JP5716233B2 - Multi-stage pressure condenser - Google Patents

Multi-stage pressure condenser Download PDF

Info

Publication number
JP5716233B2
JP5716233B2 JP2010291352A JP2010291352A JP5716233B2 JP 5716233 B2 JP5716233 B2 JP 5716233B2 JP 2010291352 A JP2010291352 A JP 2010291352A JP 2010291352 A JP2010291352 A JP 2010291352A JP 5716233 B2 JP5716233 B2 JP 5716233B2
Authority
JP
Japan
Prior art keywords
pressure
condensate
low
chamber
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010291352A
Other languages
Japanese (ja)
Other versions
JP2012137266A (en
Inventor
笠原 二郎
二郎 笠原
一作 藤田
一作 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2010291352A priority Critical patent/JP5716233B2/en
Publication of JP2012137266A publication Critical patent/JP2012137266A/en
Application granted granted Critical
Publication of JP5716233B2 publication Critical patent/JP5716233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、発電プラントにおいて、例えば、蒸気タービンで使用した蒸気を冷却水との熱交換により冷却凝縮して水に戻す多段圧復水器に関するものである。   The present invention relates to a multi-stage pressure condenser for returning to water by cooling and condensing steam used in a steam turbine, for example, by heat exchange with cooling water in a power plant.

例えば、従来の原子力発電プラントでは、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電している。この場合、タービン発電機の発電に使用した蒸気は、復水器で冷却されて復水となり、再び蒸気発生器に戻される。   For example, in a conventional nuclear power plant, light water is used as a reactor coolant and neutron moderator, and high temperature and high pressure water that does not boil throughout the core is sent to a steam generator to generate steam by heat exchange. The steam is sent to a turbine generator to generate electricity. In this case, the steam used for the power generation of the turbine generator is cooled by the condenser, becomes condensed water, and is returned to the steam generator again.

この復水器で凝縮された復水が給水加熱器に送られる場合、復水の温度が高いほどプラントの効率面で有利となることから、圧力が異なる複数の室からなる多段圧復水器が用いられている。この多段圧復水器として、例えば、下記特許文献1に記載されたものがある。この特許文献1に記載された多段圧復水器では、低圧室の下部に圧力隔壁によって仕切られて低圧側復水が導入されて溜められる再熱室を設け、高圧側の室である高圧室内の高圧蒸気を再熱室に導入可能とすると共に、再熱室をバイパスさせた高圧側復水と再熱室を出た低圧側復水とを合流させて復水の温度を高めるバイパス連結管を設けている。   When the condensate condensed in this condenser is sent to the feed water heater, the higher the condensate temperature, the more advantageous the efficiency of the plant. Therefore, the multi-stage pressure condenser consisting of multiple chambers with different pressures. Is used. As this multistage pressure condenser, for example, there is one described in Patent Document 1 below. In the multistage pressure condenser described in Patent Document 1, a reheat chamber that is partitioned by a pressure partition and into which low-pressure side condensate is introduced and stored is provided at a lower portion of the low-pressure chamber, and a high-pressure chamber that is a high-pressure side chamber. Bypass pipe that allows the high-pressure steam of the system to be introduced into the reheat chamber and the high-pressure side condensate that bypasses the reheat chamber and the low-pressure side condensate that exits the reheat chamber to merge Is provided.

特開2003−148876号公報JP 2003-148876 A

上述した特許文献1に記載された多段圧復水器にあっては、高圧側蒸気中を滴下する際の接触伝熱と、オーバーフローして落下する流下復水により生じた循環流による乱流熱伝達とで低圧側復水を良好な熱伝達を行い、再熱効率を向上させている。ところが、近年、プラントの大型化により大量の蒸気を扱うこととなり、更なる再熱効率の向上が求められている。   In the multistage pressure condenser described in Patent Document 1 described above, turbulent heat due to contact heat transfer when dropping in the high-pressure side steam and a circulating flow generated by the falling condensate that overflows and falls Good heat transfer to the low-pressure side condensate in the transmission, improving the reheat efficiency. However, in recent years, a large amount of steam has been handled due to an increase in the size of the plant, and further improvement in reheat efficiency has been demanded.

本発明は、上述した課題を解決するものであり、装置のコンパクト化を可能とすると共に再熱効率の向上を可能とする多段圧復水器を提供することを目的とする。   This invention solves the subject mentioned above, and it aims at providing the multistage pressure condenser which makes the apparatus compact and enables improvement of reheat efficiency.

上記の目的を達成するための本発明の多段圧復水器は、圧力が異なる複数の室と、低圧側の室である低圧室の下部に圧力隔壁により仕切られる再熱室と、前記圧力隔壁に設けられて低圧復水を再熱室に導入する低圧復水導入部と、高圧側の室である高圧室内の高圧蒸気を前記再熱室に導入する高圧蒸気導入部と、前記低圧復水導入部から滴下する低圧復水を受け止め可能であると共に受け止めた低圧復水をオーバーフロー可能な受け部材と、該受け部材により受け止めた低圧復水を水平方向に流動させる低圧復水流動部と、を備えることを特徴とするものである。   In order to achieve the above object, the multistage pressure condenser of the present invention includes a plurality of chambers having different pressures, a reheat chamber partitioned by a pressure partition at a lower portion of a low pressure chamber which is a low pressure side chamber, and the pressure partition A low-pressure condensate introduction unit that introduces low-pressure condensate into the reheat chamber, a high-pressure steam introduction unit that introduces high-pressure steam in the high-pressure chamber that is a high-pressure side chamber into the reheat chamber, and the low-pressure condensate A receiving member capable of receiving low-pressure condensate dripping from the introduction portion and overflowing the received low-pressure condensate; and a low-pressure condensate fluidizing portion for causing the low-pressure condensate received by the receiving member to flow in a horizontal direction. It is characterized by comprising.

従って、圧力が異なる複数の室に蒸気が導入されると、低圧室で復水となって圧力隔壁の低圧復水導入部から再熱室に導入され、滴下する復水が受け部材により受け止められた後に、オーバーフローする一方、高圧室の高圧蒸気が高圧蒸気導入部から再熱室に導入され、このとき、受け部材により受け止めた低圧復水が低圧復水流動部により水平方向に流動することで、低圧復水が高圧蒸気と長い期間にわたって接触伝熱により加熱されることとなり、低圧復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができ、また、装置のコンパクト化を可能とすることができる。   Accordingly, when steam is introduced into a plurality of chambers having different pressures, condensate is formed in the low-pressure chamber and introduced into the reheat chamber from the low-pressure condensate introduction portion of the pressure partition, and the dripping condensate is received by the receiving member. After that, the high-pressure steam in the high-pressure chamber is introduced into the reheat chamber from the high-pressure steam introduction part, and at this time, the low-pressure condensate received by the receiving member flows in the horizontal direction by the low-pressure condensate flow part. The low-pressure condensate is heated by contact heat transfer over a long period of time with the high-pressure steam, so that the temperature rise efficiency of the low-pressure condensate can be improved, the reheat efficiency can be improved, and the compactness of the apparatus Can be made possible.

本発明の多段圧復水器では、前記低圧復水流動部は、前記受け部材内で低圧復水を螺旋状に流動させる螺旋流動部を有することを特徴としている。   In the multistage pressure condenser according to the present invention, the low-pressure condensate flow section has a spiral flow section that causes the low-pressure condensate to flow in a spiral manner in the receiving member.

従って、簡単な構成で容易に低圧復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができる。   Therefore, the temperature rise efficiency of the low-pressure condensate can be easily improved with a simple configuration, and the reheat efficiency can be improved.

本発明の多段圧復水器では、前記低圧復水流動部は、前記受け部材内で低圧復水を迂回して流動させる迂回流動部を有することを特徴としている。   In the multistage pressure condenser according to the present invention, the low-pressure condensate flow section includes a bypass flow section that bypasses and flows the low-pressure condensate in the receiving member.

従って、簡単な構成で容易に低圧復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができる。   Therefore, the temperature rise efficiency of the low-pressure condensate can be easily improved with a simple configuration, and the reheat efficiency can be improved.

本発明の多段圧復水器によれば、低圧復水導入部から滴下する低圧復水を受け止め可能であると共に受け止めた低圧復水をオーバーフロー可能な受け部材と、この受け部材により受け止めた低圧復水を水平方向に流動させる低圧復水流動部を設けるので、装置のコンパクト化を可能とすることができると共に、再熱効率の向上を可能とすることができる。   According to the multistage pressure condenser of the present invention, the low-pressure condensate dripping from the low-pressure condensate introduction unit can be received and the received low-pressure condensate can overflow, and the low-pressure condensate received by the receiving member. Since the low-pressure condensate flow section for flowing water in the horizontal direction is provided, the apparatus can be made compact and the reheat efficiency can be improved.

図1は、本発明の実施例1に係る多段圧復水器を表す正面図である。FIG. 1 is a front view illustrating a multistage pressure condenser according to Embodiment 1 of the present invention. 図2は、実施例1の多段圧復水器を表す平面図である。FIG. 2 is a plan view illustrating the multistage pressure condenser according to the first embodiment. 図3は、実施例1の多段圧復水器における多孔板とトレイを表す正面図である。FIG. 3 is a front view showing a perforated plate and a tray in the multistage pressure condenser according to the first embodiment. 図4は、実施例1の多段圧復水器における多孔板とトレイを表す平面図である。FIG. 4 is a plan view showing a perforated plate and a tray in the multistage pressure condenser according to the first embodiment. 図5は、実施例1の多段圧復水器におけるトレイの最適深さを説明するためのグラフである。FIG. 5 is a graph for explaining the optimum depth of the tray in the multistage pressure condenser according to the first embodiment. 図6は、実施例1の多段圧復水器が適用された原子力発電プラントの概略構成図である。FIG. 6 is a schematic configuration diagram of a nuclear power plant to which the multistage pressure condenser according to the first embodiment is applied. 図7は、本発明の実施例2に係る多段圧復水器における多孔板とトレイを表す平面図である。FIG. 7 is a plan view showing a perforated plate and a tray in a multistage pressure condenser according to Embodiment 2 of the present invention.

以下に添付図面を参照して、本発明に係る復水器の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Exemplary embodiments of a condenser according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、本発明の実施例1に係る多段圧復水器を表す正面図、図2は、実施例1の多段圧復水器を表す平面図、図3は、実施例1の多段圧復水器における多孔板とトレイを表す正面図、図4は、実施例1の多段圧復水器における多孔板とトレイを表す平面図、図5は、実施例1の多段圧復水器におけるトレイの最適深さを説明するためのグラフ、図6は、実施例1の多段圧復水器が適用された原子力発電プラントの概略構成図である。   1 is a front view showing a multistage pressure condenser according to a first embodiment of the present invention, FIG. 2 is a plan view showing the multistage pressure condenser of the first embodiment, and FIG. 3 is a multistage pressure of the first embodiment. FIG. 4 is a plan view showing a porous plate and a tray in the multistage pressure condenser of the first embodiment, and FIG. 5 is a plan view showing the multistage pressure condenser of the first embodiment. FIG. 6 is a schematic configuration diagram of a nuclear power plant to which the multistage pressure condenser according to the first embodiment is applied.

実施例1の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。   The nuclear reactor of Example 1 uses light water as a reactor coolant and a neutron moderator, and produces high-temperature and high-pressure water that does not boil over the entire core, and sends this high-temperature and high-pressure water to a steam generator to generate steam by heat exchange. This is a pressurized water reactor (PWR) that generates electricity by sending this steam to a turbine generator.

実施例1の加圧水型原子炉を有する原子力発電プラントにおいて、図6に示すように、原子炉格納容器11内には、加圧水型原子炉12及び蒸気発生器13が格納されており、この加圧水型原子炉12と蒸気発生器13とは冷却水配管14,15を介して連結されており、冷却水配管14に加圧器16が設けられ、冷却水配管15に冷却水ポンプ15aが設けられている。この場合、減速材及び一次冷却水(冷却材)として軽水を用い、炉心部における一次冷却水の沸騰を抑制するために、一次冷却系統は加圧器16により150〜160気圧程度の高圧状態を維持するように制御している。従って、加圧水型原子炉12にて、燃料(原子燃料)として低濃縮ウランまたはMOXにより一次冷却水として軽水が加熱され、高温の一次冷却水が加圧器16により所定の高圧に維持した状態で冷却水配管14を通して蒸気発生器13に送られる。この蒸気発生器13では、高圧高温の一次冷却水と二次冷却水との間で熱交換が行われ、冷やされた一次冷却水は冷却水配管15を通して加圧水型原子炉12に戻される。   In the nuclear power plant having the pressurized water reactor according to the first embodiment, as shown in FIG. 6, a pressurized water reactor 12 and a steam generator 13 are stored in the reactor containment vessel 11. The reactor 12 and the steam generator 13 are connected via cooling water pipes 14 and 15, a pressurizer 16 is provided in the cooling water pipe 14, and a cooling water pump 15 a is provided in the cooling water pipe 15. . In this case, light water is used as a moderator and primary cooling water (cooling material), and the primary cooling system maintains a high pressure state of about 150 to 160 atm by the pressurizer 16 in order to suppress boiling of the primary cooling water in the core. You are in control. Therefore, in the pressurized water reactor 12, light water is heated as the primary cooling water by the low-enriched uranium or MOX as the fuel (nuclear fuel), and the high-temperature primary cooling water is cooled in a state maintained at a predetermined high pressure by the pressurizer 16. It is sent to the steam generator 13 through the water pipe 14. In the steam generator 13, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water, and the cooled primary cooling water is returned to the pressurized water reactor 12 through the cooling water pipe 15.

蒸気発生器13は、蒸気タービン17と冷却水配管18を介して連結されており、この蒸気タービン17は高圧タービン19及び低圧タービン20を有すると共に、発電機21が接続されている。また、高圧タービン19と低圧タービン20との間には、湿分分離加熱器22が設けられており、冷却水配管18から分岐した冷却水分岐配管23が湿分分離加熱器22に連結される一方、高圧タービン19と湿分分離加熱器22は低温再熱管24により連結され、湿分分離加熱器22と低圧タービン20は高温再熱管25により連結されている。   The steam generator 13 is connected to a steam turbine 17 via a cooling water pipe 18. The steam turbine 17 includes a high pressure turbine 19 and a low pressure turbine 20, and a generator 21 is connected to the steam generator 13. Further, a moisture separation heater 22 is provided between the high pressure turbine 19 and the low pressure turbine 20, and a cooling water branch pipe 23 branched from the cooling water pipe 18 is connected to the moisture separation heater 22. On the other hand, the high pressure turbine 19 and the moisture separation heater 22 are connected by a low temperature reheat pipe 24, and the moisture separation heater 22 and the low pressure turbine 20 are connected by a high temperature reheat pipe 25.

更に、蒸気タービン17の低圧タービン20は、復水器26を有しており、この復水器26には冷却水(例えば、海水)を給排する取水管27及び排水管28が連結されている。この取水管27は、循環水ポンプ29を有し、排水管28と共に他端部が海中に配置されている。そして、この復水器26は、冷却水配管30を介して脱気器31に連結されており、この冷却水配管30に復水ポンプ32及び低圧給水加熱器33が設けられている。また、脱気器31は、冷却水配管34を介して蒸気発生器13に連結されており、この冷却水配管34には給水ポンプ35及び高圧給水加熱器36が設けられている。   Further, the low-pressure turbine 20 of the steam turbine 17 has a condenser 26, and a condenser pipe 26 and a drain pipe 28 for supplying and discharging cooling water (for example, seawater) are connected to the condenser 26. Yes. This intake pipe 27 has a circulating water pump 29, and the other end portion thereof is disposed in the sea together with the drain pipe 28. The condenser 26 is connected to a deaerator 31 through a cooling water pipe 30, and a condensate pump 32 and a low-pressure feed water heater 33 are provided in the cooling water pipe 30. The deaerator 31 is connected to the steam generator 13 via a cooling water pipe 34, and a water supply pump 35 and a high-pressure feed water heater 36 are provided in the cooling water pipe 34.

従って、蒸気発生器13にて、高圧高温の一次冷却水と熱交換を行って生成された蒸気は、冷却水配管18を通して蒸気タービン17(高圧タービン19から低圧タービン20)に送られ、この蒸気により蒸気タービン17を駆動して発電機21により発電を行う。このとき、蒸気発生器13からの蒸気は、高圧タービン19を駆動した後、湿分分離加熱器22で蒸気に含まれる湿分が除去されると共に加熱されてから低圧タービン20を駆動する。そして、蒸気タービン17を駆動した蒸気は、復水器26で海水を用いて冷却されて復水となり、低圧給水加熱器33で、例えば、低圧タービン20から抽気した低圧蒸気により加熱され、脱気器31で溶存酸素や不凝結ガス(アンモニアガス)などの不純物が除去された後、高圧給水加熱器36で、例えば、高圧タービン19から抽気した高圧蒸気により加熱された後、蒸気発生器13に戻される。   Therefore, the steam generated by performing heat exchange with the high-pressure and high-temperature primary cooling water in the steam generator 13 is sent to the steam turbine 17 (from the high-pressure turbine 19 to the low-pressure turbine 20) through the cooling water pipe 18, and this steam is generated. Then, the steam turbine 17 is driven to generate power by the generator 21. At this time, the steam from the steam generator 13 drives the high pressure turbine 19, and then the moisture contained in the steam is removed and heated by the moisture separator / heater 22, and then the low pressure turbine 20 is driven. The steam that has driven the steam turbine 17 is cooled with seawater in the condenser 26 to become condensed water, and is heated by the low-pressure steam extracted from, for example, the low-pressure turbine 20 in the low-pressure feed water heater 33 and deaerated. After impurities such as dissolved oxygen and uncondensed gas (ammonia gas) are removed by the vessel 31, the high pressure feed water heater 36 is heated by, for example, high pressure steam extracted from the high pressure turbine 19, and then the steam generator 13. Returned.

このように構成された原子力発電プラントに適用された復水器26は、多段圧復水器であって、図1及び図2に示すように、高圧段復水器41、中圧段復水器51、低圧段復水器61から構成されている。高圧段復水器41、中圧段復水器51、低圧段復水器61は、上部から低圧タービン20(図6参照)からの排気蒸気が導入される高圧胴42、中圧胴52、低圧胴62が設けられている。そして、この高圧胴42、中圧胴52、低圧胴62は、内部に高圧室43、中圧室53、低圧室63が形成されている。そして、高圧室43、中圧室53、低圧室63を貫通するように、多数の伝熱管からなる冷却水管群71が配置され、この冷却水管群71は、前述した取水管27及び排水管28(図6参照)が連結されている。この場合、冷却水管群71内の海水は、低圧室63、中圧室53、高圧室43の順に流れることから、各室43,53,63の圧力は、高い順に、高圧室43、中圧室53、低圧室63に設定される。   The condenser 26 applied to the nuclear power plant configured as described above is a multi-stage pressure condenser, and as shown in FIGS. 1 and 2, a high-pressure stage condenser 41, an intermediate-pressure stage condenser 51, a low-pressure condenser 51, A stage condenser 61 is used. The high pressure stage condenser 41, the intermediate pressure stage condenser 51, and the low pressure stage condenser 61 are provided with a high pressure cylinder 42, an intermediate pressure cylinder 52, and a low pressure cylinder 62 into which exhaust steam from the low pressure turbine 20 (see FIG. 6) is introduced from above. ing. The high pressure cylinder 42, the intermediate pressure cylinder 52, and the low pressure cylinder 62 have a high pressure chamber 43, an intermediate pressure chamber 53, and a low pressure chamber 63 formed therein. And the cooling water pipe group 71 which consists of many heat exchanger tubes is arrange | positioned so that the high pressure chamber 43, the intermediate pressure chamber 53, and the low pressure chamber 63 may be penetrated, and this cooling water pipe group 71 is the intake pipe 27 and drainage pipe 28 which were mentioned above. (See FIG. 6) are connected. In this case, since the seawater in the cooling water pipe group 71 flows in the order of the low pressure chamber 63, the intermediate pressure chamber 53, and the high pressure chamber 43, the pressure in each of the chambers 43, 53, and 63 increases in order from the high pressure chamber 43 to the medium pressure. The chamber 53 and the low pressure chamber 63 are set.

中圧胴52は、下部に水平をなす圧力隔壁54が固定されており、上方の中圧室53と下方の再熱室55とに区画されている。また、低圧胴62は、下部に水平をなす圧力隔壁64が固定されており、上方の低圧室63と下方の再熱室65とに区画されている。各圧力隔壁54,64は、多孔板であって、中央部の所定の領域に復水導入孔(中圧復水導入部、低圧復水導入部)54a,64aが形成されている。   The intermediate pressure drum 52 has a horizontal pressure partition wall 54 fixed to the lower portion thereof, and is divided into an upper intermediate pressure chamber 53 and a lower reheating chamber 55. In addition, the low-pressure body 62 has a horizontal pressure partition 64 fixed to the lower portion, and is divided into an upper low-pressure chamber 63 and a lower reheating chamber 65. Each of the pressure partition walls 54 and 64 is a perforated plate, and condensate introduction holes (intermediate pressure condensate introduction portion, low pressure condensate introduction portion) 54a and 64a are formed in a predetermined region in the center.

そして、高圧室43は、蒸気ダクト(高圧蒸気導入部)72により中圧胴52の再熱室55に連通され、高圧室43の高圧蒸気がこの蒸気ダクト72を通して再熱室55に送られる。また、中圧胴52は、蒸気ダクト(高圧蒸気導入部)73により低圧胴62の再熱室65に連通され、高圧室43の高圧蒸気が蒸気ダクト72、中圧胴52の再熱室55、蒸気ダクト73を通して再熱室65に送られる。   The high pressure chamber 43 is connected to the reheating chamber 55 of the intermediate pressure cylinder 52 by a steam duct (high pressure steam introducing portion) 72, and the high pressure steam in the high pressure chamber 43 is sent to the reheating chamber 55 through the steam duct 72. Further, the intermediate pressure cylinder 52 is communicated with the reheating chamber 65 of the low pressure cylinder 62 by a steam duct (high pressure steam introducing portion) 73, and the high pressure steam in the high pressure chamber 43 is connected to the steam duct 72 and the reheating chamber 55 of the intermediate pressure cylinder 52. , And sent to the reheating chamber 65 through the steam duct 73.

中圧胴52は、再熱室55内に位置してトレイ(受け部材)56が水平をなして配置されている。このトレイ56は、圧力隔壁54における復水導入孔54aが形成された領域の下方にこの領域より広く設定され、この復水導入孔54aから滴下した中圧復水を受け止め可能となっている。そして、このトレイ56は、受け止めた中圧復水を外周部からオーバーフローさせて落下し、再熱室55に復水として溜められる。また、低圧胴62は、再熱室65内に位置してトレイ(受け部材)66が水平をなして配置されている。このトレイ66は、圧力隔壁64における復水導入孔64aが形成された領域の下方にこの領域より広く設定され、この復水導入孔64aから滴下した低圧復水を受け止め可能となっている。そして、このトレイ66は、受け止めた低圧復水を外周部からオーバーフローさせて落下し、再熱室65に復水として溜められる。   The intermediate pressure drum 52 is positioned in the reheating chamber 55 and a tray (receiving member) 56 is disposed horizontally. The tray 56 is set wider than this region below the region where the condensate introduction hole 54a is formed in the pressure partition wall 54, and can receive medium pressure condensate dropped from the condensate introduction hole 54a. The tray 56 overflows the received intermediate pressure condensate from the outer peripheral portion and falls, and is stored in the reheat chamber 55 as condensate. In addition, the low-pressure drum 62 is located in the reheating chamber 65 and a tray (receiving member) 66 is disposed horizontally. The tray 66 is set wider than the region where the condensate introduction hole 64a is formed in the pressure partition wall 64, and can receive the low-pressure condensate dropped from the condensate introduction hole 64a. The tray 66 overflows the received low-pressure condensate from the outer peripheral portion and falls, and is stored in the reheat chamber 65 as condensate.

この中圧胴52、低圧胴62にて、各トレイ56,66は、ほぼ同様の構成をなしている。即ち、中圧胴52、低圧胴62は、図3及び図4に詳細に示すように、複数の脚部57,67を介して再熱室55,65の床面に設置されている。そして、各トレイ56,66は、受け止めた中圧復水、低圧復水を水平方向に流動させる復水流動部として、このトレイ56,66内で各復水を螺旋状に流動させる螺旋ガイド(螺旋流動部)56a,66aが設けられている。この場合、螺旋ガイド56a,66aは、中央部の領域が圧力隔壁54,64の各復水導入孔54a,64aに対応しており、各復水導入孔54a,64aから滴下した復水がトレイ56,66の中央部に落下し、落下した復水が螺旋ガイド56a,66aにより、図4にて反時計周り方向に流動し、外周端部からオーバーフローすることとなる。   In the intermediate pressure drum 52 and the low pressure drum 62, the trays 56 and 66 have substantially the same configuration. That is, the intermediate pressure cylinder 52 and the low pressure cylinder 62 are installed on the floor surface of the reheating chambers 55 and 65 via a plurality of leg portions 57 and 67, as shown in detail in FIGS. The trays 56 and 66 serve as a condensate flow part for horizontally flowing the received intermediate-pressure condensate and low-pressure condensate, and a spiral guide (in which the condensate flows spirally in the trays 56 and 66). Spiral flow portions) 56a and 66a are provided. In this case, the spiral guides 56a and 66a correspond to the condensate introduction holes 54a and 64a of the pressure partition walls 54 and 64 in the central region, and the condensate dripped from the condensate introduction holes 54a and 64a is stored in the tray. The condensate falls to the center of 56 and 66, and the condensate that has fallen flows counterclockwise in FIG. 4 by the spiral guides 56a and 66a, and overflows from the outer peripheral end.

この場合、各トレイ56,66は、その深さを所定深さに設定することが望ましい。図5に示すように、中圧室53、低圧室63に導入される排気蒸気の温度をTs、圧力隔壁54,64の各復水導入孔54a,64aからトレイ56,66に滴下する復水の温度をTdとする。このとき、各トレイ56,66の深さが矢印D方向に深くなると、その温度分布は一点鎖線で示すものとなる。このグラフから、各トレイ56,66の深さが浅くなるほど、再生熱効率が良いことがわかる。   In this case, it is desirable to set each tray 56, 66 to a predetermined depth. As shown in FIG. 5, the temperature of the exhaust steam introduced into the intermediate pressure chamber 53 and the low pressure chamber 63 is Ts, and the condensate dripped onto the trays 56 and 66 from the condensate introduction holes 54 a and 64 a of the pressure partition walls 54 and 64. Let Td be the temperature of. At this time, when the depths of the trays 56 and 66 become deeper in the direction of the arrow D, the temperature distribution is indicated by a one-dot chain line. From this graph, it can be seen that the smaller the depth of each tray 56, 66, the better the regeneration heat efficiency.

なお、トレイ56,66の深さHは、滴下する復水流量Q及びトレイ56,66の流路方向長さLとトレイ56,66の流路幅Bにより最適値が変化する。このうち、トレイ56,66の幅と復水流量の関係は開水路の流れで設計者が決定する値である。一方、トレイ56,66の深さHと流路長さLの関係は温度上昇効率に直接影響するため、適正範囲としてH<0.07を設定した。この関係を維持することにより、温度上昇効率θ=(T−T)/(T−T)>0.7とすることができる。 Note that the optimum value of the depth H of the trays 56 and 66 varies depending on the condensate flow rate Q to be dropped, the flow path direction length L of the trays 56 and 66 and the flow path width B of the trays 56 and 66. Among these, the relationship between the widths of the trays 56 and 66 and the condensate flow rate is a value determined by the designer based on the flow of the open channel. On the other hand, since the relationship between the depth H of the trays 56 and 66 and the flow path length L directly affects the temperature rise efficiency, H <0.07 is set as an appropriate range. By maintaining this relationship, the temperature rise efficiency θ = (T b −T d ) / (T s −T d )> 0.7.

高圧室43と中圧胴52の再熱室55とが連結管74により連結され、中圧胴52の再熱室55と低圧胴62の再熱室65とが連結管75により連結され、高圧室43の下部に設けられた排出部76に冷却水配管30(図6参照)が連結されている。   The high pressure chamber 43 and the reheating chamber 55 of the intermediate pressure cylinder 52 are connected by a connecting pipe 74, and the reheating chamber 55 of the intermediate pressure cylinder 52 and the reheating chamber 65 of the low pressure cylinder 62 are connected by a connecting pipe 75, and the high pressure chamber The cooling water pipe 30 (see FIG. 6) is connected to a discharge portion 76 provided in the lower portion of the chamber 43.

ここで、実施例1の多段圧復水器26の作用について詳細に説明する。   Here, the effect | action of the multistage pressure condenser 26 of Example 1 is demonstrated in detail.

蒸気タービン17における低圧タービン20からの排気蒸気は、図1に示すように、多段圧復水器26における高圧室43、中圧室53、低圧室63に送られる。この高圧室43、中圧室53、低圧室63を下方に移動する排気蒸気は、冷却水管群71と接触することにより凝縮される。そして、高圧室43で凝縮した高圧復水は、この高圧室43の下部に溜められる。また、中圧室53で凝縮した中圧復水は、この中圧室53の下部に溜められ、低圧室63で凝縮した低圧復水は、この低圧室63に下部に溜められる。   The exhaust steam from the low pressure turbine 20 in the steam turbine 17 is sent to the high pressure chamber 43, the intermediate pressure chamber 53, and the low pressure chamber 63 in the multistage pressure condenser 26 as shown in FIG. The exhaust steam moving downward in the high pressure chamber 43, the intermediate pressure chamber 53, and the low pressure chamber 63 is condensed by contacting the cooling water pipe group 71. The high-pressure condensate condensed in the high-pressure chamber 43 is stored in the lower portion of the high-pressure chamber 43. Further, the intermediate pressure condensate condensed in the intermediate pressure chamber 53 is stored in the lower portion of the intermediate pressure chamber 53, and the low pressure condensate condensed in the low pressure chamber 63 is stored in the lower portion of the low pressure chamber 63.

このとき、中圧室53で凝縮した中圧復水は、圧力隔壁54上に一時的に溜められ、復水導入孔54aから滴下して再熱室55のトレイ56上に落下して溜められる。そして、トレイ56上の中圧復水は、図4に示すように、旋回流動した後にオーバーフローして再熱室55内を落下する。この再熱室55は、高圧室43の高圧蒸気が蒸気ダクト72を通して送られており、復水導入孔54aからトレイ56に滴下する中圧復水が、高圧蒸気中を滴下することで接触伝熱により加熱される。また、トレイ56に落下した中圧復水が、高圧蒸気中を螺旋状に流動することで高圧蒸気中との接触伝熱により加熱される。更に、トレイ56をオーバーフローする中圧復水が高圧蒸気中を滴下することで接触伝熱により加熱される。   At this time, the intermediate pressure condensate condensed in the intermediate pressure chamber 53 is temporarily stored on the pressure partition wall 54, dropped from the condensate introduction hole 54 a and dropped onto the tray 56 of the reheating chamber 55. . Then, as shown in FIG. 4, the intermediate pressure condensate on the tray 56 overflows after swirling and falls in the reheating chamber 55. In the reheating chamber 55, the high-pressure steam from the high-pressure chamber 43 is sent through the steam duct 72, and the medium-pressure condensate dripping from the condensate introduction hole 54 a onto the tray 56 drops in the high-pressure steam, thereby causing contact transfer. Heated by heat. Further, the medium-pressure condensate falling on the tray 56 is heated by contact heat transfer with the high-pressure steam by flowing spirally in the high-pressure steam. Further, the medium pressure condensate overflowing the tray 56 is heated by contact heat transfer by dropping in the high pressure steam.

また、同様に、低圧室63で凝縮した低圧復水は、圧力隔壁64上に一時的に溜められ、復水導入孔64aから滴下して再熱室65のトレイ66上に落下して溜められる。そして、トレイ66上の低圧復水は、旋回流動した後にオーバーフローして再熱室65内を落下する。この再熱室65は、中圧室53の高圧蒸気が蒸気ダクト73を通して送られており、復水導入孔64aからトレイ66に滴下する低圧復水が、高圧蒸気中を滴下することで接触伝熱により加熱される。また、トレイ66に落下した低圧復水が、高圧蒸気中を螺旋状に流動することで高圧蒸気中との接触伝熱により加熱される。更に、トレイ66をオーバーフローする低圧復水が高圧蒸気中を滴下することで接触伝熱により加熱される。   Similarly, the low-pressure condensate condensed in the low-pressure chamber 63 is temporarily stored on the pressure partition wall 64, dropped from the condensate introduction hole 64a and dropped onto the tray 66 of the reheating chamber 65. . Then, the low-pressure condensate on the tray 66 overflows after swirling and falls in the reheating chamber 65. In the reheating chamber 65, the high-pressure steam in the intermediate-pressure chamber 53 is sent through the steam duct 73, and the low-pressure condensate dripping from the condensate introduction hole 64a onto the tray 66 drops in the high-pressure steam, thereby causing contact transfer. Heated by heat. Further, the low-pressure condensate dropped on the tray 66 is heated by contact heat transfer with the high-pressure steam by flowing spirally in the high-pressure steam. Further, the low-pressure condensate overflowing the tray 66 is heated by contact heat transfer by dropping in the high-pressure steam.

そして、低圧胴62の再熱室65に溜められた低圧復水は、連結管75を通って中圧胴52の再熱室55に流れ、この再熱室55で低圧復水と中圧復水が混合した復水は、連結管74を通って高圧室43に流れ、この高圧室43で低圧復水と中圧復水と高圧復水が混合した復水は、排出部76から冷却水配管30に排出される。   The low-pressure condensate stored in the reheat chamber 65 of the low-pressure cylinder 62 flows through the connecting pipe 75 to the reheat chamber 55 of the intermediate-pressure cylinder 52, and in this reheat chamber 55, the low-pressure condensate and the intermediate-pressure condensate. Condensate mixed with water flows to the high-pressure chamber 43 through the connecting pipe 74, and condensate mixed with low-pressure condensate, medium-pressure condensate, and high-pressure condensate in the high-pressure chamber 43 is cooled from the discharge unit 76. It is discharged to the pipe 30.

このように実施例1の多段圧復水器にあっては、高圧室43と中圧室53と低圧室63と、中圧室53と低圧室63の下部に圧力隔壁54,64により仕切られる再熱室55,65と、圧力隔壁54,64に設けられて復水を再熱室55,65に導入する復水導入孔54a,64aと、高圧室43の高圧蒸気を再熱室55,65に導入する蒸気ダクト72,73と、復水導入孔54a,64aから滴下する復水を受け止め可能であると共に受け止めた低圧復水をオーバーフロー可能なトレイ56,66と、トレイ56,66により受け止めた復水を水平方向に流動させる復水流動部としての螺旋ガイド56a,66aとを設けている。   As described above, in the multistage pressure condenser according to the first embodiment, the high pressure chamber 43, the intermediate pressure chamber 53, the low pressure chamber 63, and the intermediate pressure chamber 53 and the lower portion of the low pressure chamber 63 are partitioned by the pressure partitions 54 and 64. Reheat chambers 55 and 65, condensate introduction holes 54a and 64a provided in the pressure partition walls 54 and 64 for introducing the condensate into the reheat chambers 55 and 65, and the high pressure steam in the high pressure chamber 43 into the reheat chamber 55, The steam ducts 72 and 73 to be introduced into 65 and the condensate dripping from the condensate introduction holes 54a and 64a can be received, and the low-pressure condensate received can be overflowed and received by the trays 56 and 66. Spiral guides 56a and 66a are provided as condensate flow portions for allowing the condensate to flow in the horizontal direction.

従って、高圧室43、中圧室53、低圧室63に送られる排気蒸気は、冷却水管群71と接触することにより凝縮され、中圧室53と低圧室63で凝縮した復水は、圧力隔壁54,64上に一時的に溜められ、復水導入孔54a,64aから滴下して再熱室55,65のトレイ56,66上に落下して溜められ、トレイ56,66上の復水は、旋回流動した後にオーバーフローして再熱室54,65内を落下する。そして、復水導入孔54a,64aからトレイ56,66に滴下する復水、トレイ56,66を螺旋状に流動する復水、トレイ56,66をオーバーフローする復水は、高圧室43から再熱室55,65に導入される高圧蒸気により接触伝熱して加熱される。その結果、復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができ、また、装置のコンパクト化を可能とすることができる。   Therefore, the exhaust steam sent to the high pressure chamber 43, the intermediate pressure chamber 53, and the low pressure chamber 63 is condensed by contacting with the cooling water pipe group 71, and the condensed water condensed in the intermediate pressure chamber 53 and the low pressure chamber 63 is the pressure partition wall. 54 and 64 are temporarily stored, dropped from the condensate introduction holes 54a and 64a, dropped onto the trays 56 and 66 of the reheating chambers 55 and 65, and the condensate on the trays 56 and 66 is stored. Then, after swirling and flowing, it overflows and falls in the reheating chambers 54 and 65. The condensate dripping from the condensate introduction holes 54 a and 64 a onto the trays 56 and 66, the condensate flowing spirally through the trays 56 and 66, and the condensate overflowing the trays 56 and 66 are reheated from the high pressure chamber 43. Heated by contact heat transfer with high-pressure steam introduced into the chambers 55 and 65. As a result, the temperature rise efficiency of the condensate can be improved, the reheat efficiency can be improved, and the apparatus can be made compact.

また、実施例1の多段圧復水器では、各トレイ56,66に復水を螺旋状に流動させる螺旋ガイド56a,66aを設けている。従って、簡単な構成で容易に復水の流動距離や流動時間を長くすることができ、復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができる。   In the multistage pressure condenser of the first embodiment, the trays 56 and 66 are provided with spiral guides 56a and 66a for allowing the condensate to flow spirally. Therefore, it is possible to easily increase the flow distance and flow time of the condensate with a simple configuration, improve the temperature rise efficiency of the condensate, and improve the reheat efficiency.

図7は、本発明の実施例2に係る多段圧復水器における多孔板とトレイを表す平面図である。   FIG. 7 is a plan view showing a perforated plate and a tray in a multistage pressure condenser according to Embodiment 2 of the present invention.

実施例2は、実施例1に説明した多段圧復水器26における中圧胴52、低圧胴62にて、適用した各トレイ56,66の改良である。即ち、図7に示すように、トレイ81は、受け止めた復水を水平方向に流動させる低圧復水流動部として、このトレイ81内で各復水を迂回させる複数の迂回ガイド(迂回流動部)81aが設けられている。この場合、迂回ガイド81aは、一端部の領域が圧力隔壁(図示略)の復水導入孔82に対応しており、復水導入孔82から滴下した復水がトレイ81の一端部に落下し、落下した復水が迂回ガイド81aにより、図7にて上下方向に流動し、他端部からオーバーフローすることとなる。   The second embodiment is an improvement of the trays 56 and 66 applied in the intermediate pressure drum 52 and the low pressure drum 62 in the multistage pressure condenser 26 described in the first embodiment. That is, as shown in FIG. 7, the tray 81 is a low-pressure condensate flow portion that horizontally flows the received condensate, and a plurality of detour guides (detour flow portions) that detour each condensate in the tray 81. 81a is provided. In this case, the detour guide 81 a has a region at one end corresponding to the condensate introduction hole 82 of the pressure partition wall (not shown), and the condensate dripped from the condensate introduction hole 82 falls to one end of the tray 81. The fallen condensate flows up and down in FIG. 7 by the detour guide 81a and overflows from the other end.

このように実施例2の多段圧復水器にあっては、各トレイ81に復水を迂回して流動させる迂回ガイド81aを設けている。従って、簡単な構成で容易に復水の流動距離や時間を長くすることができ、復水の温度上昇効率を向上させることができると共に、再熱効率を向上させることができる。   As described above, in the multi-stage pressure condenser according to the second embodiment, each tray 81 is provided with a bypass guide 81a that bypasses the condensate and flows. Therefore, it is possible to easily increase the flow distance and time of the condensate with a simple configuration, improve the temperature rise efficiency of the condensate, and improve the reheat efficiency.

なお、上述した各実施例では、復水流動部を螺旋式や迂回式としたが、この形式に限定されるものではなく、トレイ内における復水の流動距離を長くすることができるものであれば、いずれの形式であってもよい。また、上述した各実施例では、本発明の多段圧復水器を、高圧、中圧、低圧の3段としたが、2段でもよく、4段以上としてもよい。   In each of the above-described embodiments, the condensate flow portion is a spiral type or a detour type. However, the condensate flow portion is not limited to this type, and the condensate flow distance in the tray can be increased. Any format may be used. Moreover, in each Example mentioned above, although the multistage pressure condenser of this invention was made into 3 steps | paragraphs of a high pressure, an intermediate pressure, and a low pressure, it may be 2 steps | paragraphs or 4 steps or more.

また、上述した各実施例では、本発明の多段圧復水器を、加圧水型原子炉(PWR:Pressurized Water Reactor)に適用して説明したが、沸騰水型原子炉(BWR:Boiling Water Reactor)に適用することもできる。また、原子力プラントに拘らず、火力プラントなど別の発電プラントであってもよい。   Moreover, in each Example mentioned above, although the multistage pressure condenser of this invention was demonstrated applying to a pressurized water reactor (PWR: Pressurized Water Reactor), it is a boiling water reactor (BWR: Boiling Water Reactor). It can also be applied to. Moreover, it may be another power plant such as a thermal power plant regardless of the nuclear power plant.

本発明に係る多段圧復水器は、低圧復水導入部から滴下して受け部材に受け止めた低圧復水を水平方向に流動させることで、装置のコンパクト化を可能とすると共に再熱効率の向上を可能とするものであり、いずれの発電プラントにも適用することができる。   The multi-stage pressure condenser according to the present invention allows the apparatus to be compact and improve the reheat efficiency by causing the low-pressure condensate dropped from the low-pressure condensate introduction section and received by the receiving member to flow in the horizontal direction. It can be applied to any power plant.

11 原子炉格納容器
12 加圧水型原子炉
13 蒸気発生器
17 蒸気タービン
19 高圧タービン
20 低圧タービン
21 発電機
26 復水器(多段圧復水器)
41 高圧段復水器
42 高圧胴
43 高圧室
51 中圧段復水器
52 中圧胴
53 中圧室
54 圧力隔壁
54a 復水導入孔(中圧復水導入部)
55 再熱室
56 トレイ(受け部材)
56a 螺旋ガイド(中圧復水流動部、螺旋流動部)
61 低圧段復水器
62 低圧胴
63 低圧室
64 圧力隔壁
64a 復水導入孔(低圧復水導入部)
65 再熱室
66 トレイ(受け部材)
66a 螺旋ガイド(低圧復水流動部、螺旋流動部)
81 トレイ
81a 迂回ガイド(低圧復水流動部、迂回流動部)
82 復水導入孔(低圧復水導入部)
11 Containment Vessel 12 Pressurized Water Reactor 13 Steam Generator 17 Steam Turbine 19 High Pressure Turbine 20 Low Pressure Turbine 21 Generator 26 Condenser (Multi-stage Condenser)
41 High Pressure Stage Condenser 42 High Pressure Cylinder 43 High Pressure Chamber 51 Medium Pressure Stage Condenser 52 Medium Pressure Cylinder 53 Medium Pressure Chamber 54 Pressure Bulkhead 54a Condensate Introduction Hole (Medium Pressure Condensate Introduction Portion)
55 Reheating chamber 56 Tray (receiving member)
56a Spiral guide (medium pressure condensate flow part, spiral flow part)
61 Low-pressure stage condenser 62 Low-pressure body 63 Low-pressure chamber 64 Pressure partition 64a Condensate introduction hole (low-pressure condensate introduction part)
65 Reheating chamber 66 Tray (receiving member)
66a Spiral guide (low-pressure condensate flow part, spiral flow part)
81 tray 81a detour guide (low pressure condensate flow section, detour flow section)
82 Condensate inlet (low pressure condensate inlet)

Claims (2)

圧力が異なる複数の室と、
低圧側の室である低圧室の下部に圧力隔壁により仕切られる再熱室と、
前記圧力隔壁に設けられて低圧復水を再熱室に導入する低圧復水導入部と、
高圧側の室である高圧室内の高圧蒸気を前記再熱室に導入する高圧蒸気導入部と、
前記低圧復水導入部から滴下する低圧復水を受け止め可能であると共に受け止めた低圧復水をオーバーフロー可能な受け部材と、
該受け部材により受け止めた低圧復水を水平方向に流動させる低圧復水流動部と、
を備え、
前記低圧復水流動部は、前記受け部材内で低圧復水を螺旋状に流動させる螺旋流動部を有する、
ことを特徴とする多段圧復水器。
Multiple chambers with different pressures;
A reheating chamber partitioned by a pressure partition at the lower part of the low pressure chamber which is a low pressure side chamber;
A low-pressure condensate introduction section provided in the pressure partition wall for introducing low-pressure condensate into the reheat chamber;
A high-pressure steam introducing portion for introducing high-pressure steam in a high-pressure chamber, which is a high-pressure side chamber, into the reheating chamber;
A receiving member capable of receiving low-pressure condensate dripping from the low-pressure condensate introduction section and capable of overflowing the received low-pressure condensate;
A low-pressure condensate flow section for horizontally flowing the low-pressure condensate received by the receiving member;
Bei to give a,
The low-pressure condensate flow portion has a spiral flow portion that causes the low-pressure condensate to flow in a spiral manner in the receiving member.
A multi-stage pressure condenser characterized by that.
前記螺旋流動部は、中央部の領域が前記低圧復水導入部に対応していることを特徴とする請求項1に記載の多段圧復水器。 2. The multistage pressure condenser according to claim 1, wherein a region of a central portion of the spiral flow portion corresponds to the low-pressure condensate introduction portion .
JP2010291352A 2010-12-27 2010-12-27 Multi-stage pressure condenser Active JP5716233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291352A JP5716233B2 (en) 2010-12-27 2010-12-27 Multi-stage pressure condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291352A JP5716233B2 (en) 2010-12-27 2010-12-27 Multi-stage pressure condenser

Publications (2)

Publication Number Publication Date
JP2012137266A JP2012137266A (en) 2012-07-19
JP5716233B2 true JP5716233B2 (en) 2015-05-13

Family

ID=46674818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291352A Active JP5716233B2 (en) 2010-12-27 2010-12-27 Multi-stage pressure condenser

Country Status (1)

Country Link
JP (1) JP5716233B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101527B2 (en) * 2013-03-22 2017-03-22 三菱重工業株式会社 Steam turbine plant
KR101588827B1 (en) * 2015-02-06 2016-01-27 최일호 Small nuclear power plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145484A (en) * 1983-02-07 1984-08-20 Hitachi Ltd Condenser
JPS6017694A (en) * 1983-07-08 1985-01-29 Hitachi Ltd Condenser
JPH05296007A (en) * 1992-04-16 1993-11-09 Mitsubishi Heavy Ind Ltd Condenser
JP3706571B2 (en) * 2001-11-13 2005-10-12 三菱重工業株式会社 Multi-stage pressure condenser

Also Published As

Publication number Publication date
JP2012137266A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
EP2199720B1 (en) Double-pressure type condenser, and condensate reheating method
CN104321825A (en) Pressurized water reactor compact steam generator
US7867309B2 (en) Steam-water separator
CN103277147A (en) Dual-power ORC power generation system and power generation method of same
JP2023027165A (en) Pool type liquid metal fast spectrum reactor using printed circuit heat exchanger connection to energy conversion system
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JP5716233B2 (en) Multi-stage pressure condenser
CN114743697A (en) Passive residual heat removal system based on sea cooling time-limit-free heat pipe reactor
JP2009075001A (en) Nuclear reactor
JP2007232423A (en) Natural circulation boiling water reactor
RU2616431C2 (en) Steam generator
CN203880678U (en) Circulation type optical radiation energy exchange steam generating system
EP3324009B1 (en) Steam turbine plant
CN203271829U (en) Double-power ORC power generation system
JP2011145057A (en) Condenser
JP6581841B2 (en) Moisture separation unit and steam turbine plant
US20130209185A1 (en) Hole drilling device and method
JP6081543B1 (en) Steam turbine plant
RU208763U1 (en) heat exchanger
RU2806820C1 (en) System of passive heat removal from pressurized-water reactor through a steam generator
CN212987182U (en) Deoxidization device is recycled to waste heat
EP3460203B1 (en) Steam turbine plant
Silin et al. The thermal circuit of a nuclear power station’s unit built around a supercritical-pressure water-cooled reactor
JP4795794B2 (en) Steam turbine plant
JP6564646B2 (en) Steam turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R150 Certificate of patent or registration of utility model

Ref document number: 5716233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350