JP5718605B2 - Electromagnet drive controller - Google Patents

Electromagnet drive controller Download PDF

Info

Publication number
JP5718605B2
JP5718605B2 JP2010219023A JP2010219023A JP5718605B2 JP 5718605 B2 JP5718605 B2 JP 5718605B2 JP 2010219023 A JP2010219023 A JP 2010219023A JP 2010219023 A JP2010219023 A JP 2010219023A JP 5718605 B2 JP5718605 B2 JP 5718605B2
Authority
JP
Japan
Prior art keywords
current
excitation
excitation coil
electromagnet
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010219023A
Other languages
Japanese (ja)
Other versions
JP2012074585A (en
Inventor
弘一 岩崎
弘一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2010219023A priority Critical patent/JP5718605B2/en
Publication of JP2012074585A publication Critical patent/JP2012074585A/en
Application granted granted Critical
Publication of JP5718605B2 publication Critical patent/JP5718605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、隔壁で仕切られた空間内に発生したプラズマ分布を能動的に制御する電磁石装置の駆動制御に好適な電磁石駆動制御装置に関し、特に電磁石の励磁コイルのレイヤショートや、巻線等の損傷や励磁コイル過熱等の異常、及び/又は故障が発生する以前にそれを予知できる励磁コイル故障検知・予知手段を備えた電磁石駆動制御装置に関する。   The present invention relates to an electromagnet drive control device suitable for drive control of an electromagnet device that actively controls the distribution of plasma generated in a space partitioned by a partition wall, and in particular, a layer short of an exciting coil of an electromagnet, a winding, etc. The present invention relates to an electromagnet drive control device provided with an excitation coil failure detection / prediction means that can predict an abnormality such as damage or excitation coil overheating and / or failure before it occurs.

この種の電磁石駆動制御装置は、電磁石を備え、該電磁石の励磁コイルに励磁電流を通電することにより、隔壁で仕切られた空間内に磁場を形成するようになっている。磁界の強度等を制御するために、励磁コイルに流れる励磁電流を電流検出部で検出し、該検出した励磁電流信号を電流制御部にフィードバックし、磁界強度が目標強度になるように制御している。   This type of electromagnet drive control device includes an electromagnet, and forms a magnetic field in a space partitioned by partition walls by energizing an excitation current to the excitation coil of the electromagnet. In order to control the strength of the magnetic field, etc., the excitation current flowing in the excitation coil is detected by the current detection unit, and the detected excitation current signal is fed back to the current control unit to control the magnetic field strength to the target strength. Yes.

上記のように励磁コイルに流れる励磁電流を検出し、フィードバックし、励磁コイル流れる電流が目標電流値になるように制御する電磁石駆動制御装置において、従来励磁コイルの一部がレイヤショートした場合や励磁コイルが傷ついたりした場合の故障検出、又は故障予知は電流フィードバック値を監視し、この値が高いか低いかで異常を検知(判定)している。例えば、電流フィードバック値が高い場合をショート、低い場合は温度高いか又は断線(励磁コイル温度が高く抵抗値が高いため電流値が低いか又は断線)というように判断している。   As described above, in the electromagnet drive control device that detects and feeds back the exciting current flowing through the exciting coil and controls the exciting coil flowing current to become the target current value, when a part of the conventional exciting coil is layer short-circuited or excited In the case of failure detection or failure prediction when the coil is damaged, the current feedback value is monitored, and an abnormality is detected (determined) depending on whether this value is high or low. For example, when the current feedback value is high, it is judged as short-circuited, when it is low, the temperature is high, or the wire is disconnected (the current value is low or the wire is broken because the exciting coil temperature is high and the resistance value is high).

特開平7−177650号公報JP-A-7-177650

しかしながら、電流フィードバック値を監視し、この値が高いか低いかで異常を検出する方法では、フィードバックループ制御はコイル電流値(実測値)と目標値の差がゼロになるような制御であるから、励磁コイルのレイヤショートや励磁コイルの損傷が軽微な場合、電流フィードバック値の異常も解消されてしまい、異常が検出できないという問題がある。例えば、軽微なレイヤショートによりコイル抵抗値が低下すると電流値が増加し、フィードバック電流値が増加することになる。これによりフィードバックループは励磁電流を目標値にさせようと、ドライバーから励磁コイルに出力されるコイル駆動電圧を減少させるから、励磁電流の実測値と目標値の差が解消してしまう。結局、異常がフィードバックループでは対処できない程のレベルに達するまでは、異常を検知できないという問題がある。また、異常が軽微である場合の異常の予知は殆ど不可能であった。   However, in the method of monitoring the current feedback value and detecting an abnormality depending on whether this value is high or low, the feedback loop control is a control in which the difference between the coil current value (actual value) and the target value becomes zero. When the excitation coil layer short circuit or the excitation coil damage is minor, the current feedback value abnormality is also eliminated, and there is a problem that the abnormality cannot be detected. For example, when the coil resistance value decreases due to a slight layer short, the current value increases and the feedback current value increases. As a result, the feedback loop reduces the coil drive voltage output from the driver to the exciting coil in order to set the exciting current to the target value, so that the difference between the actually measured value of the exciting current and the target value is eliminated. After all, there is a problem that the abnormality cannot be detected until the abnormality reaches a level that cannot be dealt with by the feedback loop. Also, when the abnormality is minor, it is almost impossible to predict the abnormality.

また、コイルに励磁電流を印加した際、コイル自身の発熱及び/又は周囲温度の影響によってコイル配線の被服が溶けることを防ぐため、コイル温度を監視する必要があるが、コイル点数に応じて温度センサ及び温度センサ測定値を表示・報知する手段の入力チャネル数を多チャネル化する必要があった。   Also, when applying an exciting current to the coil, it is necessary to monitor the coil temperature in order to prevent the coil wiring clothing from melting due to the heat generated by the coil itself and / or the ambient temperature. It was necessary to increase the number of input channels of the means for displaying / notifying sensor and temperature sensor measurement values.

本発明は上述の点に鑑みてなされたもので、励磁コイルのレイヤショートや励磁コイルの損傷、冷却不足によるコイルの過熱等の励磁コイルの軽微な異常でも精度よく検知できる励磁コイルの故障検知及び/又は故障予知手段を備えた電磁石駆動制御装置を低コスト、省スペースで提供することを目的とする。   The present invention has been made in view of the above points, and it is possible to accurately detect even a slight abnormality of the exciting coil such as a layer short of the exciting coil, damage to the exciting coil, overheating of the coil due to insufficient cooling, and the like. It is an object of the present invention to provide an electromagnet drive control device including a failure prediction means at low cost and in a space-saving manner.

上記の課題を解決するために、本発明は、電磁石を備え、該電磁石の励磁コイルに励磁電流を通電することにより、隔壁で仕切られた空間内に磁場を形成する電磁石駆動制御装置であって、電流指令部(16)と、ドライバー(11)と、電流検出部(21)、故障検知・予知手段(22、23)を具備し、磁石全体管理部(3)より、電流指令部(16)に目標励磁電流信号(S1)を出力し、電流指令部(16)は目標励磁電流信号(S1)を受け目標励磁電流波形として保持すると共に、該目標励磁電流信号(S1)に基づいて電流指令信号(S2,S3)を生成し、ドライバー(11)を介して励磁コイル(X)に励磁電流を通電し、電流検出部(21)は励磁コイル(X)に通電した励磁電流を検出し、該検出励磁電流信号(S7)を電流指令部(16)にフィードバックするように構成されており、電流指令部(16)は、電流検出部(21)で検出された検出励磁電流信号(S7)に基づいて電流指令信号(S2)を生成し、更に保持している目標励磁電流波形より、電流指令想定信号(S8)を生成し、故障検知・予知手段(22、23)は、電流指令信号(S2)と電流指令想定信号(S8)の差分が所定以上乖離した場合に励磁コイルの不良又は不良に発展する故障予知を判断する機能を備えたことを特徴とする。
また、本発明は、電流検出部(21)で検出した検出励磁電流信号(S7)より、励磁コイルに励磁電流を通電するための励磁コイルに印加される駆動電圧から該励磁コイルの直流抵抗値を求め、該直流抵抗値より励磁コイルの温度を推定する励磁コイル温度推定機能を有する励磁コイル温度推定手段(27)を設けたことを特徴とする。
In order to solve the above-described problems, the present invention is an electromagnet drive control device that includes an electromagnet and forms a magnetic field in a space partitioned by a partition wall by energizing an excitation coil of the electromagnet. the current command section (16), a driver (11), a current detection unit (21), comprising a fault detection and prediction means (22, 23), electrostatic system management unit magnet than (3), the current command unit ( 16) outputs a target excitation current signal (S1), and the current command section (16) receives the target excitation current signal (S1) and holds it as a target excitation current waveform, and based on the target excitation current signal (S1). A current command signal (S2, S3) is generated, and an exciting current is supplied to the exciting coil (X) via the driver (11), and a current detector (21) detects the exciting current supplied to the exciting coil (X). The detected excitation current signal (S ) Is configured to feed back to the current command section (16) and the current command portion (16), the current detecting unit (21) on the basis of the detection excitation current signal (S7) with the current command signal ( S2) is generated, and a current command assumption signal (S8) is generated from the held target excitation current waveform, and the failure detection / prediction means (22, 23) assumes the current command signal (S2) and the current command assumption. The present invention is characterized in that a function is provided for determining failure of the exciting coil or failure prediction that develops to failure when the difference between the signals (S8) deviates more than a predetermined value.
Further, according to the present invention, the DC resistance value of the exciting coil is determined from the drive voltage applied to the exciting coil for energizing the exciting coil from the detected exciting current signal (S7) detected by the current detecting unit (21). Excitation coil temperature estimation means (27) having an excitation coil temperature estimation function for estimating the excitation coil temperature from the DC resistance value is provided.

また、本発明は、電磁石を備え、該電磁石の励磁コイルに励磁電流を通電することにより、隔壁で仕切られた空間内に磁場を形成し、プラズマ分布を能動的に制御する電磁石駆動制御装置であって、電流指令部(16)と、ドライバー(11)と、電流検出部(21)、励磁コイル温度推定手段(27)を具備し、電流指令部(16)からの電流指令信号(S2,S3)により、ドライバー(11)を介して励磁コイル(X)に励磁電流を通電し、電流検出部(21)は励磁コイル(X)に通電した励磁電流を検出し、該検出励磁電流信号(S7)を電流指令部(16)にフィードバックするように構成されており、励磁コイル温度推定手段(27)は、電流指令信号(S2)と検出励磁電流信号(S7)とが入力され、電流指令信号(S2)から励磁コイル(X)に励磁電流を通電するための駆動電圧を算出し、該駆動電圧と検出励磁電流信号(S7)から励磁コイル(X)の直流抵抗値を算出し、該直流抵抗値より励磁コイル(X)の温度を推定する励磁コイル温度推定機能を備えていることを特徴とする。 The present invention also provides an electromagnet drive control device that includes an electromagnet and forms a magnetic field in a space partitioned by a partition wall by energizing an excitation coil of the electromagnet to actively control the plasma distribution. A current command unit (16), a driver (11), a current detection unit (21), and an exciting coil temperature estimation means (27), and a current command signal (S2, S2) from the current command unit (16). In step S3), an excitation current is supplied to the excitation coil (X) via the driver (11), and the current detector (21) detects the excitation current supplied to the excitation coil (X), and detects the detected excitation current signal ( S7) is fed back to the current command unit (16), and the excitation coil temperature estimation means (27) receives the current command signal (S2) and the detected excitation current signal (S7), and receives the current command. Signal (S2 Is used to calculate a drive voltage for applying an excitation current to the excitation coil (X), and a DC resistance value of the excitation coil (X) is calculated from the drive voltage and the detected excitation current signal (S7). An excitation coil temperature estimation function for estimating the temperature of the excitation coil (X) is provided.

また、本発明は、上記電磁石駆動制御装置において、励磁コイル温度推定手段(27)で推定された励磁コイル推定温度が所定の範囲を逸脱した場合に、励磁コイルの不良とする励磁コイル故障検知・予知手段を設けたことを特徴とする。 Further, in the above electromagnet drive controller, when the exciting coil estimated temperature estimated by the excitation coil temperature estimating means (27) deviates from the predetermined range, the exciting coil failure detection, that the failure of the excitation coil A predicting means is provided.

また、本発明は、上記電磁石駆動制御装置において、電磁石は複数であり、励磁コイル故障検知・予知手段又は励磁コイル温度推定手段はそれぞれ電磁石に対応或いは複数のグループに区分した電磁石に対応して設けられたことを特徴とする。   In the electromagnet drive control device according to the present invention, there are a plurality of electromagnets, and the excitation coil failure detection / prediction means or the excitation coil temperature estimation means are provided corresponding to the electromagnets or divided into a plurality of groups. It is characterized by that.

また、本発明は、上記電磁石駆動制御装置において、励磁コイル故障検知・予知手段が励磁コイルの不良を検知した場合、それを表示及び/又は報知する警報手段を設けたことを特徴とする。   Further, the present invention is characterized in that the electromagnet drive control device is provided with alarm means for displaying and / or notifying when the excitation coil failure detection / prediction means detects a failure of the excitation coil.

また、上記電磁石駆動制御装置において、励磁コイル温度推定手段で推定した励磁コイル推定温度を表示する温度表示手段及び/又は報知する温度報知手段を設けたことを特徴とする。   The electromagnet drive control device is characterized in that temperature display means for displaying the estimated excitation coil temperature estimated by the excitation coil temperature estimation means and / or temperature notification means for notification are provided.

本発明によれば、電流指令部(16)は、電流検出部(21)で検出された検出励磁電流信号(S7)に基づいて電流指令信号(S2)を生成し、更に保持している目標励磁電流波形より、電流指令想定信号(S8)を生成し、故障検知・予知手段(22、23)は、電流指令信号(S2)と電流指令想定信号(S8)の差分が所定以上乖離した場合に励磁コイルの不良又は不良に発展する故障予知を判断する機能を備えたので、電磁石の励磁コイルのレイヤショートや、巻線等の損傷が軽微であっても高精度の故障の検知や故障の予知ができる。 According to the present invention, the current command unit (16) generates the current command signal (S2) based on the detected excitation current signal (S7) detected by the current detection unit (21), and further holds the target. A current command assumption signal (S8) is generated from the excitation current waveform, and the failure detection / prediction means (22, 23) is when the difference between the current command signal (S2) and the current command assumption signal (S8) is more than a predetermined difference. Has a function to determine the failure of the excitation coil or the prediction of failure that will develop into a failure, so even if the electromagnet's excitation coil layer shorts or windings are minimally damaged, high-precision failure detection and failure I can predict.

また、本発明によれば、温度推定警報手段は、電流指令信号(S2)と検出励磁電流信号(S7)とが入力され、電流指令信号(S2)から励磁コイル(X)に励磁電流を通電するための駆動電圧を算出し、該駆動電圧と検出励磁電流信号(S7)から励磁コイル(X)の直流抵抗値を算出し、該直流抵抗値より励磁コイル(X)の温度を推定する励磁コイル温度推定機能を備えているので、励磁コイルの直流抵抗値は温度に精度良く反応するから高精度で励磁コイルの温度を推定できる。 Further, according to the present invention, the temperature estimation alarm means receives the current command signal (S2) and the detected excitation current signal (S7), and energizes the excitation coil (X) from the current command signal (S2). Excitation voltage to calculate the DC resistance value of the excitation coil (X) from the drive voltage and the detected excitation current signal (S7), and to estimate the temperature of the excitation coil (X) from the DC resistance value Since the coil temperature estimation function is provided , the DC resistance value of the exciting coil reacts with temperature with high accuracy, so that the temperature of the exciting coil can be estimated with high accuracy.

また、本発明によれば、励磁コイル温度推定手段で推定された励磁コイル温度が所定の範囲を逸脱した場合に、励磁コイルの不良とする励磁コイル故障検知・予知手段を設けたので、高精度で励磁コイルの故障や故障予知できる。   In addition, according to the present invention, since the exciting coil failure detecting / predicting means is provided to make the exciting coil defective when the exciting coil temperature estimated by the exciting coil temperature estimating means deviates from a predetermined range, high accuracy is provided. With this function, the excitation coil can be broken or predicted.

また、本発明によれば、励磁コイル故障検知・予知手段又は励磁コイル温度推定手段はそれぞれ電磁石に対応或いは複数のグループに区分した電磁石に対応して設けているので、どの電磁石、又はどのグループに属す電磁石の励磁コイルの故障や温度推定を高精度で知ることができる。   Further, according to the present invention, the excitation coil failure detection / prediction means or the excitation coil temperature estimation means are provided corresponding to the electromagnets or to the electromagnets divided into a plurality of groups. It is possible to know the failure of the exciting coil of the associated electromagnet and the temperature estimation with high accuracy.

また、本発明によれば、励磁コイル故障検知・予知手段が励磁コイルの不良を検知した場合、それを表示及び/又は報知する警報手段を設けたので、励磁コイルの不良が発生すると速やかにそれを知ることができる。   In addition, according to the present invention, when the excitation coil failure detection / prediction means detects a failure of the excitation coil, the alarm means for displaying and / or notifying the failure is provided. Can know.

また、本発明によれば、励磁コイル温度推定機能で推定した励磁コイル推定温度を表示及び/又は報知する手段を設けたので、リアルタイムで励磁コイル推定温度を知ることができる。   In addition, according to the present invention, since the means for displaying and / or notifying the estimated excitation coil temperature estimated by the excitation coil temperature estimation function is provided, the estimated excitation coil temperature can be known in real time.

本発明に係る電磁石駆動制御装置を用いる電磁石装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the electromagnet apparatus using the electromagnet drive control apparatus which concerns on this invention. 本発明に係る電磁石駆動制御装置のシステム構成例を示すブロック図である。It is a block diagram which shows the system structural example of the electromagnet drive control apparatus which concerns on this invention. 本発明に係る電磁石駆動制御装置のシステム他の構成を示すブロック図である。It is a block diagram which shows the system other structure of the electromagnet drive control apparatus which concerns on this invention. 本発明に係る電磁石駆動制御装置が備える励磁コイルの異常判定処理フローを示す図である。It is a figure which shows the abnormality determination processing flow of the exciting coil with which the electromagnet drive control apparatus which concerns on this invention is provided. 本発明に係る電磁石駆動制御装置が備える励磁コイルの異常判定処理フローを示す図である。It is a figure which shows the abnormality determination processing flow of the exciting coil with which the electromagnet drive control apparatus which concerns on this invention is provided. 本発明に係る電磁石駆動制御装置が備える励磁コイルの温度推定処理フローを示す図である。It is a figure which shows the temperature estimation processing flow of the exciting coil with which the electromagnet drive control apparatus which concerns on this invention is provided. 本発明に係る電磁石駆動制御装置を用いる電磁石装置の他の全体構成を示すブロック図である。It is a block diagram which shows the other whole structure of the electromagnet apparatus using the electromagnet drive control apparatus which concerns on this invention. 本発明に係る電磁石駆動制御装置を用いる電磁石装置の他の全体構成を示すブロック図である。It is a block diagram which shows the other whole structure of the electromagnet apparatus using the electromagnet drive control apparatus which concerns on this invention.

以下、本発明の実施の形態について、詳細に説明する。図1は本発明に係る電磁石駆動制御装置を用いる電磁石装置の全体構成を示す図である。2は電磁石の励磁コイルΧを駆動制御する電磁石駆動制御装置であり、図示するように、電磁石駆動制御装置2は1台で複数の電磁石1の励磁コイルΧを駆動制御する場合と、1台で1つの電磁石1の励磁コイルΧを駆動制御する場合がある。3は電磁石装置全体を管理する電磁石装置全体管理部であり、ユーザ/上位装置インターフェース部4に接続されている。なお、電磁石装置全体管理部3にユーザ/上位装置インターフェース部4の機能を設けても良い。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a diagram showing an overall configuration of an electromagnet device using an electromagnet drive control device according to the present invention. Reference numeral 2 denotes an electromagnet drive control device that drives and controls the excitation coil rod of the electromagnet. As shown in the figure, the electromagnet drive control device 2 controls the drive of the excitation coil rods of a plurality of electromagnets 1 and one unit. There is a case where the excitation coil の of one electromagnet 1 is driven and controlled. Reference numeral 3 denotes an electromagnet device overall management unit that manages the entire electromagnet device, and is connected to the user / higher-level device interface unit 4. The electromagnet device overall management unit 3 may be provided with the function of the user / higher-level device interface unit 4.

各電磁石駆動制御装置2は電磁石装置全体管理部3からの目標励磁電流指令信号S1を受け、目標励磁電流波形として内部に保持し、該目標励磁電流波形に従って電磁石1の励磁コイルΧに励磁電流を通電するコイル駆動電圧S4を生成し、励磁コイルΧに出力する。これにより励磁コイルΧには目標励磁電流指令信号S1に対応する励磁電流が流れ、発生する磁束により、例えば隔壁で仕切られた空間に磁場(磁界)を形成する。   Each electromagnet drive control device 2 receives the target excitation current command signal S1 from the electromagnet device overall management unit 3, holds it as a target excitation current waveform, and applies the excitation current to the excitation coil Χ of the electromagnet 1 according to the target excitation current waveform. A coil drive voltage S4 to be energized is generated and output to the exciting coil Χ. As a result, an exciting current corresponding to the target exciting current command signal S1 flows through the exciting coil 、, and a magnetic field (magnetic field) is formed in a space partitioned by, for example, a partition by the generated magnetic flux.

図2(a)は本発明に係る電磁石駆動制御装置2のシステム構成を示すブロック図である。本電磁石駆動制御装置2は、電流指令部16と電力増幅器(PAMP)を具備するドライバー11と、電流検出部21を具備し、電流指令部16はデジタル演算部15とD/A変換器12を備えている。電磁石装置全体管理部3は、ユーザ/上位装置インターフェース4からの指示に基づいて、例えば、正弦波、矩形波、三角波等の各種波形の目標励磁電流指令信号S1を各電磁石駆動制御装置2のデジタル演算部15に出力する。   FIG. 2A is a block diagram showing a system configuration of the electromagnet drive control device 2 according to the present invention. The electromagnet drive control device 2 includes a driver 11 including a current command unit 16 and a power amplifier (PAMP), and a current detection unit 21. The current command unit 16 includes a digital calculation unit 15 and a D / A converter 12. I have. Based on an instruction from the user / higher-level device interface 4, the electromagnet device overall management unit 3 outputs a target excitation current command signal S 1 having various waveforms such as a sine wave, a rectangular wave, and a triangular wave to the digital of each electromagnet drive control device 2. The result is output to the calculation unit 15.

デジタル演算部15はCPUを具備し、上記目標励磁電流指令信号S1を受けて目標励磁電流波形として保持し、デジタル演算処理にて前記目標励磁電流波形に対応する「波形」と「値」の電流指令信号S2(デジタル量)を生成し、D/A変換器12に出力する。D/A変換器12ではデジタル量の電流指令信号S2を連続的な電流指令信号S3に変換し、ドライバー11に出力する。ドライバー11はその電力増幅器(PAMP)で電流指令信号S3を電力増幅してコイル駆動電圧S4にし、電磁石1の励磁コイルΧに出力する。これにより励磁コイルΧにはコイル駆動電圧S4に応じた「波形」と「値」の励磁電流が流れ、例えば、図示しない隔壁で仕切られた空間内に磁場(磁界)を形成する。   The digital calculation unit 15 includes a CPU, receives the target excitation current command signal S1 and holds it as a target excitation current waveform, and performs “waveform” and “value” currents corresponding to the target excitation current waveform by digital calculation processing. A command signal S2 (digital quantity) is generated and output to the D / A converter 12. The D / A converter 12 converts the digital current command signal S 2 into a continuous current command signal S 3 and outputs it to the driver 11. The driver 11 amplifies the current command signal S3 with the power amplifier (PAMP) to obtain the coil drive voltage S4 and outputs it to the exciting coil の of the electromagnet 1. As a result, an excitation current of “waveform” and “value” corresponding to the coil drive voltage S4 flows through the excitation coil 、, and for example, a magnetic field (magnetic field) is formed in a space partitioned by a partition (not shown).

電磁石1の励磁コイルΧに流れる励磁電流は、電流検出部21の電流検出器20で検出され、該検出された検出電流信号は増幅器17で増幅し、電流検出信号S6となってA/D変換器18に出力され、該A/D変換器18でデジタル量の電流検出信号S7に変換され、デジタル演算部15に出力される。デジタル演算部15は検出信号S7と目標励磁電流波形とを比較し、励磁コイルΧに流れる励磁電流が目標励磁電流波形の電流値及び/又は位相角になるように補正する補正機能を有している。これにより、電磁石1の励磁コイルΧに流れる励磁電流の電流値と位相が電磁石装置全体管理部3からの目標励磁電流指令信号S1で指令された「値」と「位相」になる。なお、デジタル演算部15は電流指令部16の一部であり、電流検出部21の一部でもある。   The exciting current flowing in the exciting coil の of the electromagnet 1 is detected by the current detector 20 of the current detector 21, and the detected current signal is amplified by the amplifier 17 and becomes the current detection signal S6 for A / D conversion. The A / D converter 18 converts the current detection signal S 7 into a digital amount of the current detection signal S 7 and outputs it to the digital calculation unit 15. The digital arithmetic unit 15 has a correction function for comparing the detection signal S7 with the target excitation current waveform and correcting the excitation current flowing through the excitation coil に な る so as to be the current value and / or phase angle of the target excitation current waveform. Yes. As a result, the current value and phase of the excitation current flowing in the excitation coil の of the electromagnet 1 become the “value” and “phase” commanded by the target excitation current command signal S1 from the electromagnet device overall management unit 3. The digital calculation unit 15 is a part of the current command unit 16 and a part of the current detection unit 21.

また、電流検出部21に、図3に示すように、CPU19を設け、デジタル通信等の手段でデジタル演算部15に電流検出信号S7をデジタル電流検出信号S7’としてをフィードバックしてもよい。   Further, as shown in FIG. 3, the current detection unit 21 may be provided with a CPU 19, and the current detection signal S7 may be fed back to the digital operation unit 15 as a digital current detection signal S7 'by means of digital communication or the like.

本電磁石駆動制御装置では図2(a)に示すように、電磁石1の励磁コイルΧに流れる励磁電流を電流検出器20で検出し、増幅器17、A/D変換器18からなる電流検出部21を介してデジタル演算部15にフィードバックしている。このようにフィードバック系が形成された電磁石駆動制御装置2において、励磁コイルΧのレイヤショート、励磁コイルΧの損傷等によって電磁石1に故障が発生した場合、この故障状態を検出する必要がある。従来、このような電磁石1の故障を検出するのに、デジタル演算部15にフィードバックされてくる電流検出信号S7の値を監視し、該電流検出信号S7の値が大きいと励磁コイルΧのショート、小さいと温度高や断線というように、検出信号S7の値の大小で励磁コイルΧの正・異常を判断している。   In this electromagnet drive control device, as shown in FIG. 2A, the current detector 20 detects the exciting current flowing in the exciting coil の of the electromagnet 1, and a current detector 21 comprising an amplifier 17 and an A / D converter 18. Is fed back to the digital arithmetic unit 15 via In the electromagnet drive control device 2 in which the feedback system is formed in this way, when a failure occurs in the electromagnet 1 due to a layer short of the excitation coil 、, damage to the excitation coil 等, etc., it is necessary to detect this failure state. Conventionally, in order to detect such a failure of the electromagnet 1, the value of the current detection signal S7 fed back to the digital calculation unit 15 is monitored. If the value of the current detection signal S7 is large, the excitation coil シ ョ ー ト is short-circuited. If it is smaller, the value of the detection signal S7 is judged as to whether the exciting coil 正 is normal or abnormal, such as high temperature or disconnection.

上記のようにフィードバックループ系を形成した場合、電流検出器20で検出した検出信号S7の値(実測値)と、電磁石装置全体管理部3からの目標励磁電流指令信号S1の値の差がゼロになるように制御されるから、異常が軽微の場合、異常が検出できないという問題がある。例えば、励磁コイルΧの温度上昇によって励磁コイルΧの抵抗値が上昇し、励磁電流が減少し、電流検出信号S7が小さくなると、デジタル演算部15は電流検出信号S7と前記デジタル演算部15で保持している目標電流波形の差がゼロになるように、デジタル演算部15から出力される電流指令信号S2の値を大きくし、ドライバー11である電力増幅器(PAMP)からのコイル駆動電圧を大きくするから、励磁コイルΧに流れる励磁電流は大きくなり(回復)、異常が解消してしまい異常が検出できない。即ち、励磁コイルΧの異常がフィードバック制御で賄いきれない程のレベルに達するまで故障が検出できないという問題がある。   When the feedback loop system is formed as described above, the difference between the value of the detection signal S7 (measured value) detected by the current detector 20 and the value of the target excitation current command signal S1 from the electromagnet device overall management unit 3 is zero. Therefore, when the abnormality is minor, there is a problem that the abnormality cannot be detected. For example, when the resistance value of the exciting coil 上昇 increases due to the temperature rise of the exciting coil 、, the exciting current decreases, and the current detection signal S7 becomes small, the digital calculation unit 15 holds the current detection signal S7 and the digital calculation unit 15 The value of the current command signal S2 output from the digital calculation unit 15 is increased so that the difference between the target current waveforms being generated becomes zero, and the coil drive voltage from the power amplifier (PAMP) that is the driver 11 is increased. Therefore, the exciting current flowing through the exciting coil 大 き く becomes larger (recovered), and the abnormality is eliminated and the abnormality cannot be detected. That is, there is a problem in that a failure cannot be detected until the abnormality of the exciting coil 達 す る reaches a level that cannot be covered by feedback control.

本発明に係る電磁石駆動制御装置2では、励磁コイルΧの故障検知及び異常が軽微で故障に発展する可能性がある段階、即ち故障の予知が可能な故障検知・予知手段を備えている。以下、この故障検知・予知手段について説明する。図2(b)は励磁コイルΧの故障検知・予知手段の構成を示す図である。図において、22は故障検知部、23は警報手段である。故障検知部22にはデジタル演算部15からの後述する電流指令想定信号S8と電流指令信号S2が入力される。故障検知部22では電流指令想定信号S8の値と電流指令信号S2の値を比較し、両者が予め定められた所定値以上乖離したら(デジタル演算部15の上記補正機能の補正値が予め定められた所定値以上となったら)、故障又は故障に発展する故障予知と判断する。   The electromagnet drive control device 2 according to the present invention is provided with a failure detection / prediction means capable of predicting a failure, that is, a stage where the failure detection and abnormality of the exciting coil cage are minor and may develop into a failure. The failure detection / prediction means will be described below. FIG. 2 (b) is a diagram showing a configuration of a failure detection / prediction means for the exciting coil cage. In the figure, 22 is a failure detection unit, and 23 is an alarm means. The failure detection unit 22 receives a current command assumption signal S8 and a current command signal S2 described later from the digital calculation unit 15. The failure detection unit 22 compares the value of the current command assumption signal S8 and the value of the current command signal S2, and if they deviate by a predetermined value or more (the correction value of the correction function of the digital calculation unit 15 is determined in advance). If it exceeds the predetermined value), it is judged as a failure or a failure prediction that develops into a failure.

電流指令想定信号S8はデジタル演算部15において、目標励磁電流波形を基にドライバー11の入出力特性と励磁コイルΧの特性(抵抗値、リアクタンス値等)と増幅器17の入出力特性とA/D変換器18の入出力特性とから算出される電流指令想定信号である。電流指令想定信号S8はフィードバックループ系の特性から計算により求められるから、この電流指令想定信号S8と、実際のフィードバック制御にて決定された電流指令信号S2とを比較することにより、電磁石1の励磁コイルΧの故障・故障予知が精度よく判別できるのである。また、故障検知部22が励磁コイルΧの不良を検知した場合は警報手段23に伝送し、警報手段23から励磁コイルΧの故障や故障予知を警報する。また、警報手段23の代わりに励磁コイルΧの故障や故障予知を表示する表示手段を設けてもよい。更に警報手段と表示手段の両方を設けても良い。   The current command assumption signal S8 is input to the digital calculation unit 15 based on the target excitation current waveform, the input / output characteristics of the driver 11, the excitation coil characteristics (resistance value, reactance value, etc.), the input / output characteristics of the amplifier 17, and the A / D. This is a current command assumption signal calculated from the input / output characteristics of the converter 18. Since the current command assumption signal S8 is obtained by calculation from the characteristics of the feedback loop system, the current command assumption signal S8 is compared with the current command signal S2 determined by the actual feedback control, thereby exciting the electromagnet 1. The failure / prediction of the coil cage can be accurately identified. In addition, when the failure detection unit 22 detects a defect in the excitation coil rod, the failure detection unit 22 transmits the failure to the alarm unit 23, and the alarm unit 23 warns of the failure or prediction of the excitation coil rod. Further, instead of the alarm means 23, a display means for displaying a failure of the exciting coil cage or a failure prediction may be provided. Further, both alarm means and display means may be provided.

なお、図2(b)では、故障検知部22を電流指令部16のデジタル演算部15とは別置きにしているが、後に詳述するように、故障検知部22の機能をCPUを具備するデジタル演算部15に持たせるようにしてもよい。   In FIG. 2B, the failure detection unit 22 is provided separately from the digital calculation unit 15 of the current command unit 16, but as will be described in detail later, the function of the failure detection unit 22 is provided with a CPU. The digital operation unit 15 may be provided.

また、電磁石1の励磁コイルΧの直流抵抗値は温度に依存し、温度が高ければ直流抵抗値は高く、温度が低ければ直流抵抗値は低くなる。そこで励磁コイルΧの直流抵抗値から励磁コイルΧの温度を推定し、該励磁コイルΧの故障検知や故障予知を行うことも可能である。図2(c)は励磁コイルΧの直流抵抗値から該励磁コイルΧの温度を推定し、故障検知や故障予知を行う故障検知・予知手段の構成を示す図である。図において、25は直流抵抗値検知部、27は温度推定部、28は警報手段である。直流抵抗値検知部25には電流指令信号S2と電流検出信号S7が入力されている。直流抵抗値検知部25では電流指令信号S2とドライバー11の入出力特性から算出されるコイル駆動電圧計算信号S4’の値と電流検出信号S7の値から励磁コイルΧの直流抵抗値を下記のように算出する。   The DC resistance value of the exciting coil の of the electromagnet 1 depends on the temperature. The higher the temperature, the higher the DC resistance value, and the lower the temperature, the lower the DC resistance value. Therefore, it is possible to estimate the temperature of the exciting coil Χ from the DC resistance value of the exciting coil 、, and to perform failure detection or failure prediction of the exciting coil Χ. FIG. 2 (c) is a diagram showing the configuration of a failure detection / prediction means that estimates the temperature of the excitation coil か ら from the DC resistance value of the excitation coil 、 and performs failure detection and failure prediction. In the figure, 25 is a DC resistance value detection unit, 27 is a temperature estimation unit, and 28 is an alarm means. A current command signal S2 and a current detection signal S7 are input to the DC resistance value detection unit 25. In the direct current resistance value detection unit 25, the direct current resistance value of the exciting coil か ら is calculated as follows from the value of the coil drive voltage calculation signal S4 ′ calculated from the current command signal S2 and the input / output characteristics of the driver 11 and the value of the current detection signal S7. To calculate.

直流電流波形印加時:
直流抵抗値=コイル駆動電圧値÷励磁電流値
交流電流波形印加時:
インピーダンス=コイル駆動電圧値÷励磁電流値
直流抵抗値=[{(インピーダンス)−(交流波形の角周波数×コイルインダクタンス) }]1/2
When DC current waveform is applied:
DC resistance value = coil drive voltage value ÷ exciting current value When AC current waveform is applied:
Impedance = Coil drive voltage value ÷ Excitation current value DC resistance value = [{(impedance) 2 − (angular frequency of AC waveform × coil inductance) 2 }] 1/2

温度推定部27では直流抵抗値検知部25で検知された励磁コイルΧの直流抵抗値から励磁コイルΧの温度を推定し、該推定した励磁コイル温度が予め定められた所定の範囲を逸脱した場合に、励磁コイルΧの故障又は故障要因と判断し、警報手段28に伝送し、警報手段28から励磁コイルΧの故障検知や故障予知を警報する。また、警報手段28の代わりに励磁コイルΧの故障や故障予知を表示する表示手段を設けてもよい。更に警報手段と表示手段の両方を設けても良い。また、温度推定部27の温度推定機能で推定した励磁コイル推定温度を表示する温度表示手段又は報知する温度報知手段を設けてもよい。更に励磁コイル推定温度を表示する機能と報知する機能を兼ね備えた温度表示・報知手段29を設けてもよい。   The temperature estimation unit 27 estimates the temperature of the excitation coil Χ from the DC resistance value of the excitation coil 検 知 detected by the DC resistance value detection unit 25, and the estimated excitation coil temperature deviates from a predetermined range. At the same time, it is determined that the exciting coil 故障 is a failure or a cause of failure, and is transmitted to the alarm means 28, and the alarm means 28 warns of the detection or failure prediction of the exciting coil Χ. Further, instead of the alarm means 28, a display means for displaying a failure of the exciting coil cage or a failure prediction may be provided. Further, both alarm means and display means may be provided. Further, a temperature display means for displaying the estimated excitation coil temperature estimated by the temperature estimation function of the temperature estimation unit 27 or a temperature notification means for notification may be provided. Furthermore, a temperature display / notification unit 29 having both a function of displaying the excitation coil estimated temperature and a function of notification may be provided.

なお、図2(c)では、直流抵抗値検知部25、温度推定部27を電流指令部16のデジタル演算部15と別置きにしているが、後に詳述するように、直流抵抗値検知部25及び温度推定部27の機能をCPUを具備するデジタル演算部15に持たせるようにしてもよい。   In FIG. 2C, the DC resistance value detection unit 25 and the temperature estimation unit 27 are provided separately from the digital calculation unit 15 of the current command unit 16, but as will be described in detail later, the DC resistance value detection unit. 25 and the temperature estimation unit 27 may be provided to the digital calculation unit 15 including a CPU.

図4は図2(b)の故障検知部22の機能をCPUを具備するデジタル演算部15に持たせ、デジタル演算部15で電磁石1の励磁コイルΧの異常判定を行う処理フローを示す図である。異常判定を開始し、ステップST1では励磁コイルΧに流れる実測電流値(実測コイル電流値)を読込み、即ち、電流検出部21のA/D変換器18の電流検出信号S7の値(A/D変換値)を取得しステップST2に移行する。ステップST2では、目標電流値(目標励磁電流波形より求めた目標励磁電流値)とコイル電流値の実測値(A/D変換器18の電流検出信号S7の値)の電流偏差A(目標電流値−実測コイル電流値)を算出し、ステップST3に移行する。ステップST3では電流偏差Aより指令信号値B(操作量)を計算し、ステップST4に移行する。   FIG. 4 is a diagram showing a processing flow in which the function of the failure detection unit 22 in FIG. 2B is provided in the digital calculation unit 15 having a CPU, and the digital calculation unit 15 determines abnormality of the exciting coil rod of the electromagnet 1. is there. Abnormality determination is started, and in step ST1, the measured current value (measured coil current value) flowing through the exciting coil Χ is read, that is, the value (A / D) of the current detection signal S7 of the A / D converter 18 of the current detector 21. Conversion value) is acquired, and the process proceeds to step ST2. In step ST2, the current deviation A (target current value) between the target current value (target excitation current value obtained from the target excitation current waveform) and the measured coil current value (value of the current detection signal S7 of the A / D converter 18). -Actual coil current value) is calculated, and the process proceeds to step ST3. In step ST3, a command signal value B (operation amount) is calculated from the current deviation A, and the process proceeds to step ST4.

ステップST4では、目標電流値と励磁コイルΧ、ドライバー11の特性から指令信号値(操作量)の想定値(電流指令想定信号値S8)Cを計算し、ステップST5に移行する。ステップST5では、指令信号値Bと想定値Cを比較し、両者が予め定められた所定値以上乖離しているか否かを判断し、乖離している(Y)場合はステップST6に移行し、ここで励磁コイル異常を警報手段23(図2(b)参照)に出力する。乖離していない(N)場合は異常判定を終了する。   In step ST4, an assumed value (current command assumed signal value S8) C of the command signal value (operation amount) is calculated from the target current value, the exciting coil rod, and the characteristics of the driver 11, and the process proceeds to step ST5. In step ST5, the command signal value B and the assumed value C are compared, and it is determined whether or not both are deviated by a predetermined value or more. If deviated (Y), the process proceeds to step ST6. Here, the exciting coil abnormality is output to the alarm means 23 (see FIG. 2B). If there is no deviation (N), the abnormality determination is terminated.

図5はデジタル演算部15で電磁石1の励磁コイルΧの異常判定を行う他の処理フローを示す図である。異常判定を開始し、ステップST11では励磁コイルΧに流れる実測電流値(A/D変換器18の電流検出信号S7の値)を取得しステップST12に移行する。ステップST12では、目標電流値とコイル電流値の実測値の電流偏差A(目標電流値−コイル電流値)を算出し、ステップST13に移行する。ステップST13では電流偏差Aが予め定められた所定値以上(過大)か否かを判断し、所定値以上(Y)の場合はステップST14に移行し、励磁コイル異常を警報手段23(図2(b)参照)に出力する。上記ステップST11〜ST14までの処理が従来の処理である。   FIG. 5 is a diagram showing another processing flow in which the digital calculation unit 15 performs abnormality determination of the exciting coil rod of the electromagnet 1. Abnormality determination is started, and in step ST11, an actually measured current value (a value of the current detection signal S7 of the A / D converter 18) flowing through the exciting coil 取得 is acquired, and the process proceeds to step ST12. In step ST12, a current deviation A (target current value−coil current value) between the target current value and the actually measured value of the coil current value is calculated, and the process proceeds to step ST13. In step ST13, it is determined whether or not the current deviation A is greater than or equal to a predetermined value (excessive). If the current deviation A is greater than or equal to the predetermined value (Y), the process proceeds to step ST14 and the exciting coil abnormality warning means 23 (FIG. b)). The processes from steps ST11 to ST14 are conventional processes.

本処理では、ステップST13で電流偏差Aが予め定められた所定値未満(N)の場合、ステップST15に移行し、ここで電流偏差値Aより、指令計算値B(操作量)を計算しステップST16に移行する。ステップST16では、目標電流値と励磁コイルΧ、ドライバー11の特性から指令信号値(操作量)の想定値(電流指令想定信号値S8の)Cを計算し、ステップST17に移行する。ステップST17では、指令信号値Bと想定値Cを比較し、両者が予め定められた所定値以上乖離しているか否かを判断し、乖離している(Y)の場合はステップST18に移行し、ここで励磁コイル異常を警報手段23(図2(b)参照)に出力する。乖離していない(N)の場合は異常判定を終了する。   In this process, when the current deviation A is less than a predetermined value (N) determined in step ST13, the process proceeds to step ST15, where a command calculation value B (operation amount) is calculated from the current deviation value A. Move on to ST16. In step ST16, an assumed value of command signal value (operation amount) (of current command assumed signal value S8) C is calculated from the target current value, the exciting coil rod, and the characteristics of the driver 11, and the process proceeds to step ST17. In step ST17, the command signal value B and the assumed value C are compared, and it is determined whether or not the two deviate by a predetermined value or more. If the two deviate (Y), the process proceeds to step ST18. Here, the excitation coil abnormality is output to the alarm means 23 (see FIG. 2B). If there is no deviation (N), the abnormality determination is terminated.

図6は図2(c)の直流抵抗値検知部25及び温度推定部27の機能をデジタル演算部15に持たせ、デジタル演算部15で電磁石1の励磁コイルΧのコイル温度を推定する処理フローを示す図である。励磁コイルΧのコイル温度推定開始し、ステップST21で励磁コイルΧに流れるコイル電流値を読込み(A/D変換器18の電流検出信号S7の値)を取得しステップST22に移行する。ステップST22では、電流指令信号S2とドライバー11の入出力特性からコイル駆動電圧計算信号S4’を求め、ステップST23に移行する。ステップST23では、コイル電流値とドライバー11のコイル駆動電圧計算信号S4’の値より、コイル抵抗値を計算し、ステップST24ではコイル抵抗値より下式により現在の励磁コイルΧのコイル温度を推定し、コイル温度推定処理を終了する。   FIG. 6 is a processing flow in which the functions of the DC resistance value detection unit 25 and the temperature estimation unit 27 in FIG. 2C are provided in the digital calculation unit 15 to estimate the coil temperature of the exciting coil cage of the electromagnet 1 by the digital calculation unit 15. FIG. The coil temperature estimation of the exciting coil 開始 is started, and the value of the coil current flowing through the exciting coil Χ is read in step ST21 (the value of the current detection signal S7 of the A / D converter 18) is acquired, and the process proceeds to step ST22. In step ST22, a coil drive voltage calculation signal S4 'is obtained from the current command signal S2 and the input / output characteristics of the driver 11, and the process proceeds to step ST23. In step ST23, the coil resistance value is calculated from the coil current value and the value of the coil drive voltage calculation signal S4 ′ of the driver 11, and in step ST24, the current coil temperature of the exciting coil rod is estimated from the coil resistance value by the following equation. Then, the coil temperature estimation process is terminated.

Tn=1/α{(Rn/Rd)+α×Td−1}
ここで、Tn:コイル推定温度[℃]、Td:設計上のコイル温度[℃]、Rn:算出されたコイル抵抗値[Ω]、Rd:設計上のコイル抵抗値[Ω]、α:熱抵抗率 である。
Tn = 1 / α {(Rn / Rd) + α × Td−1}
Here, Tn: estimated coil temperature [° C.], Td: designed coil temperature [° C.], Rn: calculated coil resistance value [Ω], Rd: designed coil resistance value [Ω], α: heat Resistivity.

図7は本発明に係る電磁石駆動制御装置を用いる電磁石装置の全体構成を示す図である。ここでは、各電磁石駆動制御装置2には、それぞれ故障検出手段又は温度推定手段又は故障検出手段と温度推定手段の両方を備え、更に各電磁石駆動制御装置2で1つの電磁石の励磁コイルΧを駆動するように、電磁石駆動制御装置2と電磁石の励磁コイルΧは一対一の関係になるように構成されている。つまり本実施形態例では、1つの電磁石1の励磁コイルΧに対して1つの故障検出手段又は温度推定手段又は故障検出手段と温度推定手段の両方を備えている場合を示す。これにより、各励磁コイルΧごとに、故障検出又は温度推定又は故障検出と温度推定の両方ができる。   FIG. 7 is a diagram showing an overall configuration of an electromagnet device using the electromagnet drive control device according to the present invention. Here, each electromagnet drive control device 2 is provided with both failure detection means, temperature estimation means, or both failure detection means and temperature estimation means, and each electromagnet drive control device 2 drives an excitation coil の of one electromagnet. Thus, the electromagnet drive control device 2 and the exciting coil rod of the electromagnet are configured to have a one-to-one relationship. That is, in the present embodiment, a case where one failure detection means, temperature estimation means, or both of the failure detection means and temperature estimation means is provided for the exciting coil rod of one electromagnet 1 is shown. As a result, failure detection or temperature estimation or both failure detection and temperature estimation can be performed for each excitation coil cage.

図8は本発明に係る電磁石駆動制御装置を用いる電磁石装置の全体構成を示す図である。ここでは、各電磁石駆動制御装置2には、それぞれ故障検出手段又は温度推定手段又は故障検出手段と温度推定手段の両方を備え、各電磁石駆動制御装置2で複数(図では2個)の電磁石の励磁コイルΧを駆動するように、つまり各電磁石駆動制御装置2は複数の電磁石の励磁コイルΧを駆動するように構成されている。言い換えると、複数電磁石で構成されるグループ毎に、1つ故障検出手段又は温度推定手段又は故障検出手段と温度推定手段の両方を備えている場合を示す。これにより、励磁コイルのグループごとに、故障検出又は温度推定又は故障検出と温度推定の両方ができる。   FIG. 8 is a diagram showing an overall configuration of an electromagnet device using the electromagnet drive control device according to the present invention. Here, each electromagnet drive control device 2 is provided with both failure detection means, temperature estimation means, or both failure detection means and temperature estimation means, and each electromagnet drive control device 2 includes a plurality of (two in the figure) electromagnets. In order to drive the excitation coil つ ま り, that is, each electromagnet drive control device 2 is configured to drive the excitation coil の of a plurality of electromagnets. In other words, a case is shown in which one failure detection means, temperature estimation means, or both of the failure detection means and temperature estimation means are provided for each group composed of a plurality of electromagnets. Thereby, failure detection or temperature estimation or both failure detection and temperature estimation can be performed for each group of exciting coils.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

本発明は、電流指令部よりドライバーに指令された電流指令信号と、電流指令信号想定値(目標励磁電流値を基に、励磁コイルの特性、及びドライバーの入出力特性から算出される値)とが予め定められた所定値以上乖離した場合に励磁コイルの不良とする励磁コイル故障検知及び/又は故障予知手段を設けたので、フィードバックループ系に関係なく電磁石の励磁コイルの異常を検知でき、電磁石の励磁コイルのレイヤショートや、巻線等の不良が軽微であっても高精度で故障検知や故障予知できる電磁石駆動制御装置として利用できる。   The present invention provides a current command signal commanded to the driver by the current command unit, a current command signal expected value (a value calculated from the excitation coil characteristics and the driver input / output characteristics based on the target excitation current value), Excitation coil failure detection and / or failure prediction means is provided that makes the excitation coil defective when the value deviates by more than a predetermined value, so that it is possible to detect an abnormality in the excitation coil of the electromagnet regardless of the feedback loop system. It can be used as an electromagnet drive control device that can detect a failure or predict a failure with high accuracy even if a layer short of an exciting coil or a defect in a winding or the like is minor.

また、本発明は、ドライバーによって励磁コイルに印加される電圧と、励磁コイルに流れる励磁電流とによって励磁コイルの直流抵抗値を求め、該直流抵抗値より励磁コイルの温度を推定する励磁コイル温度推定機能を有するので、温度センサやセンサ入力系を具備すること無く、この推定温度から励磁コイルの故障検知や故障予知が高精度でできる電磁石駆動制御装置として利用できる。   Further, the present invention obtains a DC resistance value of the exciting coil from a voltage applied to the exciting coil by a driver and an exciting current flowing through the exciting coil, and estimates an exciting coil temperature from the DC resistance value. Since it has a function, it can be used as an electromagnet drive control device capable of detecting an excitation coil failure and predicting a failure with high accuracy from the estimated temperature without providing a temperature sensor or a sensor input system.

1 電磁石
2 ドライブ回路
3 電磁石装置全体管理部
4 検出回路
11 ドライバー
12 D/A変換器
15 デジタル演算部
16 電流指令部
17 増幅器
18 A/D変換器
19 CPU
20 電流検出器
21 電流検出部
22 故障検知部
23 警報手段
25 直流抵抗値検知部
27 温度推定部
28 警報手段
29 温度表示・報知手段
DESCRIPTION OF SYMBOLS 1 Electromagnet 2 Drive circuit 3 Electromagnet apparatus whole management part 4 Detection circuit 11 Driver 12 D / A converter 15 Digital operation part 16 Current command part 17 Amplifier 18 A / D converter 19 CPU
DESCRIPTION OF SYMBOLS 20 Current detector 21 Current detection part 22 Failure detection part 23 Alarm means 25 DC resistance value detection part 27 Temperature estimation part 28 Alarm means 29 Temperature display / notification means

Claims (7)

電磁石を備え、該電磁石の励磁コイルに励磁電流を通電することにより、隔壁で仕切られた空間内に磁場を形成する電磁石駆動制御装置であって、
電流指令部(16)と、ドライバー(11)と、電流検出部(21)、故障検知・予知手段(22、23)を具備し、
電磁石全体管理部(3)より、前記電流指令部(16)に目標励磁電流信号(S1)を出力し、前記電流指令部(16)は前記目標励磁電流信号(S1)を受け目標励磁電流波形として保持すると共に、該目標励磁電流信号(S1)に基づいて電流指令信号(S2,S3)を生成し、前記ドライバー(11)を介して前記励磁コイル(X)に励磁電流を通電し、前記電流検出部(21)は前記励磁コイル(X)に通電した励磁電流を検出し、該検出励磁電流信号(S7)を前記電流指令部(16)にフィードバックするように構成されており、
前記電流指令部(16)は、前記電流検出部(21)で検出された検出励磁電流信号(S7)に基づいて電流指令信号(S2)を生成し、更に前記保持している目標励磁電流波形より、電流指令想定信号(S8)を生成し、
前記故障検知・予知手段(22,23)は、前記電流指令信号(S2)と前記電流指令想定信号(S8)の差分が所定以上乖離した場合に前記励磁コイルの不良又は不良に発展する故障予知を判断する機能を備えたことを特徴とする電磁石駆動制御装置。
An electromagnet drive control device that includes an electromagnet and forms a magnetic field in a space partitioned by a partition wall by energizing an excitation current to an excitation coil of the electromagnet,
A current command unit (16), a driver (11), a current detection unit (21), failure detection / prediction means (22, 23),
The electromagnet overall management unit (3) outputs a target excitation current signal (S1) to the current command unit (16), and the current command unit (16) receives the target excitation current signal (S1) and generates a target excitation current waveform. And generating a current command signal (S2, S3) based on the target excitation current signal (S1), energizing the excitation coil (X) via the driver (11), The current detection unit (21) is configured to detect an excitation current energized in the excitation coil (X) and feed back the detected excitation current signal (S7) to the current command unit (16).
The current command unit (16) generates a current command signal (S2) based on the detected excitation current signal (S7) detected by the current detection unit (21), and further holds the target excitation current waveform. From the above, a current command assumption signal (S8) is generated,
The failure detection / prediction means (22, 23) is a failure prediction that develops to a failure or failure of the exciting coil when the difference between the current command signal (S2) and the current command assumption signal (S8) is more than a predetermined difference. An electromagnet drive control device comprising a function of determining
請求項1に記載の電磁石駆動制御装置において、
前記電流検出部(21)で検出した検出励磁電流信号(S7)より、前記励磁コイルに前記励磁電流を通電するための前記励磁コイルに印加される駆動電圧から該励磁コイルの直流抵抗値を求め、該直流抵抗値より励磁コイルの温度を推定する励磁コイル温度推定機能を有する励磁コイル温度推定手段(27)を設けたことを特徴とする電磁石駆動制御装置。
In the electromagnet drive control device according to claim 1,
From the detected excitation current signal (S7) detected by the current detector (21), the DC resistance value of the excitation coil is obtained from the drive voltage applied to the excitation coil for applying the excitation current to the excitation coil. An electromagnet drive controller comprising excitation coil temperature estimation means (27) having an excitation coil temperature estimation function for estimating the temperature of the excitation coil from the DC resistance value.
電磁石を備え、該電磁石の励磁コイルに励磁電流を通電することにより、隔壁で仕切られた空間内に磁場を形成し、プラズマ分布を能動的に制御する電磁石駆動制御装置であって、
電流指令部(16)と、ドライバー(11)と、電流検出部(21)、励磁コイル温度推定手段(27)を具備し、
前記電流指令部(16)からの電流指令信号(S2,S3)により、前記ドライバー(11)を介して前記励磁コイル(X)に励磁電流を通電し、前記電流検出部(21)は前記励磁コイル(X)に通電した励磁電流を検出し、該検出励磁電流信号(S7)を前記電流指令部(16)にフィードバックするように構成されており、
前記励磁コイル温度推定手段(27)は、前記電流指令信号(S2)と前記検出励磁電流信号(S7)とが入力され、前記電流指令信号(S2)から前記励磁コイル(X)に励磁電流を通電するための駆動電圧を算出し、該駆動電圧と前記検出励磁電流信号(S7)から前記励磁コイル(X)の直流抵抗値を算出し、該直流抵抗値より前記励磁コイル(X)の温度を推定する励磁コイル温度推定機能を備えていることを特徴とする電磁石駆動制御装置。
An electromagnet drive control device that includes an electromagnet and forms a magnetic field in a space partitioned by a partition wall by energizing an excitation coil of the electromagnet to actively control plasma distribution,
A current command section (16), a driver (11), a current detection section (21), and an exciting coil temperature estimation means (27) ;
In response to a current command signal (S2, S3) from the current command unit (16), an excitation current is passed through the excitation coil (X) via the driver (11), and the current detection unit (21) It is configured to detect an exciting current energized in the coil (X) and feed back the detected exciting current signal (S7) to the current command unit (16).
The excitation coil temperature estimating means (27) receives the current command signal (S2) and the detected excitation current signal (S7), and supplies the excitation current to the excitation coil (X) from the current command signal (S2). A drive voltage for energization is calculated, a DC resistance value of the excitation coil (X) is calculated from the drive voltage and the detected excitation current signal (S7), and the temperature of the excitation coil (X) is calculated from the DC resistance value. An electromagnet drive control device comprising an exciting coil temperature estimation function for estimating
請求項3に記載の電磁石駆動制御装置において、
前記励磁コイル温度推定手段(27)で推定された励磁コイル推定温度が所定の範囲を逸脱した場合に、前記励磁コイルの不良とする励磁コイル故障検知・予知手段を設けたことを特徴とする電磁石駆動制御装置。
In the electromagnet drive control device according to claim 3,
An electromagnet provided with excitation coil failure detection / prediction means for determining a failure of the excitation coil when the excitation coil estimated temperature estimated by the excitation coil temperature estimation means (27) deviates from a predetermined range. Drive control device.
請求項1乃至4のいずれか1項に記載の電磁石駆動制御装置において、
前記電磁石は複数であり、前記励磁コイル故障検知・予知手段又は前記励磁コイル温度推定手段はそれぞれ前記電磁石に対応或いは複数のグループに区分した前記電磁石に対応して設けられたことを特徴とする電磁石駆動制御装置。
In the electromagnet drive control device according to any one of claims 1 to 4 ,
There are a plurality of electromagnets, and the excitation coil failure detection / prediction means or the excitation coil temperature estimation means are provided corresponding to the electromagnets or to the electromagnets divided into a plurality of groups, respectively. Drive control device.
請求項1又はに記載の電磁石駆動制御装置において、
前記励磁コイル故障検知・予知手段が励磁コイルの不良を検知した場合、それを表示及び/又は報知する警報手段を設けたことを特徴とする電磁石駆動制御装置。
In the electromagnet drive control device according to claim 1 or 4 ,
An electromagnet drive control device comprising alarm means for displaying and / or notifying when an excitation coil failure is detected by the excitation coil failure detection / prediction means.
請求項2又は3に記載の電磁石駆動制御装置において、
前記励磁コイル温度推定手段で推定した励磁コイル推定温度を表示する温度表示手段又は励磁コイル推定温度を表示する機能と報知する機能を兼ね備えた温度表示・報知手段(29)を設けたことを特徴とする電磁石駆動制御装置。
In the electromagnet drive control device according to claim 2 or 3 ,
A temperature display means for displaying the estimated excitation coil temperature estimated by the excitation coil temperature estimation means or a temperature display / notification means (29) having both a function for displaying the estimated excitation coil temperature and a function for notifying are provided. Electromagnet drive control device.
JP2010219023A 2010-09-29 2010-09-29 Electromagnet drive controller Active JP5718605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219023A JP5718605B2 (en) 2010-09-29 2010-09-29 Electromagnet drive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219023A JP5718605B2 (en) 2010-09-29 2010-09-29 Electromagnet drive controller

Publications (2)

Publication Number Publication Date
JP2012074585A JP2012074585A (en) 2012-04-12
JP5718605B2 true JP5718605B2 (en) 2015-05-13

Family

ID=46170447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219023A Active JP5718605B2 (en) 2010-09-29 2010-09-29 Electromagnet drive controller

Country Status (1)

Country Link
JP (1) JP5718605B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021911B2 (en) * 1992-02-05 2000-03-15 株式会社デンソー Drive unit for linear solenoid
JPH08148333A (en) * 1994-11-17 1996-06-07 Nippondenso Co Ltd Solenoid driver
DE19511845A1 (en) * 1995-03-31 1996-10-02 Teves Gmbh Alfred Regulated externally controllable brake booster and method for its operation
JPH10308297A (en) * 1997-05-07 1998-11-17 Sumitomo Metal Ind Ltd Plasma treatment device
JP2005079439A (en) * 2003-09-02 2005-03-24 Tokyo Electron Ltd Method for controlling electronic temperature of plasma, plasma processing method and plasma processor
JP2006287043A (en) * 2005-04-01 2006-10-19 Fujitsu Ten Ltd Mulfunction-detecting method of linear solenoid driving device

Also Published As

Publication number Publication date
JP2012074585A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
US10823791B2 (en) Method and magnetic resonance apparatus for monitoring a cooling system of the magnetic resonance apparatus
TWI485970B (en) Apparatus for controlling motor
US10374532B2 (en) Apparatus, system and method of fault diagnosis for permanent magnet motor
JP5926303B2 (en) Motor drive device including DC link voltage detection unit
US20220286079A1 (en) Electric drive unit, method for operating an electric drive unit and method for calculating temperature
JP6096718B2 (en) Electric motor overheat detection device having a plurality of PTC thermistors
CN108604876B (en) Motor control device
US9568517B2 (en) Self-diagnostic apparatus and method for electric device
TWI566065B (en) Communication anomaly detection device, communication anomaly detection method and program
CN105915148B (en) Electric motor drive system, the control method of motor and power-converting device
JP2011015584A (en) Device for burnout protection of motor winding
CN109951135B (en) Power control unit
JP5718605B2 (en) Electromagnet drive controller
JP2007112188A (en) Electric power steering device
JP6457589B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US9726526B2 (en) Flowmeter, insulation deterioration diagnosis system, and insulation deterioration diagnosis method
JP5744432B2 (en) Induction hardening system and induction hardening abnormality determination method
CN108802611B (en) Abnormality diagnosis device and abnormality diagnosis method
FI115266B (en) Method and arrangement for parallel inverter modules
EP3599716B1 (en) Fault isolation for pulse width modulated three phase motor systems
JP2009261140A (en) Electromagnetic proportional valve drive controller
JP3343391B2 (en) MRI equipment
JP6767414B2 (en) Motor cooling control system
JP6483399B2 (en) Induction heating type image fixing apparatus and induction heating type image fixing apparatus driving program
JP6402701B2 (en) Motor temperature estimation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5718605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250