JP5717273B2 - DDS for transdermal administration or functional cosmetic carrier and method for producing the same - Google Patents

DDS for transdermal administration or functional cosmetic carrier and method for producing the same Download PDF

Info

Publication number
JP5717273B2
JP5717273B2 JP2010091952A JP2010091952A JP5717273B2 JP 5717273 B2 JP5717273 B2 JP 5717273B2 JP 2010091952 A JP2010091952 A JP 2010091952A JP 2010091952 A JP2010091952 A JP 2010091952A JP 5717273 B2 JP5717273 B2 JP 5717273B2
Authority
JP
Japan
Prior art keywords
water
elastin
soluble elastin
nanoparticles
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010091952A
Other languages
Japanese (ja)
Other versions
JP2011219427A (en
Inventor
孝二 岡元
孝二 岡元
一章 吉田
一章 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2010091952A priority Critical patent/JP5717273B2/en
Publication of JP2011219427A publication Critical patent/JP2011219427A/en
Application granted granted Critical
Publication of JP5717273B2 publication Critical patent/JP5717273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、経皮投与DDS用又は機能性化粧品用担体及びその製造方法に関する。 The present invention relates to a carrier for DDS for transdermal administration or a functional cosmetic and a method for producing the same.

薬物を目的の部位に効率よく作用させるシステムであるドラッグ・デリバリー・システム(DDS)は、投与方法により経口投与、経肺投与、経皮投与、静脈注射などに分類される。経口投与は、投与法の中でも簡便であるが、消化管粘膜のバリアーがネックとなっており、透過機構に着目した研究や受容体を介在した吸収方法などが研究されている。経肺投与は、最も非浸襲的といわれており、液体や噴霧乾燥粉末の吸入剤の研究と共に、より効率的なネブライザーなどの開発も行われている。経皮投与は、既に実用化されたものも存在するが、タンパク質医薬品はほとんど皮膚を透過しないため、透過を促進する超音波やイオントフォレシスなどと組み合わせて利用されることが多い。静脈注射は、抗原性の消失や血中滞留性の増大を図る目的で、タンパク質医薬品をポリエチレングリコール(PEG)で修飾して利用する。また、これらのDDS担体として、生体由来であるリポソームやPLGA(乳酸・グリコール酸重合体)を素材としたナノ粒子も研究されている。 Drug delivery systems (DDS), which are systems that efficiently act on a target site, are classified into oral administration, pulmonary administration, transdermal administration, intravenous injection, and the like according to the administration method. Oral administration is simple among the administration methods, but the barrier of the gastrointestinal mucosa is a bottleneck, and studies focusing on the permeation mechanism and absorption methods mediated by receptors have been studied. Transpulmonary administration is said to be the most non-invasive, and more efficient nebulizers are being developed along with research on liquid and spray-dried powder inhalants. Although transdermal administration has already been put into practical use, since protein pharmaceuticals hardly penetrate the skin, they are often used in combination with ultrasound, iontophoresis or the like that promotes permeation. In the intravenous injection, a protein pharmaceutical is modified with polyethylene glycol (PEG) and used for the purpose of eliminating antigenicity or increasing blood retention. In addition, as these DDS carriers, nanoparticles made of living body-derived liposomes and PLGA (lactic acid / glycolic acid polymer) have been studied.

経皮投与は、経口投与に比べ肝代謝を避けることが可能で、静脈注射に比べ患者への供給がより簡便である理由から、多くの利点を持っているが、角質層や皮膚バリアーのような内因性の機構により、高分子量の物質は低分子量の物質に比べて皮膚へ浸透させることが難しいとされている。しかし、投与した物質が腫瘍などの病巣部に選択的に捕捉され、長期に亘り留まりやすくなるEPR効果は、低分子の物質よりも高分子の物質のほうが期待でき、高分子の物質を皮膚へ透過させることは大きな利点となる。 Transdermal administration has many advantages because it can avoid hepatic metabolism compared to oral administration and is easier to supply to patients than intravenous injection, but it has many advantages, such as stratum corneum and skin barrier. Due to its intrinsic mechanism, high molecular weight substances are said to be more difficult to penetrate into the skin than low molecular weight substances. However, the EPR effect, in which the administered substance is selectively captured in the lesion such as a tumor and stays for a long time, can be expected from a polymer substance rather than a low-molecular substance. Permeation is a great advantage.

他にも物質が皮膚へ浸透する要因として、物性や粒径などがある。脂溶性の物質の方が水溶性のものに比べ浸透を示しやすく、また粒径が200nm以下の粒子は皮膚に浸透し、経皮製剤や機能性化粧品への応用が期待できるが、100nm以下の粒子は細網内皮系組織による貧食(RES)効果によりマクロファージなどに捕食されるため、血中滞留性は低い。 Other factors that cause substances to penetrate the skin include physical properties and particle size. Fat-soluble substances are more likely to show penetration than water-soluble substances, and particles with a particle size of 200 nm or less penetrate into the skin and can be expected to be applied to transdermal preparations and functional cosmetics. Since the particles are predated by macrophages and the like due to the phagocytic (RES) effect by the reticuloendothelial tissue, the retention in blood is low.

一方、本発明者らは、生体高分子であるエラスチンに着目し、その薬物担体としての応用を検討してきた。エラスチンは、動物の大動脈や項靭帯や皮膚などの主要な構成成分である。また魚類の動脈球などの主要な構成成分でもある。エラスチンは、不溶性だが酸やアルカリ処理によって可溶化される。その可溶化エラスチンは水溶液中においてコアセルベーションと呼ばれる現象を引き起こす。これは、エラスチン水溶液を体温付近まで加熱すると白濁し、そのまま放置すると透明な平衡溶液と淡黄色の高粘性なコアセルベートの2層に分離し、冷却すると元の均一溶液に戻るという可逆的な一連の現象のことをいう(特許文献1、2参照)。本発明者らは、このコアセルベーション時に形成されるコアセルベート液滴に着目し、これにγ線を照射することでより安定なナノ粒子を作製することに成功した。そして、本発明者らは、かかるナノ粒子のDDS担体としての利用に着目してきた。 On the other hand, the present inventors have focused on elastin, a biopolymer, and have studied its application as a drug carrier. Elastin is a major constituent of animals such as the aorta, ligaments and skin of animals. It is also a major component of fish, such as arterial spheres. Elastin is insoluble but can be solubilized by acid or alkali treatment. The solubilized elastin causes a phenomenon called coacervation in an aqueous solution. This is a reversible series of solutions in which an elastin aqueous solution becomes cloudy when heated to near body temperature, and when left as it is, it is separated into two layers of a transparent equilibrium solution and a pale yellow highly viscous coacervate, and when cooled, it returns to the original homogeneous solution This refers to a phenomenon (see Patent Documents 1 and 2). The present inventors paid attention to the coacervate droplets formed during the coacervation, and succeeded in producing more stable nanoparticles by irradiating them with γ rays. The inventors of the present invention have paid attention to the use of such nanoparticles as a DDS carrier.

特開2007−45722号公報JP 2007-45722 A 特開2009−219422号公報JP 2009-219422 A

本発明の課題は、水溶性エラスチンのコアセルベート液滴の技術を更に展開し、経皮投与のDDSとして利用できる皮膚透過性の経皮投与DDS用又は機能性化粧品用担体を提供することにある。 An object of the present invention is to further develop the technique of coacervate droplets of water-soluble elastin, and to provide a skin-permeable carrier for transdermal DDS or functional cosmetic that can be used as DDS for transdermal administration.

本発明者らは、水溶性エラスチンのコアセルベート液滴に様々な条件でγ線照射を行うことで粒径の異なるナノ粒子を作製しγ線照射条件の違いによる影響を調べ、粒径が10〜1000nmの範囲のナノ粒子が得られることを知見し本発明を完成した。 The inventors of the present invention prepared nanoparticles having different particle diameters by irradiating water-soluble elastin coacervate droplets under various conditions to examine the effects of differences in γ-ray irradiation conditions. The present invention was completed by finding that nanoparticles in the range of 1000 nm can be obtained.

即ち、本発明は、水溶性エラスチンのコアセルベート液滴に5〜60kGyの照射量のγ線を照射して作製され、薬物を担持し得る、前記水溶性エラスチンのナノ粒子からなり、該ナノ粒子の粒径が40nm〜400nmの範囲にあり、皮膚表面から真皮層まで浸透する経皮投与DDS用又は機能性化粧品用担体である。水溶性エラスチンのナノ粒子の粒径が、80nm〜220nmの範囲にあるものが好ましい。 That is, the present invention is produced by irradiating the irradiation amount of γ-rays of 5~60kGy the coacervate droplets of the water-soluble elastin, drugs may carry consists nanoparticles of the water-soluble elastin, of the nanoparticles It is a carrier for DDS for transdermal administration or functional cosmetic that has a particle size in the range of 40 nm to 400 nm and penetrates from the skin surface to the dermis layer. The particle diameter of the water-soluble elastin nanoparticles is preferably in the range of 80 nm to 220 nm.

そして、本発明の他の態様は、かかる担体の製造方法に係るものであり、水溶性エラスチンのコアセルベート液滴に5〜60kGyの照射量のγ線を照射することを特徴とする水溶性エラスチンのナノ粒子の製造方法である。 Another aspect of the present invention relates to a method for producing such a carrier, which is characterized by irradiating a water-soluble elastin coacervate droplet with gamma rays of 5 to 60 kGy . This is a method for producing nanoparticles.

経皮投与は、経口投与に比べ肝代謝を避けることが可能で、患者への供給がより簡便である理由から、多くの利点を持っているが、角質層や皮膚バリアーのような内因性の機構により、高分子量の物質は低分子量の物質に比べて皮膚へ浸透させることが難しいとされている。しかし、本発明の水溶性エラスチンのナノ粒子からなる担体を用いると、投与した物質が腫瘍などの病巣部に選択的に捕捉され、長期に亘り留まりやすくなるEPR効果は、低分子の物質よりも高分子の物質のほうが期待できるので、経皮投与方法によるDDS製剤として利用できる。 Transdermal administration has many advantages because it can avoid hepatic metabolism compared to oral administration and is easier to supply to the patient, but it has intrinsic benefits such as stratum corneum and skin barrier. Due to the mechanism, it is considered that high molecular weight substances are more difficult to penetrate into the skin than low molecular weight substances. However, when the carrier comprising the water-soluble elastin nanoparticles of the present invention is used, the administered substance is selectively captured in a lesion such as a tumor, and the EPR effect that tends to stay for a long period of time is higher than that of a low-molecular substance. Since a polymer substance can be expected, it can be used as a DDS preparation by a transdermal administration method.

ミニブタ皮膚組織標本をヘマトキシリン・エオシン(HE)染色、エラスティカ・ワンギーソン(EVG)染色、マッソン・トリクローム(MT)染色した図。The figure which carried out the hematoxylin eosin (HE) dyeing | staining, the Elastica-Wangeson (EVG) dyeing | staining, and Masson trichrome (MT) dyeing | staining of the mini-pig skin tissue specimen. H標識アセチル−水溶性エラスチンを皮膚表面に塗布後、ミニブタ皮膚組織切片のオートラジオグラフィーを行い、エオシン染色した図。 The figure which carried out the autoradiography of the mini-pig skin tissue section after apply | coating 3 H labeling acetyl-water-soluble elastin to the skin surface, and dye | stained eosin. H標識アセチル−ナノ粒子を皮膚表面に塗布後、ミニブタ皮膚組織切片のオートラジオグラフィーを行い、エオシン染色した図。 The figure which carried out the autoradiography of the mini-pig skin tissue section after apply | coating a 3H label | marker acetyl nanoparticle on the skin surface, and dye | stained eosin.

水溶性エラスチンを得る方法・手段は色々と提案されている。好ましいのは、本発明者が提案した下記の方法である(特開2007−45722号公報(特許文献1)参照)。 Various methods and means for obtaining water-soluble elastin have been proposed. Preferable is the following method proposed by the present inventor (see Japanese Patent Application Laid-Open No. 2007-45722 (Patent Document 1)).

第1の方法は、動物性生体組織からコラーゲンやその他の不要タンパク質の除去処理を行って不溶性エラスチンを得、次いでこの不溶性エラスチンをシュウ酸等の酸性可溶化液、又は水酸化ナトリウム等のアルカリ性可溶化液に浸漬・溶解させ、水溶性エラスチンを製造する。コラーゲンやその他の不要タンパク質の除去処理は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムの少なくともいずれか一つを含むアルカリ性溶液であって、このアルカリ性溶液中に添加した水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムの総量を、1Lあたり0.05〜0.5molで90〜105℃としたアルカリ性溶液中に、動物性生体組織を5〜60分間浸漬して行うのが好ましい。また、コラーゲンやその他の不要タンパク質の除去処理に際しては、アルカリ性溶液による処理の前に、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化バリウムの少なくともいずれか一つを含む塩溶液に、動物性生体組織を浸漬させる浸漬処理(前処理)を行うのも好ましい。 In the first method, insoluble elastin is obtained by removing collagen and other unnecessary proteins from animal biological tissue, and then this insoluble elastin is converted into an acidic solubilizing solution such as oxalic acid or an alkaline solution such as sodium hydroxide. It is immersed and dissolved in a solubilizing solution to produce water-soluble elastin. Collagen and other unwanted protein removal treatment is an alkaline solution containing at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide, and sodium hydroxide added to the alkaline solution. It is carried out by immersing the animal living tissue in an alkaline solution in which the total amount of potassium hydroxide, calcium hydroxide and barium hydroxide is 0.05 to 0.5 mol per liter at 90 to 105 ° C. for 5 to 60 minutes. Is preferred. In addition, when removing collagen and other unnecessary proteins, prior to treatment with an alkaline solution, animal biological tissue is placed in a salt solution containing at least one of sodium chloride, potassium chloride, calcium chloride, and barium chloride. It is also preferable to perform an immersion treatment (pretreatment) for immersion.

動物性生体組織としては、特に制限はないが、エラスチンの含量が多い点で、豚、馬、牛、羊などの哺乳動物から得られた項靱帯や大動脈血管を使用することが好ましい。またエラスチン含量の多い魚類の動脈球などを使用しても良い。動物性生体組織は、先ず、ホモジナイザーを用いてホモジナイズするのが良い。ホモジナイズはミキサー、ミートチョッパーなど動物性生体組織を細断できれば良く、好ましくは3ミリメートル角以下、さらに好ましくはペースト状に細断できる器具を用いると良い。細断した動物性生体組織の粒が小さいほど、コラーゲンやその他の不要なタンパク質の除去効率を上げることができるので好ましい。ホモジナイズした動物性生体組織は、例えば、熱水又は熱希薄アルカリ水溶液で煮沸するか、もしくは有機溶媒で処理することによって脱脂処理を行っても良い。 The animal living tissue is not particularly limited, but it is preferable to use a ligament or aortic blood vessel obtained from mammals such as pigs, horses, cows, sheep, etc. in terms of a high content of elastin. Also, arterial spheres of fish with a high elastin content may be used. Animal biological tissue is preferably homogenized first using a homogenizer. For homogenization, any animal tissue such as a mixer or meat chopper can be shredded, and preferably a tool capable of shredding into 3 mm square or less, more preferably paste-like. It is preferable that the size of the shredded animal biological tissue is smaller because the efficiency of removing collagen and other unnecessary proteins can be increased. The homogenized animal biological tissue may be degreased by boiling it with hot water or a hot dilute alkaline aqueous solution, or treating it with an organic solvent, for example.

前記可溶化液としては、シュウ酸、蟻酸、酢酸、コハク酸、リンゴ酸、酒石酸、クエン酸、安息香酸、ベタイン、ジフルオロ酢酸、トリフルオロ酢酸、リン酸、スルファミン酸、過塩素酸、トリクロロ酢酸の少なくともいずれか一つを含む酸性溶液が用いられる。そして、この酸性溶液の酸の総量は、1Lあたり0.05〜5molとし、かつ、液温を90〜105℃とするのが好ましい。 Examples of the solubilized solution include oxalic acid, formic acid, acetic acid, succinic acid, malic acid, tartaric acid, citric acid, benzoic acid, betaine, difluoroacetic acid, trifluoroacetic acid, phosphoric acid, sulfamic acid, perchloric acid, and trichloroacetic acid. An acidic solution containing at least one of them is used. The total amount of acid in this acidic solution is preferably 0.05 to 5 mol per liter, and the liquid temperature is preferably 90 to 105 ° C.

前記可溶化液は、また、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムの少なくともいずれか一つを含むアルカリ性溶液であっても良い。このアルカリ性溶液中に添加した水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムの総量を、1Lあたり0.05〜5molとし、かつ、液温が90〜105℃のアルカリ性溶液とするのが好ましい。 The solubilizing solution may also be an alkaline solution containing at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide. The total amount of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide added to this alkaline solution is 0.05 to 5 mol per liter, and the solution temperature is 90 to 105 ° C. Is preferred.

第2の方法は、動物性生体組織の不要部分の除去処理、動物性生体組織の脱脂処理、動物性生体組織の細断処理、塩による不要タンパク質の除去処理の少なくともいずれか一つを含む前処理工程と、前処理された動物性生体組織をアルカリ性溶液に浸漬してコラーゲンやその他の不要タンパク質を濾別するアルカリ抽出工程と、アルカリ抽出工程後の残渣をアルカリで溶解するアルカリ溶解工程を所定回数繰り返し、濾別により水溶性エラスチンを含む濾液を得る濾液回収工程と、濾液から水溶性エラスチンを生成する水溶性エラスチン生成工程とを順次行って水溶性エラスチンを製造する方法である。前記アルカリ溶解工程で用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムのいずれか一つ又は混合物が好ましい。 Before the second method includes at least one of removal processing of unnecessary parts of animal living tissue, degreasing treatment of animal living tissue, shredding processing of animal living tissue, and removal processing of unnecessary protein with salt. Predetermined treatment process, alkaline extraction process in which pre-treated animal living tissue is immersed in an alkaline solution to filter out collagen and other unwanted proteins, and an alkaline dissolution process in which the residue after the alkaline extraction process is dissolved with alkali It is a method for producing water-soluble elastin by sequentially performing a filtrate recovery step for obtaining a filtrate containing water-soluble elastin by repeated filtration and a water-soluble elastin production step for producing water-soluble elastin from the filtrate. The alkali used in the alkali dissolution step is preferably any one of sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, or a mixture.

この操作は、前記の、組織からコラーゲンやその他の不要タンパク質を除去して不溶性エラスチンを得て、次いで、この不溶性エラスチンを可溶化して水溶性エラスチンを得る第1の方法とは異なり、組織から不溶性エラスチンを得ることなく、直接水溶性エラスチンを得る方法である。即ち、1Lあたり0.05〜0.5molで90〜105℃としたアルカリ性溶液中に、脱脂、細断、塩処理した動物性生体組織を5〜60分間浸漬し、エラスチン以外のコラーゲンや不要タンパク質を除去した処理組織を得、次いで、この処理組織を1Lあたり0.05〜5mol(アルカリ液の濃度がより高濃度)で90〜105℃のアルカリ性溶液中に5〜240分間(時間がより長い)浸漬して溶解し、水溶性エラスチンを得る方法である。 This operation is different from the first method in which collagen and other unwanted proteins are removed from the tissue to obtain insoluble elastin, and then the insoluble elastin is solubilized to obtain water-soluble elastin. This is a method for directly obtaining water-soluble elastin without obtaining insoluble elastin. That is, degreased, shredded, and salt-treated animal living tissue is immersed in an alkaline solution of 0.05 to 0.5 mol per liter at 90 to 105 ° C. for 5 to 60 minutes, and collagen and unnecessary proteins other than elastin Then, the treated tissue is obtained, and then the treated tissue is 0.05 to 5 mol per liter (the concentration of the alkaline solution is higher) in an alkaline solution at 90 to 105 ° C. for 5 to 240 minutes (longer time). This is a method of obtaining water-soluble elastin by immersing and dissolving.

前記のごとく第1又は第2の方法で得られた水溶性エラスチンは、次いで、それを、例えば、透析処理することによって低分子量のものを除去して、本発明で好ましく用いられる比較的高分子量の水溶性エラスチンが得られる。 The water-soluble elastin obtained by the first or second method as described above is then removed from the low-molecular-weight one by, for example, dialysis treatment, so that the relatively high molecular weight preferably used in the present invention is used. Water-soluble elastin is obtained.

得られた水溶性エラスチンは、濃度0.1〜60mg/mlの範囲で広域緩衝溶液(pH1.0〜11.0)の溶媒でそれぞれ調整し、昇温速度0.1〜40℃/minで加熱することにより、コアセルベート液滴を形成することができる。そして、水溶性エラスチンの水溶液の濁度を5〜80℃の温度範囲で測定することによって、コアセルベート液滴の生成を確認することができる。 The obtained water-soluble elastin was adjusted with a solvent of a wide-range buffer solution (pH 1.0 to 11.0) in a concentration range of 0.1 to 60 mg / ml, and the temperature rising rate was 0.1 to 40 ° C / min. By heating, coacervate droplets can be formed. And the production | generation of a coacervate droplet can be confirmed by measuring the turbidity of the aqueous solution of water-soluble elastin in the temperature range of 5-80 degreeC.

前記のようにして得られたコアセルベート液滴に、放射線、例えば、Co−60γ線照射装置によってγ線を照射すればよい。照射条件としては、照射温度は20〜80℃、照射量は5〜60kGy程度が適当である。得られるナノ粒子の粒径は、40nm〜400nmの範囲にあるもの、特に80nm〜220nmの範囲にあるのが好ましい。 The coacervate droplets obtained as described above may be irradiated with radiation, for example, γ rays by a Co-60 γ ray irradiation apparatus. As irradiation conditions, an irradiation temperature of 20 to 80 ° C. and an irradiation amount of about 5 to 60 kGy are appropriate. The particle size of the obtained nanoparticles is preferably in the range of 40 nm to 400 nm, particularly in the range of 80 nm to 220 nm.

本実施例では、ブタ大動脈由来水溶性エラスチンのナノ粒子をγ線照射により作製し、ミニブタの皮膚への浸透実験を行うことにより、本来皮膚への浸透が見られない高分子量タンパク質が皮膚中へ浸透することを示した。 In this example, nanoparticles of water-soluble elastin derived from porcine aorta were produced by γ-irradiation, and by conducting a penetration experiment into the skin of minipigs, high molecular weight proteins that did not originally penetrate into the skin were absorbed into the skin. Shown to penetrate.

[ブタ由来水溶性エラスチンの作製]
1)ブタ由来不溶性エラスチンの単離
以下の手順に従ってブタ大動脈脱脂組織からNaCl可溶及びNaOH可溶の不要タンパク質を抽出した。
[Preparation of water-soluble elastin from pig]
1) Isolation of insoluble elastin derived from pigs In accordance with the following procedure, NaCl-soluble and NaOH-soluble unwanted proteins were extracted from porcine aortic defatted tissue.

ブタ大動脈脱脂組織(生体組織)を用い、前処理として付着している脂肪や筋肉などエラスチン含量の低い部分を、刃物などを用いて削ぎ落とすことで不要部分の除去処理を行い、その後、アセトン処理や熱水又は熱希薄アルカリ処理などの脱脂工程を行った。次いで、脱脂した生体組織を、ホモジナイザーを用いてホモジナイズすることで細断処理を行った。ホモジナイズした生体組織を、重量の約10倍容量の1M塩化ナトリウムを加え、室温で1時間攪拌してNaCl可溶の不要タンパク質の除去工程を行った。そして、生体組織とNaCl溶液とを分離した。分離したNaCl溶液を、例えば、ビューレット法にて総タンパク質の定量を行い、NaCl溶液中に含まれる総タンパク質量が0.1mg/mL以下になるまで、この操作を5回繰り返し、その後蒸留水で洗浄し、遠心分離(3000rpm、5分)により水切りした。 Using porcine aortic defatted tissue (living tissue), remove the unnecessary part by scraping off the low elastin content such as fat and muscle attached as pretreatment with a blade etc., and then acetone treatment And a degreasing process such as hot water or hot dilute alkali treatment. Next, the defatted biological tissue was subjected to shredding by homogenizing using a homogenizer. The homogenized biological tissue was added with 1M sodium chloride having a volume of about 10 times the weight, and stirred at room temperature for 1 hour to remove NaCl-soluble unnecessary protein. Then, the biological tissue and the NaCl solution were separated. For the separated NaCl solution, for example, the total protein is quantified by the Burette method, and this operation is repeated 5 times until the total protein content in the NaCl solution is 0.1 mg / mL or less. And then drained by centrifugation (3000 rpm, 5 minutes).

次いで、脱脂した生体組織の重量に対して約10倍容量(重量1g当たり10ml)の0.1N水酸化ナトリウム水溶液を加え、100℃で15分間攪拌し、コラーゲンやアルカリ可溶の不要タンパク質を除去する工程を行った。そして、生体組織とアルカリ性溶液とを分離した。分離したアルカリ性溶液を、例えば、ビューレット法にて総タンパク質の定量を行い、アルカリ性溶液中に含まれる総タンパク質量が0.1mg/mL以下になるまで、この操作を5回繰返した。その後、酢酸を加えて中和し、遠心分離(5000rpm、20分)により洗浄し、残渣を乾燥して不溶性エラスチンを得た。 Next, about 10 times the volume of the defatted biological tissue (10 ml per 1 g of weight) of 0.1N sodium hydroxide aqueous solution is added and stirred at 100 ° C. for 15 minutes to remove collagen and alkali-soluble unnecessary proteins. The process to do was performed. Then, the biological tissue and the alkaline solution were separated. For the separated alkaline solution, the total protein was quantified by, for example, the burette method, and this operation was repeated 5 times until the total protein amount contained in the alkaline solution was 0.1 mg / mL or less. Thereafter, acetic acid was added for neutralization, washing was performed by centrifugation (5000 rpm, 20 minutes), and the residue was dried to obtain insoluble elastin.

2)ブタ由来水溶性エラスチンの調製
ブタ由来不溶性エラスチンの乾燥重量の10倍容量の0.5Nの水酸化ナトリウムを加え、100℃で30分撹拌した。反応後、溶液を速やかに氷冷し酢酸で中和した。その後、分子量6,000〜8,000以上を分画する透析膜を用いて1週間透析した。その後、凍結乾燥し比較的高分子量のブタ由来水溶性エラスチンを得た。
2) Preparation of porcine-derived water-soluble elastin 0.5N sodium hydroxide having a volume 10 times the dry weight of porcine-derived insoluble elastin was added and stirred at 100 ° C. for 30 minutes. After the reaction, the solution was quickly cooled with ice and neutralized with acetic acid. Then, it dialyzed for 1 week using the dialysis membrane which fractionates molecular weight 6,000-8,000 or more. Thereafter, it was freeze-dried to obtain a relatively high molecular weight porcine-derived water-soluble elastin.

[水溶性エラスチンの分子量と濁度測定]
得られた水溶性エラスチンについて非還元条件下でSDS-PAGEを行い、分子量分布を調べた。ゲル濃度は15.0%、染色法はCBB、分子量マーカーにはタンパク質分子量マーカー「第一」・IIを用いた。その結果、分子量分画6,000〜8,000カットの透析膜を用いたため、分子量8,000以上の比較的高分子量の水溶性エラスチンが得られた。平均分子量は252kDaであった。
[Molecular weight and turbidity measurement of water-soluble elastin]
The obtained water-soluble elastin was subjected to SDS-PAGE under non-reducing conditions, and the molecular weight distribution was examined. The gel concentration was 15.0%, the staining method was CBB, and the molecular weight marker was protein molecular weight marker “Daiichi” II. As a result, since a dialysis membrane having a molecular weight fraction of 6,000 to 8,000 cut was used, a relatively high molecular weight water-soluble elastin having a molecular weight of 8,000 or more was obtained. The average molecular weight was 252 kDa.

水溶性エラスチンを濃度2.2mg/mlに調整後、ペルチェ式温度コントローラー付き分光光度計(JASCO:V-560)を用い窒素気流下で濁度測定を行った。測定条件は、波長400nm、温度範囲5〜65℃、温度上昇速度0.5℃/minとした。その結果、温度上昇に連れて濁度の上昇がみられた。また、25℃付近から40℃付近までシャープな立ち上がりをみせた。その後40℃付近から濁度強度は一定となった。 After adjusting water-soluble elastin to a concentration of 2.2 mg / ml, turbidity was measured using a spectrophotometer with a Peltier temperature controller (JASCO: V-560) under a nitrogen stream. The measurement conditions were a wavelength of 400 nm, a temperature range of 5 to 65 ° C., and a temperature increase rate of 0.5 ° C./min. As a result, turbidity increased with increasing temperature. Also, a sharp rise was observed from around 25 ° C to around 40 ° C. Thereafter, the turbidity intensity became constant from around 40 ° C.

[γ線照射によるナノ粒子の作製]
先ず、150nm前後のナノ粒子を作製するのに最適な、γ線照射時の溶液濃度を検討するため、水溶性エラスチンを10mlバイアル瓶に各濃度(2.0mg/ml、5.0mg/ml、10mg/ml)に調整して、温度上昇速度は20℃/minで加熱し、照射温度は60℃、照射量は10kGyでγ線照射を行った。
[Preparation of nanoparticles by gamma irradiation]
First, in order to examine the solution concentration at the time of γ-irradiation, which is optimal for preparing nanoparticles of around 150 nm, water-soluble elastin is added to each concentration (2.0 mg / ml, 5.0 mg / ml, The temperature was increased at a rate of 20 ° C./min, the irradiation temperature was 60 ° C., and the irradiation amount was 10 kGy.

[粒径測定]
γ線照射によって架橋されたナノ粒子の粒径測定には、NICOMP(Imaging Technology Group、380ZLS)を用い、動的光散乱法(DLS)により行った。各サンプルを3.0mlセルに入れ、セル内の温度を4℃、37℃、60℃に設定し各々8分ずつ測定を行った。γ線を照射した各濃度の水溶性エラスチンの、4℃、37℃、60℃における粒径を表1に示した。照射条件は、照射量10kGy、温度上昇速度20℃/min、照射温度60℃であった。
[Particle size measurement]
NICOMP (Imaging Technology Group, 380ZLS) was used to measure the particle size of the nanoparticles crosslinked by γ-ray irradiation, and was performed by dynamic light scattering (DLS). Each sample was placed in a 3.0 ml cell, and the temperature in the cell was set to 4 ° C., 37 ° C., and 60 ° C., and measurement was performed for 8 minutes each. Table 1 shows the particle diameters at 4 ° C., 37 ° C., and 60 ° C. of each concentration of water-soluble elastin irradiated with γ rays. The irradiation conditions were an irradiation amount of 10 kGy, a temperature increase rate of 20 ° C./min, and an irradiation temperature of 60 ° C.

Figure 0005717273
Figure 0005717273

表1より、2.0mg/ml、10mg/mlの濃度では温度による粒径の変化が大きく、5.0mg/mlの濃度では、どの温度でも100〜150nm程度の粒径を維持しており、今回の目的である150nm前後の粒径を持つナノ粒子を作るのに最適な濃度は、5.0mg/mlであることがわかった。 From Table 1, the change in the particle size with temperature is large at concentrations of 2.0 mg / ml and 10 mg / ml, and at a concentration of 5.0 mg / ml, a particle size of about 100 to 150 nm is maintained at any temperature. It was found that the optimum concentration for producing nanoparticles having a particle size of around 150 nm, which is the purpose of this time, is 5.0 mg / ml.

[作製したナノ粒子の収量・収率]
5.0mg/mlに調整した水溶性エラスチン150mlの、γ線照射によって得られたナノ粒子の収量は0.345g、収率は46.0%であった(水溶性エラスチン0.750gを100%としたときの収量と収率)。
[Yield / Yield of produced nanoparticles]
The yield of nanoparticles obtained by γ-irradiation of 150 ml of water-soluble elastin adjusted to 5.0 mg / ml was 0.345 g, and the yield was 46.0% (water-soluble elastin 0.750 g was 100% Yield and yield).

[ブタ由来水溶性エラスチン及びナノ粒子のH標識化]
以下の方法により、水溶性エラスチンから作製したナノ粒子及び水溶性エラスチンのH標識化を行った。
[3 H labeling of porcine water-soluble elastin and Nanoparticles
3 H labeling of nanoparticles prepared from water-soluble elastin and water-soluble elastin was performed by the following method.

[H標識水溶性エラスチンの作製]
水溶性エラスチン200μgをシリコナイズドエッペンに秤量し、これにTFEを60μl加え、ピリジンを250μl加え、更に、[H]無水酢酸をトルエン250μlに放射能が5.0mCiになるよう混合したものを加えた。室温で4時間静置し、次いで、遠心分離で沈殿させ、窒素気流下で溶媒を飛ばした。残渣をTFEに溶解させ、PBS1.0mlを加えたのち、ソニケーターとボルテクスで攪拌し、上記の水溶性エラスチンのH標識反応溶液を得た。PBS10ml、2.0mg/10mlの未標識エラスチン500μl、PBS10mlの順番で前処理し、次いで、4℃のPBSをカラム担体が十分冷えるまで流して前処理したSephadex G-25ゲルろ過クロマトグラフィーカラムに、上記の水溶性エラスチンのH標識反応溶液を流した。そして、次に、PBS1.0ml、1.0ml、3.0mlを順に流した。H標識アセチル−水溶性エラスチン3.0ml(3フラクション×1.0ml)の分画を採取した。得られたH標識アセチル-水溶性エラスチンの放射活性は141μCi/mgであった。
[Production of 3 H-labeled water-soluble elastin]
200 μg of water-soluble elastin was weighed into a siliconized eppen, 60 μl of TFE was added thereto, 250 μl of pyridine was added, and further, [ 3 H] acetic anhydride was mixed with 250 μl of toluene to a radioactivity of 5.0 mCi. It was. The mixture was allowed to stand at room temperature for 4 hours, then precipitated by centrifugation, and the solvent was blown off under a nitrogen stream. The residue was dissolved in TFE, 1.0 ml of PBS was added, and the mixture was stirred with a sonicator and vortex to obtain the above 3 H-labeled reaction solution of water-soluble elastin. To a Sephadex G-25 gel filtration chromatography column pretreated with PBS 10 ml, 2.0 mg / 10 ml unlabeled elastin 500 μl, PBS 10 ml in order, and then pretreated by flowing 4 ° C. PBS until the column carrier was sufficiently cooled, The above 3 H-labeled reaction solution of water-soluble elastin was poured. Next, 1.0 ml, 1.0 ml, and 3.0 ml of PBS were flowed sequentially. A fraction of 3.0 ml (3 fractions x 1.0 ml) of 3H-labeled acetyl-water soluble elastin was collected. The obtained 3 H-labeled acetyl-water-soluble elastin had a radioactivity of 141 μCi / mg.

[H標識ナノ粒子の作製]
ナノ粒子200μgをシリコナイズドエッペンに秤量し、これにTFEを60μl加え、ピリジンを250μl加え、更に、[H]無水酢酸をトルエン250μlに放射能が5.0mCiになるよう混合して加えた。室温で4時間静置し、遠心分離で沈殿させ、窒素気流下で溶媒を飛ばした。更に、遠心分離(10,000rpm、4℃、10min×3回)で洗浄して、残渣にPBSを500ml加え、遠心分離(10,000rpm、4℃、10min×3回)で洗浄し、残渣にPBSを500μl加えて、H標識アセチル−ナノ粒子500μlを得た。得られたH標識アセチル−ナノ粒子の放射活性は、9.30μCi/mgであった。
[Production of 3 H-labeled nanoparticles]
200 μg of nanoparticles were weighed in a siliconized eppen, to which 60 μl of TFE was added, 250 μl of pyridine was added, and [ 3 H] acetic anhydride was further added to 250 μl of toluene mixed to a radioactivity of 5.0 mCi. The mixture was allowed to stand at room temperature for 4 hours, precipitated by centrifugation, and the solvent was blown off under a nitrogen stream. Furthermore, it is washed by centrifugation (10,000 rpm, 4 ° C., 10 min × 3 times), 500 ml of PBS is added to the residue, washed by centrifugation (10,000 rpm, 4 ° C., 10 min × 3 times), and the residue is washed with PBS. 500 μl was added to obtain 500 μl of 3 H-labeled acetyl-nanoparticles. The radioactivity of the obtained 3 H-labeled acetyl-nanoparticles was 9.30 μCi / mg.

[H標識水溶性エラスチン及びH標識ナノ粒子の放射能]
H標識アセチル−水溶性エラスチン、及び、H標識アセチル−ナノ粒子の放射能を表2に示した。塗布量当たりの放射能で比較した場合、H標識アセチル−ナノ粒子の放射能がH標識アセチル−水溶性エラスチンの約0.4倍であることがわかった。
[Radioactivity of 3 H-labeled water-soluble elastin and 3 H-labeled nanoparticles]
The radioactivity of 3 H-labeled acetyl-water-soluble elastin and 3 H-labeled acetyl-nanoparticles is shown in Table 2. When compared with the radioactivity per coating amount, 3 H-labeled acetyl - was found to be approximately 0.4 times the water-soluble elastin - radioactivity nanoparticles 3 H-labeled acetyl.

Figure 0005717273
Figure 0005717273

[ミニブタ皮膚組織へのH標識水溶性エラスチン、及び、H標識ナノ粒子浸透実験]
ミニブタ皮膚組織を室温で解凍し、5cm平方にカット後、70%エタノールを含ませた脱脂綿で皮膚表面を軽く拭き、培養液10mlを入れたディッシュに2枚ずつ浮かべた。ディッシュに浮かべたそれぞれの皮膚上に、H標識アセチル−水溶性エラスチン、及び、H標識アセチル−ナノ粒子を50μl(各々20μg、3.3μg)ずつ塗布後、37℃の炭酸ガスインキュベーター内に静置した。塗布後0h、9h、24hで、7mmパンチとハンマーを用い、塗布部位を打ち抜き回収した。同様の条件で、サンプルを何も塗布しなかったものをcontrolとして回収した。
[3 H-labeled water-soluble elastin into minipigs skin tissue, and, 3 H-labeled nanoparticle penetration Experiment
The mini-pig skin tissue was thawed at room temperature, cut into 5 cm 2 squares, lightly wiped with a cotton wool soaked with 70% ethanol, and floated on a dish containing 10 ml of the culture solution. After applying 50 μl (20 μg, 3.3 μg) of 3 H-labeled acetyl-water-soluble elastin and 3 H-labeled acetyl-nanoparticles on each skin floated on a dish, it was placed in a 37 ° C. carbon dioxide incubator. Left to stand. At 0h, 9h, and 24h after application, the application site was punched and collected using a 7 mm punch and hammer. Under the same conditions, a sample that was not coated with any sample was collected as a control.

[ミクロトームによるミニブタ皮膚組織の標本作製]
回収した皮膚サンプルを10%ホルマリンに一晩つけ、流水水洗を5h行った。その後以下の方法により脱水作業を行った。
[Preparation of miniature pig skin tissue by microtome]
The collected skin sample was placed in 10% formalin overnight and washed with running water for 5 hours. Thereafter, dehydration was performed by the following method.

サンプルを順次、70%エタノールに入れ(90min、37℃)、80%エタノールに入れ(90min、37℃)、90%エタノールに入れ(90min、37℃)、100%エタノールに入れ(90min×4、37℃)、100%キシレンに入れ(30min×3、37℃)脱水し、次いで、パラフィンに入れ(45min×3、63℃)、そして、パラフィンバス(PB−150)に入れサンプルを包埋した。 Samples are sequentially put in 70% ethanol (90 min, 37 ° C.), 80% ethanol (90 min, 37 ° C.), 90% ethanol (90 min, 37 ° C.), and 100% ethanol (90 min × 4, 37 ° C.), dehydrated in 100% xylene (30 min × 3, 37 ° C.), then dehydrated in paraffin (45 min × 3, 63 ° C.) and embedded in paraffin bath (PB-150) .

無処置の皮膚サンプルについては、SAKURA ETPにより、全自動で同様の作業を行った。また、脱水を終えたサンプルは、Tissue-TekIII(Dispensing Console、Cryo Console)を用いてパラフィン包埋を行った。包埋を行ったサンプルの薄切面を滑らかにし十分に冷やしたのち、ミクロトーム(Reichert-Jung,2030BIOCUT)を用いて、8μmの厚さにサンプルを時間別に3枚ずつ薄切し、水に浮かべてスライドガラスにすくい取り、伸展機でパラフィンを伸ばした。十分に伸ばし乾燥させたのち37℃で一晩静置した。 For the untreated skin sample, the same operation was performed fully automatically by SAKURA ETP. In addition, the dehydrated sample was embedded in paraffin using Tissue-TekIII (Dispensing Console, Cryo Console). After smoothing the sliced surface of the embedded sample and cooling it sufficiently, using a microtome (Reichert-Jung, 2030BIOCUT), slicing the sample into 3 pieces each 8μm thick and floating in water The slide glass was scooped and the paraffin was stretched with an extender. After fully stretching and drying, it was allowed to stand at 37 ° C. overnight.

[オートラジオグラフィーによるH標識サンプルの確認]
37℃で一晩静置したサンプルを、3層用意した100%キシレンに5minずつ、その後100%、99%、95%、85%、75%エタノールに順次浸け、脱パラフィンを行った。脱パラフィンを終えたサンプル(無処置のものを除く)を、暗室で45℃の乳剤(KODAK Autoradiography Emulsion Type、NTB:蒸留水=1:1)に浸け、軽く乳剤を落としたのち、シリカゲルを入れたケースに横に立てて並べ、蓋を閉めビニルテープと黒ビニル袋で遮光し、4℃で3週間静置した。3週間静置後、サンプルを再び暗室で、室温の現像液(KODAK DEKTOL Developer、貯蔵液:蒸留水=1:1(32〜38℃で混合))に2min、固定用の蒸留水に10min、定着液(KODAK Fixer)に5min全て攪拌しながら浸け、その後流水水洗を20min行った。
[Confirmation of the 3 H-labeled samples by autoradiography]
The sample which was allowed to stand at 37 ° C. overnight was immersed in 100% xylene prepared in three layers for 5 minutes each time, and then sequentially immersed in 100%, 99%, 95%, 85% and 75% ethanol for deparaffinization. Immerse the deparaffinized sample (except for the untreated sample) in a 45 ° C emulsion (KODAK Autoradiography Emulsion Type, NTB: distilled water = 1: 1) in a dark room. The case was placed side by side, the lid was closed, light-shielded with vinyl tape and a black vinyl bag, and left at 4 ° C. for 3 weeks. After standing for 3 weeks, the sample is again in a dark room, 2 minutes in a developer at room temperature (KODAK DEKTOL Developer, stock solution: distilled water = 1: 1 (mixed at 32-38 ° C.)), 10 minutes in distilled water for fixation, The sample was immersed in a fixing solution (KODAK Fixer) for 5 minutes with stirring, and then washed with running water for 20 minutes.

[ミニブタ皮膚組織標本の染色]
以下の方法により、脱パラフィン又はオートラジオグラフィーまで終えたサンプルの染色を行った。脱パラフィンを終えた無処置の皮膚サンプルは、細胞の核を染めるヘマトキシリン・エオシン(HE)染色、エラスチンを染めるエラスティカ・ワンギーソン(EVG)染色、コラーゲンを染めるマッソン・トリクローム(MT)染色の各染色法で処理し、オートラジオグラフィーを行った皮膚サンプルは、ヘマトキシリン・エオシン(HE)染色のエオシンのみの染色で処理した。
[Staining of miniature pig skin tissue specimens]
The sample after the deparaffinization or autoradiography was stained by the following method. Untreated skin samples after deparaffinization are stained with hematoxylin and eosin (HE) staining for cell nuclei, elastica Wangyson (EVG) staining for elastin, and Masson trichrome (MT) staining for collagen. The skin samples treated by the method and subjected to autoradiography were treated with only eosin stained with hematoxylin and eosin (HE).

[ヘマトキシリン・エオシン(HE)染色]
脱パラフィン化したサンプルを、流水水洗したのち蒸留水に浸け、マイヤー・ヘマトキシリン液を軽くなじませ、その同液に5min浸けた。色出しのための流水水洗を10min行い蒸留水へ浸け、95%エタノールで5倍希釈したエオシンに2min浸け、流水水洗を行った。その後、前記と同様にエタノールとキシレンで脱水してパラフィンに封入した。HE染色した皮膚組織切片の光学顕微鏡(Olympus BX50)写真を図1の左側に示した。
[Hematoxylin and eosin (HE) staining]
The deparaffinized sample was washed with running water and then immersed in distilled water. The Mayer's hematoxylin solution was lightly applied and immersed in the same solution for 5 min. Washing with running water for coloration was performed for 10 minutes, soaking in distilled water, and soaking for 2 minutes in eosin diluted 5-fold with 95% ethanol, followed by washing with running water. Thereafter, it was dehydrated with ethanol and xylene in the same manner as described above and sealed in paraffin. An optical microscope (Olympus BX50) photograph of the HE-stained skin tissue section is shown on the left side of FIG.

[エラスティカ・ワンギーソン(EVG)染色]
脱パラフィン化したサンプルを、順次、流水水洗したのち蒸留水に浸け、70%エタノールに浸け、レゾルシンフクシンに2〜3h浸け、100%エタノールに浸け、流水水洗後蒸留水に浸け、鉄ヘマトキシリン液(鉄ヘマトキシリン液I:II=1:1)に10min浸け、色出しのための流水水洗を10min行い、蒸留水へ浸け、ワンギーソン液(ワンギーソン液A:B=20:3)に3min浸け、70%エタノールへ入れた。その後、前記と同様に脱水処理をし、パラフィンに封入した。EVG染色した皮膚組織切片の光学顕微鏡(Olympus BX50)写真を図1の中央に示した。
[Elastica Wangyson (EVG) staining]
The deparaffinized sample is sequentially washed with running water, then immersed in distilled water, soaked in 70% ethanol, soaked in resorcin fuchsin for 2 to 3 hours, soaked in 100% ethanol, soaked in distilled water after running in running water, and iron hematoxylin solution ( Immerse in iron hematoxylin solution I: II = 1: 1) for 10 minutes, wash with running water for 10 minutes for coloration, soak in distilled water, soak in one-Geeson solution (One-Geeson solution A: B = 20: 3) for 3 minutes, 70% Put in ethanol. Thereafter, dehydration treatment was performed in the same manner as described above, and sealed in paraffin. An optical microscope (Olympus BX50) photograph of a skin tissue section stained with EVG is shown in the center of FIG.

[マッソン・トリクローム(MT)染色]
脱パラフィン化したサンプルを、順次、流水水洗したのち蒸留水に浸け、媒染剤に20min浸け、流水水洗(3min)後蒸留水へ浸け、カラッチヘマトキシリンに1h浸け、流水水洗(10min)を行った。その後、オレンジGに1min浸け、2バット用意した1%酢酸に順次浸け洗い、フクシン・ポンソー液に10min浸け、2バット用意した1%酢酸に順次浸け洗った。更に、リンタングステン酸に10min浸け、2バット用意した1%酢酸に順次浸け洗い、アニリン青に3min浸け、2バット用意した1%酢酸に順次浸け洗い、2バット用意した100%プロパノールに順次浸け洗った。その後、前記と同様に脱水処理をし、パラフィンに封入した。TM染色した光学顕微鏡(Olympus BX50)写真を図1の右側に示した。
[Masson trichrome (MT) staining]
The deparaffinized sample was sequentially washed with running water, then immersed in distilled water, immersed in mordant for 20 min, washed with running water (3 min), then immersed in distilled water, soaked in caratchi hematoxylin for 1 h, and washed with running water (10 min). Then, it was soaked in Orange G for 1 min, sequentially soaked in 1% acetic acid prepared in 2 bats, soaked in fuchsin ponceau solution for 10 min, and soaked in 1% acetic acid prepared in 2 bats. Further, soak in phosphotungstic acid for 10 min, sequentially soak in 2% 1% acetic acid, soak in aniline blue for 3 min, soak in 2 bats in 1% acetic acid, and soak in 2% in 100% propanol. It was. Thereafter, dehydration treatment was performed in the same manner as described above, and sealed in paraffin. A TM stained optical microscope (Olympus BX50) photograph is shown on the right side of FIG.

[オートラジオグラフィーによるH標識サンプルの浸透確認]
H標識アセチル−水溶性エラスチン、及び、H標識アセチル−ナノ粒子の塗布後、オートラジオグラフィーを行ったエオシン染色の皮膚組織切片の光学顕微鏡(Olympus BX50)写真を撮影し、その結果を、それぞれ図2と図3に示した。
[Penetration confirmation of the 3 H-labeled samples by autoradiography]
After applying 3 H-labeled acetyl-water-soluble elastin and 3 H-labeled acetyl-nanoparticles, an optical microscope (Olympus BX50) photograph of an eosin-stained skin tissue section that was autoradiographed was taken, and the results were These are shown in FIGS. 2 and 3, respectively.

[結果の解析]
HE染色、EVG染色、MT染色の写真(図1)から、表皮を構成する細胞(HE染色)、エラスチン(EVG染色)、コラーゲン(TM染色)が観察された。また、H標識アセチル−水溶性エラスチン塗布後のオートラジオグラフィー(図2)と、H標識アセチル−ナノ粒子塗布後のオートラジオグラフィー(図3)から、以下のことが分かった。
[Analysis of results]
From the photographs of HE staining, EVG staining, and MT staining (FIG. 1), cells constituting the epidermis (HE staining), elastin (EVG staining), and collagen (TM staining) were observed. In addition, the following was found from autoradiography after application of 3 H-labeled acetyl-water-soluble elastin (FIG. 2) and autoradiography after application of 3 H-labeled acetyl-nanoparticles (FIG. 3).

H標識アセチル−水溶性エラスチンを塗布したミニブタ皮膚組織(図2)では、図2中の矢印で示すように、塗布後0hで角質層に沈着し始め、9hにおいてほぼ沈着するものの、24h経過しても皮膚中への浸透は殆ど見られなかった。一方、H標識アセチル−ナノ粒子を塗布したミニブタ皮膚組織(図3)では、図3中の矢印で示すように、塗布後0hではH標識アセチル−水溶性エラスチンと同様に、角質層に認められたが、塗布後9hにおいて、角質層上のサンプルの減少につれ表皮への浸透が認められ、H標識アセチル−水溶性エラスチンとの差が確認できた。また、塗布後24hでは表皮全体及び真皮上層にまで浸透した。更に、塗布量50μl当たりに含まれるエラスチン量は、H標識アセチル−水溶性エラスチンが多いにもかかわらず、放射能はH標識アセチル−水溶性エラスチンの約0.4倍と放射活性が低いことから、結果以上にナノ粒子が水溶性エラスチンに比べより皮膚へ浸透している可能性が示唆された。 As shown by the arrow in FIG. 2, in the mini-pig skin tissue to which 3 H-labeled acetyl-water-soluble elastin was applied, it started to deposit in the stratum corneum at 0 h after application and almost deposited at 9 h, but 24 hours passed However, almost no penetration into the skin was observed. On the other hand, 3 H-labeled acetyl - In miniature swine skin tissue nanoparticles coated (FIG. 3), as indicated by the arrow in FIG. 3, 3 H-labeled acetyl in after 0h coating - as with a water-soluble elastin, the stratum corneum Although 9 hours after application, penetration into the epidermis was observed as the number of samples on the stratum corneum decreased, confirming the difference from 3 H-labeled acetyl-water-soluble elastin. Further, 24 hours after application, the whole epidermis and the upper layer of the dermis penetrated. Moreover, elastin content in per coating weight 50μl is, the 3 H-labeled acetyl - despite the water-soluble elastin is large, radioactivity 3 H-labeled acetyl - less about 0.4 times the radioactivity of the water-soluble elastin This suggests that the nanoparticles may penetrate the skin more than the water-soluble elastin.

これらの結果から、通常皮膚への浸透が見られない水溶性エラスチンを、γ線照射を行いナノ粒子化することによって皮膚内に浸透させることが確認できた。これはエラスチン自体がナノ粒子として皮膚内に浸透し、皮膚内部で吸収されて皮膚の重要な構成成分になると同時に、エラスチンが新たな経皮投与のDDS担体となりうる可能性があることが示唆された。 From these results, it was confirmed that water-soluble elastin, which does not normally penetrate into the skin, could penetrate into the skin by γ-irradiation to form nanoparticles. This suggests that elastin permeates into the skin as nanoparticles and is absorbed inside the skin to become an important component of the skin, and at the same time elastin may be a new DDS carrier for transdermal administration. It was.

Claims (3)

水溶性エラスチンのコアセルベート液滴に5〜60kGyの照射量のγ線を照射して作製され、薬物を担持し得る、前記水溶性エラスチンのナノ粒子からなり、該ナノ粒子の粒径が40nm〜400nmの範囲にあり、皮膚表面から真皮層まで浸透する経皮投与DDS用又は機能性化粧品用担体。 Produced by irradiating the irradiation amount of γ-rays of 5~60kGy the coacervate droplets of the water-soluble elastin, drugs may carry consists nanoparticles of the water-soluble elastin, the particle size of the nanoparticles 40nm~400nm A carrier for transdermal administration DDS or a functional cosmetic that penetrates from the skin surface to the dermis layer. 前記水溶性エラスチンのナノ粒子の粒径が、100nm〜150nmの範囲にある請求項1記載の経皮投与DDS用又は機能性化粧品用担体。 The carrier for DDS or functional cosmetics for transdermal administration according to claim 1, wherein the water-soluble elastin nanoparticles have a particle size in the range of 100 nm to 150 nm. 水溶性エラスチンのコアセルベート液滴に5〜60kGyの照射量のγ線を照射することを特徴とする請求項1又は2記載の経皮投与DDS用又は機能性化粧品用担体の製造方法。 3. The method for producing a carrier for DDS for transdermal administration or functional cosmetics according to claim 1 or 2, wherein the coacervate droplets of water-soluble elastin are irradiated with gamma rays of 5 to 60 kGy .
JP2010091952A 2010-04-13 2010-04-13 DDS for transdermal administration or functional cosmetic carrier and method for producing the same Active JP5717273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091952A JP5717273B2 (en) 2010-04-13 2010-04-13 DDS for transdermal administration or functional cosmetic carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091952A JP5717273B2 (en) 2010-04-13 2010-04-13 DDS for transdermal administration or functional cosmetic carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011219427A JP2011219427A (en) 2011-11-04
JP5717273B2 true JP5717273B2 (en) 2015-05-13

Family

ID=45036864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091952A Active JP5717273B2 (en) 2010-04-13 2010-04-13 DDS for transdermal administration or functional cosmetic carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP5717273B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614885B2 (en) * 2010-10-23 2014-10-29 国立大学法人九州工業大学 Water-insoluble elastin microparticles
JP6736036B2 (en) * 2015-02-12 2020-08-05 国立大学法人九州工業大学 Transdermal material, transdermal cosmetics, and transdermal drug
WO2018029762A1 (en) * 2016-08-08 2018-02-15 国立大学法人 九州工業大学 Transdermally absorbable material, transdermally absorbable cosmetic, and transdermally absorbable drug
JP7406057B2 (en) * 2021-03-03 2023-12-27 東洋ビューティ株式会社 External microparticle capsule preparations and skin external preparations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010099A1 (en) * 1988-04-21 1989-11-02 Uab Research Foundation Bioelastomeric materials suitable for the protection of wound repair sites from the occurrence of adhesions

Also Published As

Publication number Publication date
JP2011219427A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
CN103124549B (en) Composition and method for targetting thermal conditioning
CN110123842B (en) Exosome slow-release system and construction method and application thereof
JP5717273B2 (en) DDS for transdermal administration or functional cosmetic carrier and method for producing the same
Jiang et al. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix
CN109260472A (en) Multi-functional temperature sensitive aquagel of one kind and its preparation method and application
CN109330992B (en) Polydopamine modified nano-structure lipid carrier and application thereof in intradermal drug delivery
JP2016538569A (en) A method for phenotyping of intact whole tissue
CN108066317B (en) Preparation method of nano-drug controlled release system, product and application thereof
Liao et al. Effectiveness of a layer-by-layer microbubbles-based delivery system for applying minoxidil to enhance hair growth
CN105999535A (en) Application of sponge spicule as skin physical penetration enhancer
CN104162172A (en) Paclitaxel-containing polymer albumin nanosphere and preparation method and application thereof
Yu et al. Systematic comparisons of dissolving and swelling hyaluronic acid microneedles in transdermal drug delivery
CN108671231B (en) Multifunctional nano-carrier for tumor photothermal synergistic treatment and ultrasonic imaging and preparation method thereof
CN104548095B (en) A kind of PLGA/MoS2Composite medicament stent material and its preparation method and application
CN105903015A (en) Multifunctional thermosensitive agarose hydrogel and preparation method and application thereof
CN111558032B (en) Protein nano-drug and preparation method and application thereof
CN105983131A (en) Hydrogel collagen dressing especially suitable for oily skins
CN103893761B (en) Tumor cytotoxicity method, system and application of a kind of ultrasonic wave added based on light thermit powder
Saveleva et al. CaCO 3-based carriers with prolonged release properties for antifungal drug delivery to hair follicles
CN113521311B (en) Bimodal imaging-guided polymersome with tumor targeting function and preparation method and application thereof
CN108587998B (en) Exosome, preparation method of exosome and application of exosome in preparation of medicine for treating skin superficial tumors
Lin et al. Biodegradable double-network GelMA-ACNM hydrogel microneedles for transdermal drug delivery
CN111450252A (en) Medicine for targeted blocking of tumor blood vessels and preparation method and application thereof
Shkand et al. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes
CN112516305A (en) Preparation method of human hair melanosome derivative and application of human hair melanosome derivative in antibiosis and tissue repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5717273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250