JP5713431B2 - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
JP5713431B2
JP5713431B2 JP2010286477A JP2010286477A JP5713431B2 JP 5713431 B2 JP5713431 B2 JP 5713431B2 JP 2010286477 A JP2010286477 A JP 2010286477A JP 2010286477 A JP2010286477 A JP 2010286477A JP 5713431 B2 JP5713431 B2 JP 5713431B2
Authority
JP
Japan
Prior art keywords
layer
diamond
thin film
present
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010286477A
Other languages
Japanese (ja)
Other versions
JP2012134392A (en
Inventor
嘉数 誠
誠 嘉数
川原田 洋
洋 川原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nippon Telegraph and Telephone Corp
Original Assignee
Waseda University
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nippon Telegraph and Telephone Corp filed Critical Waseda University
Priority to JP2010286477A priority Critical patent/JP5713431B2/en
Publication of JP2012134392A publication Critical patent/JP2012134392A/en
Application granted granted Critical
Publication of JP5713431B2 publication Critical patent/JP5713431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、電界効果型トランジスターに関し、より詳細には、ダイヤモンド薄膜層を備える電界効果型トランジスターに関する。   The present invention relates to a field effect transistor, and more particularly to a field effect transistor including a diamond thin film layer.

ダイヤモンド半導体は、半導体最大の絶縁耐圧、熱伝導性を有するばかりでなく、電子や正孔の移動度やドリフト速度も高く、もしダイヤモンド薄膜を用いた電界効果トランジスター(以下「ダイヤモンドFET」という。)が実用化できれば、既存の半導体の性能を遥かに越える、最高の性能を持つ高周波電力トランジスターが実用可能になる。   Diamond semiconductors not only have the maximum dielectric strength and thermal conductivity of semiconductors, but also have high electron and hole mobility and drift speed, and if they are field effect transistors using diamond thin films (hereinafter referred to as “diamond FETs”). If it can be put into practical use, a high-frequency power transistor with the highest performance that far exceeds the performance of existing semiconductors can be put into practical use.

図2を用いて、従来の水素終端されたダイヤモンドFETの作製工程を説明する。   With reference to FIG. 2, a conventional process for producing a hydrogen-terminated diamond FET will be described.

まず、ダイヤモンド結晶層201を用意し、その結晶層201をCVDリアクター内で水素プラズマに曝して、ダイヤモンド表面を水素ラジカル(「H」で表す。)で終端する(図2(a))。そのようにして水素終端された表面層202を形成する。次に、表面層202上の一部の領域に、空間的に分離された2つの金薄膜203A、203Bを蒸着する(図2(b))。それが各々ソース電極203A、ドレイン電極203Bになる。次に、ソース電極203Aとドレイン電極203Bとの間に、空間的に分離して、Al薄膜204を蒸着する。これがゲート電極204になる(図2(c))。このように作製されたFETを動作させる場合の配線を図2(d)に示す。   First, a diamond crystal layer 201 is prepared, the crystal layer 201 is exposed to hydrogen plasma in a CVD reactor, and the diamond surface is terminated with hydrogen radicals (represented by “H”) (FIG. 2A). A hydrogen-terminated surface layer 202 is thus formed. Next, two gold thin films 203A and 203B spatially separated are vapor-deposited in a partial region on the surface layer 202 (FIG. 2B). These become the source electrode 203A and the drain electrode 203B, respectively. Next, an Al thin film 204 is deposited by spatial separation between the source electrode 203A and the drain electrode 203B. This becomes the gate electrode 204 (FIG. 2C). FIG. 2D shows the wiring for operating the FET manufactured as described above.

このような従来技術によって作製した、ゲート長1μmのFETのドレイン電流特性を図3に示す。この従来技術によるFETのゲート電圧−3Vにおける最大ドレイン電流密度は、30℃で100mA/mmであった。さらに、図3に示すように、試料温度を上げて行ったところ、150℃付近でドレイン電流密度は急激に減少し、再び室温に戻してもドレイン電流密度は元に戻らなかった(非特許文献1参照)。   FIG. 3 shows the drain current characteristics of an FET having a gate length of 1 μm manufactured by such a conventional technique. The maximum drain current density at a gate voltage of −3 V of the FET according to the prior art was 100 mA / mm at 30 ° C. Furthermore, as shown in FIG. 3, when the sample temperature was raised, the drain current density decreased rapidly around 150 ° C., and the drain current density did not return to room temperature even when the temperature was returned to room temperature (Non-Patent Document). 1).

M. Kubovic, Y. Yamauchi, M. Kasu, “Improvements in Thermal Stability of Hydrogen-terminated Diamond FETs”, Extended Abstract of the 2008 International Conference on Solid State Devices and Materials, Tsukuba, 2008, pp. 1036-1037.M. Kubovic, Y. Yamauchi, M. Kasu, “Improvements in Thermal Stability of Hydrogen-terminated Diamond FETs”, Extended Abstract of the 2008 International Conference on Solid State Devices and Materials, Tsukuba, 2008, pp. 1036-1037.

上述の従来技術によるダイヤモンドFETでは、(1)室温における最大ドレイン電流密度が低いことと、(2)試料を昇温すると、ある温度以上でドレイン電流が劇的に減少し、劣化してしまうことが問題であり、実用に供することができない。   In the above-described diamond FET according to the prior art, (1) the maximum drain current density at room temperature is low, and (2) when the temperature of the sample is raised, the drain current is dramatically reduced and deteriorated at a certain temperature or higher. Is a problem and cannot be put to practical use.

本発明は、このような問題点に鑑みてなされたものであり、その目的は、ダイヤモンドFETにおいて、ドレイン電流特性を改善することにある。また、本発明の別の目的は、そのようなFETに用いることのできるダイヤモンド薄膜を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to improve drain current characteristics in a diamond FET. Another object of the present invention is to provide a diamond thin film that can be used for such FETs.

このような目的を達成するために、本発明の第1の態様は、ホウ素濃度が2×1020cm-3以上3×1021cm-3以下であり、膜厚が1nm以上5nm以下であることを特徴とするダイヤモンド薄膜である。 In order to achieve such an object, according to the first aspect of the present invention, the boron concentration is 2 × 10 20 cm −3 or more and 3 × 10 21 cm −3 or less, and the film thickness is 1 nm or more and 5 nm or less. It is a diamond thin film characterized by this.

また、本発明の第2の態様は、ダイヤモンド結晶層と、前記ダイヤモンド結晶層上のチャネル層と、前記チャネル層上のソース電極、ドレイン電極およびゲート電極とを備え、前記チャネル層は、第1の態様のダイヤモンド薄膜で構成されていることを特徴とする電界効果トランジスターである。   A second aspect of the present invention includes a diamond crystal layer, a channel layer on the diamond crystal layer, and a source electrode, a drain electrode, and a gate electrode on the channel layer, and the channel layer includes a first layer It is comprised with the diamond thin film of the aspect.

また、本発明の第3の態様は、第2の態様において、前記ソース電極および前記ドレイン電極と前記チャネル層との間に、TiC層をそれぞれ備えることを特徴とする。   According to a third aspect of the present invention, in the second aspect, a TiC layer is provided between the source and drain electrodes and the channel layer.

また、本発明の第4の態様は、第2又は第3の態様において、前記ゲート電極と前記チャネル層との間にAl23層を備えることを特徴とする。 According to a fourth aspect of the present invention, in the second or third aspect, an Al 2 O 3 layer is provided between the gate electrode and the channel layer.

本発明によれば、ホウ素濃度が2×1020cm-3以上3×1021cm-3以下であり、膜厚が1nm以上5nm以下であることを特徴とするダイヤモンド薄膜をチャネル層に用いることにより、ダイヤモンドFETにおいて、ドレイン電流特性を大幅に改善することができる。 According to the present invention, a diamond thin film characterized in that the boron concentration is 2 × 10 20 cm −3 or more and 3 × 10 21 cm −3 or less and the film thickness is 1 nm or more and 5 nm or less is used for the channel layer. Thus, the drain current characteristics can be greatly improved in the diamond FET.

本発明によるダイヤモンドFETの作製工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the diamond FET by this invention. 従来の水素終端されたダイヤモンドFETの作製工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the conventional hydrogen-terminated diamond FET. 従来技術および本発明によるダイヤモンドFETのドレイン電流電圧特性を示す図である。It is a figure which shows the drain current voltage characteristic of the diamond FET by a prior art and this invention. 高濃度ホウ素ドープダイヤモンド薄膜層のシートキャリア濃度の膜厚依存性を示す図である。It is a figure which shows the film thickness dependence of the sheet carrier density | concentration of a high concentration boron dope diamond thin film layer. 高濃度ホウ素ドープダイヤモンド薄膜層のホウ素原子濃度に対するシート正孔濃度を示す図である。It is a figure which shows the sheet | seat hole density | concentration with respect to the boron atom density | concentration of a high concentration boron dope diamond thin film layer. 本発明に係るダイヤモンド薄膜層の温度依存性を示す図である。It is a figure which shows the temperature dependence of the diamond thin film layer concerning this invention. TiC層とTi層がなく、Au層のみがある従来技術に相当する場合((a))と、Au層に加えてTiC層及びTi層がある本発明の場合((b))のソース・ドレイン電極間の電流電圧特性を示す図である。In the case of (a) corresponding to the prior art having only the Au layer without the TiC layer and the Ti layer, and in the case of the present invention having the TiC layer and the Ti layer in addition to the Au layer ((b)) It is a figure which shows the current voltage characteristic between drain electrodes.

以下、図面を参照して本発明の実施形態を詳細に説明する。具体的な材料や数値に言及して説明を行うが、これらの材料や数値に本発明の範囲を限定する意図ではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although description will be made with reference to specific materials and numerical values, the scope of the present invention is not intended to be limited to these materials and numerical values.

本発明に係るダイヤモンドFETの構造をその作製工程に沿って説明する。   The structure of the diamond FET according to the present invention will be described along the manufacturing process.

まず、ダイヤモンド結晶層1の表面上に、マイクロ波CVD装置でトリメチルボロン(TMB)とメタンを水素で希釈した原料ガスを供給し、ホウ素が高濃度にドープされたダイヤモンド薄膜層102を結晶成長する(図1(a))。結晶成長時のマイクロ波電力を500W、基板温度を600℃、B/C原子濃度比を6000ppmとした。   First, a raw material gas obtained by diluting trimethylboron (TMB) and methane with hydrogen is supplied on the surface of the diamond crystal layer 1 with a microwave CVD apparatus to grow a diamond thin film layer 102 doped with boron at a high concentration. (FIG. 1 (a)). The microwave power during crystal growth was 500 W, the substrate temperature was 600 ° C., and the B / C atomic concentration ratio was 6000 ppm.

次に、ソース電極およびドレイン電極として、Ti層131A、131B、Au層132A、132Bを順に蒸着する(図1(b))。   Next, Ti layers 131A and 131B and Au layers 132A and 132B are sequentially deposited as a source electrode and a drain electrode (FIG. 1B).

次に、試料を400℃でアニールを行い、Tiをダイヤモンドと反応させて、TiC層133A、133Bを形成する(図1(c))。最後に、ソース電極およびドレイン電極から空間的に離れたゲート部にAl23膜141を形成し、その上にAl層42をゲート電極として蒸着する(図1(d))。このように作製したダイヤモンドFETを動作させる場合の配線を図1(e)に示す。 Next, the sample is annealed at 400 ° C., and Ti is reacted with diamond to form TiC layers 133A and 133B (FIG. 1C). Finally, an Al 2 O 3 film 141 is formed in a gate portion spatially separated from the source electrode and the drain electrode, and an Al layer 42 is deposited thereon as a gate electrode (FIG. 1D). FIG. 1 (e) shows the wiring for operating the diamond FET thus manufactured.

図3に、作製したダイヤモンドFETのドレイン電流特性を示す。本発明によるFETの特性は、ゲート電圧−3Vにおける最大ドレイン電流密度が600mA/mmとなり、従来技術による場合の約6倍に増加した。また、温度依存性に関しては、従来技術では室温から150℃付近でドレイン電流密度は急激に減少したが、本発明では900℃まで安定して動作した。   FIG. 3 shows the drain current characteristics of the fabricated diamond FET. The characteristics of the FET according to the present invention were 600 mA / mm at the maximum drain current density at a gate voltage of −3 V, which was about 6 times that of the conventional technique. Regarding the temperature dependency, the drain current density rapidly decreased from room temperature to around 150 ° C. in the prior art, but in the present invention, it stably operated up to 900 ° C.

図4に、ダイヤモンド薄膜層102の厚さを変えた時のシートキャリア濃度を示す。膜厚が1〜5nmの範囲にあるとき、シートキャリア濃度は1×1014cm-2以上あり、良好な特性を示すことが分かった。図5に、ホウ素原子濃度に対するシート正孔濃度を示す。2×1020から3×1021cm-3のときに、シート正孔濃度は1×1014cm-2以上を示し、良好であることが分かった。また、図6に、ダイヤモンド薄膜層の温度依存性を示す。従来技術では温度上昇に従いシート正孔濃度が急激に減少するが、本発明ではほぼ1×1014cm-2で安定している。 FIG. 4 shows the sheet carrier concentration when the thickness of the diamond thin film layer 102 is changed. When the film thickness was in the range of 1 to 5 nm, the sheet carrier concentration was 1 × 10 14 cm −2 or more, and it was found that good characteristics were exhibited. FIG. 5 shows the sheet hole concentration with respect to the boron atom concentration. When 2 × 10 20 to 3 × 10 21 cm −3 , the sheet hole concentration was 1 × 10 14 cm −2 or more, which was found to be favorable. FIG. 6 shows the temperature dependence of the diamond thin film layer. In the prior art, the sheet hole concentration rapidly decreases as the temperature rises, but in the present invention, it is stable at approximately 1 × 10 14 cm −2 .

以上、説明してきたように、ホウ素濃度が2×1020cm-3以上3×1021cm-3以下であり、膜厚が1nm以上5nm以下であるダイヤモンド薄膜は、シートキャリア濃度および移動度が良好な値をとる。そして、このようなダイヤモンド薄膜をFETのチャネル層として用いることにより、図3を参照して説明したように、ドレイン電流特性に大幅な改善が見られる。最大ドレイン電流密度が大幅に増大する上、温度特性も安定するため、実用化可能なダイヤモンドFETを作製することができる。 As described above, a diamond thin film having a boron concentration of 2 × 10 20 cm −3 or more and 3 × 10 21 cm −3 or less and a film thickness of 1 nm or more and 5 nm or less has a sheet carrier concentration and mobility. Take good value. By using such a diamond thin film as the channel layer of the FET, as described with reference to FIG. 3, the drain current characteristic is greatly improved. Since the maximum drain current density is greatly increased and the temperature characteristics are stabilized, a practically usable diamond FET can be manufactured.

図7に、TiC層133A、133BとTi層131A、131Bがなく、Au層132A、132Bのみがある従来技術に相当する場合((a))と、Au層132A、132Bに加えてTiC層133A、133B及びTi層131A、131Bがある本発明の場合((b))のソース・ドレイン電極間の電流電圧特性を示す。本発明の場合の方が明らかに電流値が高く、抵抗が低いことが分かった。   FIG. 7 shows a case in which the TiC layers 133A and 133B and the Ti layers 131A and 131B are not present and only the Au layers 132A and 132B correspond to the prior art ((a)), and the TiC layer 133A in addition to the Au layers 132A and 132B. 1B shows current-voltage characteristics between the source and drain electrodes in the case of the present invention having 133B and Ti layers 131A and 131B ((b)). It was found that the current value was clearly higher in the case of the present invention and the resistance was lower.

101 ダイヤモンド結晶層
102 ダイヤモンド薄膜層
131A、131B Ti層
132A、132B Au層
133A、133B TiC層
141 Al23
142 Al層
101 diamond crystal layer 102 diamond thin film layer 131A, 131B Ti layer 132A, 132B Au layer 133A, 133B TiC layer 141 Al 2 O 3 film 142 Al layer

Claims (2)

ダイヤモンド結晶層と、
前記ダイヤモンド結晶層上のチャネル層と、
前記チャネル層上のソース電極、ドレイン電極およびゲート電極と
を備え、
前記チャネル層は、ホウ素濃度が2×10 20 cm -3 以上3×10 21 cm -3 以下であり、膜厚が1nm以上5nm以下であるダイヤモンド薄膜で構成されており、
前記ゲート電極と前記チャネル層との間にAl 2 3 層を備えることを特徴とする電界効果トランジスター。
A diamond crystal layer;
A channel layer on the diamond crystal layer;
A source electrode, a drain electrode and a gate electrode on the channel layer;
The channel layer is composed of a diamond thin film having a boron concentration of 2 × 10 20 cm −3 to 3 × 10 21 cm −3 and a film thickness of 1 nm to 5 nm .
A field effect transistor comprising an Al 2 O 3 layer between the gate electrode and the channel layer .
前記ソース電極および前記ドレイン電極と前記チャネル層との間に、TiC層をそれぞれ備えることを特徴とする請求項に記載の電界効果トランジスター。 The field effect transistor according to claim 1 , further comprising a TiC layer between the source electrode, the drain electrode, and the channel layer.
JP2010286477A 2010-12-22 2010-12-22 Field effect transistor Active JP5713431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286477A JP5713431B2 (en) 2010-12-22 2010-12-22 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286477A JP5713431B2 (en) 2010-12-22 2010-12-22 Field effect transistor

Publications (2)

Publication Number Publication Date
JP2012134392A JP2012134392A (en) 2012-07-12
JP5713431B2 true JP5713431B2 (en) 2015-05-07

Family

ID=46649631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286477A Active JP5713431B2 (en) 2010-12-22 2010-12-22 Field effect transistor

Country Status (1)

Country Link
JP (1) JP5713431B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145291A1 (en) * 2020-12-28 2022-07-07 国立大学法人佐賀大学 Multilayer film structure, method for manufacturing multilayer film structure, and electronic element
CN118398666B (en) * 2024-06-25 2024-09-10 深圳市港祥辉电子有限公司 P-type transverse diamond MOSFET device and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115191A (en) * 1993-02-23 1995-05-02 Kobe Steel Ltd Diamond field effect transistor and its manufacture
GB2454844A (en) * 2006-08-11 2009-05-27 Akhan Technologies Inc P-Channel nanocrystalline diamond field effect transistor

Also Published As

Publication number Publication date
JP2012134392A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
Xu et al. Controlled doping of wafer‐scale PtSe2 films for device application
Shen et al. Strain engineering for transition metal dichalcogenides based field effect transistors
Wang et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers
Xue et al. p‐Type MoS2 and n‐Type ZnO diode and its performance enhancement by the piezophototronic effect
Si et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors
Price et al. Uniform growth of sub-5-nanometer high-κ dielectrics on MoS2 using plasma-enhanced atomic layer deposition
Cho et al. Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure
Sharma et al. Graphene based field effect transistors: Efforts made towards flexible electronics
US9184270B2 (en) Graphene based field effect transistor
US9142471B2 (en) Doped, passivated graphene nanomesh, method of making the doped, passivated graphene nanomesh, and semiconductor device including the doped, passivated graphene nanomesh
Torres Jr et al. High-current gain two-dimensional MoS2-base hot-electron transistors
US10090386B2 (en) Graphene-metal bonding structure, method of manufacturing the same, and semiconductor device having the graphene-metal bonding structure
Xiong et al. Electronic and optoelectronic applications based on ReS2
Basu et al. The evolution of graphene-based electronic devices
JP5515073B2 (en) Electronic device and method for manufacturing electronic device
Huang et al. Stable electrical performance observed in large-scale monolayer WSe2 (1− x) S2x with tunable band gap
US20150060768A1 (en) Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
Zhang et al. Highly selective synthesis of monolayer or bilayer WSe2 single crystals by pre-annealing the solid precursor
Ahn et al. Enhancing crystallinity of C60 layer by thickness-control of underneath pentacene layer for high mobility C60/pentacene ambipolar transistors
Hathwar et al. Temperature dependent simulation of diamond depleted Schottky PIN diodes
Li et al. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors
Xia et al. The transport and quantum capacitance properties of epitaxial graphene
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
Lee et al. Mesostructured Hf x Al y O2 Thin Films as Reliable and Robust Gate Dielectrics with Tunable Dielectric Constants for High-Performance Graphene-Based Transistors
Movva et al. Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5713431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250