JP5716905B2 - Gas tank manufacturing method and thermosetting device - Google Patents

Gas tank manufacturing method and thermosetting device Download PDF

Info

Publication number
JP5716905B2
JP5716905B2 JP2011083971A JP2011083971A JP5716905B2 JP 5716905 B2 JP5716905 B2 JP 5716905B2 JP 2011083971 A JP2011083971 A JP 2011083971A JP 2011083971 A JP2011083971 A JP 2011083971A JP 5716905 B2 JP5716905 B2 JP 5716905B2
Authority
JP
Japan
Prior art keywords
inner container
resin layer
induction heating
reinforced resin
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011083971A
Other languages
Japanese (ja)
Other versions
JP2012218221A (en
Inventor
武範 相山
武範 相山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011083971A priority Critical patent/JP5716905B2/en
Publication of JP2012218221A publication Critical patent/JP2012218221A/en
Application granted granted Critical
Publication of JP5716905B2 publication Critical patent/JP5716905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Description

本発明は、ガスタンクの製造方法及び熱硬化装置に関する。   The present invention relates to a gas tank manufacturing method and a thermosetting device.

例えば自動車等の車両に搭載される燃料電池システムには、燃料ガスの供給源として高圧ガスタンクが用いられている。   For example, in a fuel cell system mounted on a vehicle such as an automobile, a high-pressure gas tank is used as a fuel gas supply source.

この種のガスタンクの製造時には、略楕円体状の内容器の外周に、熱硬化性樹脂が含浸された繊維が巻き付けられて繊維強化樹脂(FRP(Fiber Reinforced Plastics))層が形成され、その後当該繊維強化樹脂層が熱硬化されている(特許文献1参照)。この熱硬化は、従来より熱風を繊維強化樹脂層の外周面に吹き付けることにより行われている。   When manufacturing this type of gas tank, a fiber reinforced resin (FRP (Fiber Reinforced Plastics)) layer is formed by wrapping a fiber impregnated with a thermosetting resin around the outer periphery of a substantially elliptical inner container. The fiber reinforced resin layer is thermally cured (see Patent Document 1). This thermosetting is conventionally performed by blowing hot air on the outer peripheral surface of the fiber reinforced resin layer.

特開2009−191904号公報JP 2009-191904 A 特開昭63−165275号公報JP 63-165275 A

しかしながら、上述のように熱風により熱硬化を行う場合、直接繊維強化樹脂層に熱風があたるため、繊維強化樹脂層の耐熱性などの観点から熱風の温度が制限される。このため、繊維強化樹脂層の熱硬化に数時間かかる。   However, when thermosetting is performed with hot air as described above, the hot air is directly applied to the fiber reinforced resin layer, and thus the temperature of the hot air is limited from the viewpoint of heat resistance of the fiber reinforced resin layer. For this reason, it takes several hours for the thermosetting of the fiber reinforced resin layer.

また、熱風があたる繊維強化樹脂層の最表面が先に硬化される。このため、繊維強化樹脂層の内部にボイド(気孔)が残りやすい。繊維強化樹脂層の内部に多くのボイドが残留すると、ガスタンクの強度に影響を与える。   Moreover, the outermost surface of the fiber reinforced resin layer to which hot air is applied is cured first. For this reason, voids (pores) tend to remain inside the fiber reinforced resin layer. If many voids remain inside the fiber reinforced resin layer, the strength of the gas tank is affected.

そこで、熱硬化時間を短縮し、繊維強化樹脂層内のボイドの残留を抑制するため、発明者らは、熱風に代えて誘導加熱により繊維強化樹脂層を熱硬化することを提案する。この誘導加熱を用いた熱硬化方法として、例えば誘導加熱コイルを内容器の全体を覆うように配置し、当該誘導加熱コイルに電流を流すことが考えられる。   Therefore, in order to shorten the thermosetting time and suppress the residual voids in the fiber reinforced resin layer, the inventors propose to thermoset the fiber reinforced resin layer by induction heating instead of hot air. As a thermosetting method using induction heating, for example, an induction heating coil may be arranged so as to cover the entire inner container, and a current may be passed through the induction heating coil.

しかしながら、この場合、誘導加熱コイルの軸方向の長さが内容器と同程度必要になり、コイルの巻き数が多くなる。また、その軸方向に長い誘導加熱コイル内に内容器を挿入するための機構やスペースが必要になる。さらに、繊維強化樹脂層を均一に加熱するために内容器を誘導加熱コイルの軸方向の中心に正確に配置するための位置決め機構が必要になる。この結果、熱硬化を行うための装置が大型化し、加えて他種の機能が必要になるため、設備コストが増大する。   However, in this case, the axial length of the induction heating coil is required to be approximately the same as that of the inner container, and the number of turns of the coil increases. Further, a mechanism and a space for inserting the inner container into the induction heating coil that is long in the axial direction are required. Furthermore, in order to heat the fiber reinforced resin layer uniformly, a positioning mechanism for accurately arranging the inner container at the axial center of the induction heating coil is required. As a result, the apparatus for performing the heat curing is increased in size, and in addition, other types of functions are required, so that the equipment cost increases.

また、誘導加熱コイルが内容器の全体を覆うため、誘導加熱コイルに電流が流されている場合に、常に内容器の全体に熱が供給され続ける。このため、繊維強化樹脂層を加熱しすぎてしまうという問題がある。繊維強化樹脂層を加熱しすぎると、樹脂が劣化し、ガスタンクの強度に影響を与える。この問題を誘導加熱コイルのON、OFFの制御で解消しようとすると、制御が煩雑になり、コストが増大する。   Further, since the induction heating coil covers the entire inner container, heat is always supplied to the entire inner container when a current is passed through the induction heating coil. For this reason, there exists a problem that a fiber reinforced resin layer will be heated too much. If the fiber reinforced resin layer is heated too much, the resin deteriorates and affects the strength of the gas tank. If this problem is solved by controlling the induction heating coil to be turned on and off, the control becomes complicated and the cost increases.

本発明はかかる点に鑑みてなされたものであり、誘導加熱を用いた繊維強化樹脂層の熱硬化を、コストを抑えて適切に行うことをその目的とする。   This invention is made | formed in view of this point, and makes it the objective to carry out the thermosetting of the fiber reinforced resin layer using induction heating appropriately, restraining cost.

上記目的を達成するための本発明は、ガスタンクの製造方法であって、熱硬化性樹脂が含浸された繊維を内容器の外周に巻回して内容器の外周に繊維強化樹脂層を形成する第1の工程と、前記繊維強化樹脂層を熱硬化する第2の工程と、を有し、前記繊維強化樹脂層は、前記繊維が前記内容器の軸周りに当該軸に対し直角方向に巻かれるフープ巻き層を少なくとも有し、前記第2の工程では、前記内容器の軸周りの前記繊維強化樹脂層の外周に誘導加熱コイルを配置し、当該誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させて、前記繊維強化樹脂層を誘導加熱するガスタンクの製造方法である。   The present invention for achieving the above object is a method for producing a gas tank, wherein a fiber reinforced resin layer is formed on the outer periphery of an inner container by winding a fiber impregnated with a thermosetting resin around the outer periphery of the inner container. 1 and a second step of thermosetting the fiber reinforced resin layer, wherein the fiber reinforced resin layer has the fibers wound around the axis of the inner container in a direction perpendicular to the axis. In the second step, an induction heating coil is disposed on the outer periphery of the fiber reinforced resin layer around the axis of the inner container, and the induction heating coil is disposed on the surface of the fiber reinforced resin layer. In the axial direction of the inner container, and inductively heating the fiber reinforced resin layer.

本発明によれば、内容器の外周に配置された誘導加熱コイルを内容器の軸方向に移動させて繊維強化樹脂層を熱硬化するので、内容器の全体を覆う誘導加熱コイルに比べて誘導加熱コイルの寸法を小さくできる。また、内容器の全体を覆う誘導加熱コイルを用いた場合のように内容器を誘導加熱コイル内に挿入するための装置やスペースが必要ない。さらに、内容器を誘導加熱コイルの軸方向の中心に配置するための位置決め装置も必要ない。よって、設備コストを低減できる。また、繊維強化樹脂層の表面に沿って誘導加熱コイルを移動させるので、繊維強化樹脂層の各部分を断続的に加熱でき、繊維強化樹脂層の過加熱を防止できる。よって、誘導加熱を用いた繊維強化樹脂層の熱硬化を、コストを抑えて適切に行うことができる。   According to the present invention, the induction heating coil disposed on the outer periphery of the inner container is moved in the axial direction of the inner container to thermally cure the fiber reinforced resin layer. Therefore, the induction heating coil is guided in comparison with the induction heating coil that covers the entire inner container. The size of the heating coil can be reduced. Moreover, the apparatus and space for inserting an inner container in an induction heating coil are not required like the case where the induction heating coil which covers the whole inner container is used. Further, there is no need for a positioning device for arranging the inner container in the axial center of the induction heating coil. Therefore, equipment cost can be reduced. Moreover, since the induction heating coil is moved along the surface of the fiber reinforced resin layer, each portion of the fiber reinforced resin layer can be intermittently heated, and overheating of the fiber reinforced resin layer can be prevented. Therefore, thermosetting of the fiber reinforced resin layer using induction heating can be performed appropriately at a reduced cost.

前記第2の工程において、前記誘導加熱コイルを第1の速度で前記内容器の軸方向に移動させ、その後前記誘導加熱コイルを前記第1の速度よりも大きな第2の速度で前記内容器の軸方向に移動させるようにしてもよい。   In the second step, the induction heating coil is moved in the axial direction of the inner container at a first speed, and then the induction heating coil is moved in the inner container at a second speed larger than the first speed. You may make it move to an axial direction.

前記第2の工程において、前記誘導加熱コイルを前記第1の速度で前記内容器の一の端部から他の端部まで移動させ、その後前記誘導加熱コイルを前記第2の速度で前記内容器の他の端部と一の端部の間を複数回移動させるようにしてもよい。なお、ここでいう、内容器の一の端部から他の端部まで移動させるとは、一の端部の外側から他の端部の外側まで移動させる場合も含む。また、容器の他の端部と一の端部の間を複数回移動させるとは、他の端部の外側から一の端部の外側の間を移動させる場合も含む。   In the second step, the induction heating coil is moved from one end of the inner container to the other end at the first speed, and then the induction heating coil is moved to the inner container at the second speed. You may make it move between the other edge part and one edge part in multiple times. Here, the term “move from one end of the inner container to the other end” includes the case of moving from the outer side of the one end to the outer side of the other end. In addition, moving between the other end of the container and the one end a plurality of times includes the case of moving between the outside of the other end and the outside of the one end.

前記第2の工程において、前記内容器を軸周りに回転させるようにしてもよい。   In the second step, the inner container may be rotated about an axis.

別の観点による本発明は、熱硬化性樹脂を含む繊維がガスタンクの内容器の外周に巻回されて形成された繊維強化樹脂層を熱硬化する熱硬化装置であって、前記内容器の軸周りの前記繊維強化樹脂層の外周に配置された誘導加熱コイルと、前記誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させるコイル移動装置と、を有する熱硬化装置である。   According to another aspect of the present invention, there is provided a thermosetting apparatus for thermosetting a fiber reinforced resin layer formed by winding a fiber containing a thermosetting resin around an outer periphery of an inner container of a gas tank, the shaft of the inner container An induction heating coil disposed on an outer periphery of the surrounding fiber reinforced resin layer, and a coil moving device that moves the induction heating coil in the axial direction of the inner container along the surface of the fiber reinforced resin layer. It is a thermosetting device.

本発明によれば、内容器の外周に配置された誘導加熱コイルを内容器の軸方向に移動させて誘導加熱により繊維強化樹脂層を熱硬化できるので、内容器の全体を覆う誘導加熱コイルに比べて誘導加熱コイルの寸法を小さくできる。また、内容器の全体を覆う誘導加熱コイルを用いた場合のように内容器を誘導加熱コイル内に挿入するための装置やスペースが必要ない。さらに、内容器を誘導加熱コイルの軸方向の中心に配置するための位置決め装置も必要ない。よって、設備コストを低減できる。また、繊維強化樹脂層の表面に沿って誘導加熱コイルを移動させるので、繊維強化樹脂層の各部分を断続的に加熱でき、繊維強化樹脂層の過加熱を防止できる。よって、誘導加熱を用いた繊維強化樹脂層の熱硬化を、コストを抑えて適切に行うことができる。   According to the present invention, the induction heating coil arranged on the outer periphery of the inner container can be moved in the axial direction of the inner container and the fiber reinforced resin layer can be thermoset by induction heating. In comparison, the size of the induction heating coil can be reduced. Moreover, the apparatus and space for inserting an inner container in an induction heating coil are not required like the case where the induction heating coil which covers the whole inner container is used. Further, there is no need for a positioning device for arranging the inner container in the axial center of the induction heating coil. Therefore, equipment cost can be reduced. Moreover, since the induction heating coil is moved along the surface of the fiber reinforced resin layer, each portion of the fiber reinforced resin layer can be intermittently heated, and overheating of the fiber reinforced resin layer can be prevented. Therefore, thermosetting of the fiber reinforced resin layer using induction heating can be performed appropriately at a reduced cost.

前記熱硬化装置は、前記コイル移動装置による前記誘導加熱コイルの移動速度を変更可能であってもよい。   The thermosetting device may be capable of changing a moving speed of the induction heating coil by the coil moving device.

前記熱硬化装置は、前記内容器を軸周りに回転させる回転装置をさらに有していてもよい。   The thermosetting device may further include a rotating device that rotates the inner container around an axis.

本発明によれば、誘導加熱を用いた繊維強化樹脂層の熱硬化を、コストを抑えて適切に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, thermosetting of the fiber reinforced resin layer using induction heating can be performed appropriately at a reduced cost.

ガスタンクを搭載した燃料電池自動車の模式図である。It is a schematic diagram of the fuel cell vehicle carrying a gas tank. ガスタンクの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a gas tank. ガスタンクのフープ巻き層を示す説明図である。It is explanatory drawing which shows the hoop winding layer of a gas tank. 熱硬化装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of a thermosetting apparatus. 誘導加熱コイルを内容器の一の端部から他の端部に移動させる様子を示す説明図である。It is explanatory drawing which shows a mode that an induction heating coil is moved from one edge part of an inner container to another edge part. 誘導加熱コイルの移動時のフープ巻き層及びヘリカル巻き層の温度変化を示す模式図である。It is a schematic diagram which shows the temperature change of the hoop winding layer at the time of the movement of an induction heating coil, and a helical winding layer. 誘導加熱コイルを内容器の他の端部と一の端部との間で移動させる様子を示す説明図である。It is explanatory drawing which shows a mode that an induction heating coil is moved between the other edge part of an inner container, and one edge part.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、ガスタンクを搭載した燃料電池自動車1の模式図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a fuel cell vehicle 1 equipped with a gas tank.

燃料電池自動車1には、例えば3つのガスタンク2が車体のリア部に搭載されている。ガスタンク2は、燃料電池システム3の一部を構成し、ガス供給ライン4を通じて各ガスタンク2から燃料電池5に燃料ガスが供給可能になっている。ガスタンク2に貯留される燃料ガスは、可燃性の高圧ガスであり、例えば水素ガスである。なお、本発明におけるガスタンクは、燃料電池自動車1のみならず、電気自動車、ハイブリッド自動車などの車両のほか、各種移動体(例えば、船舶や飛行機、ロボットなど)や定置設備(住宅、ビル)にも適用できる。   In the fuel cell vehicle 1, for example, three gas tanks 2 are mounted on the rear part of the vehicle body. The gas tank 2 constitutes a part of the fuel cell system 3, and fuel gas can be supplied from each gas tank 2 to the fuel cell 5 through the gas supply line 4. The fuel gas stored in the gas tank 2 is a combustible high-pressure gas, for example, hydrogen gas. The gas tank according to the present invention is not only used for the fuel cell vehicle 1 but also for vehicles such as electric vehicles and hybrid vehicles, as well as various mobile objects (for example, ships, airplanes, robots, etc.) and stationary equipment (housing, buildings). Applicable.

図2は、ガスタンク2の構成の概略を示す縦断面図である。ガスタンク2は、例えば略楕円体状に形成され、径の同じ円筒状の胴部2aと、当該胴部2aの両端に接続され当該胴部2aから離れるにつれて縮径する略半球体状のドーム部2bを有している。ガスタンク2のタンク軸上の両端部には、口金10が設けられている。   FIG. 2 is a longitudinal sectional view showing an outline of the configuration of the gas tank 2. The gas tank 2 is formed, for example, in a substantially elliptical shape, and has a cylindrical body portion 2a having the same diameter, and a substantially hemispherical dome portion that is connected to both ends of the body portion 2a and decreases in diameter as the distance from the body portion 2a increases. 2b. A base 10 is provided at both ends of the gas tank 2 on the tank shaft.

ガスタンク2は、内側に略楕円体状の樹脂製の内容器(ライナ)20を有している。内容器20は、例えばナイロン6、ナイロン6,6などのポリアミド系樹脂、及び、ポリエチレン系樹脂により成形されている。なお、本実施の形態では、ガスタンク2の内容器は、樹脂製であるが、アルミ製であってもよい。内容器20の外周のほぼ全面(口金10を除いた部分)には、繊維強化樹脂層21が形成されている。   The gas tank 2 has a substantially ellipsoidal resin inner container (liner) 20 inside. The inner container 20 is formed of, for example, a polyamide resin such as nylon 6 or nylon 6, 6, and a polyethylene resin. In the present embodiment, the inner container of the gas tank 2 is made of resin, but may be made of aluminum. A fiber reinforced resin layer 21 is formed on almost the entire outer periphery of the inner container 20 (the portion excluding the base 10).

繊維強化樹脂層21は、フィラメントワイディング(FW)法により内容器20の外周に、熱硬化性の樹脂が含浸された繊維が巻かれることにより形成されている。繊維強化樹脂層21は、例えば繊維の巻き方向が異なる複数層から形成され、例えば図3に示すように胴部2aの繊維強化樹脂層21は、少なくともタンクの軸周りに当該軸に対して直角方向に巻かれたフープ巻き層21aを有している。本発明は、誘電加熱により繊維強化樹脂層21を硬化するため、誘導加熱コイル40の巻き方向と同一方向に巻かれたフープ巻き層の硬化に適している。特にフープ巻き層を内層に集めた繊維強化樹脂層21では、外側から熱の伝わり難い内層を確実に効果的に硬化させることができる。なお、繊維強化樹脂層21は、フープ巻き層と、タンクの軸に対して斜めに巻かれたヘリカル巻き層とを厚み方向に交互に備えていてもよいし、フープ巻き層を内側に備え、ヘルカリ巻き層を外側に備えていてもよく、その巻き方、巻く位置は任意に選択できる。繊維強化樹脂層21の樹脂として、例えばエポキシ樹脂、変性エポキシ樹脂、又は不飽和ポリエステル樹脂などが用いられている。また、繊維としては、例えば炭素繊維が用いられている。   The fiber reinforced resin layer 21 is formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of the inner container 20 by a filament wiping (FW) method. The fiber reinforced resin layer 21 is formed of, for example, a plurality of layers having different fiber winding directions. For example, as shown in FIG. 3, the fiber reinforced resin layer 21 of the trunk portion 2a is at least perpendicular to the axis around the axis of the tank. The hoop winding layer 21a is wound in the direction. Since the fiber reinforced resin layer 21 is cured by dielectric heating, the present invention is suitable for curing a hoop winding layer wound in the same direction as the winding direction of the induction heating coil 40. In particular, in the fiber reinforced resin layer 21 in which the hoop winding layers are collected in the inner layer, the inner layer that is difficult to transmit heat from the outside can be reliably and effectively cured. The fiber reinforced resin layer 21 may include a hoop winding layer and a helical winding layer wound obliquely with respect to the axis of the tank in the thickness direction, or a hoop winding layer on the inside. A healthy winding layer may be provided on the outside, and the winding method and winding position can be arbitrarily selected. As the resin of the fiber reinforced resin layer 21, for example, an epoxy resin, a modified epoxy resin, an unsaturated polyester resin, or the like is used. Moreover, as a fiber, carbon fiber is used, for example.

図4には、内容器20の外周に形成された繊維強化樹脂層21を熱硬化する熱硬化装置30を示す。熱硬化装置30は、内容器20の軸周りの繊維強化樹脂層21の外周に配置された誘導加熱コイル40と、誘導加熱コイル40を繊維強化樹脂層21の表面に沿って内容器20の軸方向に移動させるコイル移動装置41と、内容器20を軸周りに回転させる回転装置42を有している。   In FIG. 4, the thermosetting apparatus 30 which thermosets the fiber reinforced resin layer 21 formed in the outer periphery of the inner container 20 is shown. The thermosetting device 30 includes an induction heating coil 40 disposed on the outer periphery of the fiber reinforced resin layer 21 around the axis of the inner container 20, and the induction heating coil 40 along the surface of the fiber reinforced resin layer 21. A coil moving device 41 for moving in the direction and a rotating device 42 for rotating the inner container 20 around the axis are provided.

誘導加熱コイル40は、導電線が内容器20の軸周りに複数回巻かれて形成されている。誘導加熱コイル40は、図示しない電流供給源からの給電により、コイル周りに渦電流を発生する。   The induction heating coil 40 is formed by winding a conductive wire around the axis of the inner container 20 a plurality of times. The induction heating coil 40 generates an eddy current around the coil by power feeding from a current supply source (not shown).

コイル移動装置41は、例えば誘導加熱コイル40を支持部材50で支持し、当該支持部材50を図示しないモータ等の駆動源によりレール51に沿って移動させて、誘導加熱コイル40を内容器20の軸方向に移動させることができる。また、コイル移動装置41は、モータ等の出力を変更することにより、誘導加熱コイル40の移動速度を変更することができる。   The coil moving device 41, for example, supports the induction heating coil 40 with a support member 50, moves the support member 50 along a rail 51 by a drive source such as a motor (not shown), and moves the induction heating coil 40 of the inner container 20. It can be moved in the axial direction. The coil moving device 41 can change the moving speed of the induction heating coil 40 by changing the output of a motor or the like.

回転装置42は、内容器20の軸上にある両側の口金10を支持体60により支持し、当該支持体60をモータ等の駆動源61により回転させて、内容器20を回転させることができる。   The rotating device 42 can rotate the inner container 20 by supporting the bases 10 on both sides on the axis of the inner container 20 by a support body 60 and rotating the support body 60 by a drive source 61 such as a motor. .

次に、ガスタンクの製造方法について説明する。先ず、熱硬化性樹脂が含浸された繊維がフィラメントワインディング法により内容器20の外周に巻回されて、内容器20の外周に繊維強化樹脂層21が形成される(第1の工程)。このとき、繊維強化樹脂層21の少なくとも一部の層には、フープ巻き層21aが形成される。本実施の形態では、例えば繊維強化樹脂層21の内層にフープ巻き層21aが形成され、外層にヘリカル巻き層が形成される。   Next, the manufacturing method of a gas tank is demonstrated. First, the fiber impregnated with the thermosetting resin is wound around the outer periphery of the inner container 20 by the filament winding method, and the fiber reinforced resin layer 21 is formed on the outer periphery of the inner container 20 (first step). At this time, the hoop winding layer 21 a is formed on at least a part of the fiber reinforced resin layer 21. In the present embodiment, for example, the hoop wound layer 21a is formed on the inner layer of the fiber reinforced resin layer 21, and the helical wound layer is formed on the outer layer.

次に、内容器20が図4に示す熱硬化装置30に搬送され、内容器20が支持体60により支持される。次に、回転装置42により内容器20が回転され、誘導加熱コイル40に電流が流される。この状態で図5に示すようにコイル移動装置41により誘導加熱コイル40が内容器20の一の端部Aから他の端部Bに移動される。この誘導加熱コイル40により、繊維強化樹脂層21のフープ巻き層21aが誘導加熱される(第2の工程)。このときの一の端部Aから他の端部Bへの最初の移動は、相対的に低速の第1の速度で行われる。これにより、繊維強化樹脂層21の各部分の熱硬化性樹脂に十分な熱が供給され、当該樹脂の自己発熱(反応熱)が誘発される。この誘電加熱コイル40の移動時のフープ巻き層21a及びヘリカル巻き層21bの温度変化の一例を図6に示す。図6に示すように第1の速度で誘導加熱コイル40を移動させているときには、フープ巻き層21aが集中的に昇温し硬化する。またヘリカル巻き層21bは、フープ巻き層21aからの熱により僅かに昇温する。   Next, the inner container 20 is conveyed to the thermosetting device 30 shown in FIG. 4, and the inner container 20 is supported by the support body 60. Next, the inner container 20 is rotated by the rotating device 42, and a current is passed through the induction heating coil 40. In this state, the induction heating coil 40 is moved from one end A of the inner container 20 to the other end B by the coil moving device 41 as shown in FIG. By this induction heating coil 40, the hoop wound layer 21a of the fiber reinforced resin layer 21 is induction heated (second step). At this time, the first movement from one end A to the other end B is performed at a relatively low first speed. Thereby, sufficient heat is supplied to the thermosetting resin of each part of the fiber reinforced resin layer 21, and self-heating (reaction heat) of the resin is induced. An example of the temperature change of the hoop winding layer 21a and the helical winding layer 21b during the movement of the dielectric heating coil 40 is shown in FIG. As shown in FIG. 6, when the induction heating coil 40 is moved at the first speed, the hoop winding layer 21a is intensively heated and hardened. Further, the helical winding layer 21b is slightly heated by the heat from the hoop winding layer 21a.

次に、図7に示すように誘導加熱コイル40が、引き続き電流が流された状態で、内容器20の他の端部Bと一の端部Aとの間で往復移動される。この誘導加熱コイル40により、繊維強化樹脂層21のフープ巻き層21aがまた誘導加熱される。このときの他の端部Bと一の端部Aとの間の往復移動は、相対的に高速の第2の速度で行われる。これにより、繊維強化樹脂層21の各部分の熱硬化性樹脂への熱供給が制限され、当該樹脂の自己発熱の状態が維持され、その結果繊維強化樹脂層21全体の温度が均一に均される。より具体的には、例えば図6に示すようにフープ巻き層21aは、誘導加熱コイル40が高速の第2の速度で通過しても、低速時に誘発された自己発熱の反応熱により温度が維持されつつ、誘導加熱コイル40の往復移動により、ガスタンク2の全体に亘って温度が均等化される。また、ヘリカル巻き層21bは、フープ巻き層21aの反応熱により徐々に昇温し、誘導加熱コイル40の往復移動により、ガスタンク2の全体に亘って温度が均等化しながら、硬化が開始される。こうして繊維強化樹脂層21全体の硬化が行われる。   Next, as shown in FIG. 7, the induction heating coil 40 is reciprocated between the other end B of the inner container 20 and the one end A in a state where a current is continuously passed. By this induction heating coil 40, the hoop winding layer 21a of the fiber reinforced resin layer 21 is also induction heated. At this time, the reciprocating movement between the other end portion B and the one end portion A is performed at a relatively high second speed. Thereby, the heat supply to the thermosetting resin of each part of the fiber reinforced resin layer 21 is restricted, and the self-heating state of the resin is maintained, and as a result, the temperature of the entire fiber reinforced resin layer 21 is uniformly leveled. The More specifically, for example, as shown in FIG. 6, the hoop winding layer 21a maintains the temperature by the reaction heat of self-heating induced at the low speed even when the induction heating coil 40 passes at the second high speed. However, the temperature is equalized over the entire gas tank 2 by the reciprocating movement of the induction heating coil 40. Further, the helical winding layer 21b is gradually heated by the reaction heat of the hoop winding layer 21a, and curing is started while the temperature is equalized over the entire gas tank 2 by the reciprocating movement of the induction heating coil 40. Thus, the entire fiber reinforced resin layer 21 is cured.

第2の速度で複数回往復移動したあと、誘導加熱コイル40への電流の供給が停止され、誘導加熱が終了して、繊維強化樹脂層21の熱硬化処理が終了する。   After reciprocating a plurality of times at the second speed, the supply of current to the induction heating coil 40 is stopped, the induction heating is finished, and the thermosetting treatment of the fiber reinforced resin layer 21 is finished.

以上の実施の形態によれば、内容器20の繊維強化樹脂層21の外周に配置された誘導加熱コイル40を内容器20の軸方向に移動させて誘導加熱により繊維強化樹脂層21を熱硬化するので、内容器20の全体を覆う誘導加熱コイルに比べて誘導加熱コイルの巻き数を著しく少なくできる。また、内容器20の全体を覆う誘導加熱コイルを用いた場合のように内容器20を誘導加熱コイル内に挿入するための装置やスペースが必要ない。さらに、内容器20を誘導加熱コイルの軸方向の中心に配置するための位置決め装置も必要ない。よって、熱硬化装置30の設備コストを低減できる。また、繊維強化樹脂層21の表面に沿って誘導加熱コイル40を移動させるので、繊維強化樹脂層21の各部分に断続的に熱を供給でき、繊維強化樹脂層21の過加熱を防止できる。よって、誘導加熱を用いた繊維強化樹脂層21の熱硬化を、コストを抑えて適切に行うことができる。   According to the above embodiment, the induction heating coil 40 arranged on the outer periphery of the fiber reinforced resin layer 21 of the inner container 20 is moved in the axial direction of the inner container 20 to heat cure the fiber reinforced resin layer 21 by induction heating. Therefore, the number of turns of the induction heating coil can be significantly reduced as compared with the induction heating coil that covers the entire inner container 20. Moreover, the apparatus and space for inserting the inner container 20 in an induction heating coil are not required like the case where the induction heating coil which covers the whole inner container 20 is used. Further, there is no need for a positioning device for arranging the inner container 20 at the center in the axial direction of the induction heating coil. Therefore, the equipment cost of the thermosetting device 30 can be reduced. Moreover, since the induction heating coil 40 is moved along the surface of the fiber reinforced resin layer 21, heat can be intermittently supplied to each part of the fiber reinforced resin layer 21, and overheating of the fiber reinforced resin layer 21 can be prevented. Therefore, the thermosetting of the fiber reinforced resin layer 21 using induction heating can be appropriately performed at a reduced cost.

また、第2の工程において、誘導加熱コイル40を相対的に遅い第1の速度で内容器20の軸方向に移動させ、その後誘導加熱コイル40を相対的に速い第2の速度で内容器20の軸方向に移動させるので、初めに遅い速度で繊維強化樹脂層21の各部分に十分な熱を供給して樹脂の自己発熱(反応熱)を誘発し、その後速い速度で繊維強化樹脂層21の各部分に少量ずつ熱を供給して繊維強化樹脂層21全体の温度を均すことができる。これにより、繊維強化樹脂層21の熱硬化を効果的かつ均一に行うことができる。   Further, in the second step, the induction heating coil 40 is moved in the axial direction of the inner container 20 at a relatively slow first speed, and then the induction heating coil 40 is moved at a relatively fast second speed. Therefore, first, sufficient heat is supplied to each part of the fiber reinforced resin layer 21 at a slow speed to induce self-heating (reaction heat) of the resin, and then the fiber reinforced resin layer 21 at a fast speed. A small amount of heat can be supplied to each of the portions to equalize the temperature of the entire fiber reinforced resin layer 21. Thereby, the thermosetting of the fiber reinforced resin layer 21 can be performed effectively and uniformly.

また、第2の工程において、誘導加熱コイル40を第1の速度で内容器20の一の端部Aから他の端部Bまで移動させ、その後誘導加熱コイル40を第2の速度で内容器20の他の端部Bと一の端部Aの間を複数回移動させている。これにより、前記樹脂の自己発熱の誘発と、その後の温度の均一化を効率的かつ適正に行うことができる。   In the second step, the induction heating coil 40 is moved at a first speed from one end A of the inner container 20 to the other end B, and then the induction heating coil 40 is moved at the second speed to the inner container. The other end portion 20 and the one end portion A are moved a plurality of times. Thereby, the induction | guidance | derivation of the self-heating of the said resin and subsequent equalization of temperature can be performed efficiently and appropriately.

第2の工程において、内容器20を軸周りに回転させるので、硬化前の樹脂が重力により内容器20の下部に流下し溜まることを防止できる。   In the second step, since the inner container 20 is rotated around the axis, it is possible to prevent the uncured resin from flowing down to the lower portion of the inner container 20 due to gravity.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

1 燃料電池自動車
2 ガスタンク
20 内容器
21 繊維強化樹脂層
21a フープ巻き層
30 熱硬化装置
40 誘導加熱コイル
41 コイル移動装置
42 回転装置
DESCRIPTION OF SYMBOLS 1 Fuel cell vehicle 2 Gas tank 20 Inner container 21 Fiber reinforced resin layer 21a Hoop winding layer 30 Thermosetting device 40 Induction heating coil 41 Coil moving device 42 Rotating device

Claims (7)

ガスタンクの製造方法であって、
熱硬化性樹脂が含浸された繊維を内容器の外周に巻回して内容器の外周に繊維強化樹脂層を形成する第1の工程と、
前記繊維強化樹脂層を熱硬化する第2の工程と、を有し、
前記繊維強化樹脂層は、前記繊維が前記内容器の軸周りに当該軸に対し直角方向に巻かれるフープ巻き層を少なくとも有し、
前記第2の工程では、前記内容器の軸周りの前記繊維強化樹脂層の外周に誘導加熱コイルを配置し、当該誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させて、前記繊維強化樹脂層を誘導加熱し、
前記第2の工程において、前記誘導加熱コイルを第1の速度で前記内容器の軸方向に移動させ、その後前記誘導加熱コイルを前記第1の速度よりも大きな第2の速度で前記内容器の軸方向に移動させる、ガスタンクの製造方法。
A gas tank manufacturing method comprising:
A first step of winding a fiber impregnated with a thermosetting resin around the outer periphery of the inner container to form a fiber reinforced resin layer on the outer periphery of the inner container;
A second step of thermosetting the fiber reinforced resin layer,
The fiber reinforced resin layer has at least a hoop winding layer in which the fiber is wound around the axis of the inner container in a direction perpendicular to the axis,
In the second step, an induction heating coil is arranged on the outer periphery of the fiber reinforced resin layer around the axis of the inner container, and the induction heating coil is disposed along the surface of the fiber reinforced resin layer. Moving in the direction, induction heating the fiber-reinforced resin layer ,
In the second step, the induction heating coil is moved in the axial direction of the inner container at a first speed, and then the induction heating coil is moved in the inner container at a second speed larger than the first speed. A method of manufacturing a gas tank that moves in the axial direction .
前記第2の工程において、前記誘導加熱コイルを前記第1の速度で前記内容器の一の端部から他の端部まで移動させ、その後前記誘導加熱コイルを前記第2の速度で前記内容器の他の端部と一の端部の間を複数回移動させる、請求項1に記載のガスタンクの製造方法。 In the second step, the induction heating coil is moved from one end of the inner container to the other end at the first speed, and then the induction heating coil is moved to the inner container at the second speed. The method for producing a gas tank according to claim 1 , wherein the gas tank is moved a plurality of times between the other end and the one end. 前記第2の工程において、前記内容器を軸周りに回転させる、請求項1又は2に記載のガスタンクの製造方法。 The method for manufacturing a gas tank according to claim 1 or 2 , wherein, in the second step, the inner container is rotated about an axis. ガスタンクの製造方法であって、
熱硬化性樹脂が含浸された繊維を内容器の外周に巻回して内容器の外周に繊維強化樹脂層を形成する第1の工程と、
前記繊維強化樹脂層を熱硬化する第2の工程と、を有し、
前記繊維強化樹脂層は、前記繊維が前記内容器の軸周りに当該軸に対し直角方向に巻かれるフープ巻き層を少なくとも有し、
前記第2の工程では、前記内容器の軸周りの前記繊維強化樹脂層の外周に誘導加熱コイルを配置し、当該誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させて、前記繊維強化樹脂層を誘導加熱し、
前記第2の工程において、前記内容器を軸周りに回転させる、ガスタンクの製造方法。
A gas tank manufacturing method comprising:
A first step of winding a fiber impregnated with a thermosetting resin around the outer periphery of the inner container to form a fiber reinforced resin layer on the outer periphery of the inner container;
A second step of thermosetting the fiber reinforced resin layer,
The fiber reinforced resin layer has at least a hoop winding layer in which the fiber is wound around the axis of the inner container in a direction perpendicular to the axis,
In the second step, an induction heating coil is arranged on the outer periphery of the fiber reinforced resin layer around the axis of the inner container, and the induction heating coil is disposed along the surface of the fiber reinforced resin layer. Moving in the direction, induction heating the fiber-reinforced resin layer ,
In the second step, the method for producing a gas tank , wherein the inner container is rotated around an axis .
熱硬化性樹脂を含む繊維がガスタンクの内容器の外周に巻回されて形成された繊維強化樹脂層を熱硬化する熱硬化装置であって、
前記内容器の軸周りの前記繊維強化樹脂層の外周に配置された誘導加熱コイルと、
前記誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させるコイル移動装置と、を有し、
前記コイル移動装置による前記誘導加熱コイルの移動速度を変更可能である、熱硬化装置。
A thermosetting device for thermosetting a fiber reinforced resin layer formed by winding a fiber containing a thermosetting resin around the outer periphery of an inner container of a gas tank,
An induction heating coil disposed on the outer periphery of the fiber reinforced resin layer around the axis of the inner container;
The induction heating coil, have a, a coil moving device that moves in the axial direction of the inner container along the surface of the fiber reinforced resin layer,
A thermosetting device capable of changing a moving speed of the induction heating coil by the coil moving device.
前記内容器を軸周りに回転させる回転装置をさらに有する、請求項5に記載の熱硬化装置。 The thermosetting device according to claim 5 , further comprising a rotating device that rotates the inner container around an axis. 熱硬化性樹脂を含む繊維がガスタンクの内容器の外周に巻回されて形成された繊維強化樹脂層を熱硬化する熱硬化装置であって、
前記内容器の軸周りの前記繊維強化樹脂層の外周に配置された誘導加熱コイルと、
前記誘導加熱コイルを、前記繊維強化樹脂層の表面に沿って前記内容器の軸方向に移動させるコイル移動装置と、
前記内容器を軸周りに回転させる回転装置と、を有する、熱硬化装置。
A thermosetting device for thermosetting a fiber reinforced resin layer formed by winding a fiber containing a thermosetting resin around the outer periphery of an inner container of a gas tank,
An induction heating coil disposed on the outer periphery of the fiber reinforced resin layer around the axis of the inner container;
A coil moving device for moving the induction heating coil in the axial direction of the inner container along the surface of the fiber reinforced resin layer ;
And a rotating device that rotates the inner container about an axis .
JP2011083971A 2011-04-05 2011-04-05 Gas tank manufacturing method and thermosetting device Active JP5716905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083971A JP5716905B2 (en) 2011-04-05 2011-04-05 Gas tank manufacturing method and thermosetting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083971A JP5716905B2 (en) 2011-04-05 2011-04-05 Gas tank manufacturing method and thermosetting device

Publications (2)

Publication Number Publication Date
JP2012218221A JP2012218221A (en) 2012-11-12
JP5716905B2 true JP5716905B2 (en) 2015-05-13

Family

ID=47270282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083971A Active JP5716905B2 (en) 2011-04-05 2011-04-05 Gas tank manufacturing method and thermosetting device

Country Status (1)

Country Link
JP (1) JP5716905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503598A (en) * 2019-11-26 2023-01-31 ガバメント オブ ザ ユナイテッド ステイツ アズ リプレゼンテッド バイ ザ セクレタリー オブ ジ エア フォース Fiber Reinforced Polymer Composite Structure and Its Electromagnetic Induction Manufacturing Method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596214B2 (en) * 1980-04-25 1984-02-09 株式会社シマノ Manufacturing method of tubular body
JPS62116129A (en) * 1985-11-15 1987-05-27 Honda Motor Co Ltd Manufacture of fiber reinforced resin tube
JP2574869B2 (en) * 1988-05-31 1997-01-22 中部電力株式会社 Surface treatment of long shaft material
US5248864A (en) * 1991-07-30 1993-09-28 E. I. Du Pont De Nemours And Company Method for induction heating of composite materials
JPH05269866A (en) * 1992-03-27 1993-10-19 Nippon Steel Chem Co Ltd Manufacture of carbon fiber reinforcing composite material
JPH06335973A (en) * 1993-05-28 1994-12-06 Sekisui Chem Co Ltd Production of fiber reinforced resin laminate
JP2556256B2 (en) * 1993-06-04 1996-11-20 ヤマハ株式会社 FRTP molding method
JPH07117139A (en) * 1993-10-26 1995-05-09 Sekisui Chem Co Ltd Production of fiber reinforced resin pipe
JP2008032088A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Tank
JP2010249147A (en) * 2009-04-10 2010-11-04 Toyota Motor Corp Frp tank and method for manufacturing the same
JP2012076391A (en) * 2010-10-04 2012-04-19 Toyota Motor Corp Method for manufacturing gas tank

Also Published As

Publication number Publication date
JP2012218221A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
EP2821209B1 (en) Method for manufacturing a high pressure gas tank
JP2011179638A (en) Manufacturing device and manufacturing method of high pressure tank
JP5656752B2 (en) Filament winding method, filament winding apparatus and tank
JP5641268B2 (en) Gas tank manufacturing method
WO2017149817A1 (en) High-pressure gas storage container and method for producing high-pressure gas storage container
JP5443116B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic container
JP2013161610A (en) Induction heating apparatus, and method of manufacturing high-pressure gas tank
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP5716905B2 (en) Gas tank manufacturing method and thermosetting device
JP2010090938A (en) Tank and method of manufacturing the same
CN111664348B (en) Method for manufacturing can
JP5257736B2 (en) Tank manufacturing method and tank manufacturing equipment
JP2010249147A (en) Frp tank and method for manufacturing the same
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP5446033B2 (en) FRP tank manufacturing apparatus and manufacturing method
JP2012066498A (en) Method for manufacturing gas tank
JP2009028961A (en) Manufacturing process and manufacturing system of frp molding
JP2018012235A (en) Method for producing tank
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP2009184223A (en) Apparatus and method for manufacturing fiber-reinforced plastic molded object
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP7159882B2 (en) High-pressure tank manufacturing method
JP2012076391A (en) Method for manufacturing gas tank
JP2011094644A (en) Method and device for manufacturing high-pressure gas tank
JP5733681B2 (en) Gas tank and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R151 Written notification of patent or utility model registration

Ref document number: 5716905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151