JP5715365B2 - Straightness measuring device and straightness measuring method - Google Patents

Straightness measuring device and straightness measuring method Download PDF

Info

Publication number
JP5715365B2
JP5715365B2 JP2010215291A JP2010215291A JP5715365B2 JP 5715365 B2 JP5715365 B2 JP 5715365B2 JP 2010215291 A JP2010215291 A JP 2010215291A JP 2010215291 A JP2010215291 A JP 2010215291A JP 5715365 B2 JP5715365 B2 JP 5715365B2
Authority
JP
Japan
Prior art keywords
measurement
scanning
auxiliary reference
measured
straightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010215291A
Other languages
Japanese (ja)
Other versions
JP2012068202A (en
Inventor
清野 慧
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAI-ICHI SOKUHAN WORKS CO.
Original Assignee
DAI-ICHI SOKUHAN WORKS CO.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAI-ICHI SOKUHAN WORKS CO. filed Critical DAI-ICHI SOKUHAN WORKS CO.
Priority to JP2010215291A priority Critical patent/JP5715365B2/en
Publication of JP2012068202A publication Critical patent/JP2012068202A/en
Application granted granted Critical
Publication of JP5715365B2 publication Critical patent/JP5715365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、空気マイクロメータを用いた真直度測定装置並びにこの真直度測定装置を用いた真直度測定方法に関するものである。   The present invention relates to a straightness measuring device using an air micrometer and a straightness measuring method using the straightness measuring device.

大型加工物の加工精度向上に対する要求の高まりと共に、工作機械の移動真直度や加工面の真直形状の測定精度に対しても、その向上が求められている。   Along with the increasing demands for improving the machining accuracy of large workpieces, there is also a need for improvements in the measurement accuracy of the machine tool straightness and the straightness of the machined surface.

一般的には、機械の移動真直度測定には直定規を基準として用いており、また、加工物の形状測定には機械の高精度の移動真直性を基準に用いているが、これらの基準の精度が不足するような場合には、反転法や多点法を用いることもある。   In general, a straight ruler is used as a standard for measuring the straightness of a machine, and a high-precision straightness of the machine is used for measuring the shape of a workpiece. In some cases, the inversion method or the multipoint method may be used.

また、移動真直度のローリング測定には水準器を用い、ピッチングやヨーイング測定にはオートコリメータを用いることが一般的となっている。   Also, it is common to use a level for rolling straightness measurement and an autocollimator for pitching and yawing measurement.

また、水平面内での長尺加工物の真直形状誤差の高精度測定にも、上述した水準器やオートコリメータを用いている。   The above-described level and autocollimator are also used for high-precision measurement of the straight shape error of a long workpiece in a horizontal plane.

しかしながら、水準器は応答速度が低いことやヨーイング測定には使用できないという欠点があり、また、オートコリメータを工作機械上で用いる際は、ノイズ低減のために応答速度を落とさざるを得ないという幾つかの欠点がある。   However, the spirit level has the disadvantages that the response speed is low and cannot be used for yawing measurement, and when the autocollimator is used on a machine tool, the response speed must be reduced to reduce noise. There are some disadvantages.

更に、水準器やオートコリメータによる逐次2点法では、2点の間隔を変更することが容易でなく、特に狭い接点間隔を必要とする内挿が困難であるという問題もある。   Furthermore, in the sequential two-point method using a level or an autocollimator, it is not easy to change the interval between two points, and there is a problem that it is difficult to interpolate that requires a particularly narrow contact interval.

また、反転法では、水平面内にある測定面が重力による撓みの影響で正しく測定できず、長尺の被測定物では、鉛直面内を対象にしても反転前後の形状変化が問題となり、また、多点法においても、この多点法の代表例である3点法におけるゼロ点問題の解決策が最近種々提案されているが、測定中のドリフトの問題などまだ課題も残っており、特に、測定所要時間が長くなる長尺の被測定物ではこのことが大きな問題となってしまうため、実用化には至っていない。   In addition, with the inversion method, the measurement surface in the horizontal plane cannot be measured correctly due to the influence of the deflection due to gravity. In the multipoint method, various solutions for the zero point problem in the three-point method, which is a representative example of this multipoint method, have been proposed recently, but there are still problems such as the problem of drift during measurement. This is a big problem for a long object to be measured with a long measurement time, and has not been put to practical use.

そこで、本発明は、上記のような真直度測定における様々な問題点を改善し、高精度に真直度を測定することが可能な真直度測定装置並びにこの真直度測定装置を用いた真直度測定方法を提案することを目的とする。   Therefore, the present invention improves the various problems in the straightness measurement as described above, and can measure the straightness with high accuracy, and the straightness measurement using the straightness measurement device. The purpose is to propose a method.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

空気マイクロメータを用いた真直度測定装置であって、被測定物1の被測定面Msと対向状態に設けられる補助基準面Reを形成した補助基準部2を備え、前記補助基準部2は、前記補助基準面Reを形成した基体部2aと、この基体部2aを支持する基体支持部2bとから成り、水平方向に対向配設した前記基体支持部2b間に前記補助基準面Reを下方に向けて前記基体部2aを架設した構成とすると共に、前記被測定面Ms上に移動自在に載置して前記補助基準面Reを前記被測定面Msに間隔をおいて対向状態に配設し得る構成とし、前記被測定面Ms上に載置した際の対向する前記被測定面Msと前記補助基準面Reとの間の所定範囲を走査区間Sとし、この走査区間Sを移動する測定ヘッド部3を備え、この測定ヘッド部3は、前記被測定面Msと対向する位置に空気マイクロメータから成る第一センサ部4を設け前記補助基準面Reと対向する位置に空気マイクロメータから成る第二センサ部5を設けると共に、この第一センサ部4と第二センサ部5との測定方向を同一直線上に配置した構成とし、この測定ヘッド部3を前記走査区間Sで所定方向に走査移動させて、前記走査区間Sの多数の測定箇所における前記第一センサ部4から前記被測定面Msまでの距離と前記第二センサ部5から前記補助基準面Reまでの距離との合算値からなる走査測定値を測定算出するように構成すると共に、前記被測定面Ms上に移動自在に載置し、前記被測定物1に対して前記補助基準部2を相対移動させる前の走査区間Sと、前記補助基準部2を所定距離だけ相対移動させた後の走査区間Sとにおける夫々の前記走査測定値の差分値から前記被測定面Msの真直度を測定算出するように構成したことを特徴とする真直度測定装置に係るものである。 A straightness measuring apparatus using an air micrometer , comprising an auxiliary reference portion 2 having an auxiliary reference surface Re provided in a state of being opposed to the measurement target surface Ms of the object to be measured 1 , The base portion 2a having the auxiliary reference surface Re formed thereon, and a base support portion 2b that supports the base portion 2a. The base portion 2a is constructed so as to be directed toward the surface, and the auxiliary reference surface Re is disposed so as to be opposed to the surface to be measured Ms while being movably mounted on the surface to be measured Ms. A measurement head that moves in the scanning section S is defined as a predetermined range between the measuring surface Ms and the auxiliary reference surface Re that are opposed to each other when placed on the measuring surface Ms. comprising a part 3, the measurement head 3, Serial Rutotomoni provided a second sensor unit 5 consisting of air micrometer at a position facing the auxiliary reference plane Re provided a first sensor unit 4 consisting of air micrometer at a position facing the surface to be measured Ms, the first a configuration of arranging the measurement direction of the sensor unit 4 and the second sensor portion 5 on the same straight line, and the measurement head 3 of this is scanning movement in a predetermined direction by the scanning section S, a number of the scanning section S A scanning measurement value consisting of a sum of a distance from the first sensor unit 4 to the measured surface Ms and a distance from the second sensor unit 5 to the auxiliary reference surface Re is measured and calculated. The scanning section S before the auxiliary reference portion 2 is moved relative to the measurement object 1 and the auxiliary reference portion 2 is moved a predetermined distance. after relative movement only Those relating to straightness measuring apparatus characterized by the difference value of the scanning measurement of each of the scanning section S configured for measuring calculate the straightness of the surface to be measured Ms.

また、前記補助基準部2にリニアスケール部11を設けて、前記測定ヘッド部3の走査位置を確知できる構成としたことを特徴とする請求項1記載の真直度測定装置に係るものである。2. The straightness measuring apparatus according to claim 1, wherein a linear scale section 11 is provided in the auxiliary reference section 2 so that the scanning position of the measuring head section 3 can be ascertained.

また、前記被測定物1若しくは前記補助基準部2に傾斜測定部6を設け、前記被測定物1または前記補助基準部2の前記補助基準部2または前記被測定物1に対する相対移動前後の傾斜度を測定し、この測定した傾斜度に基づいて補正を行い前記被測定面Msの真直度を測定算出するように構成したことを特徴とする請求項1,2のいずれか1項に記載の真直度測定装置に係るものである。 In addition, an inclination measuring unit 6 is provided in the object to be measured 1 or the auxiliary reference part 2, and the inclination of the object to be measured 1 or the auxiliary reference part 2 before and after relative movement with respect to the auxiliary reference part 2 or the object to be measured 1. degrees were measured, according to any one of claims 1, 2, characterized by being configured to measure calculates the straightness of the surface to be measured Ms corrects based on the inclination that the measured This relates to a straightness measuring apparatus.

また、前記被測定面Msと前記補助基準面Reとの間に、前記測定ヘッド部3を直線的に移動させる走査ガイド部7を設けたことを特徴とする請求項1〜3のいずれか1項に記載の真直度測定装置に係るものである。 Also, the between the auxiliary reference plane Re and the surface to be measured Ms, any one of claims 1 to 3, characterized in that a scanning guide part 7 for moving the measuring head 3 in a straight line 1 This relates to the straightness measuring apparatus described in the item.

また、前記測定ヘッド部3の走査方向長さをX,走査方向と水平方向に直交する幅方向長さをY,厚みをTとし、前記測定ヘッド部3と前記被測定面MsとのクリアランスをC,前記測定ヘッド部3と前記補助基準面ReとのクリアランスをCとし、前記測定ヘッド部3が走査方向に対して前後に最大に傾いた状態時の最大ピッチング角度をθx,前記測定ヘッド部3が走査方向に対して左右に最大に傾いた状態時の最大ローリング角度をθyとして、(T+C+C)×(1/COSθx−1)<必要測定精度又は分解能、及び(T+C+C)×(1/COSθy−1)<必要測定精度又は分解能となるように、前記X,Y,T,C,Cを設定したことを特徴とする請求項1〜4のいずれか1項に記載の真直度測定装置に係るものである。 The length of the measurement head unit 3 in the scanning direction is X, the length in the width direction orthogonal to the scanning direction is Y, and the thickness is T. The clearance between the measurement head unit 3 and the surface to be measured Ms is C 1 , the clearance between the measurement head unit 3 and the auxiliary reference surface Re is C 2 , the maximum pitching angle when the measurement head unit 3 is tilted to the maximum in the front-rear direction with respect to the scanning direction is θx, and the measurement (T + C 1 + C 2 ) × (1 / COS θx−1) <required measurement accuracy or resolution, and (T + C 1 ), where θy is the maximum rolling angle when the head unit 3 is tilted to the left and right with respect to the scanning direction. + C 2) × (1 / COSθy-1) < as required measurement accuracy or resolution, the X, Y, T, any one of the preceding claims, characterized in that setting the C 1, C 2 Related to the straightness measuring device described in item 1 It is.

また、前記測定ヘッド部3に固定具12を設け、この測定ヘッド部3の走査移動を阻止し該測定ヘッド部3を前記走査区間S内の所定の位置に固定した構成とし、前記補助基準部2に接続アダプター部13を設け、この接続アダプター部13を工作機械の主軸ツールホルダー14に着脱自在に設けた構成とし、前記工作機械の主軸ツールホルダー14に前記接続アダプター部13を接続して前記補助基準部2を該主軸ツールホルダー14に設けると共に、前記工作機械のマシニングテーブル15の表面と対向状態に設け、このマシニングテーブル15を移動させて、前記固定状態の測定ヘッド部3の前記第一センサ部4から前記マシニングテーブル15の表面までの距離と前記第二センサ部5から前記補助基準面Reまでの距離との合算値からなる走査測定値を測定算出することで前記マシニングテーブル15の移動真直度を測定できるように構成したことを特徴とする請求項1〜5のいずれか1項に記載の真直度測定装置に係るものである。   Further, a fixing tool 12 is provided in the measurement head unit 3, the scanning movement of the measurement head unit 3 is prevented, and the measurement head unit 3 is fixed at a predetermined position in the scanning section S, and the auxiliary reference unit 2 is provided with a connection adapter portion 13, which is detachably provided on a spindle tool holder 14 of a machine tool, and the connection adapter portion 13 is connected to the spindle tool holder 14 of the machine tool. The auxiliary reference portion 2 is provided on the spindle tool holder 14 and is provided in a state of being opposed to the surface of the machining table 15 of the machine tool. The machining table 15 is moved to move the first of the measurement head portion 3 in the fixed state. Scanning measurement values comprising the sum of the distance from the sensor unit 4 to the surface of the machining table 15 and the distance from the second sensor unit 5 to the auxiliary reference plane Re are measured and calculated. In which according to the straightness measuring device according to any one of claims 1 to 5, characterized by being configured so as to measure the movement straightness of the machining table 15 in Rukoto.

また、請求項1〜5のいずれか1項に記載の真直度測定装置を用いた真直度測定方法であって、被測定物1の被測定面Ms上に移動自在に載置し、この被測定面Ms上に最初に載置した位置を第一走査位置とし、第一走査位置における補助基準部2の補助基準面Reと被測定面Msとの間の所定範囲を第一走査区間Sとし、この第一走査区間Sの走査方向に空気マイクロメータの測定ヘッド部3を走査移動させ、第一走査区間Sの多数の測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hとを夫々測定し、この第一走査区間Sの多数の測定箇所における第一センサ部4から補助基準面Reまでの距離hと第二センサ部5から補助基準面Reまでの距離hとの合算値である第一走査測定値を得、次いで、前記被測定物1に対して補助基準部2を走査方向に所定の距離だけ相対移動させ、前記被測定物1に対して補助基準部2が相対移動した位置を第二走査位置とし、この第二走査位置における補助基準部2の補助基準面Reと被測定面Msとの間の所定範囲を第二走査区間Sとし、この第二走査区間Sの走査方向に空気マイクロメータの測定ヘッド部3を走査移動し、第二走査区間Sの多数の測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hとを夫々測定し、この第二走査区間Sの多数の測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hとの合算値である第二走査測定値を得、この第一走査測定値と第二走査測定値との差分値を算出して前記被測定面Msにおける前記第一走査区間S の始点から前記第二走査区間S の終点までの真直度を算出することを特徴とする真直度測定方法に係るものである。 A straightness measurement method using the straightness measurement apparatus according to any one of claims 1 to 5, wherein the straightness measurement method is movably placed on a surface to be measured Ms of the object 1 to be measured. the first was placed position on the measurement surface Ms as the first scan position, the predetermined range between the first definitive the scanning position auxiliary reference unit 2 auxiliary reference plane Re and the measured surface Ms first scanning section S 1, and the measurement head 3 of the air micrometer to scanning movement in a first scanning direction of the scanning section S 1, to the surface to be measured Ms from the first sensor unit 4 in a number of measurement points in the first scanning section S 1 the distance h 1 between the distance h 2 from the second sensor unit 5 to the auxiliary reference plane Re and each measurement from the first sensor unit 4 in a number of measuring points of the first scanning section S 1 to the auxiliary reference plane Re distance h 2 distance h 1 between from the second sensor unit 5 to the auxiliary reference plane Re The first scanning measurement value which is the sum of the values is obtained, and then the auxiliary reference portion 2 is moved relative to the device under test 1 by a predetermined distance in the scanning direction, so that the auxiliary reference portion with respect to the device under test 1 is obtained. 2 is a second scanning position position relative movement, and a predetermined range between the second definitive the scanning position auxiliary reference unit 2 auxiliary reference plane Re and the surface to be measured Ms and the second scanning section S 2, the the measurement head 3 of the air micrometer and scanning movement in a second scanning direction of the scanning section S 2, the distance h 1 from the first sensor unit 4 in a number of measurement points in the second scanning section S 2 to the surface to be measured Ms And the distance h 2 from the second sensor unit 5 to the auxiliary reference plane Re, respectively, and the distance h 1 from the first sensor unit 4 to the measured surface Ms at a number of measurement points in the second scanning section S 2. When the distance h 2 from the second sensor unit 5 to the auxiliary reference plane Re Obtain a second scan measurements are summed value, said from the first scan measurement and the first start point of the scanning segment S 1 in the difference value the measurement surface Ms is calculated to the second scan measurements the those relating to straightness measuring method characterized by calculating a straightness of up to two end points of the scanning section S 2.

また、前記被測定部1に対して前記補助基準部2が相対移動する前後の傾斜度を夫々測定し、この測定した傾斜度に基づいて相対傾きを求め、この相対傾きを用いて前記第一走査測定値と前記第二走査測定値との差分値を補正して、前記被測定面Msの真直度を算出することを特徴とする請求項7記載の真直度測定方法に係るものである。 Further, the degree of inclination before and after the auxiliary reference part 2 moves relative to the part to be measured 1 is measured, a relative inclination is obtained based on the measured degree of inclination, and the first inclination is determined using the relative inclination. The straightness measurement method according to claim 7 , wherein a straightness of the measurement target surface Ms is calculated by correcting a difference value between the scan measurement value and the second scan measurement value.

また、請求項6記載の真直度測定装置を用いた真直度測定方法であって、前記測定ヘッド部3に固定具12を設けて該測定ヘッド部3を前記走査区間S内の所定の位置に固定状態にして、前記補助基準部2に接続アダプター部13を設け、工作機械の主軸ツールホルダー14に前記接続アダプター部13を接続して前記補助基準部2を該主軸ツールホルダー14に設けると共に、前記工作機械のマシニングテーブル15の表面と対向状態に設け、このマシニングテーブル15を移動させて、前記固定状態の測定ヘッド部3の前記第一センサ部4から前記マシニングテーブル15の表面までの距離と前記第二センサ部5から前記補助基準面Reまでの距離との合算値からなる走査測定値を測定算出して前記マシニングテーブル15の移動真直度を測定算出することを特徴とする真直度測定方法に係るものである。   A straightness measurement method using the straightness measurement apparatus according to claim 6, wherein a fixture 12 is provided in the measurement head unit 3 to place the measurement head unit 3 at a predetermined position in the scanning section S. In a fixed state, the auxiliary reference part 2 is provided with a connection adapter part 13, the connection adapter part 13 is connected to a spindle tool holder 14 of a machine tool, and the auxiliary reference part 2 is provided on the spindle tool holder 14, A distance from the first sensor unit 4 of the measurement head unit 3 in the fixed state to the surface of the machining table 15 is provided by moving the machining table 15 so as to face the surface of the machining table 15 of the machine tool. A scanning measurement value composed of a sum of a distance from the second sensor unit 5 to the auxiliary reference plane Re is measured and calculated to measure and calculate the movement straightness of the machining table 15. Those relating to straightness measuring method.

本発明は上述のように構成したから、被測定面に対して補助基準面が所定距離移動した前後(若しくは補助基準面に対して被測定面が所定距離移動した前後)の夫々の走査区間における走査測定値の差分値を求めるだけの極めて容易な操作で真直度を求めることができ、しかも、従来からの逐次2点法に比して一層安定した差分値を多数の測定箇所で得ることができ、高精度に真直度を測定することができる実用性に優れた画期的な真直度測定装置となる。   Since the present invention is configured as described above, in each scanning section before and after the auxiliary reference plane has moved a predetermined distance with respect to the measurement surface (or before and after the measurement surface has moved a predetermined distance with respect to the auxiliary reference surface). The straightness can be obtained by an extremely easy operation that merely obtains the difference value of the scanning measurement value, and more stable difference values can be obtained at a large number of measurement points as compared with the conventional sequential two-point method. This is an epoch-making straightness measuring apparatus excellent in practicality that can measure straightness with high accuracy.

更に、本発明は、測定手段として空気マイクロメータを採用したので、測定因子が空気となるため、被測定面に付着している油や塵埃の影響を受け難く、被測定面の性状(例えば、色・模様・光沢の有無など)を選ばずに測定することが可能であり、しかも、被接触なので、被測定面を傷つけることなく測定できる実用性に優れた画期的な真直度測定装置となる。   Furthermore, since the present invention employs an air micrometer as the measuring means, the measurement factor is air, so it is not easily affected by oil or dust adhering to the surface to be measured, and the properties of the surface to be measured (for example, A revolutionary straightness measuring device with excellent practicality that can be measured without damaging the surface to be measured. Become.

また、この空気マイクロメータの測定ヘッド部は、走査速度が水準器やオートコリメータの応答速度に左右されないため、長尺ものの測定所要時間が大幅に短縮でき、更に、センサ配置のスペースがコンパクトになり、例えば、他の原理の変位センサでは、独立した変位センサを二本利用するため、センサの配置スペースのため装置が大きくなり、両センサ出力の和を演算するために計算機に取り込む前の演算装置を追加するか、計算機に二つのセンサ出力を極めて高レベルの同時性で取り込むための入力装置が必要になるが、本発明では、前述したセンサと計算機のインターフェースが簡略化された構成となるため、極めて簡易な構成となる。   In addition, since the scanning speed of this air micrometer's measuring head is not affected by the response speed of the level or autocollimator, the time required for long measurements can be greatly reduced, and the sensor layout space can be made more compact. For example, in the displacement sensor of another principle, since two independent displacement sensors are used, the apparatus becomes large due to the arrangement space of the sensors, and the arithmetic device before being taken into the computer to calculate the sum of both sensor outputs However, in the present invention, the interface between the sensor and the computer is simplified in the present invention. It becomes an extremely simple configuration.

しかも、測定ヘッド部が上下に移動しても第一センサ部及び第二センサ部から吐出する圧縮空気の流量の合算値は変化しないので、この測定ヘッド部の上下の移動を制御する必要もなく、従って、測定ヘッド部に設けた第一センサ部及び第二センサ部を、被測定軸上に容易に且つ正確に配置することができる為、測定時にピッチング,ヨーイング及びローリングの影響を受け難く、極めて高精度に第一センサ部及び第二センサ部から吐出する圧縮空気の流量の合算値を検出することができるので、被測定面の真直度を高精度に測定することができる画期的な真直度測定装置となる。 Moreover, even if the measurement head part moves up and down, the total value of the flow rate of the compressed air discharged from the first sensor part and the second sensor part does not change, so there is no need to control the vertical movement of the measurement head part. Therefore, since the first sensor part and the second sensor part provided in the measurement head part can be easily and accurately arranged on the axis to be measured , it is difficult to be affected by pitching, yawing and rolling during measurement. Since the total value of the flow rate of the compressed air discharged from the first sensor unit and the second sensor unit can be detected with extremely high accuracy, it is an epoch-making capable of measuring the straightness of the measured surface with high accuracy. A straightness measuring device.

また、本発明のように、被測定物または補助基準部に対して補助基準部または被測定物を相対移動させて差分を求めて真直度を測定する方法においては、被測定物若しくは補助基準部の移動前後の姿勢変化が測定形状の放物線誤差になるが、傾斜測定部で測定した傾斜度に基づいて測定結果を補正するので、放物線誤差が生じず、高精度に真直度を測定することができる。   Further, in the method of measuring the straightness by calculating the difference by moving the auxiliary reference part or the measured object relative to the measured object or the auxiliary reference part as in the present invention, the measured object or the auxiliary reference part The posture change before and after the movement becomes a parabolic error of the measured shape, but the measurement result is corrected based on the inclination measured by the inclination measuring unit, so that no parabolic error occurs and the straightness can be measured with high accuracy. it can.

また、被測定物または補助基準部の移動前後の二回だけ傾斜測定部の測定した傾斜度を読み取るように構成することで、十分に時間を掛けて傾斜測定部の性能の限界までの分解能での測定を可能にするので、より一層放物線誤差を排除した高精度な真直度を測定することができる画期的な真直度測定装置となる。   In addition, it is configured to read the inclination measured by the inclination measurement unit only twice before and after the movement of the object to be measured or the auxiliary reference part, so that it takes enough time to achieve the resolution to the limit of the performance of the inclination measurement unit. Therefore, it becomes an epoch-making straightness measuring device that can measure the straightness with high accuracy while further eliminating the parabolic error.

また、請求項6記載の発明においては、極めて簡易な構成で容易に工作機械のマシニングテーブルの移動真直度を測定することができる実用性に優れた真直度測定装置となる。   According to the sixth aspect of the present invention, the straightness measuring apparatus is excellent in practicality and can easily measure the moving straightness of the machining table of the machine tool with an extremely simple configuration.

実施例1の測定ヘッド部を示す説明断面図である。FIG. 3 is an explanatory cross-sectional view illustrating a measurement head unit of Example 1. 実施例1における空気マイクロメータの説明図である。3 is an explanatory diagram of an air micrometer in Embodiment 1. FIG. 実施例1の数学的原理構成を示す説明図である。2 is an explanatory diagram illustrating a mathematical principle configuration of Example 1. FIG. 実施例1を示す説明斜視図である。1 is an explanatory perspective view illustrating Example 1. FIG. 実施例1を示す説明断面図である。1 is an explanatory cross-sectional view illustrating Example 1. FIG. 実施例1における測定ヘッド部と被測定面及び補助基準面との各クリアランスを決定する際の考え方を説明する図である。It is a figure explaining the idea at the time of determining each clearance between the measurement head part in Example 1, and a to-be-measured surface and an auxiliary reference plane. 実施例1の測定ヘッド部を自動走査するように構成した状態を示す説明斜視図である。FIG. 3 is an explanatory perspective view illustrating a state in which the measurement head unit of Example 1 is configured to automatically scan. 実施例1にリニアスケール部を設けた状態を示す説明斜視図である。1 is an explanatory perspective view illustrating a state in which a linear scale portion is provided in Example 1. FIG. 実施例1の補助基準部の相対移動を示す説明図である。It is explanatory drawing which shows the relative movement of the auxiliary | assistant reference | standard part of Example 1. FIG. 実施例2を示す説明斜視図である。FIG. 6 is an explanatory perspective view showing Example 2.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明は、測定手段として空気マイクロメータを用いたので、例えば、第一センサ部4及び第二センサ部5を圧縮空気が吐出するノズル状に形成することで、図1,図2に示すように、第一センサ部4及び第二センサ部5から圧縮空気が吐出し、この圧縮空気の流量の変化を測定することで各センサ部4,5から各測定面Ms,Reの形状を測定することができ、この測定結果をもとに被測定面Msの真直度を高精度に測定することができる実用性に優れた画期的な真直度測定装置となる。   Since the present invention uses an air micrometer as the measuring means, for example, the first sensor part 4 and the second sensor part 5 are formed in the shape of a nozzle from which compressed air is discharged, as shown in FIGS. In addition, the compressed air is discharged from the first sensor unit 4 and the second sensor unit 5, and the shape of each measurement surface Ms, Re is measured from each sensor unit 4, 5 by measuring the change in the flow rate of this compressed air. Therefore, it is an epoch-making straightness measuring apparatus excellent in practicality that can measure the straightness of the surface Ms to be measured with high accuracy based on the measurement result.

具体的には、第一センサ部4及び第二センサ部5から吐出する圧縮空気の流量Q(第一センサ部4から吐出する圧縮空気の流量),Q(第二センサ部5から吐出する圧縮空気の流量)は、ノズル状センサ部の周径πd(dはノズル状センサ部の直径)と、この第一センサ部4の先端部から被測定面Msまでの距離h(第二センサ部5の先端部から補助基準面Reまでの距離hも同様)によって作られる円筒側面の面積πdh(πdh)とリニアな関係になっている。 Specifically, the flow rate Q 1 of compressed air discharged from the first sensor unit 4 and the second sensor unit 5 (flow rate of compressed air discharged from the first sensor unit 4), Q 2 (discharged from the second sensor unit 5) The flow rate of the compressed air) is the peripheral diameter πd (d is the diameter of the nozzle-like sensor portion) of the nozzle-like sensor portion, and the distance h 1 from the tip of the first sensor portion 4 to the surface Ms to be measured (second) The relationship is linear with the area πdh 1 (πdh 2 ) of the cylindrical side surface formed by the distance h 2 from the tip of the sensor unit 5 to the auxiliary reference plane Re.

また、前述した円筒側面の面積πdh(πdh)のπdは固定値なので、従って、第一センサ部4,第二センサ部5から吐出される夫々の圧縮空気の流量Q,Qは、夫々の第一センサ部4及び第二センサ部5が対向する面、即ち、被測定面Ms及び補助基準面Reまでの距離h及びhとリニアな関係となることが言え、圧縮空気の吐出流量は、Q=kπd(k:定数、d:ノズル状に形成した第一センサ部4の直径)及びQ=kπd(k:定数、d:ノズル状に形成した第二センサ部5の直径)と表すことができる。 Further, πd of the aforementioned cylindrical side surface area πdh 1 (πdh 2 ) is a fixed value. Therefore, the flow rates Q 1 and Q 2 of the compressed air discharged from the first sensor unit 4 and the second sensor unit 5 are It can be said that there is a linear relationship with the distances h 1 and h 2 to the surfaces where the first sensor portion 4 and the second sensor portion 5 face each other, that is, the measured surface Ms and the auxiliary reference surface Re. The discharge flow rate of Q 1 = kπd 1 h 1 (k: constant, d 1 : diameter of the first sensor unit 4 formed in a nozzle shape) and Q 2 = kπd 2 h 2 (k: constant, d 2 : nozzle) And the diameter of the second sensor portion 5 formed in a shape.

ここで、例えば、d=d=dとなるように第一センサ部4及び第二センサ部5の各ノズル径を調整することで、第一センサ部4と第二センサ部5とから吐出される圧縮空気の合算値Q+Qは、Q+Q=kπd(h+h)と表すことができる。 Here, for example, by adjusting the nozzle diameters of the first sensor unit 4 and the second sensor unit 5 so that d 1 = d 2 = d, the first sensor unit 4 and the second sensor unit 5 The total value Q 1 + Q 2 of the compressed air to be discharged can be expressed as Q 1 + Q 2 = kπd (h 1 + h 2 ).

即ち、第一センサ部4の先端部から被測定面Msまでの距離hと、第二センサ部5の先端部から補助基準面Reまでの距離hとの合算値h+hは、Q+Qから求めることができ、従って、第一センサ部4と第二センサ部5とによって検出されるhとhとの合算値の算出は、測定ヘッド部3内に、例えば、ドリル加工などにより一本の共通配管部8を設けることにより容易に実現できるため、特別な演算を必要としない実用性に優れた真直度測定装置となる。 That is, the distance h 1 from the tip portion of the first sensor unit 4 to the surface to be measured Ms, sum h 1 + h 2 and the distance h 2 from the distal end portion of the second sensor unit 5 to the auxiliary reference plane Re is Q 1 + Q 2 can be obtained. Therefore, the calculation of the sum of h 1 and h 2 detected by the first sensor unit 4 and the second sensor unit 5 is performed in the measurement head unit 3, for example, Since it can be easily realized by providing one common piping portion 8 by drilling or the like, it becomes a straightness measuring device excellent in practicality that does not require any special calculation.

また、本発明の数学的原理構成を、図3を用いて説明する。   The mathematical principle configuration of the present invention will be described with reference to FIG.

図3においては、走査方向がx方向で、真直形状の高さ方向の凹凸がz方向に取られている。補助基準部2の補助基準面Reの真直形状がf(x)、被測定物1の被測定面Msの真直形状がg(x)で表されるとする。   In FIG. 3, the scanning direction is the x direction, and the straight unevenness in the height direction is taken in the z direction. It is assumed that the straight shape of the auxiliary reference surface Re of the auxiliary reference portion 2 is represented by f (x) and the straight shape of the measured surface Ms of the device under test 1 is represented by g (x).

図3(a)は、補助基準面Reと被測定面Msとの形状の原点を合致させて対向させた状態にある。このとき、測定ヘッド部3に設けた第一センサ部4,第二センサ部5で同時に形状を走査測定すると、測定ヘッド部3の走査運動誤差Ezが、第一センサ部4に対して正方向に作用し、第二センサ部5に対しては負方向に作用する、或いは、逆に、第一センサ部4に対して負方向に作用し、第二センサ部5に対しては正方向に作用するといった正負逆に作用するので、第一センサ部4と第二センサ部5との出力の和(合算値)は、式(1)のように示すことができ、結果的に走査運動誤差Ezは相殺されて式(1)には含まれない形となる。尚、形状に関係の無い一定のオフセット量は省略している。   FIG. 3A shows a state in which the origins of the shapes of the auxiliary reference surface Re and the surface to be measured Ms are matched to face each other. At this time, when the shape is simultaneously scanned and measured by the first sensor unit 4 and the second sensor unit 5 provided in the measurement head unit 3, the scanning motion error Ez of the measurement head unit 3 is positive with respect to the first sensor unit 4. Acting on the second sensor unit 5 in the negative direction, or conversely acting on the first sensor unit 4 in the negative direction and against the second sensor unit 5 in the positive direction. Since it acts in the opposite direction, such as acting, the sum (total value) of the outputs of the first sensor unit 4 and the second sensor unit 5 can be expressed as in equation (1), resulting in a scanning motion error. Ez cancels out and is not included in equation (1). Note that a certain amount of offset not related to the shape is omitted.

Figure 0005715365
Figure 0005715365

図3に示したx軸で、例えば、x=xに始まり、間隔Dで配置したx、x、・・・、xの点で第一センサ部4及び第二センサ部5の出力をサンプリングするものとする。 The x-axis shown in FIG. 3, for example, begins with x = x 0, x 1, x 2 arranged at intervals D, · · ·, the first sensor unit 4 and the second sensor portion 5 in terms of x N Assume that the output is sampled.

次に、図3(b)のように、例えば、被測定物1に対して補助基準部2をx方向に距離Dだけ移動する。言い換えると、被測定面Msに対して補助基準面Reをx方向に距離Dだけ移動して再度走査測定を行うと、差動出力は式(2)にように与えられる。   Next, as shown in FIG. 3B, for example, the auxiliary reference portion 2 is moved by a distance D in the x direction with respect to the device under test 1. In other words, when the auxiliary reference surface Re is moved by the distance D in the x direction with respect to the surface to be measured Ms and scanning measurement is performed again, the differential output is given as shown in Equation (2).

Figure 0005715365
Figure 0005715365

ここで、Zは、補助基準面Re(補助基準部2)を、例えば、距離Dだけ移動した際に生じるz方向のオフセットである。尚、移動の際にz方向へのオフセットだけでなく、x方向への傾斜も生じるが、この傾斜の影響は、例えば、被測定物1若しくは補助基準部2に傾斜測定部6を設けて傾斜度を検出し、この検出した傾斜に基づいて補正することができるので、式(2)においては省略している。 Here, Z D is an auxiliary reference plane Re (auxiliary reference unit 2), for example, a z-direction offset generated when the distance moved by D. Note that not only the offset in the z direction but also the inclination in the x direction occurs during the movement. The influence of this inclination is caused by, for example, providing the measurement object 1 or the auxiliary reference unit 2 with the inclination measuring unit 6. Since the degree can be detected and corrected based on the detected inclination, it is omitted in equation (2).

ここで、式(1)、式(2)の差を取ると、式(3)のようになり、目的である被測定物1の被測定面Msの差分値が得られる。   Here, when the difference between Expression (1) and Expression (2) is taken, Expression (3) is obtained, and the difference value of the measurement target surface Ms of the object to be measured 1 is obtained.

Figure 0005715365
Figure 0005715365

この差分値は、走査測定の際の走査運動誤差Ezも、補助基準面Reの形状誤差も理論上完全に除去されていることがわかる。   From this difference value, it is understood that both the scanning motion error Ez in the scanning measurement and the shape error of the auxiliary reference surface Re are theoretically completely removed.

上記式(3)に、g(x)=0を初期値として与えると、g(x)、g(x)、g(x)、・・・・、g(x)、g(xN+1)が逐次求められることとなる。 When g (x 0 ) = 0 is given as an initial value to the above formula (3), g (x 1 ), g (x 2 ), g (x 3 ),..., G (x N ), g (x N + 1 ) is obtained sequentially.

但し、Zの影響で全体にxZ/Dの傾斜が加わっているので、この傾斜を取り除く必要があり、これは真直形状の表現で両端を揃えること、即ち、上記の場合、g(x)=g(xN+1)とすることで、この傾斜を取り除くことができることとなる。 However, since an inclination of xZ D / D is added to the whole due to the influence of Z D , it is necessary to remove this inclination, which is to align both ends with a straight shape expression, that is, in the above case, g (x By setting 0 ) = g (x N + 1 ), this inclination can be removed.

本発明の具体的な実施例1について図1〜図9に基づいて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

本実施例は、空気マイクロメータを用いた真直度測定装置であって、被測定物1の被測定面Msと補助基準部2の補助基準面Reとを対向状態に設け、この対向状態に設けた被測定面Msと補助基準面Reとの間の所定範囲を走査区間Sとし、この走査区間Sに空気マイクロメータの測定ヘッド部3を移動自在に設け、この測定ヘッド部3は、被測定面Msと対向する位置に第一センサ部4を設け補助基準面Reと対向する位置に第二センサ部5を設けて、この測定ヘッド部3を所定方向に走査移動させて、走査区間Sの多数の測定箇所における第一センサ部4から被測定面Msまでの距離と第二センサ部5から補助基準面Reまでの距離との合算値からなる走査測定値を測定算出するように構成し、被測定物1と補助基準部2とを相対移動自在に設けて、被測定物1または補助基準部2に対する補助基準部2または被測定物1の相対移動前後の夫々の走査区間Sにおける走査測定値の差分値から被測定面Msの真直度を測定算出するように構成した真直度測定装置である。   The present embodiment is a straightness measuring apparatus using an air micrometer, in which the surface to be measured Ms of the object to be measured 1 and the auxiliary reference surface Re of the auxiliary reference portion 2 are provided in an opposing state, and provided in this opposing state. A predetermined range between the measured surface Ms and the auxiliary reference surface Re is defined as a scanning section S, and the measuring head unit 3 of the air micrometer is provided movably in the scanning section S. The first sensor unit 4 is provided at a position facing the surface Ms, the second sensor unit 5 is provided at a position facing the auxiliary reference surface Re, and the measuring head unit 3 is scanned and moved in a predetermined direction. It is configured to measure and calculate a scanning measurement value composed of a sum of a distance from the first sensor unit 4 to the measurement target surface Ms and a distance from the second sensor unit 5 to the auxiliary reference surface Re in a large number of measurement locations, Relative movement of DUT 1 and auxiliary reference part 2 The straightness of the surface to be measured Ms is determined from the difference value of the scanning measurement values in the respective scanning sections S before and after the relative movement of the auxiliary reference part 2 or the measurement object 1 with respect to the measurement object 1 or the auxiliary reference part 2. A straightness measuring device configured to measure and calculate.

具体的には、補助基準部2は、対向する基体支持部2bに、下面を前記補助基準面Reとした基体部2aを架設した構成とし、基体支持部2bを被測定面Ms上、若しくは被測定物1を載置する載置台上に移動自在に載置したいずれかの構成とし、本実施例では、被測定面Ms上に移動自在に載置した構成の場合を示している。   Specifically, the auxiliary reference portion 2 has a structure in which a base portion 2a having a lower surface as the auxiliary reference surface Re is installed on an opposite base support portion 2b, and the base support portion 2b is placed on the surface to be measured Ms or the surface to be measured. In this embodiment, a configuration in which the object 1 is movably mounted on the mounting table on which the measurement object 1 is mounted is shown.

更に詳細に説明すると、基体部2aは、図4に示すように、方形状のブロック体からなり、このブロック体の長手方向両端部に基体支持部2bを対向状態に設けて、この対向する基体支持部2bに基体部2aを架設状態に設けた構成としている。   More specifically, as shown in FIG. 4, the base portion 2a is formed of a rectangular block body, and base support portions 2b are provided in opposing states at both longitudinal ends of the block body. The base portion 2a is provided in a erected state on the support portion 2b.

また、この基体支持部2bは、底部に脚部2cを着脱自在に設けた構成としている。   In addition, the base body support portion 2b has a structure in which a leg portion 2c is detachably provided at the bottom.

また、この対向する基体支持部2b間に、後述する測定ヘッド部3の走査移動時のスライド移動をガイドする走査ガイド部7を架設した構成としている。   Further, a scanning guide portion 7 is provided between the opposing substrate support portions 2b so as to guide the slide movement during the scanning movement of the measurement head portion 3 described later.

この走査ガイド部7は、測定ヘッド部3を被測定面Msに接触した状態で走査移動して測定する場合は、装置を持ち上げた際に測定ヘッド部3が装置から脱落することを防止すると共に、走査移動時のY方向、即ち、走査方向に対して直交する方向、言い換えると左右方向へのズレを防止する効果があり、また、測定ヘッド部3を被測定面Msに非接触状態で走査移動して測定する場合は、上記効果に加えて、測定ヘッド部3とこの測定ヘッド部3の上下方向に設けられている被測定面Ms及び補助基準面Reとの夫々の適正なクリアランスC,Cを保持する効果がある。 The scanning guide unit 7 prevents the measurement head unit 3 from falling off the apparatus when the apparatus is lifted when the measurement head unit 3 is moved and measured while being in contact with the surface to be measured Ms. This has the effect of preventing displacement in the Y direction during scanning movement, that is, in the direction orthogonal to the scanning direction, in other words, in the left-right direction. In addition, the measurement head unit 3 is scanned in a non-contact state with the measurement surface Ms. In the case of moving and measuring, in addition to the above effects, appropriate clearances C 1 between the measurement head unit 3 and the measurement target surface Ms and the auxiliary reference surface Re provided in the vertical direction of the measurement head unit 3 are provided. , C 2 .

また更に、この補助基準部2は、傾斜測定部6を設け、この補助基準部2の被測定物1に対する相対移動前後の傾斜度を測定し、この測定した傾斜度に基づいて補正を行い被測定面Msの真直度を測定算出するように構成している。   Furthermore, the auxiliary reference unit 2 is provided with an inclination measuring unit 6 to measure the inclination of the auxiliary reference unit 2 before and after relative movement with respect to the object to be measured 1 and to perform correction based on the measured inclination. The straightness of the measurement surface Ms is measured and calculated.

具体的には、本実施例においては、この傾斜測定部6に水準器を採用しており、これを補助基準部2の基体部2a上面、即ち補助基準面Reの裏面に付設した構成としている。   Specifically, in the present embodiment, a level is adopted for the inclination measuring unit 6, and this is attached to the upper surface of the base portion 2 a of the auxiliary reference unit 2, that is, the back surface of the auxiliary reference surface Re. .

尚、傾斜測定部6としては上述の水準器以外にオートコリメータを採用しても良く、このオートコリメータを採用する場合は、前述した水準器を設けた位置、即ち、補助基準面Reの裏面にオートコリメータの反射鏡を設け、オートコリメータ本体は被測定面Msの任意の空きスペース若しくは別の安定した構造物の上に設けた構成とする。   In addition to the above-described level, an autocollimator may be employed as the inclination measuring unit 6. When this autocollimator is employed, the position where the above-described level is provided, that is, on the back surface of the auxiliary reference plane Re. A reflecting mirror of the autocollimator is provided, and the autocollimator body is configured to be provided on an arbitrary empty space on the surface to be measured Ms or another stable structure.

また、本実施例は、センサ部4,5に空気マイクロメータを用いた構成であり、この空気マイクロメータの測定ヘッド部3は、図5に示すように、共通配管部の先端を分岐し、一方を第一センサ部4とし、他方を第二センサ部5とし、この第一センサ部4と第二センサ部5とを鉛直方向に同一線上に設け、夫々のセンサ部4,5から圧縮空気が流出するように構成している。   Further, in this embodiment, an air micrometer is used for the sensor parts 4 and 5, and the measurement head part 3 of the air micrometer branches the tip of the common pipe part as shown in FIG. One is the first sensor unit 4 and the other is the second sensor unit 5, and the first sensor unit 4 and the second sensor unit 5 are provided on the same line in the vertical direction. Is configured to flow out.

具体的には、測定ヘッド部3の下方側、即ち、被測定面Ms側に、先端部を被測定面Ms側に向けて第一センサ部4を設け、測定ヘッド部3の上方側、即ち、補助基準面Re側に、先端部を補助基準面Reに向けて第二センサ部5を設けた構成とし、更に、この第一センサ部4及び第二センサ部5の測定方向を一直線上に配置し、いわゆるアッベの原理に基づいた配置とすることで、被測定面Msと補助基準面Reとの形状比較(両者の和の測定)が高精度に実現でき、結果として被測定面Msの真直度を高精度に測定できる構成としている。   Specifically, the first sensor unit 4 is provided on the lower side of the measurement head unit 3, that is, on the measured surface Ms side, with the tip portion directed toward the measured surface Ms side. The second sensor unit 5 is provided on the auxiliary reference plane Re side with the tip portion facing the auxiliary reference plane Re, and the measurement directions of the first sensor unit 4 and the second sensor unit 5 are aligned. By arranging and arranging based on the so-called Abbe's principle, the shape comparison (measurement of the sum of both) of the measured surface Ms and the auxiliary reference surface Re can be realized with high accuracy. The straightness can be measured with high accuracy.

また、本実施例に用いている空気マイクロメータは、差圧式の空気マイクロメータを採用しており、この差圧式の空気マイクロメータは、出力を電気信号に容易に変換できること、供給される圧縮空気の圧力を一定に保つためのレギュレータの性能に精度が左右され難いこと、ノズルと測定面とのクリアランスを流量式の空気マイクロメータに比して大きく取れる点で優れている。   Further, the air micrometer used in the present embodiment adopts a differential pressure type air micrometer, and this differential pressure type air micrometer can easily convert the output into an electric signal, and supplied compressed air. It is excellent in that accuracy is hardly affected by the performance of the regulator for keeping the pressure constant, and that the clearance between the nozzle and the measurement surface can be made larger than that of a flow-type air micrometer.

また、図6に示すように、この測定ヘッド部3は、測定ヘッド部3の走査方向長さをX,走査方向と水平方向に直交する幅方向長さをY,厚みをTとし、この測定ヘッド部3と被測定面MsとのクリアランスをC,測定ヘッド部3と補助基準面ReとのクリアランスをCとし、測定ヘッド部3が走査方向に対して前後に最大に傾いた状態時の最大ピッチング角度をθx,測定ヘッド部3が走査方向に対して左右に最大に傾いた状態時の最大ローリング角度をθyとして、(T+C+C)×(1/COSθx−1)<必要測定精度若しくは分解能、及び(T+C+C)×(1/COSθy−1)<必要測定精度若しくは分解能となるように、X,Y,T,C,Cを設定し、本実施例においては、この必要測定精度若しくは分解能の数値を0.05μmに設定している。 Further, as shown in FIG. 6, the measurement head unit 3 has the measurement head unit 3 in the scanning direction length X, the width direction length perpendicular to the scanning direction and the horizontal direction Y, and the thickness T. When the clearance between the head portion 3 and the measurement target surface Ms is C 1 , the clearance between the measurement head portion 3 and the auxiliary reference surface Re is C 2 , and the measurement head portion 3 is tilted to the maximum with respect to the scanning direction. (T + C 1 + C 2 ) × (1 / COSθx−1) <necessary measurement, where θx is the maximum pitching angle and θy is the maximum rolling angle when the measuring head unit 3 is tilted to the left and right with respect to the scanning direction. In this embodiment, X, Y, T, C 1 and C 2 are set such that the accuracy or resolution and (T + C 1 + C 2 ) × (1 / COSθy−1) <required measurement accuracy or resolution are satisfied. The number of required measurement accuracy or resolution The value is set to 0.05 μm.

また、測定ヘッド部3の側面には、取手部9を設けており、測定ヘッド部3を走査移動する際には、この取手部9を摘まんで測定ヘッド部3を走査方向に移動させる構成としている。尚、この測定ヘッド部3の走査移動においては、図7に示すように、補助基準部2に駆動部10を設け、この駆動部10を送りねじ状に構成した走査ガイド部7に連設し、測定ヘッド部3にこの走査ガイド部7と螺合する雌ネジ部を形成し、この測定ヘッド部3と走査ガイド部7とを螺合させた状態で、この走査ガイド部7を駆動部10によって回転させて、この走査ガイド部7が回転することによって測定ヘッド部3が自動で走査方向に送り移動される構成としても良い。   Further, a handle portion 9 is provided on the side surface of the measurement head unit 3, and when the measurement head unit 3 is scanned and moved, the handle unit 9 is picked and the measurement head unit 3 is moved in the scanning direction. Yes. In the scanning movement of the measuring head unit 3, as shown in FIG. 7, a driving unit 10 is provided in the auxiliary reference unit 2, and the driving unit 10 is connected to a scanning guide unit 7 configured in a feed screw shape. Then, a female screw part to be screwed with the scanning guide part 7 is formed in the measurement head part 3, and the scanning guide part 7 is driven by the driving part 10 in a state where the measurement head part 3 and the scanning guide part 7 are screwed. The measurement head unit 3 may be automatically moved in the scanning direction by rotating the scanning guide unit 7 and rotating the scanning guide unit 7.

また、図8に示すように、基体部2aの側面にリニアスケール部11を設けて、測定ヘッド部3の走査位置を確知できる構成としても良い。   Moreover, as shown in FIG. 8, it is good also as a structure which can provide the linear scale part 11 in the side surface of the base | substrate part 2a, and can recognize the scanning position of the measurement head part 3. FIG.

このリニアスケール部11を設けた構成とすることで、走査区間Sにおける複数の測定箇所の位置を明確にでき、補助基準部2の相対移動前後の測定箇所を再現性良く測定することができ、より一層高精度に真直度を測定することができる画期的な真直度測定装置となる。   By adopting a configuration in which this linear scale unit 11 is provided, the positions of a plurality of measurement points in the scanning section S can be clarified, and the measurement points before and after the relative movement of the auxiliary reference unit 2 can be measured with good reproducibility. It becomes an epoch-making straightness measuring device capable of measuring straightness with higher accuracy.

このように構成した本実施例を用いて、被測定物1の被測定面Msの真直度を測定する方法の一測定例を以下に説明する。   A measurement example of a method for measuring the straightness of the measurement target surface Ms of the DUT 1 using this embodiment configured as described above will be described below.

先ず、図4に示すように、被測定物1に対して補助基準部2が相対移動する前の補助基準部2の位置を第一走査位置とし、第一走査位置に配置した補助基準部2の補助基準面Reと被測定面Msとの間の所定範囲を第一走査区間Sとし、この第一走査区間Sの走査方向に空気マイクロメータの測定ヘッド部3を走査移動し、第一走査区間Sの多数の測定箇所、本測定例では間隔Dで等間隔に配置した測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hを各測定箇所毎に測定し、この第一走査区間Sの多数の測定箇所における第一センサ部4から補助基準面Reまでの距離hと第二センサ部5から補助基準面Reまでの距離hとの合算値である第一走査測定値を得る。 First, as shown in FIG. 4, the position of the auxiliary reference part 2 before the auxiliary reference part 2 moves relative to the object to be measured 1 is defined as the first scanning position, and the auxiliary reference part 2 arranged at the first scanning position. of the predetermined range between the auxiliary reference plane Re and the surface to be measured Ms as the first scanning section S 1, the measuring head 3 of the air micrometer and scanning movement in the scanning direction of the first scanning section S 1, the The distance h 1 from the first sensor unit 4 to the surface Ms to be measured and the auxiliary reference from the second sensor unit 5 at a large number of measurement points in one scanning section S 1 , measurement points arranged at equal intervals in the measurement example in this measurement example. The distance h 2 to the surface Re is measured for each measurement point, and the distance h 1 from the first sensor unit 4 to the auxiliary reference surface Re and the second sensor unit 5 at a large number of measurement points in the first scanning section S 1. first scanning measuring a sum of the distance h 2 to the auxiliary reference plane Re from Get the value.

次に、図9に示すように、被測定物1に対して補助基準部2を走査方向に所定の距離、本測定例では距離Dだけ相対移動させ、被測定物1に対して補助基準部2が相対移動した後の補助基準部2の位置を第二走査位置とし、この第二走査位置に配置した補助基準部2の補助基準面Reと被測定面Msとの間の所定範囲を第二走査区間Sとし、この第二走査区間Sの走査方向に空気マイクロメータの測定ヘッド部3を走査移動し、第二走査区間Sの多数の測定箇所、本測定例では間隔Dで等間隔に配置した測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hを各測定箇所毎に測定し、この第二走査区間Sの多数の測定箇所における第一センサ部4から被測定面Msまでの距離hと第二センサ部5から補助基準面Reまでの距離hとの合算値である第二走査測定値を得る。 Next, as shown in FIG. 9, the auxiliary reference portion 2 is moved relative to the device under test 1 by a predetermined distance in the scanning direction, in this measurement example, by a distance D, and the auxiliary reference portion with respect to the device under test 1 is moved. The position of the auxiliary reference portion 2 after the relative movement of the auxiliary reference portion 2 is set as the second scanning position, and a predetermined range between the auxiliary reference surface Re of the auxiliary reference portion 2 arranged at the second scanning position and the measured surface Ms is defined as the first range. a second scanning section S 2, the scanning direction of the second scanning section S 2 of the measurement head 3 of the air micrometer and scan movement, a number of measurement points in the second scanning section S 2, at intervals D in this measurement example the distance h 2 from the distance h 1 between the second sensor portion 5 from the first sensor unit 4 in the measuring points arranged at regular intervals until the measured surface Ms to the auxiliary reference plane Re was measured for each measurement point, the first second scanning section S number of the measurement surface from the first sensor unit 4 in the measuring portion of 2 M Obtaining a distance h 1 between the second scan measurement is sum of the distance h 2 from the second sensor unit 5 to the auxiliary reference plane Re up.

このようにして得た第一走査測定値と第二走査測定値との差分値を算出することで被測定面Msにおける第一走査区間Sの始点から第二走査区間Sの終点までの真直度が求められる。 Thus from a first scan measurement and the first start point of the scanning segment S 1 in the measurement surface Ms by calculating a difference value between the second scan measurements obtained by the end point of the second scanning section S 2 Straightness is required.

本実施例を用いた真直度測定は、上述した測定方法を繰返し行い、被測定物1の被測定面Msの真直度を測定する真直度測定方法である。   The straightness measurement using the present embodiment is a straightness measurement method in which the above-described measurement method is repeated to measure the straightness of the measurement surface Ms of the DUT 1.

また、この繰返し測定を行う際に、上述のように第一走査区間Sの始点から第二走査区間Sの終点までの真直度を求め、次の走査区間Sの始点を最初に測定した第二走査区間Sの終点と一致する位置まで補助基準部2を移動させる方法と、被測定物1に対する補助基準部2の相対移動量を常に距離Dずつ移動させながら繰返し測定する方法とがあり、前者は先に求めた補助基準面Reの形状を基準にして測定することになるので、効率よく測定することができ、測定時間の短縮を図ることができ、後者は補助基準面Reの形状を繰返し確認しながら測定を繰り返すこととなるので、精度が向上する方法となる。 In performing this repeated measures sought straightness from the first starting point of the scanning segment S 1 as described above to the second end point of the scanning section S 2, to measure the start point of the next scan interval S in the first a method of moving the position to the auxiliary reference unit 2 which coincides with the end point of the second scanning section S 2, and a method of repeatedly measuring while moving always by a distance D relative movement amount of the auxiliary reference section 2 for DUT 1 Yes, the former is measured based on the shape of the auxiliary reference plane Re previously obtained, so that the measurement can be performed efficiently and the measurement time can be shortened. Since the measurement is repeated while confirming the shape repeatedly, the accuracy is improved.

また、上述した本実施例を用いた真直度測定方法において、例えば被測定面Msの真直度測定長をLとした場合、この真直度測定長Lに渡る真直度測定結果の不確かさには、補助基準部2が被測定物1に対して距離Dだけ相対移動した際の姿勢の評価誤差をΔμ(少なくとも傾斜測定部6の分解能の不確かさ)として、Δμ×L/2Dで表される放物線誤差を含んでいる。 Further, in the straightness measurement method using the above-described embodiment, for example, when the straightness measurement length of the measured surface Ms is L, the uncertainty of the straightness measurement result over the straightness measurement length L is as follows: The posture evaluation error when the auxiliary reference unit 2 moves relative to the DUT 1 by the distance D is represented by Δμ × L 2 / 2D, where Δμ (at least the uncertainty of the resolution of the tilt measuring unit 6). Includes parabolic error.

従って、真直度測定長Lが走査区間Sの走査距離の2倍よりも短い長さ、即ち、L<2Sであれば、補助基準部2の移動量は、L/2という大きい移動量Dと、S/10若しくはそれ以下の小さい移動量dの2回の移動をして合計3回の走査測定を行うこととなる。この際、移動量Dで求めて決めたL/2の点の高さと、移動量dで端から折れ線でつないで求めたL/2での高さは一般的には一致しない。   Therefore, if the straightness measurement length L is shorter than twice the scanning distance of the scanning section S, that is, L <2S, the movement amount of the auxiliary reference portion 2 is a large movement amount D of L / 2. , S / 10 or smaller movement amount d is moved twice, and a total of three scanning measurements are performed. At this time, the height of the point of L / 2 determined by the amount of movement D and the height of L / 2 obtained by connecting the moving amount d from the end with a broken line generally do not match.

そこで、移動量dで求めた折れ線全体をL=0とし、移動量Dで求めたL/2の点に一致させるように傾斜補正を行う。   Therefore, the entire broken line obtained from the movement amount d is set to L = 0, and the inclination correction is performed so as to coincide with the point of L / 2 obtained from the movement amount D.

この傾斜補正は、補助基準部2に設けた傾斜測定部6で、この補助基準部2の移動前後の傾斜度を夫々測定し、この測定した各傾斜度に基づいて各走査区間S,Sで得た第一走査測定値及び第二走査測定値を補正するものである。 In this inclination correction, the inclination measuring section 6 provided in the auxiliary reference section 2 measures the inclination before and after the movement of the auxiliary reference section 2, and each scanning section S 1 , S is based on each measured inclination. The first scanning measurement value and the second scanning measurement value obtained in 2 are corrected.

この傾斜補正を行うことによって、0(本測定例においては第一走査区間Sの始点)〜L/2の範囲の内挿点を決定することができる。 By performing the inclination correction, 0 (in the present measurement example first start point of the scanning segment S 1) can determine the interpolation point of ~L / 2 range.

本発明の具体的な実施例2について図10に基づいて説明する。   A second embodiment of the present invention will be described with reference to FIG.

本実施例は、実施例1に示す真直度測定装置を工作機械のマシニングテーブル15の移動真直度を測定する際に用いる真直度測定装置である。   The present embodiment is a straightness measuring device used when the straightness measuring device shown in the first embodiment is used to measure the movement straightness of the machining table 15 of the machine tool.

具体的には、測定ヘッド部3に固定具12を設け、この測定ヘッド部3の走査移動を阻止し測定ヘッド部3を前記走査区間S内の所定の位置に固定した構成とし、補助基準部2に接続アダプター部13を設け、この接続アダプター部13を工作機械の主軸ツールホルダー14に着脱自在に設けた構成とし、この工作機械の主軸ツールホルダー14に接続アダプター部13を接続して補助基準部2をこの工作機械の主軸ツールホルダー14に設けると共に、この工作機械のマシニングテーブル15の表面と対向状態に設けた構成とし、この工作機械のマシニングテーブル15を移動させて、固定状態の測定ヘッド部3の第一センサ部4からマシニングテーブルの表面までの距離と第二センサ部5から補助基準面Reまでの距離との合算値からなる走査測定値を測定算出することで、この工作機械のマシニングテーブル15の移動真直度を測定できるように構成した真直度測定装置である。   Specifically, a fixing tool 12 is provided in the measurement head unit 3, the scanning movement of the measurement head unit 3 is prevented, and the measurement head unit 3 is fixed at a predetermined position in the scanning section S. 2 is provided with a connection adapter part 13, and this connection adapter part 13 is detachably provided on the spindle tool holder 14 of the machine tool, and the connection adapter part 13 is connected to the spindle tool holder 14 of the machine tool to assist the reference. The part 2 is provided in the spindle tool holder 14 of the machine tool, and is provided so as to face the surface of the machining table 15 of the machine tool, and the machining table 15 of the machine tool is moved so that the measurement head is fixed. A scanning measurement value comprising a sum of a distance from the first sensor unit 4 of the unit 3 to the surface of the machining table and a distance from the second sensor unit 5 to the auxiliary reference plane Re is measured and calculated. It is a structure with a straightness measuring device so as to measure the movement straightness of the machining table 15 of the machine tool.

即ち、一般的に工作機械のマシニングテーブル15は、表面の真直度が評価されているので表面は真直であると言えるので、このマシニングテーブル15を移動させながら表面の真直度を測定した際には、測定結果は一定の値を示すことになり、もし、この測定結果が一定でない値を示したならば、これはマシニングテーブル15が真直で無いのではなく、マシニングテーブル15の移動真直度が真直で無いということになり、本実施例は、このような真直な表面若しくは真直な表面を有する基準部を載置した移動物体の移動真直度を測定するための真直度測定装置である。   That is, since the surface straightness of the machining table 15 of a machine tool is generally evaluated because the surface is straight, when measuring the surface straightness while moving the machining table 15, The measurement result will show a constant value, and if this measurement result shows a non-constant value, this is not because the machining table 15 is not straight, but the movement straightness of the machining table 15 is straight. Therefore, the present embodiment is a straightness measuring device for measuring the moving straightness of a moving object on which such a straight surface or a reference portion having a straight surface is placed.

具体的には、本実施例では、工作機械のマシニングテーブル15、即ち、被測定物側1が移動するので、測定ヘッド部3は走査移動する必要がなく、よって、測定ヘッド部3を固定する固定具12を設けて、この測定ヘッド部3を固定状態にした構成としている。   Specifically, in this embodiment, since the machining table 15 of the machine tool, that is, the measured object side 1 moves, the measurement head unit 3 does not need to be moved by scanning, and thus the measurement head unit 3 is fixed. A fixing tool 12 is provided so that the measuring head unit 3 is fixed.

尚、本実施例を工作機械の主軸ツールホルダー14に取り付ける際、基体支持部2bに設けた脚部2cがマシニングテーブル15と干渉する可能性がある場合は、これを取り外して装着するものとする。   When the embodiment is attached to the spindle tool holder 14 of the machine tool, if there is a possibility that the leg 2c provided on the base support 2b interferes with the machining table 15, it is removed and attached. .

また、測定ヘッド部3を固定し移動不能状態にしたことにより、この測定ヘッド部3に設けた第二センサ部5は、補助基準面Reの常に同じ位置を測定することとなるので、この第二センサ部5から補助基準面Reまでの距離は一定となる。   Further, since the measurement head unit 3 is fixed and immovable, the second sensor unit 5 provided in the measurement head unit 3 always measures the same position on the auxiliary reference plane Re. The distance from the two sensor unit 5 to the auxiliary reference plane Re is constant.

従って、測定ヘッド部3が出力する走査測定値の変化は、第一センサ部4からマシニングテーブル15の表面までの距離の変化となり、また、このマシニングテーブル15の表面は真直であることが既知なので、測定ヘッド部3が出力する走査測定値の変化は、工作機械のマシニングテーブル15の移動時の上下方向の変動を示すものであり、即ち、本実施例によって、工作機械のマシニングテーブル15の移動真直度を測定することができることとなる。   Therefore, the change in the scanning measurement value output from the measurement head unit 3 is a change in the distance from the first sensor unit 4 to the surface of the machining table 15, and it is known that the surface of the machining table 15 is straight. The change in the scanning measurement value output from the measuring head unit 3 indicates the vertical fluctuation when the machining table 15 of the machine tool is moved. That is, according to this embodiment, the movement of the machining table 15 of the machine tool is moved. The straightness can be measured.

尚、本発明は、本実施例1,2に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to the first and second embodiments, and the specific configuration of each component can be appropriately designed.

1 被測定物
2 補助基準部
2a 基体部
2b 基体支持部
3 測定ヘッド部
4 第一センサ部
5 第二センサ部
6 傾斜測定部
7 走査ガイド部
11 リニアスケール部
12 固定具
13 接続アダプター部
14 主軸ツールホルダー
15 マシニングテーブル
Ms 被測定面
Re 補助基準面
S 走査区間
第一走査区間
第二走査区間
距離
距離
DESCRIPTION OF SYMBOLS 1 Object to be measured 2 Auxiliary reference part 2a Base part 2b Base support part 3 Measurement head part 4 First sensor part 5 Second sensor part 6 Inclination measurement part 7 Scanning guide part
11 Linear scale section
12 Fixture
13 Connection adapter section
14 Spindle tool holder
15 Machining table Ms Surface to be measured Re Auxiliary reference surface S Scan section S 1 First scan section S 2 Second scan section
h 1 distance
h 2 distance

Claims (9)

空気マイクロメータを用いた真直度測定装置であって、被測定物の被測定面と対向状態に設けられる補助基準面を形成した補助基準部を備え、前記補助基準部は、前記補助基準面を形成した基体部と、この基体部を支持する基体支持部とから成り、水平方向に対向配設した前記基体支持部間に前記補助基準面を下方に向けて前記基体部を架設した構成とすると共に、前記被測定面上に移動自在に載置して前記補助基準面を前記被測定面に間隔をおいて対向状態に配設し得る構成とし、前記被測定面上に載置した際の対向する前記被測定面と前記補助基準面との間の所定範囲を走査区間とし、この走査区間を移動する測定ヘッド部を備え、この測定ヘッド部は、前記被測定面と対向する位置に空気マイクロメータから成る第一センサ部を設け前記補助基準面と対向する位置に空気マイクロメータから成る第二センサ部を設けると共に、この第一センサ部と第二センサ部との測定方向を同一直線上に配置した構成とし、この測定ヘッド部を前記走査区間で所定方向に走査移動させて、前記走査区間の多数の測定箇所における前記第一センサ部から前記被測定面までの距離と前記第二センサ部から前記補助基準面までの距離との合算値からなる走査測定値を測定算出するように構成すると共に、前記被測定面上に移動自在に載置し、前記被測定物に対して前記補助基準部を相対移動させる前の走査区間と、前記補助基準部を所定距離だけ相対移動させた後の走査区間とにおける夫々の前記走査測定値の差分値から前記被測定面の真直度を測定算出するように構成したことを特徴とする真直度測定装置。 A straightness measuring apparatus using an air micrometer , comprising an auxiliary reference portion that forms an auxiliary reference surface provided in a state of being opposed to the measurement surface of the object to be measured, and the auxiliary reference portion includes the auxiliary reference surface. The base portion is composed of a base portion formed and a base support portion that supports the base portion, and the base portion is installed between the base support portions that are horizontally opposed to each other with the auxiliary reference surface facing downward. In addition, the auxiliary reference surface can be placed on the surface to be measured so that the auxiliary reference surface can be disposed in a state of being opposed to the surface to be measured. A predetermined range between the measuring surface and the auxiliary reference surface facing each other is set as a scanning section, and a measuring head section that moves in the scanning section is provided, and the measuring head section has an air at a position facing the measuring surface. before providing a first sensor unit consisting of a micrometer Rutotomoni provided a second sensor unit consisting of the air micrometer at a position facing the auxiliary reference plane, constant the a first sensor unit measuring direction and the second sensor unit and configured arranged on the same straight line, measurement of this The head unit is scanned and moved in a predetermined direction in the scanning section, and the distance from the first sensor unit to the surface to be measured and the second sensor unit to the auxiliary reference plane at a number of measurement points in the scanning section. It is configured to measure and calculate a scanning measurement value consisting of a sum value with a distance, and is placed movably on the surface to be measured, and before the auxiliary reference portion is relatively moved with respect to the object to be measured. The straightness of the measured surface is measured and calculated from a difference value between the scanning measurement values in a scanning section and a scanning section after the auxiliary reference unit is relatively moved by a predetermined distance. Straightness Measuring device. 前記補助基準部にリニアスケール部を設けて、前記測定ヘッド部の走査位置を確知できる構成としたことを特徴とする請求項1記載の真直度測定装置。2. The straightness measuring apparatus according to claim 1, wherein a linear scale unit is provided in the auxiliary reference unit so that a scanning position of the measuring head unit can be ascertained. 前記被測定物若しくは前記補助基準部に傾斜測定部を設け、前記被測定物または前記補助基準部の前記補助基準部または前記被測定物に対する相対移動前後の傾斜度を測定し、この測定した傾斜度に基づいて補正を行い前記被測定面の真直度を測定算出するように構成したことを特徴とする請求項1,2のいずれか1項に記載の真直度測定装置。 An inclination measuring unit is provided in the object to be measured or the auxiliary reference part, and a degree of inclination of the object to be measured or the auxiliary reference part before and after relative movement with respect to the auxiliary reference part or the object to be measured is measured. The straightness measurement apparatus according to claim 1, wherein the straightness measurement apparatus is configured to perform correction based on a degree and to measure and calculate the straightness of the surface to be measured. 前記被測定面と前記補助基準面との間に、前記測定ヘッド部を直線的に移動させる走査ガイド部を設けたことを特徴とする請求項1〜3のいずれか1項に記載の真直度測定装置。 The straightness according to any one of claims 1 to 3 , wherein a scanning guide unit that linearly moves the measurement head unit is provided between the surface to be measured and the auxiliary reference surface. measuring device. 前記測定ヘッド部の走査方向長さをX,走査方向と水平方向に直交する幅方向長さをY,厚みをTとし、前記測定ヘッド部と前記被測定面とのクリアランスをC,前記測定ヘッド部と前記補助基準面とのクリアランスをCとし、前記測定ヘッド部が走査方向に対して前後に最大に傾いた状態時の最大ピッチング角度をθx,前記測定ヘッド部が走査方向に対して左右に最大に傾いた状態時の最大ローリング角度をθyとして、(T+C+C)×(1/COSθx−1)<必要測定精度又は分解能、及び(T+C+C)×(1/COSθy−1)<必要測定精度又は分解能となるように、前記X,Y,T,C,Cを設定したことを特徴とする請求項1〜4のいずれか1項に記載の真直度測定装置。 The length of the measurement head portion in the scanning direction is X, the length in the width direction orthogonal to the scanning direction is Y, the thickness is T, the clearance between the measurement head portion and the surface to be measured is C 1 , and the measurement the clearance between the head portion and the auxiliary reference plane and C 2, the maximum pitching angle at a state where the measuring head is tilted to the maximum back and forth relative to the scanning direction [theta] x, the measuring head is to the scanning direction Assuming that the maximum rolling angle when tilted to the left and right is θy, (T + C 1 + C 2 ) × (1 / COSθx−1) <necessary measurement accuracy or resolution, and (T + C 1 + C 2 ) × (1 / COSθy− 1) <as required measurement accuracy or resolution, the X, Y, T, C 1, straightness measuring device according to any one of claims 1 to 4, characterized in that setting the C 2 . 前記測定ヘッド部に固定具を設け、この測定ヘッド部の走査移動を阻止し該測定ヘッド部を前記走査区間内の所定の位置に固定した構成とし、前記補助基準部に接続アダプター部を設け、この接続アダプター部を工作機械の主軸ツールホルダーに着脱自在に設けた構成とし、前記工作機械の主軸ツールホルダーに前記接続アダプター部を接続して前記補助基準部を該主軸ツールホルダーに設けると共に、前記工作機械のマシニングテーブルの表面と対向状態に設け、このマシニングテーブルを移動させて、前記固定状態の測定ヘッド部の前記第一センサ部から前記マシニングテーブルの表面までの距離と前記第二センサ部から前記補助基準面までの距離との合算値からなる走査測定値を測定算出することで前記マシニングテーブルの移動真直度を測定できるように構成したことを特徴とする請求項1〜5のいずれか1項に記載の真直度測定装置。   The measuring head unit is provided with a fixture, the scanning movement of the measuring head unit is prevented and the measuring head unit is fixed at a predetermined position in the scanning section, and a connection adapter unit is provided in the auxiliary reference unit, The connection adapter part is configured to be detachably provided on a spindle tool holder of a machine tool, the auxiliary adapter part is provided on the spindle tool holder by connecting the connection adapter part to the spindle tool holder of the machine tool, and Provided in opposition to the surface of the machining table of the machine tool, and by moving the machining table, the distance from the first sensor portion of the measurement head portion in the fixed state to the surface of the machining table and the second sensor portion The movement straightness of the machining table is obtained by measuring and calculating a scanning measurement value consisting of a total value with the distance to the auxiliary reference plane. By being configured so as to measure the straightness measuring device according to any one of claims 1 to 5, wherein. 請求項1〜5のいずれか1項に記載の真直度測定装置を用いた真直度測定方法であって、被測定物の被測定面上に移動自在に載置し、この被測定面上に最初に載置した位置を第一走査位置とし、第一走査位置における補助基準部の補助基準面と被測定面との間の所定範囲を第一走査区間とし、この第一走査区間の走査方向に空気マイクロメータの測定ヘッド部を走査移動させ、第一走査区間の多数の測定箇所における第一センサ部から被測定面までの距離と第二センサ部から補助基準面までの距離とを夫々測定し、この第一走査区間の多数の測定箇所における第一センサ部から補助基準面までの距離と第二センサ部から補助基準面までの距離との合算値である第一走査測定値を得、次いで、前記被測定物に対して補助基準部を走査方向に所定の距離だけ相対移動させ、前記被測定物に対して補助基準部が相対移動した位置を第二走査位置とし、この第二走査位置における補助基準部の補助基準面と被測定面との間の所定範囲を第二走査区間とし、この第二走査区間の走査方向に空気マイクロメータの測定ヘッド部を走査移動し、第二走査区間の多数の測定箇所における第一センサ部から被測定面までの距離と第二センサ部から補助基準面までの距離とを夫々測定し、この第二走査区間の多数の測定箇所における第一センサ部から被測定面までの距離と第二センサ部から補助基準面までの距離との合算値である第二走査測定値を得、この第一走査測定値と第二走査測定値との差分値を算出して前記被測定面における前記第一走査区間の始点から前記第二走査区間の終点までの真直度を算出することを特徴とする真直度測定方法。 A straightness measuring method using the straightness measuring apparatus according to any one of claims 1 to 5, wherein the straightness measuring method is movably placed on a measured surface of an object to be measured, and the measured surface is placed on the measured surface. initially placed position as the first scanning position, a predetermined range between the auxiliary reference surface and the measurement surface of the auxiliary reference section definitive the first scanning position as the first scanning section, the scanning of the first scanning section The measurement head part of the air micrometer is scanned and moved in the direction, and the distance from the first sensor part to the surface to be measured and the distance from the second sensor part to the auxiliary reference surface at a number of measurement points in the first scanning section, respectively. Measure and obtain a first scanning measurement value that is the sum of the distance from the first sensor unit to the auxiliary reference plane and the distance from the second sensor unit to the auxiliary reference plane at a number of measurement points in the first scanning section. Next, the auxiliary reference portion is predetermined in the scanning direction with respect to the object to be measured. Distance moved relative, the position where the auxiliary reference portion is moved relative to the object to be measured and a second scanning position, between the auxiliary reference surface and the measurement surface of the auxiliary reference section definitive in this second scanning position A predetermined range is set as a second scanning section, and the measurement head unit of the air micrometer is scanned and moved in the scanning direction of the second scanning section. From the first sensor unit to the surface to be measured at a number of measurement points in the second scanning section. Measure the distance and the distance from the second sensor section to the auxiliary reference plane, respectively, and the distance from the first sensor section to the measured surface and the second sensor section to the auxiliary reference plane at a number of measurement points in this second scanning section From the starting point of the first scanning section on the surface to be measured by calculating a difference value between the first scanning measurement value and the second scanning measurement value. the straightness of the end point of the second scanning section Straightness measuring method characterized by output. 前記被測定部に対して前記補助基準部が相対移動する前後の傾斜度を夫々測定し、この測定した傾斜度に基づいて相対傾きを求め、この相対傾きを用いて前記第一走査測定値と前記第二走査測定値との差分値を補正して、前記被測定面の真直度を算出することを特徴とする請求項7記載の真直度測定方法。 Measure the inclination before and after the auxiliary reference part moves relative to the part to be measured, determine a relative inclination based on the measured inclination, and use the relative inclination to determine the first scan measurement value and The straightness measurement method according to claim 7 , wherein the straightness of the measured surface is calculated by correcting a difference value from the second scanning measurement value. 請求項6記載の真直度測定装置を用いた真直度測定方法であって、前記測定ヘッド部に固定具を設けて該測定ヘッド部を前記走査区間内の所定の位置に固定状態にして、前記補助基準部に接続アダプター部を設け、工作機械の主軸ツールホルダーに前記接続アダプター部を接続して前記補助基準部を該主軸ツールホルダーに設けると共に、前記工作機械のマシニングテーブルの表面と対向状態に設け、このマシニングテーブルを移動させて、前記固定状態の測定ヘッド部の前記第一センサ部から前記マシニングテーブルの表面までの距離と前記第二センサ部から前記補助基準面までの距離との合算値からなる走査測定値を測定算出して前記マシニングテーブルの移動真直度を測定算出することを特徴とする真直度測定方法。   A straightness measurement method using the straightness measurement apparatus according to claim 6, wherein a fixture is provided on the measurement head unit so that the measurement head unit is fixed at a predetermined position in the scanning section. A connection adapter portion is provided in the auxiliary reference portion, the connection adapter portion is connected to the spindle tool holder of the machine tool, and the auxiliary reference portion is provided in the spindle tool holder, and is in a state facing the surface of the machining table of the machine tool. A total value of a distance from the first sensor unit of the measurement head unit in the fixed state to the surface of the machining table and a distance from the second sensor unit to the auxiliary reference surface by moving the machining table A straightness measuring method comprising: measuring and calculating a scanning measurement value comprising: measuring and calculating the movement straightness of the machining table.
JP2010215291A 2010-09-27 2010-09-27 Straightness measuring device and straightness measuring method Expired - Fee Related JP5715365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215291A JP5715365B2 (en) 2010-09-27 2010-09-27 Straightness measuring device and straightness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215291A JP5715365B2 (en) 2010-09-27 2010-09-27 Straightness measuring device and straightness measuring method

Publications (2)

Publication Number Publication Date
JP2012068202A JP2012068202A (en) 2012-04-05
JP5715365B2 true JP5715365B2 (en) 2015-05-07

Family

ID=46165641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215291A Expired - Fee Related JP5715365B2 (en) 2010-09-27 2010-09-27 Straightness measuring device and straightness measuring method

Country Status (1)

Country Link
JP (1) JP5715365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873756B1 (en) * 2018-05-25 2018-07-03 세종기술 주식회사 Width measurement device for polymer battery appearance inspection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522636U (en) * 1978-07-31 1980-02-14
JP3468352B2 (en) * 1998-08-10 2003-11-17 東芝セラミックス株式会社 Flatness measuring device for quartz glass substrate surface
JP4803545B2 (en) * 2005-11-24 2011-10-26 学校法人日本大学 Straightness measurement method and apparatus
JP5158791B2 (en) * 2008-05-20 2013-03-06 慧 清野 measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873756B1 (en) * 2018-05-25 2018-07-03 세종기술 주식회사 Width measurement device for polymer battery appearance inspection

Also Published As

Publication number Publication date
JP2012068202A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US7249421B2 (en) Hysteresis compensation in a coordinate measurement machine
US7526873B2 (en) Use of surface measurement probes
US7752003B2 (en) Hysteresis compensation in a coordinate measurement machine
TWI499757B (en) Accumulated lead error measurement device and determination method of ball screw shaft
Fan et al. A scanning contact probe for a micro-coordinate measuring machine (CMM)
JP2015094610A (en) Industrial machinery and measuring method of expansion/contraction quantity thereof
CN100549614C (en) Be used to detect the device of the locus of the balladeur train that can on coordinate axis, move
CN115979118B (en) Device and method for measuring verticality error and error azimuth angle of cylindrical part
CA1336532C (en) Probe motion guiding device, position sensing apparatus and position sensing method
JP4931867B2 (en) Variable terminal
JP2006118911A (en) Surface roughness/contour measuring instrument
JP5715365B2 (en) Straightness measuring device and straightness measuring method
WO2007037224A1 (en) Probe-type shape measurement device and method, and rotation-restricted air cylinder suitable for the device
JP5290038B2 (en) Measuring apparatus and measuring method
JP2006234427A (en) Flatness measuring method and instrument
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JP2008096114A (en) Measuring apparatus
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
JP2005114549A (en) Surface profile measuring apparatus and method
JP6181935B2 (en) Coordinate measuring machine
JP6564171B2 (en) Shape measuring apparatus and shape measuring method
JP6128639B2 (en) Measuring method
TWI777205B (en) Calibration method of shape measuring device, reference device and detector
CN104019729B (en) A kind of taper gage multiparameter measuring device and method
CN114102258B (en) Machine tool position degree detection method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5715365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees