JP5717584B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5717584B2
JP5717584B2 JP2011174667A JP2011174667A JP5717584B2 JP 5717584 B2 JP5717584 B2 JP 5717584B2 JP 2011174667 A JP2011174667 A JP 2011174667A JP 2011174667 A JP2011174667 A JP 2011174667A JP 5717584 B2 JP5717584 B2 JP 5717584B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature side
circulation circuit
refrigeration cycle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011174667A
Other languages
Japanese (ja)
Other versions
JP2013036706A (en
Inventor
杉本 猛
猛 杉本
山下 哲也
哲也 山下
池田 隆
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011174667A priority Critical patent/JP5717584B2/en
Publication of JP2013036706A publication Critical patent/JP2013036706A/en
Application granted granted Critical
Publication of JP5717584B2 publication Critical patent/JP5717584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、冷凍サイクル装置に関するものである。特に二元冷凍装置において、炭素二重結合を分子構造に有する冷媒の処理等に関するものである。   The present invention relates to a refrigeration cycle apparatus. In particular, the present invention relates to processing of a refrigerant having a carbon double bond in a molecular structure in a binary refrigeration apparatus.

近年、オゾン層破壊防止の観点から、冷凍サイクル装置に封入する冷媒として塩素を含まない冷媒への移行が行われた。ただ、これらの塩素を含まないHFC冷媒(例えばR410A、R404A等)は比較的温暖化係数が高いため、冷凍装置の外へ冷媒が漏れないように冷媒漏れ対策がとられたり、機器の廃棄時には冷媒回収義務が課せられたりしている。しかしながら回収率が不充分であったり、使用時の冷媒漏れもあることから、地球温暖化係数(GWP)の値が小さい冷媒へのさらなる移行が要望されている。GWPの値が小さい冷媒として、例えば、二酸化炭素などの自然冷媒、HFO−1234yf(ハイドロフルオロオレフィン)のようなHFO(オレフィン系フッ素化合物)系冷媒(以下、HFO冷媒という)等が検討されている。   In recent years, from the viewpoint of preventing ozone layer destruction, a transition to a refrigerant not containing chlorine has been performed as a refrigerant to be sealed in a refrigeration cycle apparatus. However, since these HFC refrigerants that do not contain chlorine (for example, R410A, R404A, etc.) have a relatively high global warming potential, measures to prevent refrigerant leakage are taken so that the refrigerant does not leak out of the refrigeration system, or when the equipment is discarded. A refrigerant recovery obligation is imposed. However, since the recovery rate is insufficient and there are refrigerant leaks during use, further transition to a refrigerant having a low global warming potential (GWP) value is desired. As a refrigerant having a small GWP value, for example, natural refrigerants such as carbon dioxide, HFO (olefinic fluorine compound) refrigerants (hereinafter referred to as HFO refrigerants) such as HFO-1234yf (hydrofluoroolefin), and the like are being studied. .

例えば、従来、HFO冷媒を使用した冷凍装置において、冷媒を収容する冷媒収容手段と、冷媒収容手段内に付加反応に寄与する物質を供給する付加反応物質供給手段と、冷媒収容手段内に収容された冷媒に紫外線を照射して不燃性にする紫外線照射手段を備えるものが提案されている(例えば、特許文献1参照)。   For example, conventionally, in a refrigeration apparatus using an HFO refrigerant, the refrigerant accommodating means for accommodating the refrigerant, the additional reactant supply means for supplying the substance contributing to the addition reaction in the refrigerant accommodating means, and the refrigerant accommodating means are accommodated in the refrigerant accommodating means. There has been proposed one provided with ultraviolet irradiation means for making the refrigerant non-flammable by irradiating the refrigerant (for example, see Patent Document 1).

特開2009−297341号公報(第9頁、第3図)JP 2009-297341 A (Page 9, FIG. 3)

例えば、現行の冷媒回収装置等では、冷媒回収の際、外部の点火源(例えば、隣接機器のリレー接点部のスパーク)によって出火したり、爆発したりするおそれがある。ここで、例えば、上記の炭素二重結合を分子構造に有するHFO冷媒のような冷媒は可燃性を有する冷媒である。冷媒循環回路内のHFO冷媒の漏れが発生した場合は、冷媒循環回路内に封入されているHFO冷媒のほとんどが外部に放出されるため、広範囲にわたってHFO冷媒が充満し、安全性を保てない環境になる可能性がある。このため、HFO冷媒を使用する場合は、回収、事故等の際に、仮に冷媒漏れが生じたとしても、出火等が起こらないように安全を確保する必要がある。   For example, in the current refrigerant recovery device or the like, when recovering the refrigerant, an external ignition source (for example, a spark at a relay contact portion of an adjacent device) may cause a fire or an explosion. Here, for example, a refrigerant such as an HFO refrigerant having a carbon double bond in its molecular structure is a flammable refrigerant. When leakage of the HFO refrigerant in the refrigerant circuit occurs, most of the HFO refrigerant enclosed in the refrigerant circuit is released to the outside, so the HFO refrigerant is filled over a wide area and safety cannot be maintained. There is a possibility of becoming an environment. For this reason, when using an HFO refrigerant, it is necessary to ensure safety so that no fire or the like occurs even if a refrigerant leak occurs during recovery, an accident, or the like.

ここで、HFO冷媒は炭素の二重結合をもつ分子構造である。一般に炭素と炭素の二重結合や3重結合という官能基、言いかえるとアルケンやアルキンのような(不飽和炭化水素)は、さまざまな分子が付加反応するという特徴を持っている。このため、従来の二重結合を持たない冷媒に対して、二重結合を持つ冷媒は、二重結合部が開裂しやすく、また、官能基が他の物質と反応しやすく化学的安定性が極端に劣る特性を有している。特に冷媒循環回路内にコンタミ(コンタミネーション)として混入した空気や水分との反応によって冷媒が分解されやすくなる。上記の特許文献1の装置は、HFO冷媒に紫外線を照射すると、HFO冷媒の炭素の二重結合部を切断する付加反応が生じることにより、酸素分子が結合したカルボン酸構造(R−COOH)が生成されることから、HFO冷媒を不燃性の物質にするものである。   Here, the HFO refrigerant has a molecular structure having a carbon double bond. In general, functional groups such as carbon-carbon double bonds and triple bonds, in other words, alkenes and alkynes (unsaturated hydrocarbons) are characterized by the addition reaction of various molecules. For this reason, a refrigerant having a double bond is easier to cleave the double bond part than a conventional refrigerant having no double bond, and the functional group easily reacts with other substances and has chemical stability. It has extremely inferior characteristics. In particular, the refrigerant is easily decomposed by reaction with air or moisture mixed as contamination (contamination) in the refrigerant circuit. In the apparatus disclosed in Patent Document 1, when an HFO refrigerant is irradiated with ultraviolet rays, an addition reaction that cuts the carbon double bond portion of the HFO refrigerant occurs, so that a carboxylic acid structure (R-COOH) having oxygen molecules bonded thereto is formed. Since it is produced, the HFO refrigerant is made to be a nonflammable substance.

しかし、特許文献1の装置は、冷媒収容手段、付加反応物質供給手段、紫外線照射手段等を設けているため、装置として大掛かりとなる。このため、コストもかさむ等することから、実用化がしづらい。   However, since the apparatus of Patent Document 1 is provided with a refrigerant storage means, an addition reactant supply means, an ultraviolet irradiation means, and the like, it becomes a large-scale apparatus. For this reason, it is difficult to put it to practical use because it increases costs.

この発明は、HFO冷媒のような炭素二重結合を分子構造に有する冷媒を冷媒循環回路に使用した冷凍サイクル装置において、より簡易な構成等により、例えば回収、サービス等の際の安全な作業等を行うことができる冷凍サイクル装置を提供するものである。   The present invention relates to a refrigeration cycle apparatus that uses a refrigerant having a carbon double bond in its molecular structure, such as an HFO refrigerant, in a refrigerant circulation circuit. A refrigeration cycle apparatus capable of performing the above is provided.

この発明に係る冷凍サイクル装置は、圧縮機、凝縮器、絞り装置及び蒸発器を配管接続し、一方には炭素二重結合の分子構造を有する冷媒を封入し、他方には二酸化炭素を含む冷媒を封入する2つの冷媒循環回路を有する二元冷凍サイクル装置を構成し、2つの冷媒循環回路内を連通可能に接続する連通用配管と、連通用配管における二酸化炭素を含む冷媒の通過を制御するための開閉手段とを備える。 In the refrigeration cycle apparatus according to the present invention, a compressor, a condenser, a throttling device, and an evaporator are connected by piping, one of which contains a refrigerant having a molecular structure of a carbon double bond, and the other is a refrigerant containing carbon dioxide. A two- way refrigeration cycle apparatus having two refrigerant circulation circuits that enclose the refrigerant, and a communication pipe that connects the two refrigerant circulation circuits so that they can communicate with each other, and the passage of refrigerant containing carbon dioxide in the communication pipe is controlled For opening and closing.

本発明の冷凍サイクル装置によれば、2つの冷媒循環回路を連通させる連通用配管と開閉手段を備え、一方の冷媒循環回路の冷媒として可燃性である炭素二重結合の分子構造を有する冷媒を用いている場合に、連通用配管を介して他方の冷媒循環回路に用いている二酸化炭素冷媒を混入させて不燃性にさせることができるようにしたので、例えば、サービス、冷媒回収時等の際、作業員が安全に作業を行うことができる。   According to the refrigeration cycle apparatus of the present invention, a refrigerant having a molecular structure of a flammable carbon double bond is provided as a refrigerant in one refrigerant circulation circuit, which includes a communication pipe that connects two refrigerant circulation circuits and an opening / closing means. When used, the carbon dioxide refrigerant used in the other refrigerant circulation circuit can be mixed through the communication pipe to make it nonflammable. For example, at the time of service, refrigerant recovery, etc. Workers can work safely.

この発明の実施の形態1における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. この発明の実施の形態2における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 2 of this invention. この発明の実施の形態3における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 3 of this invention. この発明の実施の形態4における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 4 of this invention. この発明の実施の形態5における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 5 of this invention.

実施の形態1.
図1は、この発明の実施の形態1における冷凍サイクル装置の構成を表す図である。ここでは、冷凍サイクル装置の一例として二元冷凍装置について説明する。図1に示すように、本実施の形態における二元冷凍装置は、高温側循環回路10と低温側循環回路20とを有し、それぞれ独立して冷媒を循環させる冷媒循環回路を構成する。そして、2つの冷媒循環回路を多段構成にするために、高温側蒸発器14と低温側凝縮器22とを、それぞれ通過する冷媒間での熱交換を可能に結合させて構成したカスケードコンデンサ(冷媒間熱交換器)30を設けている。また、高温側循環回路10と低温側循環回路20内とを連通させるための接続部40を有している。そして、二元冷凍装置全体の運転制御を行う制御手段50を有する。ここで、以下で説明する温度、圧力の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. Here, a binary refrigeration apparatus will be described as an example of a refrigeration cycle apparatus. As shown in FIG. 1, the binary refrigeration apparatus in the present embodiment includes a high-temperature side circulation circuit 10 and a low-temperature side circulation circuit 20, and constitutes a refrigerant circulation circuit that circulates refrigerant independently of each other. In order to make the two refrigerant circulation circuits into a multi-stage configuration, a cascade condenser (refrigerant) in which the high-temperature side evaporator 14 and the low-temperature side condenser 22 are coupled so as to be able to exchange heat between the refrigerants passing therethrough. An intermediate heat exchanger) 30 is provided. Moreover, the connection part 40 for connecting the high temperature side circulation circuit 10 and the inside of the low temperature side circulation circuit 20 is provided. And it has the control means 50 which performs operation control of the whole binary refrigeration apparatus. Here, the levels of temperature and pressure described below are not particularly determined in relation to absolute values, but are relatively determined in the state and operation of the system, apparatus, etc. To do.

図1において、高温側循環回路10は、高温側圧縮機11と、高温側凝縮器12と、高温側絞り装置13と、高温側蒸発器14とを直列に冷媒配管で接続した冷媒循環回路を構成している。一方、低温側循環回路20は、低温側圧縮機21と、低温側凝縮器22と、第一の低温側絞り装置23と、低温側蒸発器24とを直列に冷媒配管で接続した冷媒循環回路を構成している。   In FIG. 1, a high temperature side circulation circuit 10 is a refrigerant circulation circuit in which a high temperature side compressor 11, a high temperature side condenser 12, a high temperature side expansion device 13, and a high temperature side evaporator 14 are connected in series by a refrigerant pipe. It is composed. On the other hand, the low temperature side circulation circuit 20 is a refrigerant circulation circuit in which a low temperature side compressor 21, a low temperature side condenser 22, a first low temperature side expansion device 23, and a low temperature side evaporator 24 are connected in series by a refrigerant pipe. Is configured.

ここで、高温側循環回路を循環する冷媒(以下、高温側冷媒という)として、例えばHFO−1234yfのように、炭素二重結合を分子構造に有する冷媒(HFO冷媒)を用いるものとする。このような冷媒は、一般的にGWPが低い(10以下)であるため、将来的に冷凍サイクル装置による冷却等を行うための冷媒として有用となる。また、低温側循環回路を循環する冷媒(以下、低温側冷媒という)として、二酸化炭素(CO2 )を含む冷媒(二酸化炭素冷媒)を用いるものとする。 Here, a refrigerant (HFO refrigerant) having a carbon double bond in a molecular structure, such as HFO-1234yf, is used as a refrigerant circulating in the high temperature side circulation circuit (hereinafter referred to as a high temperature side refrigerant). Since such a refrigerant generally has a low GWP (10 or less), it will be useful as a refrigerant for performing cooling by a refrigeration cycle apparatus in the future. In addition, a refrigerant (carbon dioxide refrigerant) containing carbon dioxide (CO 2 ) is used as a refrigerant circulating in the low temperature side circulation circuit (hereinafter referred to as a low temperature side refrigerant).

高温側循環回路10の高温側圧縮機11は、高温側冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。ここで、例えばインバータ回路等により回転数を制御し、高温側冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。高温側凝縮器12は、例えば送風機、ポンプ等(図示せず)から供給される空気、水等と高温側冷媒との間で熱交換を行い、高温側冷媒を凝縮液化させるものである。   The high temperature side compressor 11 of the high temperature side circulation circuit 10 sucks the high temperature side refrigerant, compresses it, and discharges it in a high temperature / high pressure state. Here, for example, it may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the high-temperature side refrigerant. The high temperature side condenser 12 performs heat exchange between air, water and the like supplied from, for example, a blower, a pump, or the like (not shown) and the high temperature side refrigerant to condense and liquefy the high temperature side refrigerant.

減圧弁、膨張弁等の高温側絞り装置13は、高温側冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段で構成することが最適であるが、毛細管(キャピラリ)、感温式膨張弁等の冷媒流量調節手段で構成してもよい。高温側蒸発器14は、熱交換により高温側冷媒を蒸発ガス化させるものである。例えば、ここではカスケードコンデンサ30において高温側冷媒が通過する伝熱管等が高温側蒸発器14となって、低温側冷媒との熱交換を行うものとする。   The high temperature side expansion device 13 such as a pressure reducing valve or an expansion valve expands the high temperature side refrigerant by reducing the pressure. For example, it is optimally configured by a flow rate control means such as an electronic expansion valve, but it may also be configured by a refrigerant flow rate control means such as a capillary tube or a temperature-sensitive expansion valve. The high temperature side evaporator 14 evaporates the high temperature side refrigerant by heat exchange. For example, here, it is assumed that the heat transfer tube or the like through which the high-temperature side refrigerant passes in the cascade capacitor 30 serves as the high-temperature side evaporator 14 and performs heat exchange with the low-temperature side refrigerant.

一方、低温側循環回路20の低温側圧縮機21は、低温側冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出する。低温側圧縮機21についても、例えばインバータ回路等を有し、低温側冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。また、低温側凝縮器22は、熱交換により低温側冷媒を凝縮液化させるものである。例えば、ここではカスケードコンデンサ30において低温側冷媒が通過する伝熱管等が低温側凝縮器22となって、高温側冷媒との熱交換を行うものとする。   On the other hand, the low temperature side compressor 21 of the low temperature side circulation circuit 20 sucks the low temperature side refrigerant, compresses the refrigerant, and discharges it in a high temperature / high pressure state. The low temperature side compressor 21 may be configured by a compressor of a type that has an inverter circuit or the like and can adjust the discharge amount of the low temperature side refrigerant. The low temperature side condenser 22 condenses and liquefies the low temperature side refrigerant by heat exchange. For example, here, it is assumed that the heat transfer tube or the like through which the low-temperature side refrigerant passes in the cascade capacitor 30 serves as the low-temperature side condenser 22 and performs heat exchange with the high-temperature side refrigerant.

減圧弁、膨張弁等の低温側絞り装置23は、低温側冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段で構成することが最適であるが、毛細管等の冷媒流量調節手段で構成してもよい。ここで、低温側絞り装置23は制御手段50からの指示に基づいて開度調整を行う流量制御手段で構成しているものとする。例えば、低温側絞り装置23が、開度調整ができない冷媒流量調節手段である場合において、絞り機能を最小化し、圧力損失の低減等をはかるため、例えば低温側絞り装置23と並列にバイパス配管(図示せず)を設けるようにしてもよい。そして、冷媒流量調節手段を必要としない場合には、バイパス配管に冷媒を流すように切り替えることができるように構成してもよい。   The low temperature side expansion device 23 such as a pressure reducing valve or an expansion valve decompresses the low temperature side refrigerant to expand it. For example, it is optimal to configure with flow rate control means such as an electronic expansion valve, but it may be configured with refrigerant flow rate control means such as capillaries. Here, it is assumed that the low temperature side throttle device 23 is constituted by a flow rate control means for adjusting the opening degree based on an instruction from the control means 50. For example, in the case where the low temperature side throttle device 23 is a refrigerant flow rate adjusting means that cannot adjust the opening, in order to minimize the throttle function and reduce pressure loss, for example, bypass piping (in parallel with the low temperature side throttle device 23 ( (Not shown) may be provided. And when a refrigerant | coolant flow volume adjustment means is not required, you may comprise so that it can switch so that a refrigerant | coolant may be flowed to bypass piping.

低温側蒸発器24は、例えば送風機、ポンプ等(図示せず)から供給される空気、ブライン等と低温側冷媒との間で熱交換を行い、低温側冷媒を蒸発ガス化させるものである。低温側冷媒との熱交換により、冷却対象物等を直接又は間接に冷却する。   The low temperature side evaporator 24 performs heat exchange between air, brine, and the like supplied from, for example, a blower, a pump, or the like (not shown) and the low temperature side refrigerant to evaporate the low temperature side refrigerant. The object to be cooled is cooled directly or indirectly by heat exchange with the low-temperature side refrigerant.

また、カスケードコンデンサ30は、前述した高温側蒸発器14と低温側凝縮器22との機能を有し、高温側冷媒と低温側冷媒とを熱交換可能にする冷媒間熱交換器である。例えばプレート熱交換器、二重管熱交換器等で構成する。カスケードコンデンサ30を介して高温側循環回路と低温側循環回路とを多段構成にし、冷媒間の熱交換を行うようにすることで、独立した冷媒循環回路を連携させることができる。   The cascade condenser 30 is a refrigerant heat exchanger that has the functions of the high-temperature side evaporator 14 and the low-temperature side condenser 22 described above and enables heat exchange between the high-temperature side refrigerant and the low-temperature side refrigerant. For example, it is composed of a plate heat exchanger, a double pipe heat exchanger or the like. By making the high temperature side circulation circuit and the low temperature side circulation circuit into a multistage configuration via the cascade capacitor 30 and performing heat exchange between the refrigerants, independent refrigerant circulation circuits can be linked.

本実施の形態の接続部40は、低温側循環回路20内と高温側循環回路10内とを連通可能に接続する。接続部40は、開閉手段となる操作バルブ41、連通用配管となる第1接続配管42及び第2接続配管43を有している。操作バルブ41は、制御手段50からの指示に基づいて開閉を行う弁である。操作バルブ41を開くことにより、操作バルブ41と低温側循環回路20とを接続する第1接続配管42と、操作バルブ41と高温側循環回路10とを接続する第2接続配管43とを介して、各冷媒循環回路を連通させることができる。ここで、操作バルブ41は、開度を調整できるものであってもよい。   The connection part 40 of this Embodiment connects the inside of the low temperature side circulation circuit 20 and the inside of the high temperature side circulation circuit 10 so that communication is possible. The connection unit 40 includes an operation valve 41 serving as an opening / closing means, a first connection pipe 42 serving as a communication pipe, and a second connection pipe 43. The operation valve 41 is a valve that opens and closes based on an instruction from the control means 50. By opening the operation valve 41, the first connection pipe 42 connecting the operation valve 41 and the low temperature side circulation circuit 20 and the second connection pipe 43 connecting the operation valve 41 and the high temperature side circulation circuit 10 are connected. Each refrigerant circulation circuit can be communicated. Here, the operation valve 41 may be capable of adjusting the opening degree.

ここで、第1接続配管42の一端は、高温側凝縮器12の冷媒流出側と高温側絞り装置13との間で高温側循環回路10と接続している。また、第2接続配管43の一端は、低温側凝縮器22の冷媒流出側と低温側絞り装置23との間で低温側循環回路20と接続している。そして、低温側冷媒が二酸化炭素冷媒であり、高温側冷媒がHFO冷媒である。このため、低温側循環回路20よりも高温側循環回路10の方が圧力(例えば高圧側の圧力)が低い。したがって、操作バルブ41を開くと、二酸化炭素冷媒が高温側循環回路10に流入することになる。   Here, one end of the first connection pipe 42 is connected to the high temperature side circulation circuit 10 between the refrigerant outflow side of the high temperature side condenser 12 and the high temperature side expansion device 13. Further, one end of the second connection pipe 43 is connected to the low temperature side circulation circuit 20 between the refrigerant outflow side of the low temperature side condenser 22 and the low temperature side expansion device 23. The low temperature side refrigerant is a carbon dioxide refrigerant, and the high temperature side refrigerant is an HFO refrigerant. For this reason, the pressure (for example, the pressure on the high pressure side) is lower in the high temperature side circulation circuit 10 than in the low temperature side circulation circuit 20. Therefore, when the operation valve 41 is opened, the carbon dioxide refrigerant flows into the high temperature side circulation circuit 10.

また、制御手段50は、高温側循環回路10および低温側循環回路20の状態を監視し、二元冷凍装置における冷却運転等の動作を制御する。例えば高温側圧縮機11、高温側絞り装置13、低温側圧縮機21、低温側絞り装置23等の動作を制御する。本実施の形態では、例えば高温側圧縮機11と高温側凝縮器12の間に設置した高圧圧力センサー51の検出に係る圧力(凝縮圧力)に基づいて、操作バルブ41の開閉を制御する。   Moreover, the control means 50 monitors the state of the high temperature side circulation circuit 10 and the low temperature side circulation circuit 20, and controls operations such as a cooling operation in the binary refrigeration apparatus. For example, operations of the high temperature side compressor 11, the high temperature side expansion device 13, the low temperature side compressor 21, the low temperature side expansion device 23, and the like are controlled. In the present embodiment, for example, the opening / closing of the operation valve 41 is controlled based on the pressure (condensation pressure) related to the detection of the high pressure sensor 51 installed between the high temperature side compressor 11 and the high temperature side condenser 12.

本実施の形態の二元冷凍装置は、低温側循環回路20内と高温側循環回路10内とを連通可能に接続する接続部40を有し、高温側冷媒をHFO冷媒、低温側冷媒を二酸化炭素冷媒とする。そして、低温側循環回路20内に封入されている二酸化炭素冷媒(低温側冷媒)を高温側循環回路10に流入させ、HFO冷媒(高温側冷媒)を不燃性にしてから、高温側循環回路10のサービス、冷媒回収等を行うことで、HFO冷媒の発火等を防ぎ、安全を確保する。   The binary refrigeration apparatus of the present embodiment has a connection portion 40 that connects the inside of the low-temperature side circulation circuit 20 and the inside of the high-temperature side circulation circuit 10 so that they can communicate with each other, and the high-temperature side refrigerant is HFO refrigerant and the low-temperature side refrigerant is carbon dioxide. Use carbon refrigerant. The carbon dioxide refrigerant (low temperature side refrigerant) sealed in the low temperature side circulation circuit 20 is caused to flow into the high temperature side circulation circuit 10 to make the HFO refrigerant (high temperature side refrigerant) incombustible, and then the high temperature side circulation circuit 10. Service, refrigerant recovery, etc., prevent ignition of HFO refrigerant, etc., and ensure safety.

次に、二元冷凍装置の冷却運転時における各構成機器の動作等を、各冷媒循環回路を循環する冷媒の流れに基づいて説明する。まず、高温側循環回路10の冷却運転時の動作について説明する。高温側圧縮機11は、高温側冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は高温側凝縮器12へ流入する。高温側凝縮器12は、送風機、ポンプ等(図示せず)から供給される空気、水等と高温側冷媒との間で熱交換を行い、高温側冷媒を凝縮液化させる。凝縮液化した高温側冷媒は高温側絞り装置13を通過する。高温側絞り装置13は、通過する凝縮液化した冷媒を減圧する。減圧した冷媒は高温側蒸発器14(カスケードコンデンサ30)に流入する。高温側蒸発器14は、低温側冷媒との熱交換により高温側冷媒を蒸発ガス化する。蒸発ガス化した高温側冷媒を高温側圧縮機11が吸入し、吐出する。   Next, operation | movement of each component apparatus at the time of the cooling operation of a binary refrigeration apparatus is demonstrated based on the flow of the refrigerant | coolant which circulates through each refrigerant | coolant circulation circuit. First, the operation during the cooling operation of the high-temperature side circulation circuit 10 will be described. The high temperature side compressor 11 sucks the high temperature side refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the high temperature side condenser 12. The high temperature side condenser 12 performs heat exchange between air, water, and the like supplied from a blower, a pump, or the like (not shown) and the high temperature side refrigerant to condense and liquefy the high temperature side refrigerant. The condensed high-temperature side refrigerant passes through the high-temperature side expansion device 13. The high temperature side expansion device 13 depressurizes the condensed liquid refrigerant passing therethrough. The decompressed refrigerant flows into the high temperature side evaporator 14 (cascade capacitor 30). The high temperature side evaporator 14 evaporates and gasifies the high temperature side refrigerant by heat exchange with the low temperature side refrigerant. The high temperature side compressor 11 sucks and discharges the high temperature side refrigerant that has been vaporized and gasified.

また、低温側圧縮機21は、低温側冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は低温側凝縮器22(カスケードコンデンサ30)に流入する。低温側凝縮器22は、高温側冷媒との熱交換により低温側冷媒を凝縮液化する。凝縮液化した低温側冷媒は低温側絞り装置23を通過する。そして低温側絞り装置23は凝縮液化した低温側冷媒を減圧する。減圧した低温側冷媒は低温側蒸発器24に流入する。低温側蒸発器24は、冷却対象と低温側冷媒との間で熱交換を行い、低温側冷媒を蒸発ガス化する。このとき、冷却対象は直接又は間接に冷却される。そして、低温側蒸発器24を流出した低温側冷媒を低温側圧縮機21が吸入し、吐出する。   The low temperature side compressor 21 sucks the low temperature side refrigerant, compresses the refrigerant, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the low temperature side condenser 22 (cascade capacitor 30). The low temperature side condenser 22 condenses and liquefies the low temperature side refrigerant by heat exchange with the high temperature side refrigerant. The condensed and liquefied low temperature side refrigerant passes through the low temperature side expansion device 23. The low temperature side expansion device 23 depressurizes the condensed low temperature side refrigerant. The decompressed low-temperature side refrigerant flows into the low-temperature side evaporator 24. The low temperature side evaporator 24 performs heat exchange between the object to be cooled and the low temperature side refrigerant, and evaporates the low temperature side refrigerant. At this time, the object to be cooled is cooled directly or indirectly. The low-temperature side refrigerant 21 that has flowed out of the low-temperature side evaporator 24 is sucked and discharged by the low-temperature side compressor 21.

次にサービス、冷媒回収時等の動作について説明する。例えば、サービス等の際には通常の冷却運転を停止させておく。また、少なくとも高温側絞り装置13については、開度を最大にしておくことが望ましい。作業者等が入力手段(図示せず)を介して制御手段50に操作バルブ41の開放を指示する。制御手段50は操作バルブ41を開放させる。前述したように、操作バルブ41が開くと、低温側循環回路20側から高温側循環回路10側に低温側冷媒が流入する。低温側冷媒が流入した高温側循環回路10内の圧力は上昇する。   Next, operations during service, refrigerant recovery, and the like will be described. For example, the normal cooling operation is stopped at the time of service or the like. Moreover, it is desirable to maximize the opening degree at least for the high temperature side expansion device 13. An operator or the like instructs the control means 50 to open the operation valve 41 via an input means (not shown). The control means 50 opens the operation valve 41. As described above, when the operation valve 41 is opened, the low temperature side refrigerant flows from the low temperature side circulation circuit 20 side to the high temperature side circulation circuit 10 side. The pressure in the high-temperature side circulation circuit 10 into which the low-temperature side refrigerant has flowed rises.

そして、制御手段50は、高圧圧力センサー51の検知に係る圧力が所定圧力になったものと判断すると、操作バルブ41を閉止させる。HFO冷媒に二酸化炭素をある程度混入すれば不燃性になる。本実施の形態では、混入の割合を高圧圧力センサー51の検知に係る圧力に基づいて判断する。ここで、場合によっては混入を促進するため、高温側圧縮機11を駆動させるようにしてもよい。例えば、作業後には、高温側循環回路10にHFO冷媒を充?等する。また、低温側循環回路20には二酸化炭素冷媒を補充等する。   And if the control means 50 judges that the pressure which the detection of the high pressure sensor 51 became predetermined pressure, it will close the operation valve 41. FIG. If carbon dioxide is mixed in the HFO refrigerant to some extent, it becomes nonflammable. In the present embodiment, the mixing ratio is determined based on the pressure associated with detection by the high pressure sensor 51. Here, in some cases, the high temperature side compressor 11 may be driven to promote mixing. For example, the HFO refrigerant is charged into the high temperature side circulation circuit 10 after the work. Further, the low temperature side circulation circuit 20 is supplemented with carbon dioxide refrigerant.

以上のように、実施の形態1の冷凍サイクル装置によれば、サービス、冷媒回収時等の際、高温側循環回路10の高温側冷媒として可燃性であるHFO冷媒に、接続部40を介して低温側循環回路20の低温側冷媒である二酸化炭素冷媒を混入させて不燃性にさせることができるので、例えば作業員は、安全にサービス等の作業を行うことができる。このとき、制御手段50が高圧圧力センサー51の検知に係る圧力に基づいて、所定圧力になると操作バルブ41を閉止させるようにしたので、必要な量の二酸化炭素冷媒を自動的に高温側循環回路10に流入させることができる。また、GWPの低い冷凍サイクル装置を提供することができる。   As described above, according to the refrigeration cycle apparatus of the first embodiment, the HFO refrigerant that is flammable as the high-temperature side refrigerant in the high-temperature side circulation circuit 10 is connected via the connection portion 40 at the time of service, refrigerant recovery, and the like. Since the carbon dioxide refrigerant which is the low temperature side refrigerant of the low temperature side circulation circuit 20 can be mixed and made nonflammable, for example, an operator can safely perform services such as service. At this time, since the control means 50 closes the operation valve 41 when a predetermined pressure is reached based on the pressure detected by the high pressure sensor 51, the required amount of carbon dioxide refrigerant is automatically supplied to the high temperature side circulation circuit. 10 can be allowed to flow. In addition, a refrigeration cycle apparatus having a low GWP can be provided.

実施の形態2.
図2はこの発明の実施の形態2における冷凍サイクル装置の構成を表す図である。図2において、図1と同じ符号を付している機器は、実施の形態1で説明した機器と同じ動作等を行う。接続部絞り装置44は、制御手段50の指示に基づいて、例えば、二酸化炭素冷媒を高温側循環回路10に流入させる際、二酸化炭素冷媒を減圧し、冷媒量を調整しながら流入させることができる。ここでは、開度を制御して減圧の調整を行うことができるものとするが、キャピラリチューブ等のようなものでもよい。
Embodiment 2. FIG.
FIG. 2 is a diagram showing the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG. 2, devices denoted by the same reference numerals as those in FIG. 1 perform the same operations and the like as the devices described in the first embodiment. For example, when the carbon dioxide refrigerant is allowed to flow into the high temperature side circulation circuit 10, the connection throttle device 44 can reduce the carbon dioxide refrigerant and allow the carbon dioxide refrigerant to flow in while adjusting the refrigerant amount. . Here, it is assumed that the pressure can be adjusted by controlling the opening, but a capillary tube or the like may be used.

例えば、一般的には、HFO冷媒を高圧側冷媒とする高温側循環回路10内の圧力の方が、二酸化炭素冷媒を低圧側冷媒とする低温側循環回路20内の圧力よりも低い。例えば、回路の規模等にもよるが高温側循環回路10と低温側循環回路20とにおける圧力差が大きいと、操作バルブ41を開いたときに、高温側冷媒が大量に流れ込むことで圧力が急上昇する。このような圧力に対処するため、高温側循環回路10を構成する機器、冷媒配管等の設計耐圧を必要以上に高くしておかなければならないことになる。また、二酸化炭素冷媒が急に低圧環境下に流入することで固化等が生じないようにした方がよい。   For example, in general, the pressure in the high-temperature side circulation circuit 10 using the HFO refrigerant as the high-pressure side refrigerant is lower than the pressure in the low-temperature side circuit 20 using the carbon dioxide refrigerant as the low-pressure side refrigerant. For example, depending on the circuit scale and the like, if the pressure difference between the high-temperature side circulation circuit 10 and the low-temperature side circulation circuit 20 is large, when the operation valve 41 is opened, a large amount of high-temperature side refrigerant flows and the pressure rapidly increases. To do. In order to cope with such a pressure, the design pressure resistance of the equipment, refrigerant piping, etc. constituting the high-temperature side circulation circuit 10 must be made higher than necessary. Also, it is better to prevent the carbon dioxide refrigerant from solidifying due to the sudden flow into the low pressure environment.

そこで、本実施の形態では、接続部40に接続部絞り装置44を設け、低温側冷媒である二酸化炭素冷媒を減圧させて高温側循環回路10に流入させるようにする。これにより、高温側循環回路10の設計耐圧を必要以上に高く設定することなく、高温側冷媒であるHFO冷媒に対応した耐圧の機器等を選定することができ、設定コストを抑えつつ、安全に対処した冷凍サイクル装置を得ることができる。   Therefore, in the present embodiment, the connection part expansion device 44 is provided in the connection part 40 so that the carbon dioxide refrigerant that is the low-temperature side refrigerant is decompressed and flows into the high-temperature side circulation circuit 10. Thereby, without setting the design pressure resistance of the high-temperature side circulation circuit 10 higher than necessary, it is possible to select a pressure-resistant device or the like corresponding to the HFO refrigerant that is the high-temperature side refrigerant, and safely while suppressing the setting cost. The refrigeration cycle apparatus which coped with can be obtained.

実施の形態3.
図3はこの発明の実施の形態3における冷凍サイクル装置の構成を表す図である。図3において、図1、図2と同じ符号を付している機器は、実施の形態1、2で説明した機器と同じ動作等を行う。受液器(レシーバ)15は、高温側凝縮器12の冷媒流出側(高温側凝縮器12と高温側絞り装置13との間)に設けられ、冷媒を溜めておくタンク等の容器である。本実施の形態では、低温側冷媒である二酸化炭素冷媒の流入により高温側循環回路10内の冷媒の体積が増えることで、例えば高温側圧縮機11に液状の冷媒(液冷媒)が流入する(液バック)等が生じないようにする。このため、二酸化炭素冷媒の流入分に対応して溜められるだけの容積を有するものとする。
Embodiment 3 FIG.
FIG. 3 is a diagram showing the configuration of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. 3, devices having the same reference numerals as those in FIGS. 1 and 2 perform the same operations as the devices described in the first and second embodiments. The liquid receiver (receiver) 15 is a container such as a tank that is provided on the refrigerant outflow side of the high temperature side condenser 12 (between the high temperature side condenser 12 and the high temperature side expansion device 13) and stores the refrigerant. In the present embodiment, the volume of the refrigerant in the high temperature side circulation circuit 10 is increased by the inflow of carbon dioxide refrigerant, which is a low temperature side refrigerant, so that, for example, a liquid refrigerant (liquid refrigerant) flows into the high temperature side compressor 11 ( (Liquid back) etc. should not occur. For this reason, it shall have the volume which can be stored according to the inflow of a carbon dioxide refrigerant.

このように、実施の形態3において、高温側循環回路10に受液器15を設け、高温側循環回路10内の液冷媒を溜めておけるようにしたので、二酸化炭素冷媒の流入により増えた高温側循環回路10の冷媒を溜めておくことで、例えば液バック等を防止し、高温側循環回路10の運転に支障がないようにすることができる。   As described above, in the third embodiment, the liquid receiver 15 is provided in the high-temperature side circulation circuit 10 so that the liquid refrigerant in the high-temperature side circulation circuit 10 can be stored. By storing the refrigerant in the side circulation circuit 10, for example, liquid back or the like can be prevented, and the operation of the high temperature side circulation circuit 10 can be prevented from being hindered.

実施の形態4.
図4はこの発明の実施の形態4における冷凍サイクル装置の構成を表す図である。図4において、図1等と同じ符号を付している機器等については、実施の形態1等で説明した機器と同じ動作等を行う。低圧圧力センサー52は、高温側圧縮機11の吸入側の圧力(低圧圧力)を検知する。また、制御手段50からの信号に基づいて、例えば光、音等による視覚、聴覚的に報知を行う報知手段60を有している。ここで、本実施の形態の接続部40について、上述した実施の形態のように操作バルブ41を用いてもよいが、可能な限りはやく弁を開いて二酸化炭素冷媒を流入させることができるようにするため、ここでは電磁弁45を用いるものとする。さらに、本実施の形態では、高温側凝縮器12に空気を送りこんで熱交換を促すための送風機16を有しているものとする。
Embodiment 4 FIG.
4 is a diagram showing the configuration of a refrigeration cycle apparatus in Embodiment 4 of the present invention. In FIG. 4, the same reference numerals as those in FIG. 1 and the like perform the same operations and the like as the devices described in the first embodiment. The low pressure sensor 52 detects the pressure (low pressure) on the suction side of the high temperature side compressor 11. Moreover, it has the alerting | reporting means 60 which alert | reports visually, aurally, for example with light, a sound, etc. based on the signal from the control means 50. FIG. Here, as for the connection portion 40 of the present embodiment, the operation valve 41 may be used as in the above-described embodiment, but as soon as possible, the valve is opened so that the carbon dioxide refrigerant can flow in. Therefore, here, the electromagnetic valve 45 is used. Furthermore, in this Embodiment, it shall have the air blower 16 for sending air into the high temperature side condenser 12, and encouraging heat exchange.

本実施の形態は、高温側循環回路10においてHFO冷媒の漏れが発生しているものと判断すると、電磁弁45を開いて二酸化炭素冷媒を高温側循環回路10に流入させ、高温側冷媒を不燃性にして安全を確保するようにしたものである。   In the present embodiment, when it is determined that the leakage of the HFO refrigerant has occurred in the high temperature side circulation circuit 10, the solenoid valve 45 is opened to cause the carbon dioxide refrigerant to flow into the high temperature side circulation circuit 10, and the high temperature side refrigerant is incombustible. To ensure safety.

次に制御手段50が行う処理について説明する。制御手段50は、低圧圧力センサー52の検知に係る圧力が所定圧力以下であると判断すると、高温側循環回路10に冷媒漏れが発生しているものとして、電磁弁45を開き、二酸化炭素冷媒を高温側循環回路10に流入させる。そして、報知手段60に信号を送り報知させる。また、送風機16を駆動させることで漏れた冷媒を拡散等させる。   Next, processing performed by the control unit 50 will be described. When the control means 50 determines that the pressure related to the detection by the low pressure sensor 52 is equal to or lower than a predetermined pressure, the control means 50 opens the solenoid valve 45 and assumes that the carbon dioxide refrigerant is not flowing, assuming that the refrigerant leakage has occurred in the high temperature side circulation circuit 10. It flows into the high temperature side circulation circuit 10. Then, a signal is sent to the notification means 60 to be notified. Moreover, the leaked refrigerant is diffused by driving the blower 16.

以上のように、実施の形態4の二元冷凍装置によれば、低圧圧力センサー52の検知に係る圧力に基づいて高温側循環回路10に冷媒漏れが発生しているものとすると、電磁弁45を開き、二酸化炭素冷媒を高温側循環回路10に流入させ不燃性にするようにしたので、冷凍装置周囲に漏れても引火等することなく、安全をはかることができる。また、送風機16を駆動させることにより、漏れた冷媒を拡散等させることができるので、さらに安全をはかることができる。また、報知手段60により報知を行うようにしたので、いち早く冷媒漏れを知らせることで、さらに安全をはかることができる。場合によっては、例えば遠隔地にある管理装置等により信号を送ることもできる。   As described above, according to the binary refrigeration apparatus of the fourth embodiment, when the refrigerant leakage occurs in the high temperature side circulation circuit 10 based on the pressure related to the detection of the low pressure sensor 52, the electromagnetic valve 45 Since the carbon dioxide refrigerant flows into the high-temperature side circulation circuit 10 to make it nonflammable, even if it leaks around the refrigeration apparatus, safety can be achieved without causing ignition. Moreover, since the refrigerant | coolant which leaked can be diffused etc. by driving the air blower 16, further safety can be achieved. Further, since the notification is performed by the notification means 60, further safety can be achieved by promptly informing the refrigerant leakage. In some cases, for example, a signal can be sent from a remote management device or the like.

実施の形態5.
図5は実施の形態5における冷凍サイクル装置の構成を表す図である。図5において、図1等と同じ符号を付しているものは、実施の形態1等と同じ動作等を行う。連通手段となるサービスポート70は、例えばHFO冷媒を供給、排出させるため、冷媒循環回路と外部とを連通可能にするポートである。サービスポート70には、例えば冷媒排出のためのつなぎ管等を接続することができる。そして、つなぎ管等を介して冷媒回収装置80等に、排出した冷媒を回収させることが可能となる。ここで、本実施の形態のサービスポート70は高温側圧縮機11と高温側凝縮器12との間に設けるようにしたが、設置場所については特に限定するものではない。
Embodiment 5 FIG.
FIG. 5 is a diagram showing the configuration of the refrigeration cycle apparatus in the fifth embodiment. In FIG. 5, the same reference numerals as those in FIG. 1 and the like perform the same operations as those in the first embodiment. The service port 70 serving as a communication means is a port that enables communication between the refrigerant circulation circuit and the outside in order to supply and discharge HFO refrigerant, for example. The service port 70 can be connected to, for example, a connecting pipe for discharging the refrigerant. And it becomes possible to make the refrigerant | coolant collection | recovery apparatus 80 grade | etc., Collect | recover the discharged | emitted refrigerant | coolants via a connecting pipe etc. Here, although the service port 70 of this Embodiment was provided between the high temperature side compressor 11 and the high temperature side condenser 12, it does not specifically limit about an installation place.

また、冷媒回収装置80は、例えば二酸化炭素冷媒混入後の冷媒を回収する装置である。ここで、本実施の形態の冷媒回収装置80は、爆発等から人、装置等を保護するための防爆仕様が施されているものとする。このため、さらに安全をはかることができる。   Moreover, the refrigerant | coolant collection | recovery apparatus 80 is an apparatus which collect | recovers the refrigerant | coolants after carbon dioxide refrigerant mixing, for example. Here, it is assumed that the refrigerant recovery device 80 of the present embodiment has an explosion-proof specification for protecting people, devices, and the like from explosions and the like. For this reason, further safety can be achieved.

実施の形態6.
上述の実施の形態では、制御手段50が操作バルブ41等の開閉手段を動作させ、自動的に開閉できるようにしたが、例えば手動により開閉する弁等で構成するようにしてもよい。この場合は、例えば表示手段等(図示せず)により高圧圧力センサー51の検知に係る圧力値を表示させて、作業者が確認しながら開閉できるようにしてもよい。
Embodiment 6 FIG.
In the above-described embodiment, the control means 50 operates the opening / closing means such as the operation valve 41 so that it can be automatically opened / closed. However, the control means 50 may be configured by, for example, a valve that is manually opened / closed. In this case, for example, the pressure value related to the detection by the high pressure sensor 51 may be displayed by a display means or the like (not shown), so that the operator can open and close while confirming.

また、上述の実施の形態では、高温側循環回路10に封入する高温側冷媒をHFO冷媒とし、低温側循環回路20に封入する低温側冷媒を二酸化炭素冷媒としたが、低温側冷媒をHFO冷媒とし、高温側冷媒を二酸化炭素冷媒とすることもできる。   Further, in the above-described embodiment, the high temperature side refrigerant sealed in the high temperature side circulation circuit 10 is an HFO refrigerant, and the low temperature side refrigerant sealed in the low temperature side circulation circuit 20 is a carbon dioxide refrigerant, but the low temperature side refrigerant is an HFO refrigerant. And the high temperature side refrigerant may be a carbon dioxide refrigerant.

上述の実施の形態は、二元冷凍装置で説明したが、多段構成の多元冷凍装置にも適用することができる。   Although the above-described embodiment has been described with a binary refrigeration apparatus, it can also be applied to a multi-stage refrigeration apparatus having a multi-stage configuration.

10 高温側循環回路、11 高温側圧縮機、12 高温側凝縮器、13 高温側絞り装置、14 高温側蒸発器、15 受液器、16 送風機、20 低温側循環回路、21 低温側圧縮機、22 低温側凝縮器、23 低温側絞り装置、24 低温側蒸発器、30 カスケードコンデンサ、40 接続部、41 操作バルブ、42 第1接続配管、43 第2接続配管、44 接続部絞り装置、45 電磁弁、50 制御手段、51 高圧圧力センサー、52 低圧圧力センサー、60 報知手段、70 サービスポート、80 冷媒回収装置。   DESCRIPTION OF SYMBOLS 10 High temperature side circulation circuit, 11 High temperature side compressor, 12 High temperature side condenser, 13 High temperature side expansion apparatus, 14 High temperature side evaporator, 15 Liquid receiver, 16 Blower, 20 Low temperature side circulation circuit, 21 Low temperature side compressor, 22 Low-temperature side condenser, 23 Low-temperature side throttle device, 24 Low-temperature side evaporator, 30 Cascade condenser, 40 Connection part, 41 Operation valve, 42 First connection pipe, 43 Second connection pipe, 44 Connection part throttle device, 45 Electromagnetic Valve, 50 control means, 51 high pressure sensor, 52 low pressure sensor, 60 notification means, 70 service port, 80 refrigerant recovery device.

Claims (8)

圧縮機、凝縮器、絞り装置及び蒸発器を配管接続し、一方には炭素二重結合の分子構造を有する冷媒を封入し、他方には二酸化炭素を含む冷媒を封入する2つの冷媒循環回路を有する二元冷凍サイクル装置を構成し、
2つの冷媒循環回路内を連通可能に接続する連通用配管と、
該連通用配管における前記二酸化炭素を含む冷媒の通過を制御するための開閉手段と
を備えることを特徴とする冷凍サイクル装置。
A compressor, a condenser, a throttling device and an evaporator are connected by piping, one of which is filled with a refrigerant having a molecular structure of carbon double bonds, and the other is filled with two refrigerant circulation circuits which contain a refrigerant containing carbon dioxide. Comprising a dual refrigeration cycle apparatus having
A communication pipe that connects the two refrigerant circulation circuits so that they can communicate with each other;
A refrigerating cycle device comprising: opening and closing means for controlling passage of the refrigerant containing carbon dioxide in the communication pipe.
前記二酸化炭素を含む冷媒を減圧して通過させるための接続部絞り装置を前記連通用配管にさらに設けることを特徴とする請求項1に記載の冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, further comprising a connection portion expansion device for reducing the pressure of the refrigerant containing carbon dioxide and allowing the refrigerant to pass therethrough. 前記炭素二重結合の分子構造を有する冷媒を封入する前記冷媒循環回路の前記凝縮器と前記絞り装置との間に受液器をさらに備えることを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。   The liquid receiver is further provided between the condenser and the throttle device of the refrigerant circulation circuit that encloses the refrigerant having the molecular structure of the carbon double bond. Refrigeration cycle equipment. 前記炭素二重結合の分子構造を有する冷媒を封入する冷媒循環回路における圧縮機の吸入側における圧力を検知する低圧圧力検知手段と、
該低圧圧力検知手段の検知に係る圧力に基づいて冷媒循環回路内の前記炭素二重結合の分子構造を有する冷媒が漏れているものと判断すると、前記開閉手段を開かせる制御手段と
をさらに備えることを特徴とする請求項1〜3のいずれかに記載の冷凍サイクル装置。
Low pressure detection means for detecting pressure on the suction side of the compressor in the refrigerant circuit that encloses the refrigerant having the molecular structure of the carbon double bond;
Control means for opening the opening / closing means when it is determined that the refrigerant having the molecular structure of the carbon double bond in the refrigerant circuit is leaking based on the pressure related to the detection by the low pressure detecting means. The refrigeration cycle apparatus according to any one of claims 1 to 3.
前記炭素二重結合の分子構造を有する冷媒を封入する冷媒循環回路の前記凝縮器に空気を送り込む送風機をさらに備え、
前記制御手段は、前記炭素二重結合の分子構造を有する冷媒が漏れているものと判断すると、前記送風機を駆動させることを特徴とする請求項4に記載の冷凍サイクル装置。
A blower for sending air to the condenser of the refrigerant circuit that encloses the refrigerant having the molecular structure of the carbon double bond;
5. The refrigeration cycle apparatus according to claim 4, wherein when the control unit determines that the refrigerant having the molecular structure of the carbon double bond is leaking, the blower is driven.
前記制御手段からの信号に基づいて報知を行う報知手段をさらに備え、
前記制御手段は、前記炭素二重結合の分子構造を有する冷媒が漏れているものと判断すると、前記報知手段に信号を送信することを特徴とする請求項4又は5に記載の冷凍サイクル装置。
Further comprising notification means for performing notification based on a signal from the control means;
6. The refrigeration cycle apparatus according to claim 4, wherein when the control unit determines that the refrigerant having the molecular structure of the carbon double bond is leaking, the control unit transmits a signal to the notification unit.
前記炭素二重結合の分子構造を有する冷媒を封入する冷媒循環回路を高温側循環回路とし、前記二酸化炭素を含む冷媒を封入する冷媒循環回路を低温側循環回路として、二元冷凍サイクル装置を構成し、
前記高温側循環回路の前記蒸発器と前記低温側循環回路の前記凝縮器とにより構成し、前記高温側循環回路の冷媒と前記低温側循環回路の冷媒との間の熱交換を行うカスケードコンデンサをさらに備えることを特徴とする請求項1〜6のいずれかに記載の冷凍サイクル装置。
A refrigerant refrigeration circuit that encloses the refrigerant having the molecular structure of the carbon double bond is a high-temperature side circulation circuit, and a refrigerant circulation circuit that encloses the refrigerant containing carbon dioxide is a low-temperature side circulation circuit to constitute a dual refrigeration cycle apparatus And
A cascade capacitor configured by the evaporator of the high-temperature side circulation circuit and the condenser of the low-temperature side circulation circuit, and performing heat exchange between the refrigerant of the high-temperature side circulation circuit and the refrigerant of the low-temperature side circulation circuit The refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising:
防爆仕様の冷媒回収装置と前記冷媒循環回路とを連通可能とする連通手段をさらに備えることを特徴とする請求項1〜7のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising communication means that allows communication between the explosion-proof refrigerant recovery apparatus and the refrigerant circulation circuit.
JP2011174667A 2011-08-10 2011-08-10 Refrigeration cycle equipment Expired - Fee Related JP5717584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174667A JP5717584B2 (en) 2011-08-10 2011-08-10 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174667A JP5717584B2 (en) 2011-08-10 2011-08-10 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2013036706A JP2013036706A (en) 2013-02-21
JP5717584B2 true JP5717584B2 (en) 2015-05-13

Family

ID=47886473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174667A Expired - Fee Related JP5717584B2 (en) 2011-08-10 2011-08-10 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5717584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016802A (en) * 2016-07-01 2016-10-12 杭州佳力斯韦姆新能源科技有限公司 Cascade CO2 heat pump capable of achieving defrosting through reversing of four-way valve and defrosting method of cascade CO2 heat pump
EP3433547A4 (en) * 2016-03-25 2019-10-02 Honeywell International Inc. Low gwp cascade refrigeration system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015071967A1 (en) * 2013-11-12 2017-03-09 三菱電機株式会社 Refrigeration equipment
CN105042926A (en) * 2015-08-28 2015-11-11 南京谷德埃涤环境科技有限公司 Dual-intake dual-exhaust compressor energy-saving refrigeration system and method
JP6682880B2 (en) * 2016-01-28 2020-04-15 ダイキン工業株式会社 Refrigerant recovery device and refrigerant recovery method
JP6974691B2 (en) * 2017-01-16 2021-12-01 ダイキン工業株式会社 Refrigerating device with a refrigerant opening
WO2021065943A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat treatment system
JP2023177526A (en) * 2022-06-02 2023-12-14 コベルコ・コンプレッサ株式会社 Binary refrigeration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116929A (en) * 2002-09-27 2004-04-15 Mitsubishi Electric Corp Coolant recovery device and coolant recovery method for refrigerator using combustible coolant
JP4282378B2 (en) * 2002-10-31 2009-06-17 三洋電機株式会社 1-unit refrigeration equipment
JP4033219B2 (en) * 2006-02-27 2008-01-16 松下電器産業株式会社 vending machine
JP2008215672A (en) * 2007-03-01 2008-09-18 Mac:Kk Residual gas recovering method of refrigerating cycle using combustible refrigerant gas and its device
JP2010271000A (en) * 2009-05-25 2010-12-02 Yamato:Kk Heat storage type refrigerating system
AU2010315264B2 (en) * 2009-11-03 2016-03-31 The Chemours Company Fc, Llc. Cascade refrigeration system with fluoroolefin refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3433547A4 (en) * 2016-03-25 2019-10-02 Honeywell International Inc. Low gwp cascade refrigeration system
CN106016802A (en) * 2016-07-01 2016-10-12 杭州佳力斯韦姆新能源科技有限公司 Cascade CO2 heat pump capable of achieving defrosting through reversing of four-way valve and defrosting method of cascade CO2 heat pump

Also Published As

Publication number Publication date
JP2013036706A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5717584B2 (en) Refrigeration cycle equipment
US20180320942A1 (en) Refrigeration cycle device and heat cycle system
US9429347B2 (en) Refrigeration apparatus
JP6223546B2 (en) Refrigeration cycle equipment
CN102893095A (en) Switching device and air-conditioning apparatus
JP2012127519A (en) Air conditioner
KR20090041406A (en) Air conditioner and method for cleaning same
JP2015161421A (en) Compression type refrigeration machine
JP5014271B2 (en) Refrigeration cycle equipment
WO2020194527A1 (en) Outdoor unit and indoor unit of refrigeration cycle device
JP2008215672A (en) Residual gas recovering method of refrigerating cycle using combustible refrigerant gas and its device
CN110446898B (en) Air conditioner
JP5669343B2 (en) Refrigeration cycle equipment
JPH09264641A (en) Refrigerating cycle device
JP2013036707A (en) Refrigerating cycle apparatus
JP2010002111A (en) Vapor compression type heat pump device
EP0726430B1 (en) Air conditioning apparatus and method having a refrigerating fluid which is not harmful to at least the ozone layer
JP2004286315A (en) Safety device of refrigerating circuit
WO2019021326A1 (en) Refrigerating unit of a dispenser of refrigerated products
JP2011133192A (en) Refrigerant recovering device
US8297063B2 (en) Method for servicing a refrigeration system
CN204593592U (en) Aircondition
JP2003214743A (en) Refrigerator
JPH08152230A (en) Separate type air conditioner
JP2001174108A (en) Method for preventing backflow in refrigerant recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees