-10-17 凸版印刷株式会社 Method for producing transparent gas barrier film
JP5282422B2 (en) * 2008-03-14 2013-09-04 凸版印刷株式会社 Transparent gas barrier film
JP2010076212A (en) * 2008-09-25 2010-04-08 Toppan Printing Co Ltd Gas barrier laminated film
JP2010106307A (en) * 2008-10-29 2010-05-13 Nippon Steel Materials Co Ltd Vapor deposition raw material and method of preparing the same

Also Published As

Publication number Publication date
JP2011256419A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5510766B2 (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and manufacturing method thereof, gas barrier sheet and manufacturing method thereof
CN104350183B (en) Mould base material, the manufacture method of mould base material, the manufacture method of mould and mould
JP4759143B2 (en) Transparent conductive laminate, method for producing the same, and display element using the same
EP0570182B1 (en) Evaporation source material and evaporation method of forming transparent barrier film
CN104067353A (en) Substrate with transparent electrode and method for producing same
TWI491754B (en) Method for manufacturing transparent conductive film
Li et al. Synthesis of Ti–Al–Si–N nanocomposite films using liquid injection PECVD from alkoxide precursors
CN108352217A (en) Light-permeable conductive film and dimming film
Biswas et al. Nanomechanical properties of dip coated indium tin oxide films on glass
JP4877510B2 (en) Raw material powder for ion plating evaporation source material, evaporation source material for ion plating, method for producing the same, and method for producing gas barrier sheet
JP5617358B2 (en) Method for producing vapor deposition film
CN101743267A (en) Multiple-layer film and method for manufacturing the same
Lintymer et al. Glancing angle deposition to control microstructure and roughness of chromium thin films
JP5050879B2 (en) Method for producing transparent gas barrier film
JP5720315B2 (en) Evaluation method of vapor deposition film
Rosenthal et al. Formation of magnetic nanocolumns during vapor phase deposition of a metal-polymer nanocomposite: Experiments and kinetic Monte Carlo simulations
JP5353592B2 (en) Vapor deposition material
JP5510248B2 (en) Vapor deposition material
JP2006348348A (en) Silicon monoxide-based vapor deposition material, and its manufacturing method
TW201621922A (en) Transparent conductive film and its producing method thereof
JP2009143759A (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method
Choi et al. Homogeneous Al2O3 multilayer structures with reinforced mechanical stability for high-performance and high-throughput thin-film encapsulation
TW201402339A (en) Gas-barrier film and manufacturing process thereof
JP2009138248A (en) Raw powder for ion plating evaporation source material, ion plating evaporation source material and method for producing the same, gas barrier sheet and method for producing the same
JP4873168B2 (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250