JP5720042B2 - SiC substrate dry etching method - Google Patents

SiC substrate dry etching method Download PDF

Info

Publication number
JP5720042B2
JP5720042B2 JP2011065917A JP2011065917A JP5720042B2 JP 5720042 B2 JP5720042 B2 JP 5720042B2 JP 2011065917 A JP2011065917 A JP 2011065917A JP 2011065917 A JP2011065917 A JP 2011065917A JP 5720042 B2 JP5720042 B2 JP 5720042B2
Authority
JP
Japan
Prior art keywords
etching
dry etching
sic substrate
substrate
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065917A
Other languages
Japanese (ja)
Other versions
JP2012204472A (en
Inventor
河田 泰之
泰之 河田
原田 信介
信介 原田
福田 憲司
憲司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2011065917A priority Critical patent/JP5720042B2/en
Publication of JP2012204472A publication Critical patent/JP2012204472A/en
Application granted granted Critical
Publication of JP5720042B2 publication Critical patent/JP5720042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、SiC基板のドライエッチング方法に関するものである。   The present invention relates to a method for dry etching a SiC substrate.

SiC基板又はエピタキシャル成長させたSiC膜を有する基板(以下、纏めて「SiC基板」と総称する。)を使って各種デバイスを作製する場合、ドライエッチング工程が必要になる。
SiC基板をドライエッチングするには高密度プラズマを発生できる、例えばICPプラズマエッチング装置のようなエッチング装置を用いて塩素系ガスやフッ素系ガスを用い、エッチングマスクにはSiC基板との選択比を確保するため金属やSiO2膜を用いることが一般的である。
When various devices are manufactured using an SiC substrate or a substrate having an epitaxially grown SiC film (hereinafter collectively referred to as “SiC substrate”), a dry etching process is required.
For dry etching of SiC substrates, high-density plasma can be generated. For example, chlorine-based gas or fluorine-based gas is used with an etching device such as an ICP plasma etching device, and the etching mask has a selective ratio with the SiC substrate. Therefore, it is common to use a metal or SiO 2 film.

フッ素系ガスとしては、CF4やSFが一般的に用いられる。AlやNiなどの金属やSiO2をマスクとしてエッチングすると、エッチング側壁は垂直に近くなることが多く、またエッチング開口部分は直角に近くなってしまうことが多い。さらに、エッチングマスクに金属やSiO2を用いるため、成膜装置が必要になり、成膜工程やマスク膜の除去工程も必要になり、工程が複雑になる。 As the fluorine-based gas, CF 4 or SF 6 is generally used. When etching is performed using a metal such as Al or Ni or SiO 2 as a mask, the etching side wall is often close to the vertical, and the etching opening is often close to a right angle. Further, since metal or SiO 2 is used for the etching mask, a film forming apparatus is required, and a film forming process and a mask film removing process are also required, which complicates the process.

レジストをマスクとしたSiC基板のドライエッチング方法も提案されている(特許文献1参照)。これは、SiC基板上にレジスト材料によりパターンマスクを形成した後、SiC基板を一定の温度に保ちながら反応性イオンビームなどの異方性プラズマエッチングを行い、そのプロセス中にパターンマスクを変形・変質してその側壁をなだらかに傾斜させ、SiC基板のエッチング面側壁になだらかな傾斜をつけるようにするものであるが、1段のテーパー角形成に止まるため、所望のエッチング側壁を得るのに十分ではない。   A dry etching method of an SiC substrate using a resist as a mask has also been proposed (see Patent Document 1). This is because after forming a pattern mask with a resist material on a SiC substrate, anisotropic plasma etching such as reactive ion beam is performed while keeping the SiC substrate at a constant temperature, and the pattern mask is deformed and altered during the process. Then, the side wall is gently inclined so that the side surface of the etched surface of the SiC substrate is gently inclined. However, since the formation of the taper angle at one stage is stopped, it is not sufficient to obtain a desired etching side wall. Absent.

特開2000−114234号公報JP 2000-114234 A

本発明は、エッチング側壁を2段以上の傾斜構造にしてテーパー角を低角度にするとともに、エッチング後のマスク剥離工程を簡素化できるSiC基板のドライエッチング方法を提供することを課題とする。   It is an object of the present invention to provide a dry etching method for an SiC substrate that can reduce the taper angle by making the etching sidewall have an inclined structure having two or more steps, and simplify the mask peeling process after etching.

上記の課題は、以下のSiCドライエッチング方法によって解決される。
SiC基板にSF6のみ又はSF6とArとの混合ガスによるドライエッチングにより凹部を形成する際に、エッチングマスクとしてレジスト現像後に130℃〜160℃の温度で1分〜5分ポストベークするとともに、基板印加バイアス電力とアンテナ電力との比(基板印加バイアス電力/アンテナ電力)を0.01〜0.1としたことを特徴とするドライエッチング方法。
The above problem is solved by the following SiC dry etching method.
When a recess is formed on the SiC substrate by dry etching using only SF 6 or a mixed gas of SF 6 and Ar, post-baking is performed at a temperature of 130 ° C. to 160 ° C. for 1 minute to 5 minutes after resist development as an etching mask, A dry etching method characterized in that a ratio of substrate applied bias power to antenna power (substrate applied bias power / antenna power) is set to 0.01 to 0.1.

本発明によれば、レジストをマスクにしてSiC基板を深さ1μm以上ドライエッチングすることができ、金属やSiO2膜をエッチングマスクにする必要がなく、簡素化された工程でSiC基板に凹部分を形成できる。凹部分の側壁のテーパー角度も開口部分に近い方が緩やかな2段階の傾斜形状にでき、デバイス動作時のエッジ部分への電界集中を緩和することができ、耐圧の向上が期待できる。 According to the present invention, a SiC substrate can be dry-etched by a depth of 1 μm or more using a resist as a mask, and there is no need to use a metal or SiO 2 film as an etching mask. Can be formed. The taper angle of the side wall corresponding to the concave portion can be made a gentle two-step inclined shape closer to the opening portion, the electric field concentration on the edge portion during device operation can be reduced, and an improvement in breakdown voltage can be expected.

レジストマスクでのドライエッチングにおける基板バイアス電力/アンテナ電力比とSiO2/レジストの選択比の関係Relationship between substrate bias power / antenna power ratio and SiO 2 / resist selection ratio in dry etching with resist mask ラインとスペースが2μm/2μmの間隔でパターニングされた場合のエッチング断面形状Etching cross-section shape when line and space are patterned at intervals of 2μm / 2μm 直径50μmの円形にドライエッチングした場合の断面形状Cross-sectional shape when dry-etched into a circle with a diameter of 50 μm ラインとスペースが2μm/2μmの間隔でパターニングされた場合のエッチング断面形状Etching cross-section shape when line and space are patterned at intervals of 2μm / 2μm 直径50μmの円形にドライエッチングした場合の断面形状Cross-sectional shape when dry-etched into a circle with a diameter of 50 μm

(実施の形態1)
レジストマスクを用いたSiC基板のドライエッチング方法を実施の形態1を用いて説明する。
結晶構造が4H-SiCでC面4°オフ基板(又はSiCエピタキシャル膜付きの4°オフ基板)を有機洗浄、RCA洗浄した後、レジストを2μmの厚さで塗布、露光、現像を行いエッチングパターンを形成した。その後、140℃で1分間のポストベークを行った。このレジスト付きパターン基板をICP方式のドライエッチング装置でSF6をエッチングガスとして圧力0.5Paでドライエッチングした。エッチングガスは、SF 6 のみ又はSF 6 とArとの混合ガスがよい。レジストマスクは、レジスト現像後に130℃〜160℃の温度で1分〜5分ポストベークするのがよい。
(Embodiment 1)
A dry etching method of an SiC substrate using a resist mask will be described using the first embodiment.
The crystal structure is 4H-SiC, and the C-plane 4 ° off substrate (or 4 ° off substrate with SiC epitaxial film) is organically cleaned and RCA cleaned, then the resist is applied in a thickness of 2μm, exposed, and developed to produce an etching pattern. Formed. Thereafter, post-baking was performed at 140 ° C. for 1 minute. This resist-patterned substrate was dry-etched with an ICP dry etching apparatus at a pressure of 0.5 Pa using SF 6 as an etching gas. The etching gas is preferably SF 6 alone or a mixed gas of SF 6 and Ar. The resist mask is preferably post-baked at a temperature of 130 ° C. to 160 ° C. for 1 minute to 5 minutes after resist development.

図1にSiO2膜をエッチングした場合のレジストとの選択比が基板印加バイアス電力(以下、「バイアスパワー」という)とアンテナ電力(以下、「アンテナパワー」という)の比によって変化する様子を示す。
図1によれば、バイアス/アンテナパワーの比が小さい方が、選択比が高くなることがわかる。エッチングする対象がSiC基板になってもこの傾向は同様である。バイアス/アンテナパワー比が0.1以下、好ましくは0.01にすることが、選択比を大きくすることに有利である。
FIG. 1 shows how the selection ratio with respect to a resist when an SiO 2 film is etched varies depending on the ratio of the bias power applied to the substrate (hereinafter referred to as “bias power”) and the antenna power (hereinafter referred to as “antenna power”). .
As can be seen from FIG. 1, the selection ratio increases as the bias / antenna power ratio decreases. This tendency is the same even if the object to be etched is a SiC substrate. It is advantageous for increasing the selection ratio that the bias / antenna power ratio is 0.1 or less, preferably 0.01.

図1に示した結果をもとに、SiC基板(C面)でのドライエッチングを行った。SF6ガス流量50sccm、圧力0.5Pa、アンテナパワー400W、バイアスパワー20Wで240秒でドライエッチングした。このときSiC基板は裏面からHeガスで冷却している。この条件でドライエッチングすると、SiC基板は約0.2μm/minの早さでエッチングされる。その時のレジストのエッチングレートは約0.4μm/minである。 Based on the results shown in FIG. 1, dry etching was performed on the SiC substrate (C surface). Dry etching was performed in 240 seconds with an SF 6 gas flow rate of 50 sccm, a pressure of 0.5 Pa, an antenna power of 400 W, and a bias power of 20 W. At this time, the SiC substrate is cooled with He gas from the back surface. When dry etching is performed under these conditions, the SiC substrate is etched at a rate of about 0.2 μm / min. At that time, the etching rate of the resist is about 0.4 μm / min.

ラインとスペースが2μm/2μmの間隔でパターニングされた場合のエッチング断面形状を図2に示す。これは収束イオンビーム装置(FIB)で断面を切り出した写真である。表面にPtの保護膜が形成されている。エッチング深さは約0.8μmである。エッチング側壁の角度は、凹部底に近い方は約55°になっており、開口部に近い方は約35°になっている。この実施例の条件でこのように側壁が2段階のテーパー角度がつくようにドライエッチングされ、1段目、2段目の角度はかなりテーパーになるようエッチングできる。   FIG. 2 shows an etching cross-sectional shape when lines and spaces are patterned at intervals of 2 μm / 2 μm. This is a photograph of a cross section cut out by a focused ion beam device (FIB). A protective film of Pt is formed on the surface. The etching depth is about 0.8 μm. The angle of the etching side wall is about 55 ° near the bottom of the recess, and about 35 ° near the opening. Under the conditions of this embodiment, dry etching is performed so that the side wall has a two-step taper angle as described above, and the first and second step angles can be etched so as to be considerably tapered.

次に直径50μmの円形にドライエッチングした場合の断面形状を図3に示す。エッチング深さは同様に約0.8μmであるが、エッチング側壁の角度は凹部底に近い方は約35°になっており、開口部に近い方は約20°になっている。エッチング面積が広い方がさらにテーパー角度は緩やかになる。このようにテーパー角度はエッチング幅(面積)によって違う。
このような2段のテーパー形状になることによってエッチングした端部が鋭角にならなくなり電界集中を緩和でき、このエッチング方法で作製したSiC半導体素子のリーク電流の発生を抑え耐圧の向上を達成できる。
Next, FIG. 3 shows a cross-sectional shape when dry etching is performed into a circle having a diameter of 50 μm. The etching depth is similarly about 0.8 μm, but the angle of the etching side wall is about 35 ° near the bottom of the recess and about 20 ° near the opening. The taper angle becomes gentler as the etching area increases. Thus, the taper angle varies depending on the etching width (area).
With such a two-stage tapered shape, the etched end does not become an acute angle, and the electric field concentration can be mitigated, and the generation of a leakage current of the SiC semiconductor device manufactured by this etching method can be suppressed and the breakdown voltage can be improved.

(実施の形態2)
エッチング条件のアンテナパワーとバイアスパワーを更に変更した実施の形態2を説明する。
結晶構造が4H-SiCでC面4°オフ基板(又はSiCエピタキシャル膜付きの4°オフ基板)を有機洗浄、RCA洗浄した後、レジストを2.5μmの厚さで塗布、露光、現像を行いエッチングパターンを形成した。その後、140℃で1分間のポストベークを行った。このレジスト付きパターン基板をICP方式のドライエッチング装置でSF6をエッチングガスとして圧力0.5Paでアンテナパワー700W、バイアスパワー7W(すなわちバイアス/アンテナパワー比が0.01)でドライエッチングした。
(Embodiment 2)
A second embodiment in which the antenna power and the bias power in the etching conditions are further changed will be described.
The crystal structure is 4H-SiC and the C-plane 4 ° off substrate (or 4 ° off substrate with SiC epitaxial film) is organically cleaned and RCA cleaned, and then the resist is applied with a thickness of 2.5μm, exposed and developed for etching. A pattern was formed. Thereafter, post-baking was performed at 140 ° C. for 1 minute. This resist-patterned substrate was dry etched with an ICP dry etching apparatus using SF 6 as an etching gas at a pressure of 0.5 Pa and an antenna power of 700 W and a bias power of 7 W (that is, a bias / antenna power ratio of 0.01).

このときSiC基板は、裏面からHeガスで冷却している。この条件でドライエッチングすると、SiC基板は約0.175μm/minの早さでエッチングされる。その時のレジストのエッチングレートは約0.33μm/minである。ラインとスペースが2μm/2μmの間隔でパターニングされた場合のエッチング断面形状を図4に示す。これは収束イオンビーム装置(FIB)で断面を切り出した写真である。表面にPtの保護膜が形成されている。エッチング深さは約1.1μmである。エッチング側壁の角度は凹部底に近い方は約55°になっており、開口部に近い方は約30°になっている。この実施の形態2の条件でこのように側壁が2段階のテーパー角度がつくようにエッチングされ、実施の形態1と同様に1段目、2段目の角度はかなりテーパーになるようにエッチングできる。   At this time, the SiC substrate is cooled with He gas from the back surface. When dry etching is performed under these conditions, the SiC substrate is etched at a rate of about 0.175 μm / min. At that time, the etching rate of the resist is about 0.33 μm / min. FIG. 4 shows an etching cross-sectional shape when lines and spaces are patterned at intervals of 2 μm / 2 μm. This is a photograph of a cross section cut out by a focused ion beam device (FIB). A protective film of Pt is formed on the surface. The etching depth is about 1.1 μm. The angle of the etching side wall is about 55 ° near the bottom of the recess, and about 30 ° near the opening. Etching is performed so that the side wall has a two-step taper angle in this way under the conditions of the second embodiment, and the first and second step angles can be etched so as to be considerably tapered as in the first embodiment. .

次に、直径50μmの円形にドライエッチングした場合の断面形状を図5に示す。エッチング深さは同様に約1.1μmであるが、エッチング側壁の角度は凹部底に近い方は約30°になっており、開口部に近い方は約20°になっている。このようにエッチング幅が広い方がさらにテーパー角度は緩やかになる。実施の形態2の条件でSiCをエッチングすると深さは1.1μmまで深くすることができ、エッチング側壁の2段テーパー形状は実施の形態1より更に緩やかな角度に形成できる。   Next, FIG. 5 shows a cross-sectional shape when dry etching is performed into a circle having a diameter of 50 μm. The etching depth is similarly about 1.1 μm, but the angle of the etching side wall is about 30 ° near the bottom of the recess and about 20 ° near the opening. Thus, the taper angle becomes gentler when the etching width is wider. When SiC is etched under the conditions of the second embodiment, the depth can be increased to 1.1 μm, and the two-step tapered shape of the etched sidewall can be formed at a more gentle angle than in the first embodiment.

Claims (3)

SiC基板にSF6のみ又はSF6とArとの混合ガスによるドライエッチングにより凹部を形成する際に、エッチングマスクとしてレジスト現像後に130℃〜160℃の温度で1分〜5分ポストベークするレジストマスクを用い、基板印加バイアス電力とアンテナ電力との比(基板印加バイアス電力/アンテナ電力)を0.01〜0.1としたドライエッチングで前記SiC基板の凹部のエッチング側壁を2段以上の傾斜構造とすることを特徴とするドライエッチング方法。 A resist mask that is post-baked at a temperature of 130 ° C. to 160 ° C. for 1 minute to 5 minutes after resist development as an etching mask when forming recesses by dry etching with SF 6 alone or a mixed gas of SF 6 and Ar on a SiC substrate the used substrate applied bias power and antenna power and the ratio (substrate applied bias power / antenna power) 0.01 to 0.1 and the dry etching in two stages or more tilt structure etched sidewalls of the recess of the SiC substrate the dry etching method which is characterized in that a. 前記凹部の深さが1μm以上とすることを特徴とする請求項1に記載のドライエッチング方法。The dry etching method according to claim 1, wherein the depth of the concave portion is 1 μm or more. 前記ドライエッチングが前記SiC基板を冷却しながらおこなうことを特徴とする請求項1に記載のドライエッチング方法。The dry etching method according to claim 1, wherein the dry etching is performed while cooling the SiC substrate.
JP2011065917A 2011-03-24 2011-03-24 SiC substrate dry etching method Expired - Fee Related JP5720042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065917A JP5720042B2 (en) 2011-03-24 2011-03-24 SiC substrate dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065917A JP5720042B2 (en) 2011-03-24 2011-03-24 SiC substrate dry etching method

Publications (2)

Publication Number Publication Date
JP2012204472A JP2012204472A (en) 2012-10-22
JP5720042B2 true JP5720042B2 (en) 2015-05-20

Family

ID=47185162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065917A Expired - Fee Related JP5720042B2 (en) 2011-03-24 2011-03-24 SiC substrate dry etching method

Country Status (1)

Country Link
JP (1) JP5720042B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530795A (en) * 2020-08-21 2021-03-19 中国工程物理研究院电子工程研究所 Silicon carbide power device terminal based on small-angle deep etching process and manufacturing method
CN114427115A (en) * 2022-04-01 2022-05-03 浙江大学杭州国际科创中心 Silicon carbide single crystal wafer stripping method and stripping device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114234A (en) * 1998-09-30 2000-04-21 New Japan Radio Co Ltd Method for etching silicon carbide substrate
JP2004247676A (en) * 2003-02-17 2004-09-02 Mitsubishi Electric Corp Apparatus and method of plasma processing, and method of manufacturing semiconductor device
JP5531436B2 (en) * 2008-12-01 2014-06-25 富士電機株式会社 Method for manufacturing silicon carbide semiconductor element

Also Published As

Publication number Publication date
JP2012204472A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP4450245B2 (en) Manufacturing method of semiconductor device
JP2008288475A (en) Method of manufacturing silicon carbide semiconductor device
US9076804B2 (en) Systems and methods to enhance passivation integrity
JP2010040698A (en) Guard ring structure and formation method thereof, and semiconductor device
US9257280B2 (en) Mitigation of asymmetrical profile in self aligned patterning etch
JP2016072631A (en) Method for growing nitride-based semiconductor with high quality
JP2018520977A (en) Method for making it possible to obtain a nitride semipolar layer obtained on at least one of the following materials: gallium (Ga), indium (In) and aluminum (Al) on a crystalline substrate
JP2010192555A (en) Schottky barrier diode and method of manufacturing the same
JP5720042B2 (en) SiC substrate dry etching method
JP2008311406A (en) MANUFACTURING METHOD OF GROOVE GATE TYPE SiC SEMICONDUCTOR DEVICE
JP5531436B2 (en) Method for manufacturing silicon carbide semiconductor element
JP2009182059A (en) Dry etching method
JP5680457B2 (en) Diode manufacturing method
JP2007184390A (en) Method of etching semiconductor substrate
JP2010040697A (en) Semiconductor device and manufacturing method thereof
JP6828595B2 (en) Manufacturing method of semiconductor devices
JP5687078B2 (en) Method for manufacturing silicon carbide semiconductor device
CN104658902B (en) Trench gate engraving method
JP2007005658A (en) Compound semiconductor wafer and its manufacturing method
TWI545658B (en) Gate structures and method of forming channel thereof
JP4795817B2 (en) Manufacturing method of semiconductor device
JP5012856B2 (en) Manufacturing method of semiconductor device
JP6315665B2 (en) Group III nitride semiconductor layer and group III nitride semiconductor substrate manufacturing method
JP2007088168A (en) Method for manufacturing semiconductor device
JP5935821B2 (en) Method for manufacturing silicon carbide semiconductor element and silicon carbide semiconductor element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R150 Certificate of patent or registration of utility model

Ref document number: 5720042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees