JP5719220B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5719220B2
JP5719220B2 JP2011089692A JP2011089692A JP5719220B2 JP 5719220 B2 JP5719220 B2 JP 5719220B2 JP 2011089692 A JP2011089692 A JP 2011089692A JP 2011089692 A JP2011089692 A JP 2011089692A JP 5719220 B2 JP5719220 B2 JP 5719220B2
Authority
JP
Japan
Prior art keywords
optical element
imaging
optical
image
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089692A
Other languages
Japanese (ja)
Other versions
JP2012220903A (en
JP2012220903A5 (en
Inventor
浩 入山
浩 入山
大室 隆司
隆司 大室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011089692A priority Critical patent/JP5719220B2/en
Priority to EP12002534.1A priority patent/EP2511761A3/en
Priority to US13/445,994 priority patent/US8922698B2/en
Priority to CN201210109171.9A priority patent/CN102736217B/en
Publication of JP2012220903A publication Critical patent/JP2012220903A/en
Publication of JP2012220903A5 publication Critical patent/JP2012220903A5/ja
Application granted granted Critical
Publication of JP5719220B2 publication Critical patent/JP5719220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、撮像装置に関し、特に、レンズ装置と、レンズ装置に着脱可能であって光路内に挿抜可能な光学素子を有するカメラ装置とを有する撮像装置に関するものである。   The present invention relates to an imaging apparatus, and more particularly to an imaging apparatus having a lens apparatus and a camera apparatus having an optical element that is detachable from the lens apparatus and that can be inserted into and removed from an optical path.

従来、光路中に挿入する光学素子に屈折力を付与することにより、挿抜による結像位置の変動を抑制する撮像装置が知られている。   2. Description of the Related Art Conventionally, there has been known an imaging apparatus that suppresses fluctuations in an image formation position due to insertion / extraction by applying refractive power to an optical element inserted into an optical path.

例えば、特許文献1では光学素子挿入時の結像位置変化を補正するために、挿入する光学素子が屈折力を有する発明が開示されている。撮像レンズと結像面の間、又は撮像レンズのレンズ系中に平行平板の光学素子を挿入すると結像位置がオーバー側(すなわち物体側と逆側)にシフトする。特許文献1では、その結像位置の移動をキャンセルするように挿入する光学素子に正の屈折力を付与している。   For example, Patent Document 1 discloses an invention in which an optical element to be inserted has a refractive power in order to correct a change in imaging position when the optical element is inserted. When a parallel plate optical element is inserted between the imaging lens and the imaging surface or in the lens system of the imaging lens, the imaging position is shifted to the over side (that is, the side opposite to the object side). In Patent Document 1, a positive refractive power is applied to an optical element to be inserted so as to cancel the movement of the imaging position.

特開昭63−25612号公報JP-A 63-25612

しかしながら、特許文献1に開示された従来技術では、光学素子の挿抜による光学特性の変化が発生してしまう。例えば、特許文献1のように挿入する光学素子に屈折力を付与して結像位置のシフトをキャンセルさせると、光学素子挿入時にアンダー側の球面収差が発生する。特許文献1のように結像位置のシフトをキャンセルさせた場合の球面収差の模式図を図8に示す。図8において、一点鎖線802は光学素子を光路中に挿入していない場合の収差、鎖線801は光学素子を光路中に挿入している場合の収差、SAは撮像面位置を示す。この球面収差により、得られる画像の品質が悪化することに加え、軸上光束のスポットダイアグラムにおけるスポット径の平均二乗偏差(RMS)が最小となる位置として表すことができるベストフォーカス位置(803、804)が焦点深度内に入らなくなる(803)と、光学素子の挿抜による画像への影響がさらに顕著になり、得られる画像は大きく変化してしまう。   However, in the prior art disclosed in Patent Document 1, a change in optical characteristics due to insertion / extraction of an optical element occurs. For example, if refractive power is applied to an optical element to be inserted as in Patent Document 1 to cancel the shift of the imaging position, an under-side spherical aberration occurs when the optical element is inserted. FIG. 8 shows a schematic diagram of spherical aberration when the shift of the imaging position is canceled as in Patent Document 1. In FIG. In FIG. 8, an alternate long and short dash line 802 indicates an aberration when the optical element is not inserted in the optical path, a dashed line 801 indicates an aberration when the optical element is inserted in the optical path, and SA indicates an imaging surface position. Due to this spherical aberration, the quality of the obtained image is deteriorated, and the best focus position (803, 804) that can be expressed as a position where the mean square deviation (RMS) of the spot diameter in the spot diagram of the axial light beam is minimized. ) Does not fall within the depth of focus (803), the influence on the image due to the insertion / extraction of the optical element becomes more significant, and the obtained image changes greatly.

また、特許文献1のように挿入する光学素子が正の屈折力を有さず、平行平板である場合、該光学素子を挿入すると、結像位置がオーバー側に変化することに加え、オーバー側の球面収差が発生する。平行平板を挿入した時の球面収差の模式図を図9に示す。図9において、一点鎖線902は光学素子を光路中に挿入していない場合の収差、鎖線901は平行平板である光学素子を光路中に挿入している場合の収差、SAは撮像面位置を示す。近軸合焦位置は、近軸光線に対して撮像面上となるように、レンズユニットの光軸方向移動、もしくは、撮像面の移動で調整した図であるが、この図より明らかなようにベストフォーカス位置903、904の内、光学素子を挿入した場合のベストフォーカス位置903は焦点深度内にはなく、この球面収差により挿抜による画像の変化が生じることがわかる。特にFナンバーが小さい光学系において顕著に変化する。   In addition, when the optical element to be inserted does not have a positive refractive power and is a parallel plate as in Patent Document 1, when the optical element is inserted, the imaging position changes to the over side, and the over side Spherical aberration occurs. A schematic diagram of spherical aberration when a parallel plate is inserted is shown in FIG. In FIG. 9, an alternate long and short dash line 902 indicates an aberration when an optical element is not inserted in the optical path, a dashed line 901 indicates an aberration when an optical element that is a parallel plate is inserted in the optical path, and SA indicates an imaging surface position. . The paraxial focusing position is a figure adjusted by moving the lens unit in the optical axis direction or moving the imaging surface so that it is on the imaging surface with respect to the paraxial ray, but as is clear from this figure It can be seen that, among the best focus positions 903 and 904, the best focus position 903 when the optical element is inserted is not within the depth of focus, and this spherical aberration causes an image change due to insertion / extraction. In particular, it changes significantly in an optical system with a small F number.

そこで、本発明の目的は、厚みを持つ光学素子が光路中に入された場合、球面収差を良好に補正し、光学素子が挿抜されても球面収差の変化を抑えることを可能にした撮像装置を提供することである。 Therefore, an imaging object of the present invention, when the optical element having a thickness is inserted in the optical path, that satisfactorily correct spherical aberration, even when the optical element is insertion made it possible to suppress the variation of the spherical aberration Is to provide a device.

上記目的を達成するために、本発明の撮像装置は、レンズ装置と、該レンズ装置に着脱可能なカメラ装置と、を有し、該カメラ装置は、撮像素子と、光路に挿抜可能な減光フィルターと、を有し、該減光フィルターは正の屈折力を有する面を有し、該正の屈折力を有する面の曲率半径rは、

Figure 0005719220
を満たすことを特徴とする。ただし、Rは、dを減光フィルターの厚み、Nを減光フィルターのd線における屈折率、Kを撮像素子の撮像面からの屈折力を有する面の光軸上の空気換算長、Fを撮像装置の光学系全体のFナンバー、とすると、以下の式で表される。 To achieve the above object, an imaging apparatus of the present invention includes a lens device, a camera device detachable to the lens apparatus, and the camera apparatus includes an imaging device, insertable dimming the light path It has a filter, and the extinction filter has a surface having a positive refractive power, the radius of curvature r of the surface having a refractive power of the positive can,
Figure 0005719220
It is characterized by satisfying. Where R is the thickness of the neutral density filter , N is the refractive index at the d line of the neutral density filter , K is the air equivalent length on the optical axis of the surface having positive refractive power from the imaging surface of the image sensor, F whole optical system F-number of the imaging device, and when expressed by the following equation.

Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220

本発明によれば、厚みを持つ光学素子が挿抜しても画質の劣化を抑えることを可能にした撮像装置を提供することができる。   According to the present invention, it is possible to provide an imaging apparatus capable of suppressing deterioration in image quality even when an optical element having a thickness is inserted or removed.

本発明における撮像装置の構成の模式図Schematic diagram of a configuration of an imaging apparatus according to the present invention 本発明における撮像装置の構成の模式図Schematic diagram of a configuration of an imaging apparatus according to the present invention 見かけの射出瞳位置、および、見かけの像面の関係の模式図Schematic diagram of apparent exit pupil position and apparent image plane relationship 実施例1の撮影光学系のレンズ断面図Lens cross-sectional view of the taking optical system of Example 1 実施例1の撮影光学系における縦収差図、(A)光学素子の抜去時、(B)光学素子の挿入時Longitudinal aberration diagrams in the photographing optical system of Example 1, (A) At the time of removal of the optical element, (B) At the time of insertion of the optical element 実施例2の撮影光学系のレンズ断面図Lens sectional view of the taking optical system of Example 2 実施例2の撮影光学系における縦収差図、(A)光学素子の抜去時、(B)光学素子の挿入時Longitudinal aberration diagrams in the photographing optical system of Example 2, (A) At the time of removal of the optical element, (B) At the time of insertion of the optical element 従来例における屈折力を有する光学素子の挿抜時の縦収差の模式図Schematic diagram of longitudinal aberration during insertion / extraction of an optical element having refractive power in a conventional example 従来例における平行平板の光学素子の挿抜時の縦収差の模式図Schematic diagram of longitudinal aberration during insertion / extraction of parallel plate optical element in the conventional example

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施形態である撮像装置の構成を示す模式図である。本発明の撮像装置は、レンズ装置101、105と、該レンズ装置に着脱可能なカメラ装置とを有する。カメラ装置は、光路内に挿抜可能な光学素子を有する。図1(A)は光路中に光学素子103を挿入した状態、(B)は抜去した状態の構成である。本発明の撮像装置は、交換可能な撮像レンズ101、105、カメラ光学系(例えば色分解光学系、特殊効果フィルターなど)102、撮像素子104、及び、挿抜する光学素子103を含む。光学素子103としては、例えば、減光フィルター、色温度変換フィルター、クロス・スクリーンフィルター、ソフトフォーカスフィルター、赤外カットフィルターといった光学特性変換フィルターである。本発明の撮像光学系においては、挿抜する光学素子103に正の屈折力を有し、正の屈折力を与える曲率半径rは以下の条件式を満たすことを特徴とする。   FIG. 1 is a schematic diagram illustrating a configuration of an imaging apparatus according to an embodiment of the present invention. The imaging device of the present invention includes lens devices 101 and 105 and a camera device that can be attached to and detached from the lens device. The camera device has an optical element that can be inserted into and removed from the optical path. FIG. 1A shows a configuration in which the optical element 103 is inserted in the optical path, and FIG. The imaging apparatus of the present invention includes interchangeable imaging lenses 101 and 105, a camera optical system (for example, a color separation optical system and a special effect filter) 102, an imaging element 104, and an optical element 103 to be inserted and removed. The optical element 103 is, for example, an optical characteristic conversion filter such as a neutral density filter, a color temperature conversion filter, a cross screen filter, a soft focus filter, or an infrared cut filter. In the imaging optical system of the present invention, the optical element 103 to be inserted / extracted has a positive refractive power, and the radius of curvature r giving the positive refractive power satisfies the following conditional expression.

Figure 0005719220
なお、条件式内のRは、3次収差論において補正したい球面収差量SAを補正するのに必要な曲率半径であって、以下の式から求める。
Figure 0005719220
Note that R in the conditional expression is a radius of curvature necessary for correcting the spherical aberration amount SA to be corrected in the third-order aberration theory, and is obtained from the following expression.

Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220

ここで、dは光学素子の厚み、Nは光学素子のd線に対する屈折率、Kは撮像素子の撮像面から該光学素子の正の屈折力を有する面までの光軸上の空気換算長、Fは撮像装置の光学系全体のFナンバーである。この条件式を満たすことによって、光学素子の挿入による球面収差を良好に補正することができる。さらに好ましくは、以下の条件式を満たすことが望ましい。

Figure 0005719220
この条件式(1)さらに好ましくは(7)を満たすことによって、特にFナンバーが小さい(F<2.0)光学系においても良好な球面収差補正を行うことができる。 Here, d is the thickness of the optical element, N is the refractive index with respect to the d-line of the optical element, K is the air equivalent length on the optical axis from the imaging surface of the imaging element to the surface having the positive refractive power of the optical element, F is the F number of the entire optical system of the image pickup apparatus. By satisfying this conditional expression, it is possible to satisfactorily correct spherical aberration due to insertion of an optical element. More preferably, it is desirable to satisfy the following conditional expression.
Figure 0005719220
By satisfying this conditional expression (1), more preferably (7), it is possible to perform a good spherical aberration correction even in an optical system having a particularly small F number (F <2.0).

さらに、本発明の撮像装置においては、光学素子103をカメラ光学系への挿抜に起因する結像位置の移動を補正する手段を有することを特徴とする。図1に示すように、挿抜する光学素子103の面106が正の屈折力を有することで、光学素子の挿入による球面収差の発生を抑制しているが、さらに、光学素子103の挿抜による結像位置の移動を補正する像位置補正手段として、光学系105を撮像レンズ内に構成している。撮像レンズ内の光学系105を光軸方向にシフトさせることにより、光学素子103を挿入したことによる結像位置の移動を補正している。   Furthermore, the imaging apparatus of the present invention is characterized by having means for correcting the movement of the imaging position caused by the optical element 103 being inserted into and extracted from the camera optical system. As shown in FIG. 1, the surface 106 of the optical element 103 to be inserted / extracted has a positive refractive power, thereby suppressing the occurrence of spherical aberration due to the insertion of the optical element. As an image position correcting means for correcting the movement of the image position, an optical system 105 is configured in the imaging lens. By shifting the optical system 105 in the imaging lens in the optical axis direction, the movement of the imaging position due to the insertion of the optical element 103 is corrected.

図2は、光学素子203の挿抜による結像位置の移動を補正する手段をカメラ光学系202内に構成した例である。この図では撮像素子204を光軸方向に移動させることで光学素子203の挿抜による結像位置の移動に対応している。この像位置補正手段は撮像素子の移動に限定されず、例えばカメラ光学系内に補正のためのレンズを有するように光学系を設計してもよい。その場合、光学素子の挿抜に応じて、補正レンズを光軸方向にシフトさせることによって結像位置を補正する。   FIG. 2 shows an example in which means for correcting the movement of the imaging position due to insertion / extraction of the optical element 203 is configured in the camera optical system 202. In this figure, the imaging element 204 is moved in the optical axis direction to correspond to the movement of the imaging position by the insertion and removal of the optical element 203. The image position correcting means is not limited to the movement of the image sensor, and the optical system may be designed to have a lens for correction in the camera optical system, for example. In this case, the imaging position is corrected by shifting the correction lens in the optical axis direction in accordance with the insertion / extraction of the optical element.

図3を参照しながら、カメラ光学系内に挿抜する光学素子に構成する、球面収差を補正するための凸面(正の屈折力を有する面)を、該光学素子の物体側の面と撮像素子側の面のいずれに構成するのかについて考える。図3は、撮像光学系301、撮像用カメラ内のカメラ光学系の一部302、挿抜可能な光学素子303、撮像面304の光学系において、正の屈折力を有する面106に対する見かけの射出瞳までの光軸上の距離X、及び、面106に対する見かけの像面までの光軸上の距離Yの関係を図示した模式図である。なお、図3中において305は軸上マージナル光線、306は軸外主光線を示し、距離X及びYの符号については、光学素子303の曲率を有する面より像側を正、物体側を負として示す。   Referring to FIG. 3, a convex surface (a surface having a positive refractive power) for correcting spherical aberration, which is formed in an optical element that is inserted into and removed from the camera optical system, is provided on the object side surface of the optical element and the imaging element. Think about which side to configure. FIG. 3 shows an apparent exit pupil for the surface 106 having positive refractive power in the optical system of the imaging optical system 301, a part 302 of the camera optical system in the imaging camera, the optical element 303 that can be inserted and removed, and the imaging surface 304. 6 is a schematic diagram illustrating the relationship between the distance X on the optical axis and the distance Y on the optical axis to the apparent image plane with respect to the surface 106. FIG. In FIG. 3, 305 represents an on-axis marginal ray, 306 represents an off-axis principal ray, and the signs of the distances X and Y are positive on the image side and negative on the object side from the surface having the curvature of the optical element 303. Show.

図3(A)は、見かけの像面および見かけの射出瞳位置がいずれも光学素子より像側に存在する場合(X/Y≧0)である。光学素子の凸面が物体側を向いている場合は、像側を向いている場合に比べ、軸上光線、軸外光線ともに凸面への入射角が小さくなるので、発生する収差を低減することができる。したがって、X/Y≧0の場合には、光学素子の物体側に凸面を構成することが望ましい。   FIG. 3A shows the case where the apparent image plane and the apparent exit pupil position are both on the image side from the optical element (X / Y ≧ 0). When the convex surface of the optical element faces the object side, the incident angle to the convex surface is smaller for both the on-axis light beam and the off-axis light beam than when it faces the image side. it can. Therefore, when X / Y ≧ 0, it is desirable to form a convex surface on the object side of the optical element.

図3(B)は、見かけの像面が像側にあり、見かけの射出瞳が物体側に存在する場合(X/Y<0)であって、且つ、|X|≧|Y|となる場合である。この場合においては、光学素子の凸面が物体側を向いている場合は、像側を向いている場合に比べ、軸上光線の凸面への入射角を小さくすることができる。なお、軸外光線に対しては、入射角が若干きつくなるが、射出瞳位置が十分離れているためその影響量は少ない。従って、X/Y<0、且つ、|X|≧|Y|の場合には、光学素子の物体側の面に凸面を構成することによって、発生する収差を低減することができる。   FIG. 3B shows the case where the apparent image plane is on the image side, the apparent exit pupil is on the object side (X / Y <0), and | X | ≧ | Y | Is the case. In this case, when the convex surface of the optical element faces the object side, the incident angle of the axial ray on the convex surface can be made smaller than when the convex surface faces the image side. For off-axis rays, the incident angle is slightly tight, but the influence is small because the exit pupil position is sufficiently far away. Therefore, when X / Y <0 and | X | ≧ | Y |, the generated aberration can be reduced by forming a convex surface on the object side surface of the optical element.

図3(C)は、見かけの像面が光学素子よりも像側にあり、見かけの射出瞳が物体側に存在する場合(X/Y<0)であって、且つ、|X|<|Y|となる場合である。この場合においては、光学素子の凸面が像側を向いている場合は、物体側を向いている場合に比べ、軸外光線の凸面への入射角を小さくすることが可能である。なお、軸上光線に対しては入射角が若干きつくなるが、像面が十分離れているため影響は少ない。従って、X/Y<0、且つ、|X|<|Y|の場合には、光学素子の像側の面に凸面を構成することによって、発生する収差を低減することができる。   FIG. 3C shows the case where the apparent image plane is closer to the image side than the optical element, the apparent exit pupil is present on the object side (X / Y <0), and | X | <| This is the case when Y |. In this case, when the convex surface of the optical element faces the image side, the incident angle of the off-axis light beam on the convex surface can be made smaller than when the convex surface faces the object side. Although the incident angle is slightly tight with respect to the axial ray, the influence is small because the image plane is sufficiently separated. Accordingly, in the case of X / Y <0 and | X | <| Y |, the generated aberration can be reduced by forming a convex surface on the image side surface of the optical element.

レンズ交換式の撮像装置の場合、これらの条件を考慮し交換するレンズの仕様に合わせて最適化することで、光学素子の挿抜による画質の変化を抑えることができる。   In the case of an interchangeable lens type imaging apparatus, changes in image quality due to insertion / extraction of optical elements can be suppressed by considering these conditions and optimizing according to the specifications of the interchangeable lens.

以下、図4,5を参照して、本発明の第1の実施例による撮像装置について説明する。図4は実施例1のレンズ断面図である。ズームレンズ401の撮像面側に、撮像カメラ内に構成されるカメラ光学系402が配置される。カメラ光学系402は色分解光学系やNDフィルター、CCフィルターといった光学特性変換フィルターで構成される。挿抜可能な光学素子404はカメラ光学系内に構成される。光学素子404の物体側の面405は正の屈折力を有するように凸面となっており、光学素子404の挿入による球面収差の悪化がないように構成されている。本実施例における面405の曲率半径は700mm、光学素子404の厚みは2mm、d線屈折率Nは1.51633である。正の屈折力を有する面405から撮像面までの光軸上の空気換算長Xは19.01mm、開放Fナンバーは1.85である。   The imaging apparatus according to the first embodiment of the present invention will be described below with reference to FIGS. 4 is a lens cross-sectional view of Example 1. FIG. A camera optical system 402 configured in the imaging camera is disposed on the imaging surface side of the zoom lens 401. The camera optical system 402 includes a color separation optical system, an ND filter, and an optical characteristic conversion filter such as a CC filter. The optical element 404 that can be inserted and removed is configured in the camera optical system. The object-side surface 405 of the optical element 404 is convex so as to have a positive refractive power, and is configured so that the spherical aberration is not deteriorated by the insertion of the optical element 404. In this embodiment, the radius of curvature of the surface 405 is 700 mm, the thickness of the optical element 404 is 2 mm, and the d-line refractive index N is 1.51633. The air-converted length X on the optical axis from the surface 405 having positive refractive power to the imaging surface is 19.01 mm, and the open F number is 1.85.

式(1)乃至(7)に関係する数値を表1に示す。条件式(1)さらに(7)を満足していることがわかる。さらに、X/Y=11.4である。   Table 1 shows numerical values related to the equations (1) to (7). It can be seen that conditional expression (1) and (7) are satisfied. Furthermore, X / Y = 11.4.

また、光学素子挿入時の結像位置移動を補正する像位置補正手段403を撮像レンズ内に構成している。光学素子404が光路に挿入されている時には、この光学素子403を物体側に0.41mmシフトさせる。これにより、光学素子404挿入による結像位置の変動を抑制している。本実施例の構成においては、光学素子404が光路内に挿抜に応じてその状態を検知し、撮像レンズ装置内の像位置補正手段を駆動する制御手段を有することにより、操作者が像位置補正手段の駆動を意識することなく、光学素子の挿抜に迅速に対応した像位置補正を実現することができる。   In addition, an image position correction unit 403 that corrects the movement of the imaging position when the optical element is inserted is configured in the imaging lens. When the optical element 404 is inserted in the optical path, the optical element 403 is shifted 0.41 mm toward the object side. As a result, fluctuations in the imaging position due to insertion of the optical element 404 are suppressed. In the configuration of this embodiment, the optical element 404 has a control unit that detects the state of the optical element 404 in accordance with the insertion / extraction in the optical path and drives the image position correction unit in the imaging lens device. The image position correction corresponding to the insertion / extraction of the optical element can be realized without being aware of the driving of the means.

本実施例においては、X/Y=11.4であるので、挿抜する光学素子の凸面は物体側を向く面に構成されている。   In this embodiment, since X / Y = 11.4, the convex surface of the optical element to be inserted / extracted is a surface facing the object side.

本実施例の光学系の数値データを(数値実施例1)に記載する。また、図5に、本実施例の光学系における縦収差図であって、(A)光学素子の抜去時、(B)光学素子の挿入時、を示す。非点収差の実線はサジタル断面、破線はメリディオナル断面を表す。倍率色収差はg線に対する収差を示す。なお、光学素子抜去時の光学データにおける面39、40は、光学素子挿入時における挿抜光学素子との比較を行いやすくするために記載しただけであり、面39、40の位置には何も存在しない。つまり、面38と面41との間は空気であり、その間の間隔dは4.0mmである。     Numerical data of the optical system of this example is described in (Numerical Example 1). FIG. 5 is a longitudinal aberration diagram in the optical system of the present example, and shows (A) when the optical element is removed and (B) when the optical element is inserted. The solid line of astigmatism represents a sagittal section, and the broken line represents a meridional section. The lateral chromatic aberration indicates the aberration with respect to the g-line. The surfaces 39 and 40 in the optical data at the time of removing the optical element are only described for easy comparison with the insertion / extraction optical element at the time of inserting the optical element, and nothing exists at the positions of the surfaces 39 and 40. do not do. That is, the space between the surface 38 and the surface 41 is air, and the distance d between them is 4.0 mm.

挿入する光学素子404の物体側の面である面405を凸面で構成し正の屈折力を付与し、その曲率半径を条件式(1)さらには(7)を満足する構成とすることで、光学素子の挿抜による球面収差の変化が抑制されている。 By forming the surface 405 that is the object side surface of the optical element 404 to be inserted as a convex surface and imparting positive refractive power, the radius of curvature thereof satisfies the conditional expressions (1) and (7). Changes in spherical aberration due to insertion / extraction of optical elements are suppressed.

以下、図6,7を参照して、本発明の第2の実施例による撮像装置について説明する。図6は実施例2のレンズ断面図である。ズームレンズ601の撮像面側に、撮像カメラ内に構成されるカメラ光学系602が配置される。カメラ光学系602は色分解光学系やNDフィルター、CCフィルターといった光学特性変換フィルターで構成される。挿抜可能な光学素子603はカメラ光学系内に構成される。光学素子603の物体側の面604は正の屈折率を有するように凸面となっており、光学素子603の挿入による球面収差の悪化がないように構成されている。本実施例における面604の曲率半径は700mm、光学素子603厚みは2mm、d線屈折率Nは1.51633である。正の屈折力を有する面604から撮像面までの光軸上の空気換算長Xは19.01mm、開放Fナンバーは1.85である。   Hereinafter, an image pickup apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 6 is a lens cross-sectional view of Example 2. FIG. A camera optical system 602 configured in the imaging camera is disposed on the imaging surface side of the zoom lens 601. The camera optical system 602 includes an optical characteristic conversion filter such as a color separation optical system, an ND filter, and a CC filter. The optical element 603 that can be inserted and removed is configured in the camera optical system. The object-side surface 604 of the optical element 603 is convex so as to have a positive refractive index, and is configured so that spherical aberration is not deteriorated by the insertion of the optical element 603. In this embodiment, the radius of curvature of the surface 604 is 700 mm, the thickness of the optical element 603 is 2 mm, and the d-line refractive index N is 1.51633. The air-converted length X on the optical axis from the surface 604 having positive refractive power to the imaging surface is 19.01 mm, and the open F number is 1.85.

式(1)乃至(7)に関係する諸数値を表1に示す。条件式(1)さらに(7)を満足していることがわかる。なお、本実施例においてX/Y=11.4である。   Table 1 shows various numerical values related to the expressions (1) to (7). It can be seen that conditional expression (1) and (7) are satisfied. In this embodiment, X / Y = 11.4.

また、光学素子挿入時の結像位置移動を補正する像位置補正手段として撮像素子605をカメラ光学系内に構成している。光学素子603が光路に挿入されている時には、この光学素子603を像側に0.4mmシフトさせる。これにより、光学素子603挿入による結像位置の変動を抑制している。本実施例の構成においては、光学素子404が光路内に挿抜に応じてその状態を検知し、カメラ装置内の像位置補正手段を駆動する制御手段を有することにより、操作者が像位置補正手段の駆動を意識することなく、光学素子の挿抜に迅速に対応した像位置補正を実現することができる。   In addition, an image sensor 605 is configured in the camera optical system as an image position correction unit that corrects the movement of the imaging position when the optical element is inserted. When the optical element 603 is inserted in the optical path, the optical element 603 is shifted 0.4 mm toward the image side. Thereby, the fluctuation | variation of the image formation position by optical element 603 insertion is suppressed. In the configuration of the present embodiment, the optical element 404 has a control unit that detects the state of the optical element 404 in accordance with the insertion / extraction in the optical path and drives the image position correction unit in the camera device. The image position correction corresponding to the insertion / extraction of the optical element can be realized without being conscious of the driving of the optical element.

本実施例においてはX/Y=11.4であり、挿抜する光学素子の凸面は物体側を向いている。   In this embodiment, X / Y = 11.4, and the convex surface of the optical element to be inserted / extracted faces the object side.

本実施例の光学系の数値データを(数値実施例2)に記載する。また、図7に、本実施例の光学系における縦収差図であって、(A)光学素子の抜去時、(B)光学素子の挿入時、を示す。なお、光学素子抜去時の光学データにおける面39、40は、光学素子挿入時における挿抜光学素子との比較を行いやすくするために記載しただけであり、面39、40の位置には何も存在しない。つまり、面38と面41との間は空気であり、その間の間隔dは4.0mmである。   Numerical data of the optical system of this example is described in (Numerical Example 2). FIG. 7 is a longitudinal aberration diagram in the optical system of the present example, and shows (A) when the optical element is removed and (B) when the optical element is inserted. The surfaces 39 and 40 in the optical data at the time of removing the optical element are only described for easy comparison with the insertion / extraction optical element at the time of inserting the optical element, and nothing exists at the positions of the surfaces 39 and 40. do not do. That is, the space between the surface 38 and the surface 41 is air, and the distance d between them is 4.0 mm.

挿入する光学素子603の物体側の面である面604を凸面で構成し正の屈折力を付与し、その曲率半径を条件式(1)さらには(7)を満足する構成とすることで、光学素子の挿抜による球面収差の変化が抑制されている。 By forming the surface 604 that is the object-side surface of the optical element 603 to be inserted as a convex surface and imparting positive refractive power, the radius of curvature thereof satisfies the conditional expressions (1) and (7), Changes in spherical aberration due to insertion / extraction of optical elements are suppressed.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

(数値実施例1)
単位 mm

面データ(光学素子抜去時)
面番号 r d nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (可変)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (可変)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (可変)
19(絞り) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 ∞ 2.00
40 ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (可変)
像面 ∞
(Numerical example 1)
Unit mm

Surface data (when the optical element is removed)
Surface number rd nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (variable)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (variable)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (variable)
19 (Aperture) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 ∞ 2.00
40 ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (variable)
Image plane ∞

面データ(光学素子挿入時)
面番号 r d nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (可変)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (可変)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (可変)
19(絞り) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 35.59
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.41
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39※ 700.000 2.00 1.51633 64.2
40※ ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (可変)
像面 ∞

※39、40面が挿抜光学素子
Surface data (when optical element is inserted)
Surface number rd nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (variable)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (variable)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (variable)
19 (Aperture) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 35.59
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.41
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 * 700.000 2.00 1.51633 64.2
40 * ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (variable)
Image plane ∞

* 39 and 40 are insertion / extraction optical elements

各種データ
ズーム比 19.50

焦点距離(光学素子抜去時) 9.50 15.20 38.86 91.50 185.29
焦点距離(光学素子挿入時) 9.37 14.99 38.31 90.20 182.65
Fナンバー(光学素子抜去時) 1.85 1.85 1.85 1.85 2.85
Fナンバー(光学素子挿入時) 1.85 1.85 1.85 1.85 2.81
画角(光学素子抜去時) 30.06 19.89 8.06 3.44 1.70
画角(光学素子挿入時) 30.42 20.15 8.17 3.49 1.72
像高 5.50 5.50 5.50 5.50 5.50
レンズ全長 266.06 266.06 266.06 266.06 266.06
BF 6.02 6.02 6.02 6.02 6.02

d 7 0.65 15.69 35.96 46.91 52.03
d15 53.75 36.74 13.38 3.88 6.32
d18 5.10 7.07 10.15 8.71 1.15
Various data Zoom ratio 19.50

Focal length (when optical element is removed) 9.50 15.20 38.86 91.50 185.29
Focal length (with optical element inserted) 9.37 14.99 38.31 90.20 182.65
F number (when the optical element is removed) 1.85 1.85 1.85 1.85 2.85
F number (with optical element inserted) 1.85 1.85 1.85 1.85 2.81
Angle of view (when the optical element is removed) 30.06 19.89 8.06 3.44 1.70
Angle of view (with optical element inserted) 30.42 20.15 8.17 3.49 1.72
Image height 5.50 5.50 5.50 5.50 5.50
Total lens length 266.06 266.06 266.06 266.06 266.06
BF 6.02 6.02 6.02 6.02 6.02

d 7 0.65 15.69 35.96 46.91 52.03
d15 53.75 36.74 13.38 3.88 6.32
d18 5.10 7.07 10.15 8.71 1.15

(数値実施例2)
単位 mm

面データ(光学素子抜去時)
面番号 r d nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (可変)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (可変)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (可変)
19(絞り) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 ∞ 2.00
40 ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (可変)
像面 ∞
(Numerical example 2)
Unit mm

Surface data (when the optical element is removed)
Surface number rd nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (variable)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (variable)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (variable)
19 (Aperture) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 ∞ 2.00
40 ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (variable)
Image plane ∞

面データ(カメラ光学系、光学素子挿入時)
面番号 r d nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (可変)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (可変)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (可変)
19(絞り) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39※ 700.000 2.00 1.51633 64.2
40※ ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (可変)
像面 ∞

※39、40面が挿抜光学素子
Surface data (when camera optics and optical elements are inserted)
Surface number rd nd vd
1 600.261 2.20 1.75520 27.5
2 81.461 11.42 1.49700 81.6
3 -290.956 7.63
4 86.701 7.86 1.62041 60.3
5 3044.710 0.15
6 66.016 6.01 1.72916 54.7
7 145.708 (variable)
8 111.445 0.80 1.88300 40.8
9 16.812 4.65
10 -47.842 0.70 1.81600 46.6
11 33.779 2.24
12 28.944 5.20 1.80518 25.4
13 -29.192 0.54
14 -24.664 0.70 1.78800 47.4
15 132.572 (variable)
16 -28.806 0.75 1.74320 49.3
17 37.218 3.81 1.84666 23.9
18 449.023 (variable)
19 (Aperture) ∞ 1.80
20 -231.233 3.33 1.67003 47.2
21 -49.133 0.20
22 -170.365 4.05 1.51742 52.4
23 -38.625 0.20
24 36.315 10.16 1.48749 70.2
25 -35.564 1.66 1.83400 37.2
26 ∞ 36.00
27 97.385 6.35 1.50137 56.4
28 -44.438 0.20
29 -535.653 1.40 1.83400 37.2
30 21.016 7.22 1.50137 56.4
31 -424.093 1.50
32 38.505 8.29 1.51823 58.9
33 -27.482 1.40 1.77250 49.6
34 91.360 0.30
35 38.442 6.84 1.53172 48.8
36 -52.407 5.00
37 ∞ 30.00 1.60342 38.0
38 ∞ 1.00
39 * 700.000 2.00 1.51633 64.2
40 * ∞ 1.00
41 ∞ 16.20 1.51633 64.2
42 ∞ (variable)
Image plane ∞

* 39 and 40 are insertion / extraction optical elements

各種データ
ズーム比 19.50

焦点距離(光学素子抜去時) 9.50 15.20 38.86 91.50 185.29
焦点距離(光学素子挿入時) 9.37 14.98 38.30 90.19 182.62
Fナンバー(光学素子抜去時) 1.85 1.85 1.85 1.85 2.85
Fナンバー(光学素子挿入時) 1.85 1.85 1.85 1.85 2.81
画角(光学素子抜去時) 30.06 19.89 8.06 3.44 1.70
画角(光学素子挿入時) 30.42 20.16 8.17 3.49 1.73
像高 5.50 5.50 5.50 5.50 5.50
レンズ全長 266.06 266.06 266.06 266.06 266.06
BF(光学素子抜去時) 6.02 6.02 6.02 6.02 6.02
BF(光学素子挿入時) 6.42 6.42 6.42 6.42 6.42

d 7 0.65 15.69 35.96 46.91 52.03
d15 53.75 36.74 13.38 3.88 6.32
d18 5.10 7.07 10.15 8.71 1.15
Various data Zoom ratio 19.50

Focal length (when optical element is removed) 9.50 15.20 38.86 91.50 185.29
Focal length (with optical element inserted) 9.37 14.98 38.30 90.19 182.62
F number (when the optical element is removed) 1.85 1.85 1.85 1.85 2.85
F number (with optical element inserted) 1.85 1.85 1.85 1.85 2.81
Angle of view (when the optical element is removed) 30.06 19.89 8.06 3.44 1.70
Angle of view (with optical element inserted) 30.42 20.16 8.17 3.49 1.73
Image height 5.50 5.50 5.50 5.50 5.50
Total lens length 266.06 266.06 266.06 266.06 266.06
BF (when optical element is removed) 6.02 6.02 6.02 6.02 6.02
BF (when optical element is inserted) 6.42 6.42 6.42 6.42 6.42

d 7 0.65 15.69 35.96 46.91 52.03
d15 53.75 36.74 13.38 3.88 6.32
d18 5.10 7.07 10.15 8.71 1.15

Figure 0005719220
Figure 0005719220

101、105、301 撮像レンズ
102、302、402 カメラ光学系(撮像カメラ内に構成)
103、303 挿抜する光学素子
104、304 撮像面
106 正の屈折力を有する面
101, 105, 301 Imaging lens 102, 302, 402 Camera optical system (configured in the imaging camera)
103, 303 Optical elements 104, 304 to be inserted / removed Imaging surface 106 Surface having positive refractive power

Claims (5)

レンズ装置と、該レンズ装置に着脱可能なカメラ装置と、を有する撮像装置であって、
該カメラ装置は、撮像素子と、光路に挿抜可能な減光フィルターと、を有し、
減光フィルターは正の屈折力を有する面を有し、該正の屈折力を有する面の曲率半径rは、
Figure 0005719220
を満たすことを特徴とする撮像装置。ただし、Rは、dを該減光フィルターの厚み、Nを該減光フィルターのd線における屈折率、Kを該撮像素子の撮像面から正の屈折力を有する面までの光軸上の空気換算長、Fを該撮像装置の光学系全体のFナンバー、とすると、以下の式で表される。
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
An imaging device having a lens device and a camera device detachable from the lens device,
The camera device includes an imaging device and a neutral density filter that can be inserted into and removed from the optical path.
The darkening filter has a surface having a positive refractive power, the radius of curvature r of the surface having a refractive power of the positive can,
Figure 0005719220
An imaging device characterized by satisfying the above. Here, R is the air on the optical axis of the d to the surface having a positive refractive power from the imaging surface of the refractive index, the image sensor of K the dimming filter thickness, the N at the d-line of the dimming filter When the conversion length, F, is the F number of the entire optical system of the imaging apparatus, it is expressed by the following equation.
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
Figure 0005719220
前記撮像装置は、前記減光フィルターの光路への挿抜に起因する結像位置の移動を補正するための像位置補正手段を有し、
該像位置補正手段は、前記レンズ装置に構成される、
ことを特徴とする請求項1に記載の撮像装置。
The imaging apparatus has an image position correction unit for correcting the movement of the imaging position due to insertion / extraction of the neutral density filter into the optical path,
The image position correcting means is configured in the lens device.
The imaging apparatus according to claim 1.
前記撮像装置は、前記減光フィルターの光路への挿抜に起因する結像位置の移動を補正するための像位置補正手段を有し、
該像位置補正手段は、前記カメラ装置に構成される、
ことを特徴とする請求項1に記載の撮像装置。
The imaging apparatus has an image position correction unit for correcting the movement of the imaging position due to insertion / extraction of the neutral density filter into the optical path,
The image position correcting means is configured in the camera device.
The imaging apparatus according to claim 1.
前記減光フィルターの正の屈折力を有する面からの見かけの射出瞳までの光軸上の距離をX、該減光フィルターの正の屈折力を有する面からの見かけの像面までの光軸上の距離をY、とするとき、該減光フィルターの正の屈折力を有する面は、
(X/Y)≧0
もしくは、
(X/Y)<0、かつ、|X|≧|Y|
の時は、物体側に構成され、
(X/Y)<0、かつ、|X|<|Y|
ときは、像側に構成されることを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。ただし、該減光フィルターに対し像側を正、物体側を負とする。
The distance on the optical axis to the exit pupil apparent from a surface having a positive refractive power of the neutral density filter X, the optical axis to the image plane of the apparent from the surface having the positive refractive power of the dimming filter when the distance of the upper Y, and a surface having a positive refractive power of the dimming filter,
(X / Y) ≧ 0
Or
(X / Y) <0 and | X | ≧ | Y |
Is configured on the object side,
(X / Y) <0 and | X | <| Y |
Imaging apparatus described in any one of claims 1 to 3, characterized in that it is constituted on the image side when the. However, the image-side positive and negative object side to the dimming filter.
前記減光フィルターが光路内に挿入されると、前記像位置補正手段を駆動する制御手段を有することを特徴とする、請求項2または3に記載の撮像装置。 The imaging apparatus according to claim 2, further comprising a control unit that drives the image position correcting unit when the neutral density filter is inserted into an optical path.
JP2011089692A 2011-04-14 2011-04-14 Imaging device Active JP5719220B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011089692A JP5719220B2 (en) 2011-04-14 2011-04-14 Imaging device
EP12002534.1A EP2511761A3 (en) 2011-04-14 2012-04-10 Image pickup apparatus and ND filter
US13/445,994 US8922698B2 (en) 2011-04-14 2012-04-13 Image pickup apparatus with removable ND filter
CN201210109171.9A CN102736217B (en) 2011-04-14 2012-04-13 Image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089692A JP5719220B2 (en) 2011-04-14 2011-04-14 Imaging device

Publications (3)

Publication Number Publication Date
JP2012220903A JP2012220903A (en) 2012-11-12
JP2012220903A5 JP2012220903A5 (en) 2014-05-29
JP5719220B2 true JP5719220B2 (en) 2015-05-13

Family

ID=47272427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089692A Active JP5719220B2 (en) 2011-04-14 2011-04-14 Imaging device

Country Status (1)

Country Link
JP (1) JP5719220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540082A (en) * 2019-09-20 2021-03-23 深圳中科飞测科技股份有限公司 Detection system and detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325612A (en) * 1986-07-18 1988-02-03 Canon Inc Photographing system having refractive force filter
JP2008076691A (en) * 2006-09-20 2008-04-03 Ricoh Co Ltd Optical low-pass filter, imaging apparatus unit, digital camera, and personal digital assistant

Also Published As

Publication number Publication date
JP2012220903A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP6579997B2 (en) Optical system and imaging apparatus having the same
US20090257125A1 (en) Imaging lens, optical apparatus and method for forming image using this imaging lens
TWI556006B (en) Projection apparatus and projection lens
JP5616540B2 (en) Imaging lens and imaging apparatus using the same
JP5767335B2 (en) Zoom lens and imaging device
JP2018005099A (en) Large-aperture lens
WO2013031180A1 (en) Zoom lens and imaging device
WO2014041775A1 (en) Wide angle lens, and imaging device
JP2016050946A (en) Zoom lens and imaging apparatus
WO2016047421A1 (en) Objective optical system for endoscope
JP2010072390A (en) Light photographing lens system and electronic imaging apparatus using the same
JP5767330B2 (en) Zoom lens and imaging device
JP5704969B2 (en) Camera apparatus and imaging apparatus having the same
JP6112945B2 (en) Optical system and imaging apparatus having the same
JP5719220B2 (en) Imaging device
US9606333B2 (en) Relay optical system and microscope apparatus
WO2013031184A1 (en) Zoom lens and imaging device
JP7079895B2 (en) Endoscope objective optical system and endoscope
US20170031139A1 (en) Image pickup apparatus, rear attachment lens, and image pickup system including the same
JP2017173409A (en) Large-aperture telephoto lens
WO2013031182A1 (en) Zoom lens and imaging device
WO2013031177A1 (en) Zoom lens and imaging device
JP4877478B2 (en) Zoom lens for image sensor
WO2013031178A1 (en) Zoom lens and imaging device
WO2013031179A1 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120831

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R151 Written notification of patent or utility model registration

Ref document number: 5719220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151