JP5713162B2 - Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery - Google Patents

Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery Download PDF

Info

Publication number
JP5713162B2
JP5713162B2 JP2012070443A JP2012070443A JP5713162B2 JP 5713162 B2 JP5713162 B2 JP 5713162B2 JP 2012070443 A JP2012070443 A JP 2012070443A JP 2012070443 A JP2012070443 A JP 2012070443A JP 5713162 B2 JP5713162 B2 JP 5713162B2
Authority
JP
Japan
Prior art keywords
sulfur
reaction vessel
heating
container
crude product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012070443A
Other languages
Japanese (ja)
Other versions
JP2013201100A (en
Inventor
敏勝 小島
敏勝 小島
琢寛 幸
琢寛 幸
境 哲男
哲男 境
籠橋 章
章 籠橋
基晴 鈴木
基晴 鈴木
伊藤 竜昭
竜昭 伊藤
寿樹 中村
寿樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Takasago Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Takasago Industry Co Ltd
Priority to JP2012070443A priority Critical patent/JP5713162B2/en
Publication of JP2013201100A publication Critical patent/JP2013201100A/en
Application granted granted Critical
Publication of JP5713162B2 publication Critical patent/JP5713162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、主としてリチウムイオンまたはナトリウムイオン二次電池用の正極活物質として有用な有機硫黄系活物質の製造装置及び製造方法に関する。   The present invention mainly relates to an organic sulfur-based active material manufacturing apparatus and method useful as a positive electrode active material for lithium ion or sodium ion secondary batteries.

リチウムイオン二次電池は、小型でエネルギー密度が高いため、ポータブル電子機器の電源として広く用いられている。その正極活物質としては、主としてLiCoO2などの層状化合物が使用されている(例えば、特許文献1参照)。しかしながら、これらの化合物は満充電状態において、高温に晒されると酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという問題点がある。近年、電気自動車用の用途への要求が高まり、より安全で、要求される使用温度範囲が広く(−30℃から60℃)、容量、出力および耐久性の全てが大きな正極材料が求められている。
このような正極活物質として、Co以外にFe、Mn、Niや、種々の添加物を加えた酸化物系正極や、リン酸オリビン系化合物LiMPO4(LiMnPO4、LiFePO4、LiCoPO4など)が提案されている。しかしながら、これら例示した材料は、いずれも容量が安定して250mAh/g以上を示すものではなく、自動車等に要求される使用可能温度範囲、安全性と大容量、大出力特性を兼ね備えた電池となる材料はこれまで存在しなかった。
Lithium ion secondary batteries are widely used as power sources for portable electronic devices because of their small size and high energy density. As the positive electrode active material, a layered compound such as LiCoO 2 is mainly used (for example, see Patent Document 1). However, when these compounds are fully charged and exposed to a high temperature, oxygen tends to be desorbed, which tends to cause an oxidative exothermic reaction of the non-aqueous electrolyte. In recent years, demand for electric vehicle applications has increased, and there has been a demand for positive electrode materials that are safer, have a wider required operating temperature range (-30 ° C to 60 ° C), and have a large capacity, output, and durability. Yes.
Examples of such positive electrode active materials include Fe, Mn, Ni in addition to Co, oxide-based positive electrodes to which various additives are added, and olivine phosphate compounds LiMPO 4 (LiMnPO 4 , LiFePO 4 , LiCoPO 4, etc.). Proposed. However, none of these exemplified materials shows a stable capacity of 250 mAh / g or more, and a battery having a usable temperature range required for automobiles, etc., safety and large capacity, and large output characteristics. No material has ever existed.

一方、安価で資源量が多く、環境負荷が低く、高いリチウムイオンの理論充放電容量を有し、かつ高温時に酸素を放出しない正極活物質として、硫黄が注目されてきた。しかし、硫黄単体では電気抵抗が高く、さらには導電助剤を加えて電極として動作させた場合、電解液への溶出が顕著で、サイクル特性が劣悪であった。
近年、この硫黄を有機物と加熱してコンポジット化したものが高い容量と良好なサイクル特性、レート特性を示すことがわかってきた。
本出願人らは、これらの有機硫黄系正極材料を組み込んだ電池を製作し、この電池は、自動車に用いる二次電池としての使用可能温度範囲、安全性と大容量、大出力特性を兼ね備えた実電池であることを確認している。
On the other hand, sulfur has attracted attention as a positive electrode active material that is inexpensive, has a large amount of resources, has a low environmental load, has a high theoretical charge / discharge capacity of lithium ions, and does not release oxygen at high temperatures. However, sulfur alone has a high electric resistance, and when it was operated as an electrode by adding a conductive auxiliary agent, elution into the electrolytic solution was remarkable and the cycle characteristics were poor.
In recent years, it has been found that a composite obtained by heating this sulfur with an organic substance exhibits high capacity, good cycle characteristics, and rate characteristics.
The present applicants manufactured a battery incorporating these organic sulfur-based positive electrode materials, and this battery has a usable temperature range as a secondary battery used in automobiles, safety and large capacity, and large output characteristics. It is confirmed that it is a real battery.

非特許文献1には、中国科学アカデミーのWangらが、ポリアクリロニトリル(以下、PANと記載)に硫黄を300℃で反応させて、Liを出し入れできるカソード材料を合成し、13CNMR、FTIR、XPSなどでキャラクタリゼーションを行ったことが記載されている。本文献では、硫黄は有機物と結合を持って化合するような記述になっている。
非特許文献2には、中国Nankai大学のC.Laiらが、Ar雰囲気750℃においてPANを炭酸ナトリウムで熱処理して1473m2/gの表面積を持つ活性炭を作成し、これに硫黄を混ぜて150℃で熱処理し、57%の硫黄を含む有機硫黄コンポジットを作製しており、この材料はリチウムイオン電池正極材料として容量1155 mAh/gを示し、84サイクル後でも745 mAh/gの容量を持つことが記載されている。
非特許文献3には、中国Nankai大のB.Zhangらが、硫黄アセチレンブラック混合物を149℃で6時間、300℃まで昇温したコンポジットを作製し、ボールミルで混合したものとSEM、XRD、細孔径分布、CV、インピーダンス法により比較を行ったこと、及び、熱処理したコンポジットは、50サイクル後500mAh/gの容量を示したが熱処理しなかったものは低い容量にとどまったことが記載されている。
非特許文献4には、イラクのMosul大のShahabらが、瀝青と硫黄を400℃で反応させ得られた有機硫黄コンポジットについて種々の温度での硫黄の量を調べた結果が記載されている。
非特許文献5には、北京化学大学のSunらが、リチウム硫黄2次電池の正極材料である硫黄のバインダーとしてこれまでのPEOに代わりゼラチンを用いることで充放電特性とサイクル特性が向上することを見出したこと、及び、ゼラチンは電解質の有機溶媒では膨潤せず、サイクル試験後のSEM観察などで粒子の租粒化が抑えられるなどの効果が見出されたことが記載されている。
非特許文献6においては、ロシア科学アカデミーのシベリア支部のTrofimovが、ポリマーの硫黄化と充放電をレビューしている。ポリエチレンを含む種々のポリマーの硫黄化により生成する化合物の構造が示され、ESRによるラジカルの数、CVが報告されている。
非特許文献7においては、上海交通大学のWeiらが、92 wt.% acrylonitrile and 8 wt.% methylacrylate(安価な市販品)をこれまでのPANの代わりに使用し、MWCNT(多壁カーボンナノチューブ)を導電助剤として加え、繊維1g 、MWCNT0.1g、硫黄10gをエタノール中でボールミル混合し、300℃4時間窒素中で熱処理した35wt%の硫黄を含むコンポジットを得たこと、及び、このコンポジットが、容量560mAh/g、0.5C100 cycle後96.5%、7Cで387mAh/gを出したことが記載されている。
In Non-Patent Document 1, Wang et al. Of the Chinese Academy of Sciences synthesized a cathode material capable of taking in and out Li by reacting polyacrylonitrile (hereinafter referred to as PAN) with sulfur at 300 ° C., 13C NMR, FTIR, XPS, etc. It is described that characterization was performed. In this document, sulfur is described as being combined with an organic substance.
In Non-Patent Document 2, C. Lai et al. Of Nankai University in China created activated carbon with a surface area of 1473 m 2 / g by heat-treating PAN with sodium carbonate in an Ar atmosphere at 750 ° C., and mixing it with sulfur. An organic sulfur composite containing 57% sulfur is produced by heat treatment at ℃, and this material has a capacity of 1155 mAh / g as a cathode material for lithium-ion batteries and has a capacity of 745 mAh / g even after 84 cycles Is described.
In Non-Patent Document 3, B. Zhang et al. Of Nankai University in China made a composite in which a sulfur acetylene black mixture was heated up to 300 ° C for 6 hours at 149 ° C and mixed with a ball mill and SEM, XRD, fine It is described that comparison was made by pore size distribution, CV, impedance method, and that the heat-treated composite showed a capacity of 500 mAh / g after 50 cycles, but the one that was not heat-treated remained at a low capacity. .
Non-Patent Document 4 describes the result of Shahab et al. Of Iraqi Mosul University examining the amount of sulfur at various temperatures for an organic sulfur composite obtained by reacting bitumen and sulfur at 400 ° C.
Non-Patent Document 5 states that Sun et al. Of Beijing Chemical University improve charge / discharge characteristics and cycle characteristics by using gelatin instead of conventional PEO as a sulfur binder, which is a positive electrode material for lithium-sulfur secondary batteries. And that gelatin does not swell in the organic solvent of the electrolyte, and that the effect of suppressing grain graining by SEM observation after the cycle test has been found.
In Non-Patent Document 6, Trofimov of the Siberian branch of the Russian Academy of Sciences reviews polymer sulfuration and charge / discharge. The structures of compounds produced by sulfuration of various polymers including polyethylene are shown, and the number of radicals and CV by ESR are reported.
In Non-Patent Document 7, Wei et al. Of Shanghai Jiao Tong University used 92 wt.% Acrylonitrile and 8 wt.% Methylacrylate (inexpensive commercial product) instead of the conventional PAN, and MWCNT (multi-walled carbon nanotube) Was added as a conductive additive, 1 g of fiber, 0.1 g of MWCNT, and 10 g of sulfur were ball-milled in ethanol, and a composite containing 35 wt% sulfur heat-treated in nitrogen at 300 ° C. for 4 hours was obtained. It is described that the capacity was 560 mAh / g, 96.5% after 0.5C100 cycle, and 387 mAh / g was output at 7C.

上記した如く、近年、有機硫黄系正極材料に関する研究が数多く報告されている。
このことからも分かるように、有機硫黄系正極材料は、安価で、資源量が豊富かつ無害な硫黄と有機物のみからなるために環境負荷が低く、高いリチウムイオンの充放電容量を有し、かつ高温で安定かつ酸素を放出しない材料であることから、次世代リチウムイオン二次電池正極材料のみならずナトリウムイオン二次電池正極材料として大変有望視されている。
As described above, many studies on organic sulfur-based positive electrode materials have been reported in recent years.
As can be seen from this, the organic sulfur-based positive electrode material is inexpensive, has abundant resources, is composed of harmless sulfur and organic matter, has low environmental impact, has high lithium ion charge / discharge capacity, and Since it is a material that is stable at high temperatures and does not release oxygen, it is very promising as a positive electrode material for sodium ion secondary batteries as well as a positive electrode material for next-generation lithium ion secondary batteries.

有機硫黄系正極材料はこのように魅力的な材料である反面、その合成・製造には、種々の困難がある。具体的には、これまでもっぱら焼成法や水熱合成法等により行われてきた酸化物系の正極材料の合成とは異なり、有機物と硫黄とを加熱して反応させる硫化反応工程が必要となる。さらに本発明者らの多年の検討により、生成物に十分な容量を付与するためには、硫黄が蒸散しやすい350℃から400℃の温度において有機物に十分な量の硫黄が存在する状態で処理する必要があることがわかった。この処理過程で、硫黄による有機物からの水素引き抜きにより猛毒の硫化水素が発生する。硫化水素は、0.1%の濃度のガスを吸い込むと即死する恐れのある危険なガスであるため、厳重な管理が求められている。   While organic sulfur-based positive electrode materials are such attractive materials, there are various difficulties in their synthesis and production. Specifically, unlike the synthesis of oxide-based positive electrode materials that have been performed exclusively by the firing method, hydrothermal synthesis method, etc., a sulfurization reaction step is required in which an organic substance and sulfur are reacted by heating. . Furthermore, in order to give a sufficient capacity to the product by the inventors' many years of study, the treatment is performed in a state where a sufficient amount of sulfur is present in the organic matter at a temperature of 350 ° C. to 400 ° C. at which sulfur is easily evaporated. I found it necessary to do. During this treatment process, highly toxic hydrogen sulfide is generated by the extraction of hydrogen from organic substances by sulfur. Since hydrogen sulfide is a dangerous gas that can be killed instantly if a gas with a concentration of 0.1% is inhaled, strict management is required.

従来、反応容器内で発生した硫化水素ガスの処理方法として、反応容器出口に接続された排出管を通して硫化水素ガスを容器外部に排出し、排出した硫化水素ガスを別容器に収容されたアルカリ水溶液にバブリングさせて吸収させる方法が知られている。しかし、この方法は、反応容器内部が偶発的に負圧となった場合、排出管を通じてアルカリ水溶液が高温の反応容器に逆流し、熱衝撃による容器の破損や水蒸気爆発が生じる危険性があった。また、アルカリ水溶液と硫化水素との反応で生成した塩が固体となって析出して排出管を閉塞し、反応容器と排出管が硫化水素により加圧され、排出管の脱離などが生じることで硫化水素の漏洩が生じる危険性があった。更に、大量の硫化水素ガスが急激に発生することにより、バブリングによる排出管内部の圧力抵抗が生じ、排出管内部が加圧され、硫化水素の漏洩が生じる危険性もあった。
また、発生する硫化水素の流れに乗って硫黄蒸気も反応容器から出ようとして出口で冷やされることにより硫黄が析出し、析出した硫黄が反応容器のガス出口の閉塞を引き起こす場合があった。この場合、加圧された硫化水素が反応容器内に溜まることになるが、加圧貯留された硫化水素は、容器の開放処置時に安全な処理が困難であり、偶発的に一気に噴出して外界に漏れ出す恐れがあるため大変危険であった。
Conventionally, as a method for treating hydrogen sulfide gas generated in a reaction vessel, an aqueous alkali solution in which hydrogen sulfide gas is discharged outside the vessel through a discharge pipe connected to the reaction vessel outlet, and the discharged hydrogen sulfide gas is accommodated in a separate vessel. There is known a method in which a liquid is bubbled and absorbed. However, in this method, when the inside of the reaction vessel accidentally becomes a negative pressure, the alkaline aqueous solution flows backward to the high-temperature reaction vessel through the discharge pipe, and there is a risk of causing damage to the vessel or a steam explosion due to thermal shock. . In addition, the salt produced by the reaction between the alkaline aqueous solution and hydrogen sulfide precipitates as a solid and closes the discharge pipe, the reaction vessel and the discharge pipe are pressurized with hydrogen sulfide, and the discharge pipe is detached. There was a risk of leakage of hydrogen sulfide. Furthermore, when a large amount of hydrogen sulfide gas is generated abruptly, pressure resistance inside the discharge pipe due to bubbling occurs, and there is a risk that the inside of the discharge pipe is pressurized and hydrogen sulfide leaks.
In addition, sulfur may be deposited on the flow of the generated hydrogen sulfide and cooled at the outlet in an attempt to get out of the reaction vessel, and the precipitated sulfur may cause clogging of the gas outlet of the reaction vessel. In this case, pressurized hydrogen sulfide accumulates in the reaction vessel. However, the hydrogen sulfide that has been pressurized and stored is difficult to safely process during the opening of the vessel, and is accidentally ejected all at once. It was very dangerous because it might leak.

また、反応容器で合成された有機硫黄系正極材料には、電池内部で電解液に溶け出して電池の寿命を低下させる未反応の硫黄が含まれており、その十分な除去を行うための精製処理が必要となり、硫黄除去の際も硫化水素が発生する場合がある。このように、有機硫黄系正極材料を得るためには、合成と精製の両方で困難が伴うため、これら一連の合成・精製操作を安全かつ環境に配慮し、迅速かつ多量に行える装置及び方法が必要とされているが、従来そのような装置及び方法は存在していなかった。   In addition, the organic sulfur-based positive electrode material synthesized in the reaction vessel contains unreacted sulfur that dissolves in the electrolyte inside the battery and reduces the life of the battery. Treatment is required, and hydrogen sulfide may be generated during sulfur removal. As described above, since it is difficult to obtain an organic sulfur-based positive electrode material in both synthesis and purification, there is an apparatus and method that can perform a series of these synthesis and purification operations quickly and in large quantities in consideration of safety and the environment. Although required, heretofore no such apparatus and method existed.

特開2009−252630号公報JP 2009-252630 A

J. Wang, J. Yang, C. Wan, K. Du, J. Xie, and N. Xu, Adv. Funct. Mater., 13, 487-492 (2003).J. Wang, J. Yang, C. Wan, K. Du, J. Xie, and N. Xu, Adv. Funct. Mater., 13, 487-492 (2003). C. Lai, X. P. Gao, B. Zhang, T. Y. Yan and Z. Zhou, J. Phys. Chem. C 113, 4712-4716 (2009).C. Lai, X. P. Gao, B. Zhang, T. Y. Yan and Z. Zhou, J. Phys. Chem. C 113, 4712-4716 (2009). B.Zhang, C. Lai, Z. Zhou, and X.P. Gao, Electrochim. Acta, 54, 3708-3713 (2009).B. Zhang, C. Lai, Z. Zhou, and X.P. Gao, Electrochim. Acta, 54, 3708-3713 (2009). Y. A. Shahab, A. A. Siddiq, and K. S. Tawfiq, Carbon, 26, 801-802 (1988).Y. A. Shahab, A. A. Siddiq, and K. S. Tawfiq, Carbon, 26, 801-802 (1988). J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochim. Acta, 53, 7084-7088 (2008).J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochim. Acta, 53, 7084-7088 (2008). B. A. Trofimov, Sulfur Reports, 24, 283-305 (2003).B. A. Trofimov, Sulfur Reports, 24, 283-305 (2003). W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. NuLi, Electrochem. Comm., 13, 399-402 (2011).W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. NuLi, Electrochem. Comm., 13, 399-402 (2011).

本発明は、有機硫黄系正極材料の製造において、有機硫黄系正極材料の容量を十分に引き出しつつ、猛毒の硫化水素ガスを確実に捕集し、その漏洩を防ぎ、反応系の硫黄による閉塞、および生成物からの未反応の硫黄の除去を可能にすることができるとともに、有機硫黄系正極材料の製造を、安全かつ環境に配慮し、迅速かつ多量に行える装置及び方法を提供することを目的とする。   The present invention, in the production of organic sulfur-based positive electrode material, while sufficiently extracting the capacity of the organic sulfur-based positive electrode material, reliably capture the highly toxic hydrogen sulfide gas, prevent its leakage, clogging by the sulfur of the reaction system, An object of the present invention is to provide an apparatus and method capable of removing unreacted sulfur from a product and capable of producing a large amount of an organic sulfur-based positive electrode material in a safe and environmentally friendly manner in a rapid and large amount. And

本発明は、上記課題を解決するために以下の手段を提供する。
請求項1に係る発明では、
硫黄と有機物とを含む原料を収容する反応容器と、
前記反応容器を加熱する加熱源と、
前記反応容器内で発生した硫化水素を外部に取り出すための排出管と、
前記反応容器及び前記加熱源を一体的に起伏させる起伏機構を備えており、
前記反応容器は、前記原料が前記加熱源により加熱される加熱部と、前記加熱部における加熱により生じた硫黄蒸気を凝結させる非加熱部を有し、
前記起伏機構は、前記加熱部が前記非加熱部より低位置となる起立状態と、前記非加熱部が前記加熱部より低位置となる傾斜状態と、を切り換え可能である、
二次電池用有機硫黄系正極材料製造装置、を提供する。
The present invention provides the following means in order to solve the above problems.
In the invention according to claim 1,
A reaction vessel containing a raw material containing sulfur and organic matter;
A heating source for heating the reaction vessel;
A discharge pipe for taking out hydrogen sulfide generated in the reaction vessel to the outside;
An undulation mechanism for integrally raising and lowering the reaction vessel and the heating source;
The reaction vessel has a heating part in which the raw material is heated by the heating source, and a non-heating part for condensing sulfur vapor generated by heating in the heating part,
The undulation mechanism is capable of switching between a standing state where the heating part is lower than the non-heating part and an inclined state where the non-heating part is lower than the heating part.
An organic sulfur positive electrode material manufacturing apparatus for a secondary battery is provided.

この装置によれば、起立状態とした反応容器内で硫黄と有機物とを反応させて粗生成物(粗有機硫黄系正極材料)を生成することができるとともに、粗生成物の生成後において反応容器及び加熱源を傾斜状態として更に粗生成物を加熱することにより、粗生成物に含まれる未反応硫黄を除去することができる。また、反応容器及び加熱源を傾斜状態とする作業を、起伏機構を利用して迅速且つ容易にしかも安全に行うことができる。そのため、有機硫黄系正極材料の合成・精製処理を、安全かつ環境に配慮し、迅速かつ多量に行える装置が提供される。また、必要に応じて、粗生成物の生成後において反応容器を傾斜状態とせずに、粗生成物を別の容器に移し替えて未反応硫黄の除去処理を行うこともできるため、汎用性及び利便性が高く、実験室規模の数gの試作製造から、工業的規模の製造までを装置のスケールを変えるだけで行うことができる。   According to this apparatus, sulfur and an organic substance can be reacted in a standing reaction vessel to produce a crude product (crude organic sulfur-based positive electrode material), and the reaction vessel can be produced after the production of the crude product. Further, by heating the crude product with the heating source in an inclined state, unreacted sulfur contained in the crude product can be removed. Moreover, the operation | work which makes a reaction container and a heat source into an inclined state can be performed rapidly, easily and safely using a raising / lowering mechanism. Therefore, an apparatus is provided that can synthesize and purify organic sulfur-based positive electrode materials quickly and in large quantities in consideration of safety and the environment. In addition, since it is possible to remove the unreacted sulfur by transferring the crude product to another container without making the reaction vessel inclined after the production of the crude product, if necessary, versatility and It is highly convenient and can be carried out by changing the scale of the apparatus, from the trial production of several grams on the laboratory scale to the industrial scale production.

発明では、
前記反応容器及び前記加熱源は、該反応容器内に生成された粗生成物に含まれる未反応硫黄を除去するための未反応硫黄除去装置を兼ねており、
前記粗生成物の生成後において、前記起伏機構を利用して前記反応容器及び前記加熱源を傾斜状態とすることにより未反応硫黄除去装置として使用される二次電池用有機硫黄系正極材料製造装置、を提供する。
In the present invention,
The reaction vessel and the heating source also serve as an unreacted sulfur removal device for removing unreacted sulfur contained in the crude product produced in the reaction vessel,
Wherein after formation of the crude product, wherein the reaction vessel by utilizing the relief mechanism and the heating source an inclined state with unreacted sulfur removal is Ru secondary battery organosulfur positive electrode material production apparatus is used as a device by ,I will provide a.

この装置によれば、反応容器及び加熱源が未反応硫黄除去装置を兼ねることにより、未反応硫黄除去装置を別装置として用意する必要がなく、装置の小型化と設備コストの削減を実現することができる。加えて、反応容器内に生成した粗生成物を別の容器に移し替えて未反応硫黄の除去処理を行う必要がないため、有機硫黄系正極材料の合成・精製操作を一連の操作として効率良く且つ安全に行うことができ、高容量な有機硫黄系正極材料を大量生産することが可能となる。   According to this apparatus, since the reaction vessel and the heating source also serve as an unreacted sulfur removing device, there is no need to prepare the unreacted sulfur removing device as a separate device, and the device can be downsized and the equipment cost can be reduced. Can do. In addition, since there is no need to transfer the crude product produced in the reaction vessel to another vessel and remove unreacted sulfur, the synthesis and purification operations for organic sulfur-based positive electrode materials can be efficiently performed as a series of operations. In addition, it can be performed safely, and high-capacity organic sulfur-based positive electrode materials can be mass-produced.

請求項に係る発明では、
前記反応容器内に生成された粗生成物に含まれる未反応硫黄を除去するための未反応硫黄除去装置を備えており、
前記未反応硫黄除去装置は、前記粗生成物を収容する処理容器と、
前記処理容器を加熱する加熱源と、
前記処理容器内に不活性ガスを供給する不活性ガス供給手段を有し、
前記処理容器は、前記粗生成物が前記加熱源により加熱される加熱部と、前記加熱部における加熱により生じた硫黄蒸気を凝結させる非加熱部を有するとともに、前記非加熱部が前記加熱部よりも低位置となるように傾斜して配置され、
前記不活性ガス供給手段は、前記加熱部から非加熱部に向けて不活性ガスが流れるように前記処理容器内に不活性ガスを供給する二次電池用有機硫黄系正極材料製造装置、を提供する。
In the invention according to claim 1 ,
An unreacted sulfur removing device for removing unreacted sulfur contained in the crude product produced in the reaction vessel,
The unreacted sulfur removing device includes a processing container for storing the crude product,
A heating source for heating the processing vessel;
An inert gas supply means for supplying an inert gas into the processing vessel;
The processing container includes a heating unit in which the crude product is heated by the heating source, and a non-heating unit that condenses sulfur vapor generated by heating in the heating unit, and the non-heating unit is more than the heating unit. Is also inclined to be at a low position,
The inert gas supply means, the organosulfur positive electrode material manufacturing equipment for a secondary battery that to supply inert gas into the processing chamber as inert gas flows toward the non-heated part from the heating unit provide.

この装置によれば、未反応硫黄除去装置の処理容器内に粗生成物を収容し、処理容器を非加熱部が加熱部よりも低位置となるように傾斜して配置して加熱しながら、加熱部から非加熱部に向けて不活性ガスが流れるように処理容器内に不活性ガスを供給することにより、粗生成物に含まれる未反応の硫黄が蒸気となり、この硫黄蒸気が不活性ガスの流れに乗って運ばれて非加熱部において凝結する。そのため、処理容器内にて粗有機硫黄系正極材料から未反応の硫黄が除去されることとなり、精製された有機硫黄系正極材料を確実に回収することができる。
また、原料としてゴムなどの有機物を用いた場合、硫化反応により生じる粗生成物が硬くなるため、内部に不要な硫黄(未反応の硫黄)が閉じ込められていると、反応容器内での合成反応直後にこの硫黄を除去しようとしても十分に除去できない場合がある。このような場合であっても、この装置によれば、粗生成物を粉砕してから別容器(処理容器)に移して除去作業を行うことが可能となる。
According to this apparatus, the crude product is accommodated in the processing container of the unreacted sulfur removal apparatus, and the processing container is heated while being inclined so that the non-heating part is positioned lower than the heating part. By supplying the inert gas into the processing vessel so that the inert gas flows from the heating part toward the non-heating part, unreacted sulfur contained in the crude product becomes vapor, and this sulfur vapor becomes the inert gas. It is carried on the flow of the water and condenses in the non-heated part. Therefore, unreacted sulfur is removed from the crude organic sulfur-based positive electrode material in the processing container, and the purified organic sulfur-based positive electrode material can be reliably recovered.
In addition, when an organic substance such as rubber is used as a raw material, the crude product produced by the sulfurization reaction becomes hard, so if unnecessary sulfur (unreacted sulfur) is trapped inside, the synthesis reaction in the reaction vessel Immediately after that, even if this sulfur is removed, it may not be sufficiently removed. Even in such a case, according to this apparatus, the crude product can be crushed and then transferred to another container (processing container) to perform the removal operation.

請求項に係る発明は、
前記排出管から取り出した硫化水素を捕集する捕集装置を備えており、
前記捕集装置は、硫化水素を吸収可能な液体を収容した複数の捕集容器を備え、
前記捕集容器は、前記排出管の端部が内部に配置される前段容器と、該前段容器にて捕集されなかった硫化水素を捕集する後段容器を有し、
前記排出管の端部は、前記前段容器に収容された液体と接触していない、
請求項1記載の二次電池用有機硫黄系正極材料製造装置、を提供する。
The invention according to claim 2
Comprising a collecting device for collecting hydrogen sulfide taken out from the discharge pipe;
The collection device includes a plurality of collection containers containing a liquid capable of absorbing hydrogen sulfide,
The collection container has a front container in which an end of the discharge pipe is disposed inside, and a rear container for collecting hydrogen sulfide not collected in the front container,
The end of the discharge pipe is not in contact with the liquid accommodated in the preceding container,
An organic sulfur-based positive electrode material manufacturing apparatus for a secondary battery according to claim 1 is provided.

この装置によれば、排出管を通して反応容器から取り出した硫化水素は、先ず前段容器に送られて捕集され、その後で後段容器に送られて捕集される。ここで、排出管の端部が前段容器に収容された液体と接触していないことにより、反応容器内部が偶発的に負圧となったとしても、排出管を通じて前段容器内の液体(アルカリ水溶液)が高温の反応容器に逆流することが防がれる。また、前記液体と硫化水素との反応で生成した塩が固体となって析出して排出管を閉塞することも防がれる。また、大量の硫化水素ガスが急激に発生することにより、バブリングによる排出管内部の圧力抵抗が生じ、排出管内部が加圧されることも防がれる。これらのことから、硫化水素の漏洩が生じる危険性を大幅に低減することができ、環境に配慮された安全な装置となる。   According to this apparatus, the hydrogen sulfide taken out from the reaction vessel through the discharge pipe is first sent to the upstream vessel and collected, and then sent to the downstream vessel and collected. Here, even if the end of the discharge pipe is not in contact with the liquid contained in the preceding container, and the inside of the reaction container accidentally becomes a negative pressure, the liquid (alkaline aqueous solution) in the preceding container through the discharge pipe. ) Is prevented from flowing back into the hot reaction vessel. Further, it is possible to prevent the salt produced by the reaction between the liquid and hydrogen sulfide from becoming a solid and blocking the discharge pipe. Moreover, when a large amount of hydrogen sulfide gas is generated abruptly, pressure resistance inside the exhaust pipe due to bubbling occurs, and pressurization inside the exhaust pipe is prevented. As a result, the risk of leakage of hydrogen sulfide can be greatly reduced, and the device is a safe device that is environmentally friendly.

請求項に係る発明は、
前記前段容器と前記後段容器は、前記前段容器にて捕集されなかった硫化水素を前記後段容器へと導く連結管により連結されており、
前記連結管の一方の端部は、前記前段容器に収容された液体と接触しておらず、
前記連結管の他方の端部は、前記後段容器内に収容された液体と接触している、
請求項記載の二次電池用有機硫黄系正極材料製造装置、を提供する。
The invention according to claim 3
The front-stage container and the rear-stage container are connected by a connecting pipe that guides hydrogen sulfide that has not been collected in the front-stage container to the rear-stage container,
One end of the connecting pipe is not in contact with the liquid stored in the front container,
The other end of the connecting pipe is in contact with the liquid stored in the rear container,
An organic sulfur-based positive electrode material manufacturing apparatus for a secondary battery according to claim 2 is provided.

この装置によれば、排出管を通して反応容器から取り出した硫化水素を、先ず前段容器においてバブリングさせずに安全に大部分を捕集し、前段容器にて捕集できなかった硫化水素は後段容器においてバブリングさせて確実に捕集することができる。   According to this apparatus, most of the hydrogen sulfide taken out from the reaction vessel through the discharge pipe is first safely collected without bubbling in the former vessel, and the hydrogen sulfide that could not be collected in the former vessel is collected in the latter vessel. It can be reliably collected by bubbling.

請求項に係る発明によれば、
前記前段容器内に収容された液体を攪拌するための攪拌装置を備えている、請求項又は記載の二次電池用有機硫黄系正極材料製造装置、を提供する。
According to the invention of claim 4 ,
The organic sulfur type positive electrode material manufacturing apparatus for secondary batteries of Claim 2 or 3 provided with the stirring apparatus for stirring the liquid accommodated in the said front stage container.

この装置によれば、前段容器内に収容された液体を攪拌することにより、排出管を通して前段容器内に導入された硫化水素が前段容器内の液体に接触する時に、硫化水素が接触する液面が移動し、常に新しい液面が硫化水素と接触することとなる。そのため、大量の硫化水素を迅速に吸収することが可能となる。   According to this apparatus, by stirring the liquid stored in the former container, the hydrogen sulfide contacted with the hydrogen sulfide introduced into the former container through the discharge pipe comes into contact with the liquid in the former container. Will always be in contact with the hydrogen sulfide. Therefore, a large amount of hydrogen sulfide can be absorbed quickly.

請求項に係る発明は、
前記排出管は、前記反応容器に接続された端部の内径が10mm以上である、請求項1乃至いずれかに記載の二次電池用有機硫黄系正極材料製造装置、を提供する。
The invention according to claim 5
The said exhaust pipe provides the organic sulfur type positive electrode material manufacturing apparatus for secondary batteries in any one of the Claims 1 thru | or 4 whose internal diameter of the edge part connected to the said reaction container is 10 mm or more.

この装置によれば、反応容器内で発生する硫化水素の流れに乗って反応混合物から硫黄が蒸散した時に、反応容器のガス出口(排出管の反応容器に接続された端部)が硫黄により閉塞することが防がれ、硫化水素の漏洩が生じる危険性を低減することができる。   According to this apparatus, when sulfur is evaporated from the reaction mixture on the flow of hydrogen sulfide generated in the reaction vessel, the gas outlet of the reaction vessel (the end connected to the reaction vessel of the discharge pipe) is blocked by sulfur. This prevents the risk of leakage of hydrogen sulfide.

請求項に係る発明は、
前記反応容器は、下方に前記加熱部を、上方に前記非加熱部をそれぞれ有し、
前記非加熱部における前記排出管の下方には、前記原料の加熱により発生した硫黄蒸気を接触させて凝結させるための障害物が配設されている、請求項1乃至いずれかに記載の二次電池用有機硫黄系正極材料製造装置、を提供する。
The invention according to claim 6
The reaction vessel has the heating part below and the non-heating part above,
The obstacle according to any one of claims 1 to 5 , wherein an obstacle for contacting and condensing sulfur vapor generated by heating the raw material is disposed below the discharge pipe in the non-heating portion. An apparatus for producing an organic sulfur positive electrode material for a secondary battery is provided.

この装置によれば、原料の加熱により発生した硫黄蒸気が、排出管に達する前に、障害物に接触することにより凝結するので、反応容器のガス出口(排出管)の硫黄による閉塞が起こる現象が発生することが防止され、硫化水素の漏洩が生じる危険性をより低減することができる。   According to this apparatus, the sulfur vapor generated by heating the raw material condenses by contacting an obstacle before reaching the discharge pipe, so that the gas outlet (discharge pipe) of the reaction vessel is blocked by sulfur. Can be prevented, and the risk of leakage of hydrogen sulfide can be further reduced.

請求項に係る発明は、
硫黄と有機物とを含む原料を反応容器内の下方部に収容し、該下方部を加熱することにより、前記反応容器内にて硫黄と有機物との硫化反応を生じさせて粗生成物を生成する硫化熱処理工程と、
前記生成された粗生成物に含まれる未反応硫黄を除去する精製工程と、を含み、
前記精製工程は、
前記生成された粗生成物を収容した反応容器を、その上方部が前記下方部よりも低位置となるように傾斜させる段階と、
前記傾斜した反応容器の高位置にある前記下方部を加熱することにより、前記粗生成物から未反応硫黄を硫黄蒸気として取り出し、取り出された硫黄蒸気を低位置にある前記上方部において凝結させる段階、とを含む、
二次電池用有機硫黄系正極材料製造方法、を提供する。
The invention according to claim 7 provides:
A raw material containing sulfur and organic matter is contained in the lower part of the reaction vessel, and the lower part is heated to cause a sulfurization reaction between sulfur and organic matter in the reaction vessel to produce a crude product. A sulfurization heat treatment step;
A purification step of removing unreacted sulfur contained in the generated crude product,
The purification step includes
Inclining the reaction vessel containing the generated crude product so that the upper part is lower than the lower part;
Heating the lower part at a high position of the inclined reaction vessel to extract unreacted sulfur from the crude product as sulfur vapor, and condensing the extracted sulfur vapor at the upper part at a low position Including,
An organic sulfur-based positive electrode material manufacturing method for a secondary battery is provided.

この方法によれば、反応容器内に粗生成物を生成した後に、反応容器をそのまま傾けて未反応硫黄除去処理を行うため、反応容器内の粗生成物を別の容器に移し替えて未反応硫黄の除去処理を行う必要がなく、有機硫黄系正極材料の合成・精製操作を一連の操作として効率良く且つ安全に行うことができ、高容量な有機硫黄系正極材料を大量生産することが可能となる。加えて、未反応硫黄除去装置を別装置として用意する必要がなく、装置の小型化と設備コストの低減を実現することができる。   According to this method, after producing the crude product in the reaction vessel, the reaction vessel is tilted as it is to perform the unreacted sulfur removal treatment. Therefore, the crude product in the reaction vessel is transferred to another vessel and unreacted. There is no need for sulfur removal treatment, organic sulfur-based cathode materials can be synthesized and refined efficiently and safely as a series of operations, and high-capacity organic sulfur-based cathode materials can be mass-produced. It becomes. In addition, it is not necessary to prepare an unreacted sulfur removing device as a separate device, and it is possible to realize downsizing of the device and reduction in equipment cost.

本発明に係る二次電池用有機硫黄系正極材料製造装置及び製造方法によれば、有機硫黄系正極材料製造時に発生する危険な硫化水素の漏洩を防ぐことができるとともに、高容量な有機硫黄系正極材料の多量合成と未反応硫黄の脱離・精製を確実且つ容易に行うことが可能となる。   According to the organic sulfur positive electrode material manufacturing apparatus and the manufacturing method for a secondary battery according to the present invention, it is possible to prevent leakage of dangerous hydrogen sulfide generated during the production of the organic sulfur positive electrode material, and a high capacity organic sulfur system. A large amount of the positive electrode material can be synthesized and unreacted sulfur can be desorbed and purified reliably and easily.

本発明に係る製造装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the manufacturing apparatus which concerns on this invention. 図1に示された反応容器を拡大抽出して示す図である。It is a figure which expands and shows the reaction container shown by FIG. 反応容器を傾斜状態として、粗生成物から未反応硫黄を除去している状態を示す図である。It is a figure which shows the state which has made the reaction container into the inclination state and has removed unreacted sulfur from a crude product. 反応容器及び加熱源と別装置として設ける未反応硫黄除去装置を使用して、粗生成物から未反応硫黄を除去している状態を示す図である。It is a figure which shows the state which is removing the unreacted sulfur from a crude product using the unreacted sulfur removal apparatus provided as a separate apparatus with the reaction container and the heat source. 起伏機構の構成及び作用を示す側面図である。It is a side view which shows the structure and effect | action of a raising / lowering mechanism. 反応容器を正立状態としている様子を示す部分断面側面図である。It is a partial cross section side view which shows a mode that the reaction container is set to the upright state. 容器固定バンドの平面図である。It is a top view of a container fixing band.

以下、本発明に係る二次電池用有機硫黄系正極材料製造装置及び製造方法の好適な実施形態について、図面を適宜参照しながら説明する。
図1は本発明に係る製造装置の全体構成を示す概略図であり、図2は図1に示された反応容器を拡大抽出して示す図である。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an apparatus for producing an organic sulfur positive electrode material for a secondary battery and a production method according to the invention will be described with reference to the drawings as appropriate.
FIG. 1 is a schematic view showing the overall configuration of the production apparatus according to the present invention, and FIG. 2 is an enlarged view of the reaction vessel shown in FIG.

本発明に係る製造装置は、硫黄と有機物とを含む原料(M)を収容する反応容器(1)と、反応容器(1)を加熱する加熱源(5)と、反応容器(1)内で加熱により発生した硫化水素を外部に取り出すための排出管(2)と、排出管(2)から取り出した硫化水素を捕集する捕集装置(3)と、反応容器(1)内に生成された粗有機硫黄系正極材料に含まれる未反応硫黄を除去するための未反応硫黄除去装置(4)を備えている。   The production apparatus according to the present invention includes a reaction vessel (1) containing a raw material (M) containing sulfur and organic matter, a heating source (5) for heating the reaction vessel (1), and a reaction vessel (1). A discharge pipe (2) for taking out hydrogen sulfide generated by heating to the outside, a collection device (3) for collecting hydrogen sulfide taken out from the discharge pipe (2), and a reaction vessel (1) An unreacted sulfur removing device (4) for removing unreacted sulfur contained in the crude organic sulfur-based positive electrode material is provided.

本発明において、未反応硫黄除去装置(4)は、図1に示す反応容器(1)及び加熱源(5)を兼用させることもできるし(図3参照)、反応容器(1)及び加熱源(5)とは別装置として設けることもできる(図4参照)。
尚、加熱源(5)の種類は特に限定されないが、図示例の如く電気炉が好適に使用されるため、以下の説明では加熱源を電気炉(5)として説明する場合がある。
In the present invention, the unreacted sulfur removing device (4) can be used as the reaction vessel (1) and the heating source (5) shown in FIG. 1 (see FIG. 3), or the reaction vessel (1) and the heating source. It can also be provided as a separate device from (5) (see FIG. 4).
In addition, although the kind of heating source (5) is not specifically limited, since an electric furnace is used suitably like the example of illustration, in the following description, a heating source may be demonstrated as an electric furnace (5).

反応容器(1)は、縦長の有底円筒形状であって、前記原料が加熱源となる電気炉(5)により加熱される加熱部(6)を下方に有し、加熱部(6)における加熱により生じた硫黄蒸気を凝結させる非加熱部(7)を上方に有している。反応容器(1)の長さと直径(内径)の比は7:1〜3:1が好ましく、6:1〜4:1であることがより好ましい。   The reaction vessel (1) has a vertically long bottomed cylindrical shape, and has a heating part (6) heated by an electric furnace (5) serving as a heating source for the raw material, and in the heating part (6). The non-heating part (7) which condenses the sulfur vapor | steam produced by heating is provided upwards. The ratio of the length of the reaction vessel (1) to the diameter (inner diameter) is preferably 7: 1 to 3: 1 and more preferably 6: 1 to 4: 1.

加熱部(6)は、反応容器(1)の下方部(高さ全体のうち下から2分の1から3分の2の範囲)に設けられ、原料が収容されて電気炉(5)のヒータ(5a)により加熱される部分である。加熱温度は、原料に含まれる硫黄と有機物とが硫化反応をするのに充分な温度(好ましくは300〜450℃、より好ましくは350〜420℃)に設定される。加熱部(6)の温度の上昇速度は、450℃までの昇温にかかる時間が、原料が50gまでであれば40分、50g以上であれば3時間程度であることが望ましい。
非加熱部(7)は、反応容器(1)の上方部(高さ全体のうち加熱部(6)を除く範囲)に設けられ、電気炉(5)の断熱材(5b)または外気に触れる冷却可能な場所にあることが望ましい。非加熱部(7)の温度は、加熱部(6)における加熱により発生して上昇してきた硫黄蒸気が凝結して落下し得る温度(好ましくは100℃以下、より好ましくは50℃以下)とされる。
尚、反応容器(1)内の温度は、熱電対(20)により測定され、この測定値に基づいて温度調節器(21)で電気炉(5)を制御することにより調整される。
The heating section (6) is provided in the lower part of the reaction vessel (1) (in the range from the lower half to the second third of the entire height), and the raw material is accommodated in the electric furnace (5). This is the part heated by the heater (5a). The heating temperature is set to a temperature (preferably 300 to 450 ° C., more preferably 350 to 420 ° C.) sufficient to cause sulfur reaction between the sulfur contained in the raw material and the organic substance. The temperature increase rate of the heating section (6) is preferably about 40 minutes if the time required for raising the temperature to 450 ° C. is up to 50 g, and about 3 hours if the raw material is 50 g or more.
A non-heating part (7) is provided in the upper part (the range except heating part (6) among the whole height) of reaction container (1), and touches the heat insulating material (5b) or external air of an electric furnace (5). It is desirable to be in a coolable place. The temperature of the non-heating part (7) is a temperature at which sulfur vapor generated and raised by heating in the heating part (6) can condense and fall (preferably 100 ° C. or less, more preferably 50 ° C. or less). The
The temperature in the reaction vessel (1) is measured by the thermocouple (20), and is adjusted by controlling the electric furnace (5) with the temperature controller (21) based on the measured value.

反応容器(1)の材質は、液体の硫黄が存在する原料に触れる部分は、ムライト、アルミナ、石英、アルミニウムを用いるのが好ましく、硫黄蒸気の通気性や原料との剥離容易性の面から表面の粗いムライトやアルミニウムがより好ましい。セラミック容器や石英容器は、機械的衝撃に弱いため、大きな容器を作成する場合、気密性や耐破損性の観点から、ステンレス製の気密容器(1a)を外側に配し、その内部にムライト製またはアルミニウム製の反応容器(1)を収容することが好ましい(図2参照)。   As the material of the reaction vessel (1), it is preferable to use mullite, alumina, quartz, or aluminum for the part that comes into contact with the raw material in which liquid sulfur is present. Rough mullite or aluminum is more preferred. Ceramic containers and quartz containers are vulnerable to mechanical shock, so when creating large containers, a stainless steel airtight container (1a) is placed on the outside from the viewpoint of airtightness and breakage resistance, and the interior is made of mullite. Or it is preferable to accommodate the reaction container (1) made from aluminum (refer FIG. 2).

反応容器(1)に収容される原料は、ポリアクリロニトリル(PAN)、石炭ピッチ、ゴム、パラフィン類、活性炭、アセチレンブラック、瀝青、ゼラチン、ポリエチレン樹脂、アクリル樹脂等の有機物100質量部に対し、硫黄120〜600質量部(好ましくは140〜400質量部)を混合したものである。混合方法は特に限定されないが、例えば、乳鉢やボールミル等の一般的な混合装置を使用して混合することができる。また、必要に応じて、二次電池の正極活物質に配合可能な一般的な材料(導電助剤等)を配合してもよい。原料の形態は、粉末状でもよいし、ペレット状等に成形したものでもよく、特に限定されない。
この原料を、加熱部(6)に収容して250〜500℃、好ましくは300〜450℃、より好ましくは350〜420℃で加熱することにより、硫黄と有機物との硫化反応を生じさせる。この硫化反応(硫化熱処理工程)を非酸化性雰囲気下で行わせると、有機物がPANである場合、PANの閉環反応と同時に、蒸気形態の硫黄がPANと反応して、硫黄によって変性されたPANが得られる。ここで、非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度である減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。
The raw material contained in the reaction vessel (1) is sulfur with respect to 100 parts by mass of organic substances such as polyacrylonitrile (PAN), coal pitch, rubber, paraffins, activated carbon, acetylene black, bitumen, gelatin, polyethylene resin, acrylic resin and the like. 120 to 600 parts by mass (preferably 140 to 400 parts by mass) are mixed. Although the mixing method is not particularly limited, for example, mixing can be performed using a general mixing device such as a mortar or a ball mill. Moreover, you may mix | blend the general material (conductive auxiliary agent etc.) which can be mix | blended with the positive electrode active material of a secondary battery as needed. The form of the raw material may be powdery or may be formed into a pellet or the like, and is not particularly limited.
This raw material is accommodated in a heating part (6) and heated at 250 to 500 ° C., preferably 300 to 450 ° C., more preferably 350 to 420 ° C., thereby causing a sulfurization reaction between sulfur and organic matter. When this sulfidation reaction (sulfurization heat treatment step) is performed in a non-oxidizing atmosphere, when the organic substance is PAN, simultaneously with the PAN ring-closing reaction, the vapor form sulfur reacts with PAN and is modified by sulfur. Is obtained. Here, the non-oxidizing atmosphere includes a depressurized state having a low oxygen concentration such that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen or argon, a sulfur gas atmosphere, and the like.

上記した硫黄と有機物との硫化反応時において、反応温度が硫黄の蒸発する温度より十分に高いため、多量の硫黄蒸気が発生する。
工業的に用いられている移動床反応装置や、ロータリーキルンのような通常の加熱反応容器では、硫黄が反応系外に速やかに逃げ出してしまい有機物と十分反応させることができない。また長さと直径の比率が3:1以下の坩堝等に混合原料を入れ雰囲気炉中で反応させた場合でも、蒸発した硫黄が反応系に戻ってこないため硫黄不足となり良好な特性を有する有機硫黄系正極材料を確実に得ることが困難である。
一方、本発明に係る製造装置によれば、反応容器(1)の上部に温度が低い非加熱部(7)が設けられていることにより、加熱部(6)における加熱により発生して上昇してきた硫黄蒸気が非加熱部(7)にて凝結して加熱部(6)に落下し、再び原料として硫化反応に供される(即ち、蒸発した硫黄が液体として原料に還流される)こととなるため、硫黄不足の問題が生じることがない。
During the sulfurization reaction between sulfur and organic matter, a large amount of sulfur vapor is generated because the reaction temperature is sufficiently higher than the temperature at which sulfur evaporates.
In a moving bed reaction apparatus used industrially or in a normal heating reaction vessel such as a rotary kiln, sulfur quickly escapes from the reaction system and cannot sufficiently react with organic matter. In addition, even when mixed raw materials are placed in a crucible or the like having a length to diameter ratio of 3: 1 or less and reacted in an atmospheric furnace, the evaporated sulfur does not return to the reaction system, so that sulfur is insufficient and organic sulfur has good characteristics. It is difficult to reliably obtain a positive electrode material.
On the other hand, according to the production apparatus according to the present invention, since the non-heating part (7) having a low temperature is provided on the upper part of the reaction vessel (1), it is generated and raised by heating in the heating part (6). The sulfur vapor condensed in the non-heated part (7), falls to the heated part (6), and is again subjected to a sulfidation reaction as a raw material (that is, the evaporated sulfur is returned to the raw material as a liquid). Therefore, the problem of lack of sulfur does not occur.

反応容器(1)を収容する気密容器(1a)の上部にはフランジが形成され、このフランジに対して反応容器(1)を密閉するための蓋(12)がボルトにて固定されている。この蓋(12)には、反応容器(1)内で加熱により発生した硫化水素を外部に取り出すための排出管(2)の一端部が気密に挿通固定されている。フランジの下方には水冷管(15)が配設されている。   A flange is formed on the upper part of the airtight container (1a) for accommodating the reaction container (1), and a lid (12) for sealing the reaction container (1) is fixed to the flange with a bolt. One end of a discharge pipe (2) for taking out hydrogen sulfide generated by heating in the reaction vessel (1) is hermetically inserted and fixed to the lid (12). A water-cooled pipe (15) is disposed below the flange.

排出管(2)の本数は1本でもよいが、複数本(図示例では2本)設けることが好ましい。これは、仮に1本の排出管(2)が硫黄蒸気の固化により閉塞したとしても、残りの排出管(2)を通して硫化水素を容器外へと排出することが可能となるためである。複数本の排出管は、いずれも捕集装置(3)に接続され、各排出管を通って反応容器外に出た硫化水素は捕集装置(3)により捕集される。
排出管(2)は、通常、長さ方向に複数の管を接続したものが使用され、例えば、ガラス管とポリエチレンチューブとフッ素樹脂管とを長さ方向に接続したものが使用される。後述する連結管(32)(33)についても同様である。
反応容器(1)の上部には、排出管(2)の閉塞を検知するために、反応容器内部の圧力を測定する圧力計(10)が取り付けられている。
Although the number of the discharge pipes (2) may be one, it is preferable to provide a plurality (two in the illustrated example). This is because even if one discharge pipe (2) is blocked by solidification of sulfur vapor, hydrogen sulfide can be discharged out of the container through the remaining discharge pipe (2). The plurality of discharge pipes are all connected to the collection device (3), and hydrogen sulfide that has flowed out of the reaction vessel through each discharge pipe is collected by the collection device (3).
As the discharge pipe (2), a pipe in which a plurality of pipes are connected in the length direction is usually used. For example, a pipe in which a glass pipe, a polyethylene tube and a fluororesin pipe are connected in the length direction is used. The same applies to connecting pipes (32) and (33) described later.
A pressure gauge (10) for measuring the pressure inside the reaction vessel is attached to the upper portion of the reaction vessel (1) in order to detect the blockage of the discharge pipe (2).

硫黄の固化による排出管(2)の閉塞を防ぐための別の方法として、排出管(2)の内径を大きくする方法が挙げられる。本発明者らは、排出管(2)の内径(反応容器(1)に接続された排出管(2)の端部の内径)を10mm以上とすればよいことを確認している。但し、排出管(2)の内径が10mm未満であっても、排出管(2)の内部で固化した硫黄を掻き取る機構や、排出管(2)の内部で固化した硫黄を溶融させる加熱機構を設けることにより、硫黄の固化による排出管(2)の閉塞を防ぐことができる。
また、更に別の方法として、反応容器(1)に排出管(2)とは別の管(8)を接続し、この管(8)から窒素などの分子量の低い不活性ガスを、反応容器(1)の蓋の面積200cm2あたり50〜200ml/分、より好ましくは75〜150ml/分の流量で流して、反応容器(1)上部(非加熱部(7))の気体の密度を下げ、気体の密度が大きい分子量の大きな硫黄蒸気(S、分子量256)が下に沈むようにする方法や、反応容器(1)の上部を空冷または水冷により積極的に冷却して排出管(2)に達する硫黄蒸気を減らす方法、非加熱部(7)における排出管(2)の手前(下方)にアルミニウム箔などの障害物(9)を設けて障害物表面において硫黄を凝結させて付着させる方法、反応容器(1)の内部に硫黄捕集冷却器を設けることで排気から硫黄蒸気を除去する方法、などを例示することができる。
Another method for preventing clogging of the discharge pipe (2) due to solidification of sulfur is to increase the inner diameter of the discharge pipe (2). The present inventors have confirmed that the inner diameter of the discharge pipe (2) (the inner diameter of the end of the discharge pipe (2) connected to the reaction vessel (1)) should be 10 mm or more. However, even if the inner diameter of the discharge pipe (2) is less than 10 mm, a mechanism for scraping the solidified sulfur inside the discharge pipe (2) or a heating mechanism for melting the solidified sulfur inside the discharge pipe (2) By providing this, blockage of the discharge pipe (2) due to solidification of sulfur can be prevented.
Further, as another method, a tube (8) different from the discharge pipe (2) is connected to the reaction vessel (1), and an inert gas having a low molecular weight such as nitrogen is supplied from the tube (8) to the reaction vessel. The density of the gas in the upper part of the reaction vessel (1) (non-heated part (7)) is lowered by flowing at a flow rate of 50 to 200 ml / min, more preferably 75 to 150 ml / min per 200 cm 2 of the lid area of (1). A method in which sulfur vapor having a high molecular weight and a large molecular weight (S 8 , molecular weight 256) sinks downward, or the upper part of the reaction vessel (1) is actively cooled by air cooling or water cooling to discharge pipe (2) Of reducing sulfur vapor reaching the surface, and a method of providing an obstacle (9) such as aluminum foil in front (downward) of the discharge pipe (2) in the non-heated part (7) to condense and adhere sulfur on the obstacle surface , Sulfur collection cooling inside the reaction vessel (1) A method of removing sulfur vapor from exhaust gas by providing a vessel can be exemplified.

本発明に係る製造装置は、反応容器(1)と加熱源(電気炉(5))とを一体的に起伏させる起伏機構(11)を備えている。起伏機構(11)は、図1では省略されている。
図5は、起伏機構(11)の構成及び作用を示す図である。
起伏機構(11)は、電気炉(5)に収容された反応容器(1)の加熱部(6)が非加熱部(7)より低位置となる起立状態(図1参照)と、非加熱部(7)が加熱部(6)より低位置となる傾斜状態(図3参照)とを切り換え可能な起伏機構(11)を有している。図5において、実線は起立状態を示し、二点鎖線は傾斜状態を示している。
The production apparatus according to the present invention includes an undulation mechanism (11) that integrally undulates the reaction vessel (1) and the heating source (electric furnace (5)). The undulation mechanism (11) is omitted in FIG.
FIG. 5 is a diagram showing the configuration and action of the undulation mechanism (11).
The undulation mechanism (11) includes an upright state (see FIG. 1) in which the heating part (6) of the reaction vessel (1) housed in the electric furnace (5) is positioned lower than the non-heating part (7), and non-heating. The undulation mechanism (11) which can switch the inclination state (refer FIG. 3) which a part (7) becomes a lower position than a heating part (6) has. In FIG. 5, the solid line indicates the standing state, and the two-dot chain line indicates the inclined state.

起伏機構(11)は、図5に示すように、反応容器(1)を収容した電気炉(5)の両側面に固定された蝶番(12)と、反応容器(1)及び電気炉(5)が取り付けられる基台(13)と、基台(13)に固定された蝶番(14)と、蝶番(12)と蝶番(14)とを連結するロータリーステー(16)とから構成されている。蝶番(12)は電気炉(5)の上下方向にスライド可能となっており、起立状態では電気炉(5)の上方に位置し、傾斜状態では電気炉(5)の下方に位置する。
このような起伏機構(11)を備えていることによって、作業者は、反応容器(1)と電気炉(5)の起立状態(図5の実線位置)と傾斜位置(図5の二点鎖線位置)とを簡単に切り換えることが可能となる。また、反応容器(1)と電気炉(5)の位置は、起立状態と傾斜状態のそれぞれにおいて、フック等の固定具(図示略)を用いて固定することができる。
As shown in FIG. 5, the undulation mechanism (11) includes a hinge (12) fixed to both sides of the electric furnace (5) containing the reaction container (1), the reaction container (1) and the electric furnace (5 ) Is attached to the base (13), the hinge (14) fixed to the base (13), and the rotary stay (16) connecting the hinge (12) and the hinge (14). . The hinge (12) is slidable in the vertical direction of the electric furnace (5), and is located above the electric furnace (5) in a standing state and below the electric furnace (5) in an inclined state.
By providing such an undulation mechanism (11), the operator can stand up the reaction vessel (1) and the electric furnace (5) (solid line position in FIG. 5) and inclined position (two-dot chain line in FIG. 5). Position) can be easily switched. Further, the positions of the reaction vessel (1) and the electric furnace (5) can be fixed using a fixing tool (not shown) such as a hook in each of the standing state and the inclined state.

反応容器(1)の中心軸と水平軸とのなす角度は、起立状態では90°であり、傾斜状態では水平軸から下方向に5°以下、好ましくは2〜3°である。傾斜角度が小さすぎる(2°未満)と、後述する未反応硫黄(単体硫黄)の除去作業において凝集した単体硫黄の液滴が粗生成物に向けて流下する恐れがあり、大きすぎる(5°超)と、多量の硫黄蒸気が排出管(2)に達して固化することで排出管を閉塞する恐れがあり、いずれの場合も好ましくない。傾斜角度は、ロータリーステー(16)の長さを調節することにより設定することができる。   The angle formed between the central axis of the reaction vessel (1) and the horizontal axis is 90 ° in the standing state, and is 5 ° or less, preferably 2 to 3 ° downward from the horizontal axis in the inclined state. If the tilt angle is too small (less than 2 °), there is a possibility that droplets of simple sulfur aggregated in the removal operation of unreacted sulfur (single sulfur) described later flow down toward the crude product, which is too large (5 ° Ultra)) and a large amount of sulfur vapor may reach the discharge pipe (2) and solidify, which is not preferable in either case. The inclination angle can be set by adjusting the length of the rotary stay (16).

起伏機構(11)は、反応容器(1)を傾斜状態とした時に、反応容器(1)が電気炉(5)から外れることを防ぐための容器固定バンド(17)を備えている。
図7は、容器固定バンド(17)の平面図である。
容器固定バンド(17)は、2つの半円環状の部材をボルト(17a)及びナット(17b)で結合することにより、全体として平面視円環状に形成されている。
2つの半円環状の部材は、それぞれ、半円弧状の鍔状部(17e)と、鍔状部(17e)の内周側において垂直上向きに立ち上がる立ち上がり部(17f)とを有しており、鍔状部(17e)には切り欠き部(17c)が形成されている。
容器固定バンド(17)は、2つの半円環状の部材の対向する立ち上がり部(17f)の間に、電気炉(5)から上方に突出した反応容器(1)の上方部の側面を挟み、ボルト(17a)に対してナット(17b)を締め付けることにより、反応容器(1)に固定される。この状態で、鍔状部(17e)の切り欠き部(17c)にボルト(17d)を挿通して当該ボルトを電気炉(5)の上面に対して固定することにより、反応容器(1)が電気炉(5)に対して固定される。(図6参照)
容器固定バンド(17)は、バネ性を有する金属材料から形成されており、これにより熱膨張係数が異なる様々な異質材料の反応容器(1)を確実に固定することが可能となっている。
The undulation mechanism (11) includes a container fixing band (17) for preventing the reaction container (1) from being detached from the electric furnace (5) when the reaction container (1) is inclined.
FIG. 7 is a plan view of the container fixing band (17).
The container fixing band (17) is formed in an annular shape in plan view as a whole by connecting two semi-annular members with bolts (17a) and nuts (17b).
Each of the two semi-annular members has a semicircular arcuate portion (17e) and a rising portion (17f) that rises vertically upward on the inner peripheral side of the flange portion (17e). A notch (17c) is formed in the bowl-shaped portion (17e).
The container fixing band (17) sandwiches the side surface of the upper part of the reaction container (1) protruding upward from the electric furnace (5) between the opposed rising parts (17f) of the two semi-annular members, The nut (17b) is fastened to the bolt (17a) to be fixed to the reaction vessel (1). In this state, the bolt (17d) is inserted into the notch (17c) of the bowl-shaped portion (17e) and the bolt is fixed to the upper surface of the electric furnace (5), whereby the reaction vessel (1) is Fixed to the electric furnace (5). (See Figure 6)
The container fixing band (17) is formed of a metal material having a spring property, which makes it possible to reliably fix the reaction containers (1) made of various different materials having different thermal expansion coefficients.

捕集装置(3)は、排出管(2)を通して反応容器(1)から取り出された硫化水素を捕集するために設けられており、硫化水素を吸収可能な液体(L)を収容した複数の捕集容器を備えている。
複数の捕集容器は、反応容器(1)と接続された排出管(2)の端部が内部に配置される前段容器(30)と、この前段容器(30)にて捕集されなかった硫化水素を捕集する後段容器(31)とから構成されている。
The collection device (3) is provided for collecting hydrogen sulfide taken out from the reaction vessel (1) through the discharge pipe (2) and contains a plurality of liquids (L) capable of absorbing hydrogen sulfide. Equipped with a collection container.
A plurality of collection containers were not collected in the former container (30) in which the end of the discharge pipe (2) connected to the reaction container (1) is disposed, and the former container (30). It is comprised from the back | latter stage container (31) which collects hydrogen sulfide.

硫化水素を吸収可能な液体(L)としては、水酸化ナトリウム、水酸化カリウム、などのアルカリ性物質を水に溶かした水溶液が好適に使用される。炭酸ナトリウムまたは炭酸カリウムは、硫化水素の吸収により炭酸水素塩のような難溶性の塩を生じ、硫化水素の吸収能力が低下するばかりでなく、ガスを液中に導く管(バブリング管)の閉塞を招くため、硫化水素吸収剤としての使用は避けなければならない。従って、これらの炭酸塩は、後述するように、硫化水素を含むガスをバブリングする後段容器(31)においては使用することができないが、ガスをバブリングしない前段容器(30)においては使用することができる。   As the liquid (L) capable of absorbing hydrogen sulfide, an aqueous solution in which an alkaline substance such as sodium hydroxide or potassium hydroxide is dissolved in water is preferably used. Sodium carbonate or potassium carbonate generates a poorly soluble salt such as bicarbonate by absorbing hydrogen sulfide, which not only reduces the ability to absorb hydrogen sulfide, but also clogs the tube (bubbling tube) that introduces gas into the liquid. Therefore, use as a hydrogen sulfide absorbent must be avoided. Therefore, these carbonates cannot be used in the latter vessel (31) for bubbling a gas containing hydrogen sulfide, as described later, but can be used in the former vessel (30) that does not bubble the gas. it can.

硫化水素を吸収可能な液体(L)の具体例としては、硫化反応に用いた有機物100質量部に対し、水酸化ナトリウムの場合、90質量部以上120質量部未満、より好ましくは100質量部以上110質量部未満、水酸化カリウムの場合、120質量部以上170質量部未満、好ましくは130質量部以上150質量部未満を水300質量部以上10000質量部未満、より好ましくは400質量部以上5000質量部未満に溶かした水溶液を使用することができる。   As a specific example of the liquid (L) capable of absorbing hydrogen sulfide, in the case of sodium hydroxide, 90 parts by mass or more and less than 120 parts by mass, more preferably 100 parts by mass or more with respect to 100 parts by mass of the organic substance used in the sulfurization reaction. Less than 110 parts by weight, in the case of potassium hydroxide, 120 parts by weight or more and less than 170 parts by weight, preferably 130 parts by weight or more and less than 150 parts by weight, 300 parts by weight or more and less than 10,000 parts by weight, more preferably 400 parts by weight or more and 5000 parts by weight. An aqueous solution dissolved in less than 1 part can be used.

反応容器(1)と接続された排出管(2)の端部は、図1に示すように、前段容器(30)に収容された液体(L)と接触しておらず、液体(L)の液面より上方に位置している。
これにより、反応容器内部が偶発的に負圧となったとしても、排出管を通じてアルカリ水溶液が高温の反応容器に逆流することがないため、逆流による熱衝撃で容器の破損や水蒸気爆発が生じることが防止できる。また、アルカリ水溶液と硫化水素との反応で生成した塩が固体となって析出して排出管を閉塞することもないため、反応容器と排出管が硫化水素により加圧され硫化水素の漏洩が生じることも防止できる。更に、大量の硫化水素ガスが急激に発生した場合でも、バブリングによる排出管内部の圧力抵抗が生じないため、排出管内部が加圧されて、硫化水素の漏洩が生じることも防止できる。
As shown in FIG. 1, the end of the discharge pipe (2) connected to the reaction vessel (1) is not in contact with the liquid (L) contained in the preceding vessel (30), and the liquid (L) It is located above the liquid level.
As a result, even if the inside of the reaction vessel accidentally becomes a negative pressure, the alkaline aqueous solution does not flow back to the high temperature reaction vessel through the discharge pipe. Can be prevented. In addition, since the salt produced by the reaction between the alkaline aqueous solution and hydrogen sulfide does not precipitate as a solid and clogs the discharge pipe, the reaction vessel and the discharge pipe are pressurized with hydrogen sulfide, causing leakage of hydrogen sulfide. Can also be prevented. Furthermore, even when a large amount of hydrogen sulfide gas is generated abruptly, pressure resistance inside the discharge pipe due to bubbling does not occur, so that the inside of the discharge pipe is pressurized and leakage of hydrogen sulfide can be prevented.

前段容器(30)内に収容された液体(L)は、マグネチックスターラー等からなる攪拌装置(34)により攪拌される。これにより、排出管(2)を通して前段容器内(30)に導入された硫化水素を含むガスが液体(L)に接触する時に、当該ガスが接触する液面が常に移動して変化することとなる。そのため、見掛け上、ガスと液面との接触面積が増加し、硫化水素を迅速に吸収することが可能となる。   The liquid (L) accommodated in the front vessel (30) is stirred by a stirring device (34) made of a magnetic stirrer or the like. As a result, when the gas containing hydrogen sulfide introduced into the front vessel (30) through the discharge pipe (2) comes into contact with the liquid (L), the liquid level in contact with the gas always moves and changes. Become. Therefore, apparently, the contact area between the gas and the liquid surface increases, and hydrogen sulfide can be absorbed rapidly.

前段容器(30)と後段容器(31)は、前段容器(30)にて捕集されなかった硫化水素を後段容器(31)へと導く連結管(32)により連結されている。
後段容器(31)は少なくとも1つ以上設ければよいが、硫化水素を確実に全て吸収するためには複数設けることが好ましく、3つ以上設けることが好ましい。図示例では3つ設けられている。後段容器(31)を複数設ける場合は、図示のように、複数の後段容器(31)を互いに連結管(33)を介して直列に連結し、そのうちの1つの後段容器(31)を、前段容器(30)と連結管(32)により連結する。
The former container (30) and the latter container (31) are connected by a connecting pipe (32) that guides hydrogen sulfide that has not been collected in the former container (30) to the latter container (31).
At least one or more post-stage containers (31) may be provided, but a plurality of, preferably three or more, are preferably provided in order to reliably absorb all of the hydrogen sulfide. In the illustrated example, three are provided. When providing a plurality of rear containers (31), as shown in the figure, a plurality of rear containers (31) are connected in series with each other via a connecting pipe (33), and one of the rear containers (31) is connected to the front It connects with a container (30) and a connection pipe (32).

前段容器(30)と後段容器(31)を連結する連結管(32)の一方の端部は、上述した通り、前段容器(30)に収容された液体(L)と接触していないが、他方の端部は後段容器(31)内に収容された液体(L)と接触している。
前段容器(30)内の液体にて吸収されなかった硫化水素を含むガスは、連結管(32)を通って1つ目の後段容器(31)内に導入され、後段容器(31)内に収容された液体(L)にバブリングされることにより、当該液体に硫化水素が吸収される。
後段容器(31)において硫化水素を含むガスを液体に対してバブリングさせるのは、硫化水素の大部分(約9割)は前段容器(30)内の液体に吸収されるため、後段容器(31)においては上述したようなバブリングさせることによる弊害が生じないためである。
硫化水素の大部分が前段容器(30)内の液体に吸収されるため、前段容器(30)には予想される硫化水素の発生量に対応した液体を収容し、後段容器(31)にはそれぞれ前段容器(30)の1割ないし2割程度の量の液体を収容すれば足りる。
One end of the connecting pipe (32) connecting the front container (30) and the rear container (31) is not in contact with the liquid (L) contained in the front container (30) as described above. The other end is in contact with the liquid (L) contained in the rear container (31).
The gas containing hydrogen sulfide that has not been absorbed by the liquid in the front vessel (30) is introduced into the first rear vessel (31) through the connecting pipe (32), and then into the rear vessel (31). By bubbling the contained liquid (L), hydrogen sulfide is absorbed into the liquid.
The reason why the gas containing hydrogen sulfide is bubbled with respect to the liquid in the latter container (31) is that most of the hydrogen sulfide (about 90%) is absorbed by the liquid in the former container (30). This is because the above-described bubbling does not cause any adverse effects.
Since most of the hydrogen sulfide is absorbed by the liquid in the front vessel (30), the front vessel (30) contains a liquid corresponding to the expected amount of generated hydrogen sulfide, and the rear vessel (31). It is sufficient to store about 10% to 20% of the liquid in the front container (30).

1つ目の後段容器(31)に導入された硫化水素を含むガスは、連結管(33)を通して2つ目の後段容器及び3つ目の後段容器に順次導入される。1つ目の後段容器(31)内の液体により吸収できなかった硫化水素は、2つ目以降の後段容器内の液体にバブリングされて吸収される。   The gas containing hydrogen sulfide introduced into the first latter container (31) is sequentially introduced into the second latter container and the third latter container through the connecting pipe (33). Hydrogen sulfide that could not be absorbed by the liquid in the first latter container (31) is absorbed by being bubbled by the liquid in the second and subsequent latter containers.

反応容器(1)内に収容された硫黄と有機物を含む原料は、加熱されることにより硫化反応を起こし、粗生成物が生成(合成)される。
この粗生成物は、有機物由来の物質重量100部に対し、50部以上200部程度の硫黄を含んでいる。このうち、有機物の構造内部に閉じ込められている硫黄は電極として電池に用いた際に充電放電により電解液に溶け出さないが、粉末X回折により硫黄結晶特有の反射ピークを与えるような硫黄(以下、単体硫黄という)が存在する場合はこれが電解液に溶け出し、電池の劣化を引き起こす。そのため、このような単体硫黄は、生成された粗生成物から除去しなくてはならない。
硫黄は加熱すると蒸気となる性質がある。また、空気中で加温すると300℃程度で青い炎を伴って発火し、ゆっくりと燃える性質がある。合成した過剰な硫黄を含む粗生成物から電極として不要な硫黄(単体硫黄)を除去するためには、不活性ガス気流中または真空中で加熱により分子状の硫黄として揮発させ、粗生成物から除去するのが望ましい。
The raw material containing sulfur and organic matter contained in the reaction vessel (1) undergoes a sulfurization reaction when heated, and a crude product is produced (synthesized).
This crude product contains about 50 to 200 parts of sulfur with respect to 100 parts by weight of the organic substance-derived substance. Among these, sulfur trapped inside the structure of organic matter does not dissolve into the electrolyte solution by charge and discharge when used in a battery as an electrode, but sulfur that gives a reflection peak peculiar to sulfur crystals by powder X diffraction (hereinafter referred to as “sulfur”). In the presence of elemental sulfur), it dissolves in the electrolyte and causes deterioration of the battery. Therefore, such elemental sulfur must be removed from the produced crude product.
Sulfur has the property of becoming steam when heated. In addition, when heated in air, it ignites with a blue flame at about 300 ° C. and burns slowly. In order to remove unnecessary sulfur (elemental sulfur) as an electrode from the synthesized crude product containing excess sulfur, it is volatilized as molecular sulfur by heating in an inert gas stream or under vacuum, and then from the crude product. It is desirable to remove.

以下、反応容器(1)内に生成された粗生成物に含まれる未反応硫黄(単体硫黄)を除去するための未反応硫黄除去装置(4)について説明する。
上述した如く、未反応硫黄除去装置(4)は、反応容器(1)及び加熱源(5)を兼用させることもできるし(図3参照)、反応容器(1)及び加熱源(5)とは別装置として設けることもできる(図4参照)。
Hereinafter, the unreacted sulfur removing device (4) for removing unreacted sulfur (single sulfur) contained in the crude product generated in the reaction vessel (1) will be described.
As described above, the unreacted sulfur removing device (4) can be used as the reaction vessel (1) and the heating source (5) (see FIG. 3), or the reaction vessel (1) and the heating source (5). Can also be provided as a separate device (see FIG. 4).

先ず、反応容器(1)及び加熱源(5)を未反応硫黄除去装置(4)と兼用する場合について説明する。
この場合、反応容器(1)内に粗生成物が生成した後、起伏機構(11)を利用して反応容器(1)及び加熱源(5)を非加熱部(7)が加熱部(6)より低位置となる傾斜状態とする(図3参照)。これにより、反応容器(1)及び加熱源(5)を未反応硫黄除去装置(4)として使用することが可能となる。
First, the case where the reaction vessel (1) and the heating source (5) are also used as the unreacted sulfur removing device (4) will be described.
In this case, after a crude product is generated in the reaction vessel (1), the unheated portion (7) is heated to the heated portion (6) by using the undulation mechanism (11) and the reaction vessel (1) and the heating source (5). ) Inclined state that is lower (see FIG. 3). Thereby, it becomes possible to use the reaction vessel (1) and the heating source (5) as the unreacted sulfur removing device (4).

反応容器(1)及び加熱源(5)を図3に示す如く傾斜状態とした後、反応容器(1)の加熱部(6)内に収容されている粗生成物(C)を更に加熱する。加熱温度は、200〜450℃とすることが好ましく、250〜400℃とすることがより好ましい。加熱温度が200℃未満であると、硫黄の蒸散が極めて遅く、工業的に実用性が乏しい。450℃を超えると(或いは300℃以上での長時間加熱であると)、充放電に関与する硫黄まで粗生成物中から除去されてしまう恐れがあるため望ましくない。
具体的には、反応容器(1)を起立状態(図1参照)としての硫化反応の終了後、反応容器(1)及び加熱源(5)を傾斜状態として、350〜400℃の温度に30分〜2時間、より好ましくは45分〜90分保ち、その後自然冷却させつつ、余熱を用いて硫黄の除去を行うとよい。
After the reaction vessel (1) and the heating source (5) are inclined as shown in FIG. 3, the crude product (C) accommodated in the heating section (6) of the reaction vessel (1) is further heated. . The heating temperature is preferably 200 to 450 ° C, and more preferably 250 to 400 ° C. When the heating temperature is less than 200 ° C., the transpiration of sulfur is extremely slow, and industrial utility is poor. When it exceeds 450 ° C. (or when it is heated for a long time at 300 ° C. or higher), sulfur involved in charge / discharge may be removed from the crude product, which is not desirable.
Specifically, after completion of the sulfidation reaction with the reaction vessel (1) in the standing state (see FIG. 1), the reaction vessel (1) and the heating source (5) are set in an inclined state to a temperature of 350 to 400 ° C. It is good to carry out removal of sulfur using residual heat, keeping for minutes-2 hours, more preferably 45 minutes-90 minutes, and letting it cool naturally after that.

反応容器(1)及び加熱源(5)を傾斜状態として粗生成物を200〜450℃で加熱することにより、粗生成物に含まれる単体硫黄(未反応硫黄)が蒸気となって粗生成物から取り出される。硫黄蒸気は空気より重いため、傾斜した反応容器(1)内を斜め下方に向けて流れ(図3の一点鎖線矢印参照)、温度が低い非加熱部(7)において凝集して液体又は固体の硫黄(S)となる。
ここで、反応容器(1)が、非加熱部(7)が加熱部(6)より低位置となる傾斜状態とされているため、加熱部(6)にて粗生成物から除去されて非加熱部(7)において凝集した単体硫黄の液滴が、粗生成物(C)に向けて流下することが防がれる。
加熱により発生した硫化水素は、排出管(2)を通して捕集装置(3)へと導かれ、前段容器(30)及び後段容器(31)により捕集される。
By heating the crude product at 200 to 450 ° C. with the reaction vessel (1) and the heating source (5) in an inclined state, the elemental sulfur (unreacted sulfur) contained in the crude product becomes steam and the crude product Taken from. Since sulfur vapor is heavier than air, it flows obliquely downward in the inclined reaction vessel (1) (see the one-dot chain line arrow in FIG. 3) and agglomerates in the non-heating part (7) where the temperature is low to form liquid or solid It becomes sulfur (S).
Here, since the reaction vessel (1) is in an inclined state in which the non-heating part (7) is positioned lower than the heating part (6), the reaction container (1) is removed from the crude product by the heating part (6). The single sulfur droplets aggregated in the heating section (7) are prevented from flowing down toward the crude product (C).
Hydrogen sulfide generated by heating is guided to the collection device (3) through the discharge pipe (2) and collected by the front vessel (30) and the rear vessel (31).

加熱時においては、反応容器(1)に接続された管(8)から窒素などの分子量の低い不活性ガスを流して、傾斜状態の反応容器(1)上部の気体の密度を下げ、気体の密度が大きい分子量の大きな硫黄蒸気が試料から流れ下るようにすることが好ましい。   At the time of heating, an inert gas having a low molecular weight such as nitrogen is allowed to flow from the tube (8) connected to the reaction vessel (1) to lower the density of the gas at the top of the inclined reaction vessel (1). It is preferable that sulfur vapor having a large density and a large molecular weight flow down from the sample.

次に、未反応硫黄除去装置(4)を、反応容器(1)及び加熱源(5)と別装置として設ける場合について説明する。
原料としてゴムなどの有機物を用いた場合、生成物(粗生成物)が硬くなり、内部に不要な硫黄(未反応の硫黄)が閉じ込められていると、反応容器(1)内での合成反応直後に反応容器(1)を傾斜状態としてこの硫黄を除去しようとしても十分に除去できない場合がある。このような場合、生成物(粗生成物)を粉砕してから別容器に移して除去作業を行うことが必要となる。
未反応硫黄除去装置(4)を反応容器(1)及び加熱源(5)と別装置として設けることにより、反応容器(1)内で合成された粗生成物を、一旦取り出して粉砕してから、未反応硫黄除去装置(4)に移し替えて硫黄の除去作業を行うことができる。
Next, the case where the unreacted sulfur removing device (4) is provided as a separate device from the reaction vessel (1) and the heating source (5) will be described.
When organic materials such as rubber are used as raw materials, if the product (crude product) becomes hard and unnecessary sulfur (unreacted sulfur) is trapped inside, the synthesis reaction in the reaction vessel (1) Immediately after that, if the reaction vessel (1) is inclined to remove this sulfur, it may not be sufficiently removed. In such a case, it is necessary to pulverize the product (crude product) and then transfer it to a separate container for removal.
By providing the unreacted sulfur removal device (4) as a separate device from the reaction vessel (1) and the heating source (5), the crude product synthesized in the reaction vessel (1) is once taken out and pulverized. Then, it can be transferred to the unreacted sulfur removal device (4) to perform the sulfur removal work.

図4は、反応容器(1)及び加熱源(5)と別装置として設ける未反応硫黄除去装置(4)の全体構成を示す概略図である。
未反応硫黄除去装置(4)は、粗生成物を収容して加熱する筒状の処理容器(40)と、
この処理容器(40)を加熱する加熱源(45)と、処理容器(40)内に不活性ガスを供給する不活性ガス供給手段(41)を有している。
加熱源(45)の種類は特に限定されないが、図示例の如く電気炉が好適に使用されるため、以下の説明では加熱源を電気炉(45)として説明する場合がある。
FIG. 4 is a schematic view showing an entire configuration of an unreacted sulfur removing device (4) provided as a separate device from the reaction vessel (1) and the heating source (5).
The unreacted sulfur removal device (4) includes a cylindrical processing container (40) for containing and heating the crude product,
A heat source (45) for heating the processing container (40) and an inert gas supply means (41) for supplying an inert gas into the processing container (40) are provided.
The type of the heat source (45) is not particularly limited, but an electric furnace is preferably used as shown in the illustrated example. Therefore, in the following description, the heat source may be described as the electric furnace (45).

処理容器(40)の材質は、ムライト、アルミナ、石英、アルミニウム、ステンレス鋼を用いるのが好ましく、硫黄蒸気の通気性や原料との剥離容易性の面から表面の粗いムライト、アルミナ、石英がより好ましい。   The material of the processing vessel (40) is preferably mullite, alumina, quartz, aluminum, or stainless steel, and mullite, alumina, or quartz having a rough surface is more preferable in terms of air permeability of sulfur vapor and ease of peeling from raw materials. preferable.

処理容器(40)の両端部は蓋(48)(49)により閉塞されている。
処理容器(40)の一端側(傾斜の低い側)に設けられた蓋(48)には、処理容器(40)内にて発生した硫化水素を含むガスを外部に排出するための排出管(46)の一端が接続されており、排出管(46)の他端は硫化水素を吸収可能な液体を収容した捕集容器(47)に接続されている。
処理容器(40)の他端側(傾斜の高い側)に設けられた蓋(49)には、処理容器(40)内に窒素等の不活性ガスを供給するための供給管(50)の一端が接続されており、供給管(50)の他端は不活性ガスを貯蔵したガス容器(51)に接続されている。供給管(50)及びガス容器(51)は不活性ガス供給手段(41)を構成している。
Both ends of the processing container (40) are closed by lids (48) (49).
A lid (48) provided on one end side (low inclination side) of the processing vessel (40) is provided with a discharge pipe for discharging gas containing hydrogen sulfide generated in the processing vessel (40) to the outside ( 46) is connected to one end, and the other end of the discharge pipe (46) is connected to a collection container (47) containing a liquid capable of absorbing hydrogen sulfide.
A lid (49) provided on the other end side (highly inclined side) of the processing vessel (40) is provided with a supply pipe (50) for supplying an inert gas such as nitrogen into the processing vessel (40). One end is connected, and the other end of the supply pipe (50) is connected to a gas container (51) storing an inert gas. The supply pipe (50) and the gas container (51) constitute an inert gas supply means (41).

処理容器(40)は、内部に収容された粗生成物(C)が電気炉(45)のヒータ(45a)により加熱される加熱部(42)と、加熱部(42)における加熱により発生した硫黄蒸気を凝結させる非加熱部(43)を有するとともに、非加熱部(43)が加熱部(42)よりも低位置となるように傾斜して配置されている。
傾斜の角度は、水平軸に対して5°以下、好ましくは2〜3°に設定される。傾斜角度が小さすぎる(2°未満)と、後述する未反応硫黄(単体硫黄)の除去作業において凝集した単体硫黄の液滴が粗生成物に向けて流下する恐れがあり、大きすぎる(5°超)と、多量の硫黄蒸気が排出管(46)に達して固化することで排出管を閉塞する恐れがあり、いずれの場合も好ましくない。
The processing container (40) is generated by heating in the heating unit (42), in which the crude product (C) accommodated therein is heated by the heater (45a) of the electric furnace (45), and in the heating unit (42). While having the non-heating part (43) which condenses sulfur vapor | steam, it arrange | positions so that a non-heating part (43) may become a lower position than a heating part (42).
The angle of inclination is set to 5 ° or less, preferably 2 to 3 ° with respect to the horizontal axis. If the tilt angle is too small (less than 2 °), there is a possibility that droplets of simple sulfur aggregated in the removal operation of unreacted sulfur (single sulfur) described later flow down toward the crude product, which is too large (5 ° And a large amount of sulfur vapor reaches the discharge pipe (46) and is solidified, which may block the discharge pipe.

加熱部(42)内の温度は、熱電対(52)により測定され、この測定値に基づいて温度調節器(53)で電気炉(45)を制御することにより調整される。   The temperature in the heating unit (42) is measured by the thermocouple (52), and is adjusted by controlling the electric furnace (45) with the temperature controller (53) based on the measured value.

処理容器(40)の一端側において、加熱部(42)と蓋(48)の間の非加熱部(43)には、硫黄蒸気を捕集するための捕集紙(54)が配設されている。
処理容器(40)の他端側において、加熱部(42)と蓋(49)の間には、硫黄蒸気の逆流を防止するための円筒状の逆流防止部材(55)が配設されている。尚、逆流防止部材(55)と処理容器(40)との間には不活性ガスが流通可能な隙間が存在しており、逆流防止部材(55)が配設された部分は加熱されていない。
On one end side of the processing vessel (40), a non-heating part (43) between the heating part (42) and the lid (48) is provided with a collection paper (54) for collecting sulfur vapor. ing.
On the other end side of the processing vessel (40), a cylindrical backflow prevention member (55) for preventing the backflow of sulfur vapor is disposed between the heating unit (42) and the lid (49). . There is a gap through which the inert gas can flow between the backflow prevention member (55) and the processing container (40), and the portion where the backflow prevention member (55) is disposed is not heated. .

以下、図4に示す未反応硫黄除去装置(4)を使用して粗生成物に含まれる未反応硫黄(単体硫黄)を除去する方法について説明する。
処理容器(40)内に収容されている粗生成物(C)を電気炉(45)により200〜450℃、好ましくは250〜400℃で加熱すると、粗生成物に含まれる未反応の硫黄が蒸気となる。
そして、粗生成物を加熱しながら、不活性ガス供給手段(41)により、高位置の加熱部(42)から低位置の非加熱部(43)に向けて不活性ガスが流れるように処理容器内に不活性ガスを供給することにより、発生した硫黄蒸気が不活性ガスの流れに乗って運ばれて温度が低い非加熱部(43)において凝集して液体又は固体の硫黄(S)となる。
図4において、不活性ガスの流れを点線矢印で示し、硫黄蒸気の流れを一点鎖線矢印で示し、凝集した硫黄の流れ(滴下)を実線矢印で示している。
Hereinafter, a method for removing unreacted sulfur (single sulfur) contained in the crude product using the unreacted sulfur removing device (4) shown in FIG. 4 will be described.
When the crude product (C) accommodated in the processing vessel (40) is heated by an electric furnace (45) at 200 to 450 ° C., preferably 250 to 400 ° C., unreacted sulfur contained in the crude product is obtained. It becomes steam.
Then, while heating the crude product, the inert gas supply means (41) causes the inert gas to flow from the high position heating section (42) toward the low position non-heating section (43). By supplying the inert gas into the inside, the generated sulfur vapor is carried on the flow of the inert gas and aggregates in the non-heated part (43) having a low temperature to become liquid or solid sulfur (S). .
In FIG. 4, the flow of the inert gas is indicated by a dotted arrow, the flow of sulfur vapor is indicated by a one-dot chain arrow, and the flow (dropping) of the aggregated sulfur is indicated by a solid arrow.

ここで、処理容器(40)が、非加熱部(43)が加熱部(42)より低位置となるように傾斜して配置されているため、加熱部(42)において粗生成物(C)から除去され、非加熱部(43)において凝集した単体硫黄の液滴が、粗生成物に向けて流下することが防がれる。
加熱により発生した硫化水素は、排出管(46)を通して捕集容器(47)へと導かれて捕集される。図4において硫化水素を含むガスの流れを二点鎖線矢印で示している。
Here, since the processing container (40) is disposed so that the non-heating part (43) is positioned lower than the heating part (42), the crude product (C) in the heating part (42). The single sulfur droplets removed from the water and agglomerated in the non-heated part (43) are prevented from flowing down toward the crude product.
The hydrogen sulfide generated by heating is guided to the collection container (47) through the discharge pipe (46) and collected. In FIG. 4, the flow of gas containing hydrogen sulfide is indicated by a two-dot chain line arrow.

以下、本発明の実施例及び比較例を示すことにより本発明の効果を明確にする。但し、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the effect of the present invention will be clarified by showing examples and comparative examples of the present invention. However, the present invention is not limited to the following examples.

<実施例1>
(二次電池用有機硫黄系正極材料の製造)
1.原料の調製
ポリアクリロニトリル粉末2gと硫黄(キシダ化学製、99%)7gを混合して原料とした。
<Example 1>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries)
1. Preparation of raw material 2 g of polyacrylonitrile powder and 7 g of sulfur (manufactured by Kishida Chemical Co., 99%) were mixed to obtain a raw material.

2.装置
アルミナタンマン管(SSA-S、ニッカトー製、内径50mmφ、外径60mmφ、長さ180mm)を反応容器として用いた。このタンマン管の底に原料を入れ、水冷機能のあるステンレス製フランジにOリングを用いて締め付けることにより気密が維持できるように接続した。このフランジは、3本のアルミナ管を気密にOリングで締め付けて気密に保持できる開口を有しており、別途ガスを導入及び排気するために利用できるスエジロック規格の開口(スエジロック口)を2つ有している。スエジロック口には、窒素ガスを送り込む管を接続し、もう一方のスエジロック口には圧力計を取り付けた。アルミナ管の口の2つにはアルミナ管(SSA-S、ニッカトー製、外径6.3mmφ、内径4mmφ、長さ80mm)を取り付け、別に端の閉じたアルミナ管(SSA-S、ニッカトー製、外径6.3mmφ、内径4mmφ、長さ200mm)に熱電対(K種)を挿通して原料に接触させた。
フッ素樹脂管(外径6.3mm、内径3mm、長さ150mm)を2本ずつ、シリコーンゴム栓に2つの孔を穿孔して取り付け、これを3組、3つの三角フラスコ(各容量250ml)にそれぞれ取り付けた。水酸化ナトリウム3gを水280mlに溶かしたアルカリ水溶液を各々の三角フラスコに約70mlずつ注いだ。反応容器に接続されたアルミナ管2つにそれぞれポリエチレン配管(外径8mm、内径6mm、長さ500mm)をつなぎ、Y字管を用いて2本のポリエチレン管を合流させた。Y字管からポリエチレン管を1m延長し、三角フラスコに取り付けた2つあるフッ素樹脂管の一方につなぎ、もう一方のフッ素樹脂管から別の三角フラスコにポリエチレン管をつないで、3つの三角フラスコをガスが直列に通過するようにポリエチレン管を配管した。3つの三角フラスコのうち最初の1つは、フッ素樹脂管をアルカリ水溶液に漬けず、残り2つの三角フラスコでは、ガスが入ってくる管をアルカリ水溶液に浸して、排気ガスがバブリングすることで硫化水素を捕集できるようにした。
2. An apparatus alumina tanman tube (SSA-S, manufactured by Nikkato, inner diameter 50 mmφ, outer diameter 60 mmφ, length 180 mm) was used as a reaction vessel. The raw material was put into the bottom of the Tamman tube, and connected to a stainless steel flange having a water cooling function by using an O-ring to maintain airtightness. This flange has an opening that allows three alumina pipes to be tightly held with an O-ring and kept airtight, and has two Swagelok standard openings (swagelok ports) that can be used to introduce and exhaust gas separately. Have. A tube for feeding nitrogen gas was connected to the swagelok port, and a pressure gauge was attached to the other swagelok port. Alumina pipes (SSA-S, made by Nikkato, outer diameter 6.3 mmφ, inner diameter 4 mmφ, length 80 mm) are attached to two of the alumina pipe ports, and separately closed alumina pipes (SSA-S, made by Nikkato, outer A thermocouple (type K) was inserted into a diameter of 6.3 mmφ, an inner diameter of 4 mmφ, and a length of 200 mm, and contacted with the raw material.
Two fluororesin tubes (outer diameter: 6.3mm, inner diameter: 3mm, length: 150mm) are attached by drilling two holes in the silicone rubber stopper, and three sets of them are attached to three Erlenmeyer flasks (each volume 250ml). Attached. About 70 ml of an alkaline aqueous solution prepared by dissolving 3 g of sodium hydroxide in 280 ml of water was poured into each Erlenmeyer flask. Polyethylene pipes (outer diameter 8 mm, inner diameter 6 mm, length 500 mm) were connected to two alumina pipes connected to the reaction vessel, and two polyethylene pipes were joined using a Y-shaped pipe. Extend the polyethylene tube 1m from the Y-shaped tube, connect it to one of the two fluororesin tubes attached to the Erlenmeyer flask, connect the polyethylene tube from the other fluororesin tube to another Erlenmeyer flask, and connect the three Erlenmeyer flasks. A polyethylene pipe was piped so that the gas passed in series. The first of the three Erlenmeyer flasks does not immerse the fluororesin tube in the alkaline aqueous solution. In the remaining two Erlenmeyer flasks, the tube containing the gas is immersed in the alkaline aqueous solution, and the exhaust gas is bubbled to sulfidize. Hydrogen was able to be collected.

3.硫化熱処理工程
内部に窒素ガス100ml/分を送り込んだ反応容器を電気炉にセットし、反応容器の下から100mmまでの部分を加熱した。
窒素ガスが3連の三角フラスコの最後列でバブリングすること、すなわち系全体の気密を確認してから電気炉による昇温を開始した。途中、原料温度200℃を超えたあたりでガス発生が激しくなることが2つめの三角フラスコの気泡発生の頻度で見て取れた。実験を通して硫化水素検知器の表示は0ppmのままだった。
40分かけて原料温度380℃まで加熱し、電気炉の加温を停止した後、原料温度が420℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. A reaction vessel in which 100 ml / min of nitrogen gas was sent into the sulfurization heat treatment process was set in an electric furnace, and a portion from the bottom of the reaction vessel up to 100 mm was heated.
Nitrogen gas was bubbled in the last row of the triple Erlenmeyer flasks, that is, after the airtightness of the entire system was confirmed, the temperature increase by the electric furnace was started. On the way, it can be seen from the frequency of bubble generation in the second Erlenmeyer flask that the generation of gas became intense when the raw material temperature exceeded 200 ° C. Throughout the experiment, the display of the hydrogen sulfide detector remained at 0 ppm.
After heating to a raw material temperature of 380 ° C. over 40 minutes and stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise above 420 ° C.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に3時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は3.2gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was kept at 300 ° C. for 3 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 3.2 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例2>
(二次電池用有機硫黄系正極材料の製造)
1.原料の調製
ポリアクリロニトリル粉末20gと硫黄(細井化学工業 200メッシュ、99.9%)70gをビニール袋に計り取り、手で揉んで混合したものを原料とした。
<Example 2>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries)
1. Preparation of raw material 20g of polyacrylonitrile powder and 70g of sulfur (Hosoi Chemical Industry 200 mesh, 99.9%) were weighed into a plastic bag, mixed by hand and used as a raw material.

2.装置
下部が半球状に閉じた石英管(内径180mmφ、長さ380mm)を反応容器として用い、この石英管の底に原料を入れた。ガラス管(パイレックス(登録商標)製、外径6mmφ、内径4mmφ)を4本気密にOリングを用いて保持できる蓋をOリングで石英管開口部に取り付けた。ガラス管のうち1本を窒素ガス導入管として用いた。ガラス管の口の2つは排気ガス口とし、別に端の閉じたアルミナ管(SSA-S、ニッカトー製、外径8mmφ、内径4mmφ、長さ200mm)に熱電対(K種)を入れて原料に接触させた。
フッ素樹脂管(外径6.3mmφ、内径3mmφ、長さ150mm)を2本ずつ、シリコーンゴム栓に2つの孔を穿孔して取り付け、これを3組、3つの三角フラスコ(各容量500ml)に取り付けた。水酸化ナトリウム40gを水300mlに溶かしたアルカリ水溶液を各々の三角フラスコに約100mlずつ注いだ。反応容器から突出する排気ガス口の2つにそれぞれポリエチレン配管(外径8mmφ、内径6mmφ、長さ500mm)をつなぎ、Y字管を用いて2本のポリエチレン管を合流させた。Y字管からポリエチレン管を1m延長し、三角フラスコの2つあるフッ素樹脂管の一方につなぎ、もう一方のフッ素樹脂管から別の三角フラスコにポリエチレン管をつないで、3つの三角フラスコをガスが直列に通過するようにポリエチレン管を配管した。3つの三角フラスコのうち最初の1つは、フッ素樹脂管をアルカリ水溶液に漬けず、のこりの2つの三角フラスコでは、ガスが入ってくる管をアルカリ水溶液に浸して、排気ガスがバブリングすることで硫化水素を捕集できるようにした。
2. A quartz tube (inner diameter: 180 mmφ, length: 380 mm) with the lower part of the apparatus closed in a hemisphere was used as a reaction vessel, and the raw material was placed in the bottom of the quartz tube. A lid capable of holding four glass tubes (made of Pyrex (registered trademark), outer diameter 6 mmφ, inner diameter 4 mmφ) hermetically using an O-ring was attached to the quartz tube opening with the O-ring. One of the glass tubes was used as a nitrogen gas introduction tube. Two of the glass tube ports are exhaust gas ports, and a thermocouple (K type) is put into a closed alumina tube (SSA-S, manufactured by Nikkato, outer diameter 8 mmφ, inner diameter 4 mmφ, length 200 mm). Contact.
Two fluororesin tubes (outer diameter: 6.3mmφ, inner diameter: 3mmφ, length: 150mm) are attached by drilling two holes in a silicone rubber stopper, and three sets of them are attached to three Erlenmeyer flasks (each volume 500ml) It was. About 100 ml of an alkaline aqueous solution in which 40 g of sodium hydroxide was dissolved in 300 ml of water was poured into each Erlenmeyer flask. Two polyethylene pipes (outer diameter 8 mmφ, inner diameter 6 mmφ, length 500 mm) were connected to two of the exhaust gas ports protruding from the reaction vessel, and two polyethylene tubes were joined using a Y-shaped tube. Extend the polyethylene tube 1m from the Y tube, connect it to one of the two fluororesin tubes of the Erlenmeyer flask, connect the polyethylene tube from the other fluororesin tube to the other Erlenmeyer flask, and gas from the three Erlenmeyer flasks. A polyethylene pipe was piped so as to pass in series. The first of the three Erlenmeyer flasks does not immerse the fluororesin tube in the alkaline aqueous solution. In the two remaining Erlenmeyer flasks, the exhaust gas is bubbled by immersing the tube containing the gas in the alkaline aqueous solution. Hydrogen sulfide can be collected.

3.硫化熱処理工程
反応容器の内部に窒素ガス100ml/分を送り込んで電気炉にセットし、反応容器の下から350mmまでの部分を加熱した。
40分かけて原料温度380℃まで加熱し、電気炉の加温を停止した後、原料温度が420℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. Sulfurization heat treatment process Nitrogen gas 100 ml / min was sent into the reaction vessel and set in an electric furnace, and the part from the bottom of the reaction vessel up to 350 mm was heated.
After heating to a raw material temperature of 380 ° C. over 40 minutes and stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise above 420 ° C.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は32gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 300 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 32 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例3>
(二次電池用有機硫黄系正極材料の製造)
1.原料の調製
ポリアクリロニトリル粉末100gと硫黄(細井化学工業 200メッシュ、99.9%)350gをビニール袋に計り取り、手で揉んで混合したものを原料とした。
<Example 3>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries)
1. Preparation of raw materials 100 g of polyacrylonitrile powder and 350 g of sulfur (Hosoi Chemical Industry 200 mesh, 99.9%) were weighed into a plastic bag, mixed by hand and used as a raw material.

2.装置
図1〜3及び図5〜7に示す構成を備えた装置を使用した(以下の符号は図と対応)。但し、後段容器(41)に相当する三角フラスコは2つとした。
ムライト反応容器(内径113mmφ、長さ410mm)を反応容器(1)として用い、この反応容器の底に原料を入れた。気密な雰囲気となる水冷フランジを備えたステンレス容器(内径120mmφ、長さ450mm)(1a)にムライト反応容器(1)をいれた(図2参照)。
スエジロックの口が4つと、熱電対を取り付ける10mmφの口のついたステンレス製の蓋(外径6mmφ、厚さ10mmt)(12)を8本のボルトでステンレス容器に取り付けた。熱電対が格納できる一端が閉じたアルミナ管(SSA-S、ニッカトー製、外径10mmφ、内径6mmφ、長さ750mm)に熱電対(K種)(20)を入れ原料(M)に接触させ、アルミナ管をOリングとステンレスリングでステンレス蓋に締め付けて固定した。スエジロック口4つのうち1つに窒素ガス導入管(8)を取り付けた。別の口に真空排気ラインと圧力計(10)を取り付けた。残りの口2つは排気ガス出口(内径4.5mmφ)(排出管(2))とした。4つの口にはそれぞれストップコックを設けた。
フッ素樹脂管(外径6.3mmφ、内径3mmφ、長さ150mm)を2本ずつ、シリコーンゴム栓に2つの孔を穿孔して取り付け、これを3組、捕集容器となる3つの三角フラスコ(各容量1000ml)に取り付けた。水酸化ナトリウム200gを水1200mlに溶かしたアルカリ水溶液を各々の三角フラスコに約300mlずつ注いだ。
反応容器から突出する排気ガス口2つにそれぞれポリエチレン管(外径8mm、内径6mm、長さ500mm)(排出管(2))をつなぎ、Y字管を用いて2本のポリエチレン管を合流させた。Y字管からポリエチレン管を1m延長し、1つの三角フラスコ(前段容器(30))に取り付けられた2つあるフッ素樹脂管の一方につなぎ、もう一方のフッ素樹脂管から別の三角フラスコ(後段容器(31))にポリエチレン管(連結管(32)(33))をつないで、3つの三角フラスコをガスが直列に通過するようにポリエチレン管を配管した。3つの三角フラスコのうち最初の1つ(前段容器(30))は、フッ素樹脂管(排出管(2))をアルカリ水溶液に漬けず、残りの2つの三角フラスコ(後段容器(31))では、ガスが入ってくる管(連結管(32)(33))をアルカリ水溶液に浸して、排気ガスがバブリングすることで硫化水素を捕集できるようにした。
2. Apparatus An apparatus having the configuration shown in FIGS. 1 to 3 and FIGS. 5 to 7 was used (the following symbols correspond to the drawings). However, there were two Erlenmeyer flasks corresponding to the latter container (41).
A mullite reaction vessel (inner diameter: 113 mmφ, length: 410 mm) was used as the reaction vessel (1), and the raw material was placed in the bottom of the reaction vessel. The mullite reaction vessel (1) was placed in a stainless steel vessel (inner diameter: 120 mmφ, length: 450 mm) (1a) having a water-cooled flange that provides an airtight atmosphere (see FIG. 2).
A stainless steel lid (outer diameter 6 mmφ, thickness 10 mmt) (12) with four swagelok ports and a 10 mmφ port to which a thermocouple is attached was attached to the stainless steel container with eight bolts. A thermocouple (K type) (20) is placed in an alumina tube (SSA-S, manufactured by Nikkato Co., Ltd., outer diameter 10 mmφ, inner diameter 6 mmφ, length 750 mm) that can store the thermocouple, and brought into contact with the raw material (M). The alumina tube was fixed to the stainless steel lid with an O-ring and a stainless steel ring. A nitrogen gas inlet pipe (8) was attached to one of the four swage lock ports. A vacuum exhaust line and a pressure gauge (10) were attached to another port. The remaining two ports were exhaust gas outlets (inner diameter: 4.5 mmφ) (discharge pipe (2)). Stop cocks were provided in each of the four mouths.
Two fluororesin tubes (outer diameter: 6.3mmφ, inner diameter: 3mmφ, length: 150mm) are attached by drilling two holes in a silicone rubber stopper, and three sets of these, three Erlenmeyer flasks (collecting each) (Capacity 1000ml). About 300 ml of an alkaline aqueous solution in which 200 g of sodium hydroxide was dissolved in 1200 ml of water was poured into each Erlenmeyer flask.
Connect polyethylene pipes (outer diameter 8 mm, inner diameter 6 mm, length 500 mm) (exhaust pipe (2)) to the two exhaust gas ports protruding from the reaction vessel, and join the two polyethylene pipes using a Y-shaped pipe. It was. Extend the polyethylene tube by 1m from the Y tube, connect it to one of the two fluororesin tubes attached to one Erlenmeyer flask (front vessel (30)), and connect the other fluororesin tube to the other Erlenmeyer flask (rear stage) A polyethylene pipe (connecting pipe (32) (33)) was connected to the container (31)), and a polyethylene pipe was piped so that the gas passed through the three Erlenmeyer flasks in series. The first of the three Erlenmeyer flasks (front vessel (30)) does not immerse the fluororesin tube (discharge tube (2)) in an aqueous alkaline solution, and the remaining two Erlenmeyer flasks (rear vessel (31)) The pipes (connecting pipes (32) and (33)) into which the gas enters are immersed in an alkaline aqueous solution, and the exhaust gas is bubbled so that hydrogen sulfide can be collected.

3.硫化熱処理工程
反応容器(1)を、内部を真空引きして窒素ガスに置換後、窒素ガス100ml/分を送り込んで、電気炉(5)にセットし、下から300mmまでの部分(加熱部(6))を加熱した(図1参照)。
180分かけて原料温度400℃まで加熱し、電気炉(5)の加温を停止した後、原料温度が420℃以上に上がらなくなった時点で起伏機構(11)を利用して電気炉(5)と共に反応容器(1)を倒した。
3. Sulfurization heat treatment step Reaction vessel (1) was evacuated and replaced with nitrogen gas. Then, nitrogen gas (100 ml / min) was sent in and set in electric furnace (5). 6)) was heated (see FIG. 1).
After heating to a raw material temperature of 400 ° C. over 180 minutes and stopping the heating of the electric furnace (5), when the raw material temperature no longer rises above 420 ° C., an electric furnace (5 ) And the reaction container (1) was brought down.

4.精製工程(単体硫黄除去工程)
倒した反応容器(1)を、容器内に生成した粗生成物(C)を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した(図3参照)。この傾斜状態にて、粗生成物の温度が400℃から低下するに任せて冷ましたのち、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は159gであった。
温度が400℃から低下している最中、粗生成物(C)から蒸気が発生し、蒸気は反応容器の口に向けて流下して非加熱部(7)で凝結した。凝結物は単体硫黄(S)であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel (1) was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product (C) produced in the vessel could be kept at a high position (see FIG. 3). In this inclined state, the temperature of the crude product was cooled as it decreased from 400 ° C., and then the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 159 g.
While the temperature decreased from 400 ° C., steam was generated from the crude product (C), and the steam flowed down toward the mouth of the reaction vessel and condensed in the non-heated part (7). The condensed product was elemental sulfur (S). Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例4>
(二次電池用有機硫黄系正極材料の製造(多量合成))
実施例3において原料のポリアクリロニトリル粉末を150gに増やして合成を行った際に、内径4.5mmφの排気ガス出口(排出管(2))に硫黄の閉塞が起きたため、ガス出口を10mmφに拡張して原料の量を増やして実験を行った。
<Example 4>
(Manufacture of organic sulfur-based cathode materials for secondary batteries (mass synthesis))
In Example 3, when the raw material polyacrylonitrile powder was increased to 150 g and synthesis was performed, a clogging of sulfur occurred at the exhaust gas outlet (exhaust pipe (2)) with an inner diameter of 4.5 mmφ, so the gas outlet was expanded to 10 mmφ. The experiment was conducted by increasing the amount of raw materials.

1.原料の調製
ポリアクリロニトリル粉末647.9gと硫黄(細井化学工業 200メッシュ、99.9%)925.0gをビニール袋に計り取り、手で揉んで混合したものを原料とした。
1. Preparation of raw materials 647.9 g of polyacrylonitrile powder and 925.0 g of sulfur (Hosoi Chemical Industries 200 mesh, 99.9%) were weighed into a plastic bag and mixed by hand mixing to make a raw material.

2.装置
図1〜3及び図5〜7に示す構成を備えた装置を使用した(以下の符号は図と対応)。但し、後段容器(41)に相当する三角フラスコは2つとした。
ムライト反応容器(内径113mmφ、長さ410mm)を反応容器(1)として用い、この反応容器の底に原料(M)を入れた。気密な雰囲気となる水冷フランジを備えたステンレス容器(内径120mmφ、長さ450mm)にムライト反応容器をいれた(図2参照)。スエジロックの口が4つと、内径10mmφの排気ガス出口(排出管(2))を取り付けたステンレス製の蓋(外径6mmφ、厚さ10mmt)(12)を8本のボルトでステンレス容器に取り付けた。熱電対が格納できる一端が閉じたアルミナ管(SSA-S、ニッカトー製、外径4mmφ、内径2mmφ、長さ500mm)に熱電対(K種)(20)を入れて原料に接触させ、フッ素樹脂管とスエジロック製ステンレスフェルールによりスエジロックの口1に締め付けて固定した。スエジロック口2に窒素ガス導入管(8)を取り付けた。さらにスエジロック口3に真空排気ラインと圧力計(10)を取り付けた。残りのスエジロック口4に予備の排気ガス口とした。熱電対以外のスエジロック口にはストップコックを設けた。
排気ガス出口に内径20mmφのフッ素樹脂線で補強したビニールホース(排出管(2))を取り付け、ステンレス製ホースバンドで締めた。ホースのもう一方の先をアルミナ管(外径20mmφ、長さ100mm)にステンレス製ホースバンドで締めて取り付け、アルミナ管を16号のシリコーンゴム栓にあけた孔に入れた。シリコーンゴム栓にはフッ素樹脂管(外径6.3mmφ、内径3mmφ、長さ150mm)2本を通した。このシリコーンゴム栓を、500gの水酸化ナトリウムを水に溶かして1000mlにしたアルカリ水溶液と攪拌装置(34)にて駆動される40mmの攪拌子を入れた容積2Lの三角フラスコ(主フラスコ)(前段容器(30))に取り付けた。シリコーンゴム栓のフッ素樹脂管2本のうち1本はガスの出口とし、もう一本はスエジロック口4の予備排気口とビニールパイプ(外径8mmφ、内径6mmφ、長さ1000mm)で接続した。
水酸化ナトリウム50gを水300mlに溶かしたアルカリ水溶液を捕集容器となる三角フラスコ(容量1000ml)にいれた。フッ素樹脂管(外径6.3mm、内径2mm、長さ150mm)2本を、シリコーンゴム栓に2つの孔を穿孔してフラスコに取り付け、うち1本の先端は内部の水溶液に5mm浸し、ガス導入管とし、水溶液に浸していないもう1本の管をガス出口管とした。このフラスコとゴム栓およびフッ素樹脂管を3組用意し、これら3つのフラスコをフラスコA、B、Cとした。反応容器から突出する排気ガス出口(排出管(2))とフラスコAのガス導入管をポリエチレン配管(10mmφ、内径8mmφ、長さ50cm)(排出管(2))でつなぎ、接続部分を銅線で縛って補強した。フラスコAのガス出口管(連結管(32))とフラスコBのガス導入管(連結管(33))、およびフラスコBのガス出口管(連結管(33))とフラスコCのガス導入管(連結管(33))を同様に接続し、フラスコCのガス出口管を外への排気管に接続した。
反応容器(1)内部に窒素ガス100ml/分を送り込んで、フラスコA、B、Cのバブリングにより排気に漏れがないことを確認した。
2. Apparatus An apparatus having the configuration shown in FIGS. 1 to 3 and FIGS. 5 to 7 was used (the following symbols correspond to the drawings). However, there were two Erlenmeyer flasks corresponding to the latter container (41).
A mullite reaction vessel (inner diameter: 113 mmφ, length: 410 mm) was used as the reaction vessel (1), and the raw material (M) was placed at the bottom of the reaction vessel. The mullite reaction vessel was placed in a stainless steel vessel (inner diameter: 120 mmφ, length: 450 mm) equipped with a water-cooled flange that gave an airtight atmosphere (see FIG. 2). A stainless steel lid (outer diameter 6 mmφ, thickness 10 mmt) (12) with four swagelok ports and an exhaust gas outlet (exhaust pipe (2)) with an inner diameter of 10 mmφ was attached to the stainless steel container with eight bolts. . A thermocouple (K type) (20) is placed in an alumina tube (SSA-S, manufactured by Nikkato Co., Ltd., outer diameter 4 mmφ, inner diameter 2 mmφ, length 500 mm) with a closed end that can store a thermocouple, and then brought into contact with the raw material. The tube and a stainless steel ferrule made of Suedilock were fastened and fixed to the mouth 1 of Swedilock. A nitrogen gas introduction pipe (8) was attached to the swage lock port 2. Further, a vacuum exhaust line and a pressure gauge (10) were attached to the swage lock port 3. The remaining swage lock port 4 was used as a spare exhaust gas port. A stopcock was provided at the swede lock opening other than the thermocouple.
A vinyl hose (discharge pipe (2)) reinforced with a fluororesin wire having an inner diameter of 20 mmφ was attached to the exhaust gas outlet, and tightened with a stainless steel hose band. The other end of the hose was attached to an alumina tube (outer diameter 20 mmφ, length 100 mm) by tightening with a stainless steel hose band, and the alumina tube was put into a hole opened in a No. 16 silicone rubber stopper. Two fluororesin tubes (outer diameter 6.3mmφ, inner diameter 3mmφ, length 150mm) were passed through the silicone rubber stopper. This silicone rubber stopper is a 2L Erlenmeyer flask (main flask) containing an alkaline aqueous solution in which 500 g of sodium hydroxide is dissolved in water to 1000 ml and a 40 mm stirrer driven by a stirrer (34) (previous stage) Attached to the container (30)). One of the two fluororesin tubes of the silicone rubber plug was used as a gas outlet, and the other was connected to a spare exhaust port of the swage lock port 4 with a vinyl pipe (outer diameter 8 mmφ, inner diameter 6 mmφ, length 1000 mm).
An alkaline aqueous solution prepared by dissolving 50 g of sodium hydroxide in 300 ml of water was placed in an Erlenmeyer flask (capacity 1000 ml) serving as a collection container. Two fluororesin tubes (outer diameter 6.3mm, inner diameter 2mm, length 150mm) are attached to the flask by drilling two holes in a silicone rubber stopper, one of which is immersed 5mm in the internal aqueous solution for gas introduction. The other tube not immersed in the aqueous solution was used as a gas outlet tube. Three sets of this flask, a rubber stopper, and a fluororesin tube were prepared, and these three flasks were designated as flasks A, B, and C. Connect the exhaust gas outlet (exhaust pipe (2)) protruding from the reaction vessel to the gas introduction pipe of flask A with polyethylene pipe (10mmφ, inner diameter 8mmφ, length 50cm) (exhaust pipe (2)), and the connection part is copper wire Reinforced with tie. Gas outlet pipe of flask A (connecting pipe (32)) and gas inlet pipe of flask B (connecting pipe (33)), and gas outlet pipe of flask B (connecting pipe (33)) and gas inlet pipe of flask C ( The connecting pipe (33)) was connected in the same manner, and the gas outlet pipe of Flask C was connected to the exhaust pipe to the outside.
100 ml / min of nitrogen gas was fed into the reaction vessel (1), and it was confirmed that there was no leak in the exhaust by bubbling flasks A, B, and C.

3.硫化熱処理工程
反応容器(1)を収容したステンレス容器を電気炉(5)に入れて下から400mmまでの部分(加熱部(6))を加熱した(図1参照)。180分かけて原料温度400℃まで過熱し、電気炉(5)の加温を停止した後、原料温度が420℃以上に上がらなくなった時点で起伏機構(11)を利用して電気炉(5)と共に反応容器(1)を倒した。
3. The stainless steel container containing the sulfidation heat treatment step reaction vessel (1) was put in an electric furnace (5), and a portion (heating section (6)) from the bottom to 400 mm was heated (see FIG. 1). After heating up to a raw material temperature of 400 ° C. over 180 minutes and stopping the heating of the electric furnace (5), when the raw material temperature no longer rises above 420 ° C., an electric furnace (5 ) And the reaction container (1) was brought down.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物(C)を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した(図3参照)。この傾斜状態にて粗生成物の加熱を続けて粗生成物の温度を400℃に2時間保った後、電気炉(5)の電源を切った。この状態のまま温度を低下させた後、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1021.9gであった。
加熱中、粗生成物(C)から蒸気が発生し、蒸気は反応容器(1)の口に向けて流下して加熱されていない低温部分(非加熱部(7))で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (the upper part of the reaction vessel) was down so that the crude product (C) produced in the vessel could be kept at a high position (see FIG. 3). . The heating of the crude product was continued in this inclined state to keep the temperature of the crude product at 400 ° C. for 2 hours, and then the electric furnace (5) was turned off. After the temperature was lowered in this state, the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1021.9 g.
During the heating, steam was generated from the crude product (C), and the steam flowed down toward the mouth of the reaction vessel (1) to condense in the low temperature part (non-heated part (7)) that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例5>
(粗生成物からの未反応硫黄の除去(精製))
1.粗生成物の生成
ポリアクリロニトリル粉末100.5gと硫黄(細井化学工業 200メッシュ、99.9%)350.6gをビニール袋に計り取り、手で揉んで混合したものを原料とし、実施例3と同じ方法により粗生成物を合成した後、電気炉と反応容器を倒さずに全体を冷却し、単体の硫黄を含んだ264.5gの粗生成物を得た。
<Example 5>
(Removal of unreacted sulfur from the crude product (purification))
1. Production of crude product 100.5 g of polyacrylonitrile powder and 350.6 g of sulfur (Hosoi Chemical 200 mesh, 99.9%) were weighed into a plastic bag and mixed by hand, using the same method as in Example 3. After synthesizing the product, the whole was cooled without bringing down the electric furnace and the reaction vessel, and 264.5 g of a crude product containing single sulfur was obtained.

2.装置
未反応硫黄除去装置として、図4に示す構成を備えた装置を使用した。
以下、使用した未反応硫黄除去装置の構成を説明する(以下の符号は図と対応)。
アルミ箔で作成した長さ300mmのボート(船形容器)(56)に、カーボンペーパー(東レ、TGP-H-030、250mmL×25mmW)3枚をボートの底面、および2つの側面に置いて中敷とし、その上に、上記生成した粗生成物(C)104.0gを均一な厚さに盛った。ボートを石英管(外径50mmφ、内径45mmφ、長さ600mm)(処理容器(40))内に入れ、硫黄ガスの逆流と凝結を防ぐために、サンプルビン(外径40mmφ、長さ90mm)(逆流防止部材(55))を入れた。窒素ガスの入口を持つシリコーンゴム栓(No15)(蓋(49))を、サンプルビンを入れた側にはめ込んだ。一方の口には、熱電対(K種)(52)を入れたアルミナ保護管(ニッカトー製、SSA-S、外径4mmφ、内径2mmφ、長さ400mm)とガスの出口となるフッ素樹脂管(外径6.3mm、内径3mm、長さ150mm)(排出管(46))を入れたシリコーンゴム栓(蓋(48))を取り付けた。
2. As the apparatus unreacted sulfur removal apparatus, an apparatus having the configuration shown in FIG. 4 was used.
Hereinafter, the structure of the used unreacted sulfur removal apparatus will be described (the following symbols correspond to the drawings).
Place an insole by placing three pieces of carbon paper (Toray, TGP-H-030, 250mmL × 25mmW) on the bottom and two sides of a 300mm long boat (ship vessel) (56) made of aluminum foil. On top of that, 104.0 g of the produced crude product (C) was added to a uniform thickness. Place the boat in a quartz tube (outer diameter 50mmφ, inner diameter 45mmφ, length 600mm) (processing vessel (40)) and sample bottle (outer diameter 40mmφ, length 90mm) (backflow) to prevent backflow and condensation of sulfur gas The prevention member (55) was put. A silicone rubber stopper (No. 15) having a nitrogen gas inlet (lid (49)) was fitted on the side where the sample bottle was placed. One port has an alumina protective tube (Nikkato, SSA-S, outer diameter 4 mmφ, inner diameter 2 mmφ, length 400 mm) with a thermocouple (K type) (52) and a fluororesin tube (gas outlet) ( A silicone rubber stopper (lid (48)) containing an outer diameter of 6.3 mm, an inner diameter of 3 mm, and a length of 150 mm (discharge pipe (46)) was attached.

3.精製工程(単体硫黄除去工程)
粗生成物を入れた石英管(反応容器(1))を、3度傾けた管状電気炉(モトヤマ製、型式MTKW540)(45)に据え付けることにより、蓋(48)が蓋(49)より低位置となるように傾斜させた。供給管(50)から窒素ガスを毎分200ml流し、加熱部(42)内の温度を300℃とし、4時間保温した。ガスの出口(排出管(46))からポリエチレン管を延ばして捕集容器(47)に接続し、出てくるガスを捕集容器(47)に導いて、水酸化ナトリウム10gを200mlの水に溶かしたアルカリ水溶液にバブリングさせ、粗生成物に取り込まれていた硫化水素を捕集した。
石英管を電気炉(5)から取り出し、室温まで冷却後、黒い霧状に飛散しやすい微粉末の有機硫黄系正極材料68.1gを得た。
3. Purification process (single sulfur removal process)
By installing the quartz tube (reaction vessel (1)) containing the crude product in a tubular electric furnace (model MTKW540, inclined by 3 degrees) (45), the lid (48) is lower than the lid (49). Tilt to position. Nitrogen gas was supplied from the supply pipe (50) at a rate of 200 ml per minute, the temperature in the heating section (42) was set to 300 ° C., and the temperature was kept for 4 hours. A polyethylene pipe is extended from the gas outlet (exhaust pipe (46)) and connected to the collection container (47). The gas coming out is led to the collection container (47), and 10 g of sodium hydroxide is added to 200 ml of water. Bubbling was carried out in a dissolved alkaline aqueous solution, and hydrogen sulfide incorporated in the crude product was collected.
The quartz tube was taken out of the electric furnace (5), cooled to room temperature, and 68.1 g of finely powdered organic sulfur-based positive electrode material that easily scattered in a black mist was obtained.

<実施例6>
(粗生成物の合成時に発生する硫化水素の捕集)
実施例3と同様にしてポリアクリロニトリル100.5gと硫黄350.6gから粗生成物を合成した際、反応容器(1)外に放出される硫化水素を3つの三角フラスコ(捕集容器)を用いて捕集した。排気ガスの最初に入るフラスコから順にA、B、Cとし、それぞれの三角フラスコに水300mlと水酸化ナトリウム86.2g、30.1g、12.3gを入れ、それぞれ三角フラスコと内部の溶液を含めた全体の質量を記録した。シリコーンゴム栓に2箇所6mmφの貫通孔を穿孔し、それぞれの孔に長さ200mm、外径6.3mmφ、内径3mmφのフッ素樹脂チューブ(排出管(2))を通した。反応容器(1)からの排気ガスを最初に導く三角フラスコ(前段容器(30))には攪拌子を入れ、前述のシリコーンゴム栓をはめこみ、栓が抜けないように銅線で三角フラスコにしばりつけた。反応容器(1)からの排気ガスはポリエチレンチューブ(10mmφ、内径8mmφ、長さ800mm)(排出管(2))により三角フラスコ(前段容器(30))に導き、ポリエチレンチューブをフッ素樹脂チューブの外側にはめ込んで、接続部を銅線で縛り付けた。シリコーンゴム栓を通るフッ素樹脂チューブの長さを調整し、最初の三角フラスコ(前段容器(30))は液面より上に開口部を位置決めして、排気ガスを水酸化ナトリウム水溶液に吹き付けるようにした。シリコーン栓に取り付けたもう一本のフッ素樹脂チューブをガスの出口として、二つ目の三角フラスコのフッ素樹脂チューブとの間をポリエチレンチューブ(外径8mmφ、内径6mmφ、長さ400mm)(連結管(33))でつなぎ、接続部を銅線で縛り付けた。三つ目の三角フラスコも二つ目の三角フラスコから同様に接続した。三つ目と二つ目の三角フラスコ(後段容器(31))では、シリコーンゴム栓を通るフッ素樹脂チューブ(連結管(33))の長さを調整し、液面より下に開口部を位置決めして、排気ガスを水酸化ナトリウム水溶液にくぐらせる(バブリングさせる)ようにした。
<Example 6>
(Collection of hydrogen sulfide generated during synthesis of crude products)
When the crude product was synthesized from 100.5 g of polyacrylonitrile and 350.6 g of sulfur in the same manner as in Example 3, hydrogen sulfide released outside the reaction vessel (1) was captured using three Erlenmeyer flasks (collection vessels). Gathered. A, B, C in order from the first flask containing the exhaust gas, and 300 ml of water and 86.2 g, 30.1 g, 12.3 g of sodium hydroxide were placed in each Erlenmeyer flask, and the entire flask including the Erlenmeyer flask and the internal solution was added. The mass was recorded. Two holes of 6 mmφ were drilled in the silicone rubber stopper, and fluororesin tubes (exhaust pipe (2)) having a length of 200 mm, an outer diameter of 6.3 mmφ, and an inner diameter of 3 mmφ were passed through each hole. Insert a stirring bar into the Erlenmeyer flask (first vessel (30)) that first guides the exhaust gas from the reaction vessel (1), fit the silicone rubber stopper mentioned above, and fasten it to the Erlenmeyer flask with copper wire so that the stopper does not come off. Wearing. The exhaust gas from the reaction vessel (1) is led to an Erlenmeyer flask (previous vessel (30)) by a polyethylene tube (10mmφ, inner diameter 8mmφ, length 800mm) (discharge tube (2)), and the polyethylene tube is outside the fluororesin tube The connection was tied with copper wire. Adjust the length of the fluororesin tube that passes through the silicone rubber stopper, position the opening above the liquid level of the first Erlenmeyer flask (front vessel (30)), and blow the exhaust gas to the sodium hydroxide aqueous solution. did. Using another fluororesin tube attached to the silicone stopper as the gas outlet, a polyethylene tube (outer diameter 8mmφ, inner diameter 6mmφ, length 400mm) between the second Erlenmeyer flask and the fluororesin tube (connecting pipe ( 33)) and the connection part was tied with a copper wire. The third Erlenmeyer flask was similarly connected from the second Erlenmeyer flask. In the third and second Erlenmeyer flasks (the latter container (31)), the length of the fluororesin tube (connecting pipe (33)) that passes through the silicone rubber stopper is adjusted, and the opening is positioned below the liquid level. Then, the exhaust gas was allowed to pass through (bubbling) the aqueous sodium hydroxide solution.

ポリアクリロニトリルの組成式はC3NH3(式量53)であり、硫黄により水素原子が引き抜かれてC3NHに変化すると考えられる。約100gのポリアクリロニトリルから約60gの硫化水素が発生すると予想された。
最初の三角フラスコの重量増加は75.4gであり、2つめが4.2g、3つ目が0.5gであった。重量増加の合計は予想より大きく、アンモニア臭等もしたことから、アンモニアや硫化水素以外の硫黄化合物も排気され捕集されたと考えられる。硫化水素の発生予想量は約2モルであり、フラスコAの水酸化ナトリウムも約2モルであって、大半の硫化水素がフラスコAで捕集されたことを考えると、次の反応が起きていると考えられる。
H2S+NaOH=NaHS +H2O
The composition formula of polyacrylonitrile is C 3 NH 3 (formula 53), and it is considered that hydrogen atoms are extracted by sulfur and changed to C 3 NH. About 60 g of hydrogen sulfide was expected to be generated from about 100 g of polyacrylonitrile.
The weight increase of the first Erlenmeyer flask was 75.4g, the second was 4.2g and the third was 0.5g. Since the total weight increase was larger than expected and ammonia odor was also present, it is considered that sulfur compounds other than ammonia and hydrogen sulfide were exhausted and collected. The expected amount of hydrogen sulfide generated is about 2 moles, and the sodium hydroxide in flask A is also about 2 moles. Considering that most of the hydrogen sulfide was collected in flask A, the following reaction occurred: It is thought that there is.
H 2 S + NaOH = NaHS + H 2 O

フラスコAからはNaHSと考えられる透明柱状結晶が多数析出した。このことから、予想される硫化水素発生量1モルに対し、1モルの水酸化ナトリウムが捕集に最低必要な量であることがわかった。さらに、ポリアクリロニトリルについては、C3NH3+S=C3NH+H2Sの反応が起きていると推察され、これにNaOHを含めた式、C3NH3+S+NaOH=C3NH+NaHS+H2Oから、ポリアクリロニトリル:水酸化ナトリウム=53:40という比率で硫化水素の捕集のための水酸化ナトリウムを用意する必要があることがわかった。
また、フラスコAの捕集量が多く、3つ目のフラスコでの捕集量が低いことから、捕集量に合わせて水酸化ナトリウムの量をAで硫化水素の予想量程度に多く、B、Cで少なく加減できることがわかった。ガスの発生状況を見るに、反応が最も激しい時点での2つ目のフラスコで比較的激しく気泡が見られるため、外部への硫化水素のわずかな漏洩をも防ぐためには3つ目のフラスコを設けることが好ましいと考えられる。
From the flask A, a large number of transparent columnar crystals thought to be NaHS were precipitated. From this, it was found that 1 mol of sodium hydroxide is the minimum amount required for collection with respect to 1 mol of the expected hydrogen sulfide generation amount. Furthermore, for polyacrylonitrile, it is presumed that the reaction of C 3 NH 3 + S = C 3 NH + H 2 S has occurred, and from the formula including NaOH, C 3 NH 3 + S + NaOH = C 3 NH + NaHS + H 2 O, It was found that it was necessary to prepare sodium hydroxide for collecting hydrogen sulfide at a ratio of acrylonitrile: sodium hydroxide = 53: 40.
In addition, since the amount of collection of flask A is large and the amount of collection in the third flask is low, the amount of sodium hydroxide according to the amount of collection is A, and the amount of hydrogen sulfide is as large as the expected amount of hydrogen sulfide. , It was found that C can be adjusted less. When looking at the gas evolution, the second flask at the time of the most intense reaction shows relatively intense bubbles, so the third flask should be used to prevent slight hydrogen sulfide leakage. It is considered preferable to provide it.

<実施例7>
(二次電池用有機硫黄系正極材料の製造(活性炭−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
ポリアクリロニトリル3.0069gと炭酸ナトリウム(関東化学製99%)9.0819gをN, N-ジメチルホルムアミド(キシダ化学)40mlを加えて混合後、乾燥機中115℃で13時間溶媒を飛ばし、ベークライト樹脂のようになったものを粉砕した。アルミナ坩堝(ニッカトー製P-6)にいれアルゴン100ml/分を通じ、750℃で2時間熱処理を行った。生成物を水と混合後ろ過し、活性炭を得た。この活性炭1.1994gに硫黄5.0596gを加え、乳鉢で混合したものを原料とした。
<Example 7>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of activated carbon-sulfur composite))
1. Preparation of raw materials 3.0069g of polyacrylonitrile and 9.0819g of sodium carbonate (99% manufactured by Kanto Chemical Co., Inc.) were added and mixed with 40ml of N, N-dimethylformamide (Kishida Chemical), and then the solvent was removed in a dryer at 115 ° C for 13 hours. The resin-like material was crushed. Heat treatment was performed at 750 ° C. for 2 hours through an alumina crucible (P-6, manufactured by Nikkato Corporation) through 100 ml / min of argon. The product was mixed with water and then filtered to obtain activated carbon. A material obtained by adding 5.0596 g of sulfur to 1.1994 g of this activated carbon and mixing it in a mortar was used as a raw material.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が400℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 400 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を400℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1.6051gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 400 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1.6051 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例8>
(二次電池用有機硫黄系正極材料の製造(活性炭−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
活性炭(関西熱化学社製、マックスソープ(mSC-30))1.007gに硫黄5.0002gを加え、乳鉢で混合したものを原料とした。
<Example 8>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of activated carbon-sulfur composite))
1. Preparation of raw material Sulfur was added to 1.007 g of activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd., Max Soap (mSC-30)) and mixed in a mortar.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が400℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 400 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を400℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は4.454gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 400 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 4.454 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例9>
(二次電池用有機硫黄系正極材料の製造(アセチレンブラック−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
アセチレンブラック(電気化学製、デンカブラック)1.0112gに硫黄5.0103gを加え、乳鉢で混合したものを原料とした。
<Example 9>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of acetylene black-sulfur composite))
1. Preparation of Raw Material A material obtained by adding 5.0103 g of sulfur to 1.0112 g of acetylene black (manufactured by Denki Kagaku) and mixing in a mortar was used.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が411℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 411 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を400℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1.7023gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 400 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1.7023 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例10>
(二次電池用有機硫黄系正極材料の製造(瀝青−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
瀝青(大阪ガスケミカル)2.2479gに硫黄10.4630gを加え、乳鉢で混合したものを原料とした。
<Example 10>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of bitumen-sulfur composite))
1. Preparation of raw material The raw material was 10.4630 g of sulfur added to 2.2479 g of bitumen (Osaka Gas Chemical) and mixed in a mortar.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度320℃まで加温した。電気炉の加温を停止した後、原料温度が367℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 320 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 367 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は3.1466gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 300 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 3.1466 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例11>
(二次電池用有機硫黄系正極材料の製造(ゼラチン−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
ゼラチン(ハウス食品工業)1.5078gに硫黄5.0063gを加え、チャック式ビニール袋内で混合したものを原料とした。
<Example 11>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of gelatin-sulfur composite))
1. Preparation of raw material 1.5078 g of gelatin (house food industry) added with 5.0063 g of sulfur and mixed in a chuck-type plastic bag was used as the raw material.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が412℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise above 412 ° C.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に3時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1.2309gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was kept at 300 ° C. for 3 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1.2309 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例12>
(二次電池用有機硫黄系正極材料の製造(ポリエチレン−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
ラップフィルムから切り出したポリエチレンフィルム1.0055gと硫黄5.0058gを原料とした。
<Example 12>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of polyethylene-sulfur composites))
1. Preparation of raw materials 1.0005 g of polyethylene film cut out from a wrap film and 5.0058 g of sulfur were used as raw materials.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が411℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 411 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に3時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1.5522gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was kept at 300 ° C. for 3 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1.5522 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例13>
(二次電池用有機硫黄系正極材料の製造(アクリル−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
細かく切ったアクリル繊維1.0023gと硫黄4.93178gを原料とした。
<Example 13>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of acrylic-sulfur composites))
1. Preparation of raw materials 1.023 g of finely cut acrylic fibers and 4.93178 g of sulfur were used as raw materials.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が415℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, when the raw material temperature did not rise to 415 ° C. or higher, the reaction vessel was brought down together with the electric furnace.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に3時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は0.8499gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was kept at 300 ° C. for 3 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 0.8499 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例14>
(二次電池用有機硫黄系正極材料の製造(木炭−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
乳鉢ですり潰した木炭0.9896gと硫黄4.3824gを原料とした。
<Example 14>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of charcoal-sulfur composites))
1. Preparation of raw materials 0.9896g charcoal and 4.3824g sulfur crushed in a mortar were used as raw materials.

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が416℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 416 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は0.5462gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 300 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 0.5462 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<実施例15>
(二次電池用有機硫黄系正極材料の製造(パラフィン−硫黄コンポジットの合成と脱硫黄))
1.原料の調製
ロウソクのロウ1.0022gと硫黄5.0004gを原料とした。
<Example 15>
(Manufacture of organic sulfur-based positive electrode materials for secondary batteries (synthesis and desulfurization of paraffin-sulfur composite))
1. Preparation of raw materials The raw materials were candle candles (1.0022 g) and sulfur (5.004 g).

2.装置
実施例1と同様の装置を使用した。
2. Apparatus The same apparatus as in Example 1 was used.

3.硫化熱処理工程
原料を反応容器に入れ、窒素100ml/分を通じ、電気炉により約40分かけて原料温度380℃まで加温した。電気炉の加温を停止した後、原料温度が402℃以上に上がらなくなった時点で電気炉と共に反応容器を倒した。
3. The raw material for the sulfidation heat treatment process was placed in a reaction vessel, and heated to a raw material temperature of 380 ° C. in an electric furnace through nitrogen at 100 ml / min for about 40 minutes. After stopping the heating of the electric furnace, the reaction vessel was brought down together with the electric furnace when the raw material temperature did not rise to 402 ° C. or higher.

4.精製工程(単体硫黄除去工程)
倒した反応容器を、容器内に生成した粗生成物を高い位置に保てるよう反応容器の口(反応容器の上方部)が下になるように傾斜状態で固定した。この傾斜状態にて、粗生成物が収容された部分を加熱し、粗生成物の温度を300℃に2時間保った後、温度を下げて、反応容器内の生成物を取り出した。得られた生成物(二次電池用有機硫黄系正極材料)は1.2334gであった。
加熱中、粗生成物から蒸気が発生し、蒸気は反応容器の口に向けて流下して加熱されていない低温部分で凝結した。凝結物は単体硫黄であった。反応容器を粗生成物が高い位置にあるように傾斜させていたことにより、凝結した硫黄が反応容器内に生成した粗生成物に流れ下ることはなかった。
4). Purification process (single sulfur removal process)
The fallen reaction vessel was fixed in an inclined state so that the mouth of the reaction vessel (upper part of the reaction vessel) was downward so that the crude product produced in the vessel could be kept at a high position. In this inclined state, the portion containing the crude product was heated, and the temperature of the crude product was maintained at 300 ° C. for 2 hours. Then, the temperature was lowered and the product in the reaction vessel was taken out. The obtained product (organic sulfur-based positive electrode material for secondary battery) was 1.2334 g.
During the heating, steam was generated from the crude product, and the steam flowed down toward the mouth of the reaction vessel and condensed in a low temperature portion that was not heated. The condensed product was elemental sulfur. Since the reaction vessel was inclined so that the crude product was at a high position, the condensed sulfur did not flow down to the crude product produced in the reaction vessel.

<比較例1>
(石英管を用いた合成)
1.原料の調製
ポリアクリロニトリル粉末20gと硫黄(アルドリッチ、99.9%)70gを乳鉢で混合したものを原料とした。
<Comparative Example 1>
(Synthesis using quartz tube)
1. Preparation of raw material A mixture of 20 g of polyacrylonitrile powder and 70 g of sulfur (Aldrich, 99.9%) in a mortar was used as a raw material.

2.装置
下部が半球状に閉じた石英管(内径60mmφ、長さ380mm)を反応容器として用い、この反応容器の底に原料を入れた。この容器の蓋に、シリコーンゴム栓(No15)にコルクボーラーで8mmφの穴2つと6mmφの穴1つをあけたものを取り付けた。これに端の閉じたアルミナ管(ニッカトー製、材質SSA-S、外6mmφ、内径4mmφ、長さ400mm)を取り付け、このアルミナ管の内部にK種熱電対をいれ、原料温度を測定し、電気炉を温度制御に用いた。別にアルミナ管(ニッカトー製、材質SSA-S、外8mmφ、内径5mmφ、長さ80mm)2本を上述のシリコーンゴム栓に刺し、それぞれ窒素導入管および排気管とした。
フッ素樹脂管(外径8mm、内径6mm、長さ150mm)を2本ずつ、シリコーンゴム栓に2つの孔を穿孔して取り付け、これを3組、3本の三角フラスコ(各容量500ml)に取り付けた。水酸化ナトリウム20gを水300mlに溶かしたアルカリ水溶液を各々の三角フラスコに約100mlずつ注いだ。反応容器から突出する排気口にシリコーンゴム配管(10mmφ、内径8mmφ、長さ50cm)をつなぎ、もう一端を三角フラスコの2つあるフッ素樹脂管につなぎ、もう一方のフッ素樹脂管から別の三角フラスコにシリコーンゴム管をつないで、3つの三角フラスコをガスが直列に通過するようにシリコーンゴム管を配管した。3つの三角フラスコは、それぞれガスが入ってくる管をアルカリ水溶液に浸して、排気ガスがバブリングすることで硫化水素を捕集できるようにした。
2. A quartz tube (inner diameter: 60 mmφ, length: 380 mm) with the lower part of the apparatus closed in a hemispherical shape was used as a reaction vessel, and the raw material was placed in the bottom of the reaction vessel. To the lid of this container, a silicone rubber stopper (No. 15) with two holes of 8 mmφ and one hole of 6 mmφ was attached with a cork borer. Attached to this is an alumina tube with a closed end (made by Nikkato, material SSA-S, outer 6mmφ, inner diameter 4mmφ, length 400mm), a K-type thermocouple is placed inside this alumina tube, the raw material temperature is measured, The furnace was used for temperature control. Separately, two alumina tubes (manufactured by Nikkato, material SSA-S, outer 8 mmφ, inner diameter 5 mmφ, length 80 mm) were pierced into the above-mentioned silicone rubber stoppers to form a nitrogen introduction tube and an exhaust tube, respectively.
Two fluororesin tubes (outer diameter 8 mm, inner diameter 6 mm, length 150 mm) are attached by drilling two holes in a silicone rubber stopper, and three sets of these are attached to three Erlenmeyer flasks (each volume 500 ml) It was. About 100 ml of an alkaline aqueous solution in which 20 g of sodium hydroxide was dissolved in 300 ml of water was poured into each Erlenmeyer flask. Connect the silicone rubber pipe (10mmφ, inner diameter 8mmφ, length 50cm) to the exhaust port protruding from the reaction vessel, connect the other end to two fluororesin tubes of the Erlenmeyer flask, and connect another Erlenmeyer flask from the other fluororesin tube The silicone rubber tube was connected to the tube, and the silicone rubber tube was piped so that the gas passed through the three Erlenmeyer flasks in series. In each of the three Erlenmeyer flasks, the tubes containing the gas were immersed in an alkaline aqueous solution, and the exhaust gas was bubbled so that hydrogen sulfide could be collected.

3.硫化熱処理工程
反応容器内部に2時間窒素ガス100ml毎分を送り込んでガス置換を行い、窒素流入管をピンチコックホフマン式で閉じた。反応容器を電気炉に入れ、反応容器の底から250mmまでを加熱した。
加熱から20分後原料温度が180℃に達した時点から硫化水素ガスが多く生じ、臭気がしはじめた。シリコーンゴム管を硫化水素は透過し、検知器を近づけるとその表面で10ppmを示した。240℃で硫化水素ガスの発生が顕著になり、反応容器上部に硫黄の付着が多くみられた。直後硫黄が出口配管を閉塞し、反応容器内部に溜まった硫化水素ガスの圧力でシリコーンゴム栓が反応容器から外れて硫化水素が漏洩し、硫化水素検知器が20ppmを超えた警報を鳴らした。防毒マスクをして閉塞部分の硫黄を除去し、シリコーンゴム栓を反応容器にはめ込んで作業を継続した。室内に漏れ出した硫化水素はダクトで吸引して屋外に排気した。380℃で電気炉の加温を停止した後、原料温度が420℃以上に上がらなくなった時点で電気炉から反応容器を取り出し、石英綿の上に横にして寝かして冷まし、凝結した硫黄が粗生成物に流れ下らないように、粗生成物を高い位置に保てるよう反応容器の口が下になるよう傾けて冷ました。得られた粗生成物は、脆い塊60gであった。
3. Sulfurizing heat treatment step 100 ml of nitrogen gas was fed into the reaction vessel for 2 hours to perform gas replacement, and the nitrogen inflow pipe was closed by the pinchcock Hoffman method. The reaction vessel was placed in an electric furnace and heated up to 250 mm from the bottom of the reaction vessel.
After 20 minutes from the heating, when the temperature of the raw material reached 180 ° C., a large amount of hydrogen sulfide gas was generated and an odor began to appear. Hydrogen sulfide permeated through the silicone rubber tube, and when the detector was brought close to it, the surface showed 10 ppm. The generation of hydrogen sulfide gas became noticeable at 240 ° C, and a large amount of sulfur adhered to the upper part of the reaction vessel. Immediately after, the sulfur blocked the outlet piping, and the hydrogen sulfide gas accumulated in the reaction vessel caused the silicone rubber stopper to come off the reaction vessel, causing hydrogen sulfide to leak, and the hydrogen sulfide detector sounded an alarm exceeding 20 ppm. A gas mask was used to remove the sulfur in the blocked part, and a silicone rubber stopper was fitted into the reaction vessel to continue the operation. Hydrogen sulfide leaking into the room was sucked through a duct and exhausted outdoors. After stopping the heating of the electric furnace at 380 ° C, when the raw material temperature no longer rises above 420 ° C, take out the reaction vessel from the electric furnace, lie down on quartz cotton and cool it down, and the condensed sulfur is coarse. In order to keep the crude product in a high position so that it does not flow down to the product, it was cooled by tilting the mouth of the reaction vessel downward. The obtained crude product was 60 g of a brittle mass.

4.精製工程(単体硫黄除去工程)
得られた粗生成物は、合成直後に反応容器と電気炉を傾斜して加温することで行う硫黄の除去を行わなかったため単体の硫黄を多く含み、そのままでは正極材料として用いることができない。このため塊を粉砕し、2gずつ真空処理容器中で真空下250℃2時間加熱して硫黄を除去した。2gの粗生成物からは約1gの有機硫黄系正極材料が得られた。
4). Purification process (single sulfur removal process)
Since the obtained crude product did not remove sulfur by heating the reaction vessel and the electric furnace by inclining immediately after synthesis, it contained a large amount of elemental sulfur and cannot be used as it is as a positive electrode material. For this reason, the lump was pulverized, and 2 g each was heated in a vacuum processing vessel under vacuum at 250 ° C. for 2 hours to remove sulfur. About 1 g of organic sulfur-based positive electrode material was obtained from 2 g of the crude product.

<比較例2>
(ロータリーキルンを用いた合成)
1.原料の調製
ポリアクリロニトリル粉末5gと硫黄(キシダ化学、99%)17.5gを混合したものを原料とした。
<Comparative Example 2>
(Synthesis using rotary kiln)
1. Preparation of raw material A mixture of 5 g of polyacrylonitrile powder and 17.5 g of sulfur (Kishida Chemical, 99%) was used as a raw material.

2.装置
原料を回転しながらむらなく焼成する一般的な合成手法に用いられるロータリーキルンを使用した。
石英管容器(円筒形、内径74mmφ、外径80mmφ、長さ180mm、両端をそれぞれ30mmφの開口をもつ石英板を貼り付けてある)を反応容器として用い、この容器に原料を入れた。この容器を水平に毎分1回転する石英炉心管に2箇所の開口部が炉心管と同じ方向になるように入れた。炉心間のガスの出口にビニール管を接続し、この管を40gの水酸化ナトリウムを300mlの水に溶かしたアルカリ水溶液の入った三角フラスコに浸し、排気ガスをバブリングさせるようにした。三角フラスコの出口に活性炭吸収装置の吸引口を設置し、捕集し切れなかった硫化水素を捕集し、排気を屋外に送るようにした。
2. A rotary kiln used in a general synthesis method for firing the apparatus raw material evenly while rotating was used.
A quartz tube container (cylindrical, inner diameter 74 mmφ, outer diameter 80 mmφ, length 180 mm, and a quartz plate with openings of 30 mmφ on each end) was used as a reaction vessel, and raw materials were put into this vessel. This container was placed in a quartz core tube that rotates horizontally once per minute so that two openings are in the same direction as the core tube. A vinyl tube was connected to the gas outlet between the cores, and this tube was immersed in an Erlenmeyer flask containing an alkaline aqueous solution of 40 g of sodium hydroxide dissolved in 300 ml of water so that the exhaust gas was bubbled. The suction port of the activated carbon absorber was installed at the outlet of the Erlenmeyer flask to collect the hydrogen sulfide that could not be collected and send the exhaust to the outdoors.

3.硫化熱処理工程
反応容器内に窒素ガスを100ml/分で流し、温度を1時間かけて400℃まで上げた。
温度が400℃に達した後、温度を下げ生成物を取り出した。得られた生成物は6.4gであった。十分に硫黄を含んだ正極活物質であれば8gの質量が期待できるが、生成物は硫黄不足であり、性状が本来の微粉末とは異なっており、粒子が凝集していた。用いた硫黄が反応に適当な温度である350℃より前に多くが飛び去ってしまったためと考えられる。さらに、反応後硫黄が付着した炉心管の清掃が困難であった。
3. Nitrogen gas was allowed to flow at 100 ml / min into the reaction vessel for the sulfidation heat treatment step , and the temperature was raised to 400 ° C. over 1 hour.
After the temperature reached 400 ° C., the temperature was lowered and the product was removed. The product obtained was 6.4 g. If the positive electrode active material sufficiently contains sulfur, a mass of 8 g can be expected, but the product is deficient in sulfur, the properties are different from the original fine powder, and the particles are aggregated. This is probably because most of the sulfur used had flew away before 350 ° C, the appropriate temperature for the reaction. Furthermore, it was difficult to clean the core tube to which sulfur adhered after the reaction.

<実施例及び比較例のまとめ>
上記したように、実施例(本発明)によれば、有機硫黄系正極材料製造時に発生する危険な硫化水素を確実に捕集して漏洩を完全に防ぐことができた。また、未反応硫黄が除去された高容量な有機硫黄系正極材料を効率良く合成することができた。
一方、比較例では、硫化水素の漏洩が発生し或いは装置系にて充分に捕集することができなかった。また、未反応硫黄の除去のためには真空下での加熱処理が別途必要となり、高容量な有機硫黄系正極材料を効率良く合成することはできなかった。
<Summary of Examples and Comparative Examples>
As described above, according to the example (the present invention), it was possible to reliably capture dangerous hydrogen sulfide generated during the production of the organic sulfur-based positive electrode material and completely prevent leakage. Moreover, the high capacity | capacitance organic sulfur type positive electrode material from which unreacted sulfur was removed was able to be synthesize | combined efficiently.
On the other hand, in the comparative example, hydrogen sulfide leaked or could not be sufficiently collected by the apparatus system. Moreover, in order to remove unreacted sulfur, a heat treatment under vacuum is separately required, and a high-capacity organic sulfur-based positive electrode material cannot be synthesized efficiently.

以下、実施例1〜5及び7〜15と、比較例1及び2で得られた有機硫黄系正極材料について、リチウムイオン二次電池の正極活物質としての性能を確認した試験例を示す。   Hereinafter, the test example which confirmed the performance as a positive electrode active material of a lithium ion secondary battery about the organic sulfur type positive electrode material obtained in Examples 1-5 and 7-15 and Comparative Examples 1 and 2 is shown.

<試験例>
1.電極作製
得られた有機硫黄系正極材料3.0mgとPTFE(ポリテトラフルオロエチレン)2.7mgとアセチレンブラック0.3mgを、メノウ乳鉢を用いてシート状になるまで手で混練し、直径が10mm程度の円板状となるように形状を整えた。得られた円板状の電極シートを、アルミニウムメッシュ(#100メッシュ)を直径13mmの円形に打ち抜いたものの上に乗せて、卓上ハンドプレス機で、20MPaの圧力で加圧して圧着し一体化することにより、正極用電極を作製した。アルミニウムメッシュは、電極の集電性を高める役割を担う集電体である。一方、負極には、直径13mm、厚さ0.5mmの金属リチウムを用いた。
<Test example>
1. Electrode fabrication
The resulting organic sulfur-based positive electrode material 3.0mg, PTFE (polytetrafluoroethylene) 2.7mg, and acetylene black 0.3mg are kneaded by hand using an agate mortar to form a sheet, and the disk shape is about 10mm in diameter. The shape was adjusted so that The obtained disc-shaped electrode sheet is placed on an aluminum mesh (# 100 mesh) punched out into a circle with a diameter of 13 mm, and is pressed and integrated with a desktop hand press at a pressure of 20 MPa. As a result, a positive electrode was produced. The aluminum mesh is a current collector that plays a role of increasing the current collecting performance of the electrode. On the other hand, metallic lithium having a diameter of 13 mm and a thickness of 0.5 mm was used for the negative electrode.

2.電池作製
評価用の電池として2032型コイン電池を組み立てた。セパレータにはポリプロピレン製微多孔膜(Celgard2400、Celgard社製)を用いた。電解液には、エチレンカーボネートとジエチルカーボネートを体積比で1:1に混合したものに、1mol/Lの濃度になるようにLiPF(六フッ化リン酸リチウム)を溶解させたものを用いた。
常法に従い、上記した有機硫黄系正極材料を用いた正極とリチウム金属負極とを対向させ、両者が直接接触しないように、その間に電解液をしみ込ませたセパレータを挟み、ステンレス鋼製の平板と板バネと合わせて、電池缶内に配置させ、蓋をのせ、電池缶と蓋をかしめて密封することにより、電池を作製した。
2. Battery production
A 2032 type coin battery was assembled as a battery for evaluation. A polypropylene microporous membrane (Celgard 2400, manufactured by Celgard) was used as the separator. The electrolyte used was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 and LiPF 6 (lithium hexafluorophosphate) dissolved to a concentration of 1 mol / L. .
According to a conventional method, the positive electrode using the above-mentioned organic sulfur-based positive electrode material and the lithium metal negative electrode are opposed to each other, and a separator impregnated with an electrolytic solution is sandwiched therebetween so that the two are not in direct contact with each other. A battery was produced by placing it in a battery can together with a leaf spring, placing a lid, and crimping and sealing the battery can and lid.

3.充放電試験
作製された電池について充放電試験を行った。充放電試験時の電流密度は60mA/gとした。これは、有機硫黄系正極材料が600mAh/gの電気容量を有する場合に、10時間かけて充電又は放電することになる、十分に速度の遅い充放電速度での試験とするためであった。電流値を大きくすると、抵抗が大きい場合に、本来の電気容量を発現できない場合があるため、遅い充放電速度での試験を行った。電圧範囲は1.0から3.0V vs.Li/Liで試験を行った。試験温度は30℃とした。
充放電試験の結果を表1に示す。
3. Charge / discharge test
A charge / discharge test was performed on the manufactured battery. The current density during the charge / discharge test was 60 mA / g. This is because when the organic sulfur-based positive electrode material has an electric capacity of 600 mAh / g, the test is performed at a sufficiently slow charge / discharge rate that is charged or discharged over 10 hours. When the current value is increased, when the resistance is large, the original electric capacity may not be exhibited. Therefore, a test at a slow charge / discharge rate was performed. The voltage range is 1.0 to 3.0V vs. Tests were performed with Li + / Li. The test temperature was 30 ° C.
The results of the charge / discharge test are shown in Table 1.

Figure 0005713162
Figure 0005713162

4.電池評価結果
表1に示すように、本発明の装置及び方法により得られた有機硫黄系正極材料を用いた殆どの実施例において、リチウムイオン二次電池の正極材料として、従来の遷移金属酸化物正極では実現困難な250mAh/g以上の大きな電気容量が得られた。
尚、比較例1の方法により得られた有機硫黄系正極材料を用いた場合にも大きな電気容量が得られたが、上述した通り、比較例1の方法では多量の硫化水素ガスが発生するため、危険性が非常に高い。また比較例2の方法は、未反応硫黄の除去のために真空下での加熱処理が別途必要であるため、有機硫黄系正極材料を多量に合成するには不向きである。
このことから、本発明の装置及び方法は、大きな充放電容量が得られる有機硫黄系正極材料を、安全かつ環境に配慮して迅速かつ多量に合成することができる点において、従来技術に比して優れた方法及び装置であるといえる。
4). Battery evaluation results
As shown in Table 1, in most examples using the organic sulfur-based positive electrode material obtained by the apparatus and method of the present invention, the conventional transition metal oxide positive electrode was realized as the positive electrode material of the lithium ion secondary battery. A difficult large electric capacity of 250 mAh / g or more was obtained.
A large electric capacity was also obtained when the organic sulfur-based positive electrode material obtained by the method of Comparative Example 1 was used. However, as described above, the method of Comparative Example 1 generates a large amount of hydrogen sulfide gas. The danger is very high. In addition, the method of Comparative Example 2 is not suitable for synthesizing a large amount of organic sulfur-based positive electrode material because it requires a separate heat treatment under vacuum in order to remove unreacted sulfur.
From this, the apparatus and method of the present invention are capable of synthesizing an organic sulfur-based positive electrode material capable of obtaining a large charge / discharge capacity quickly and in a large amount in consideration of safety and the environment, compared with the prior art. It can be said that this is an excellent method and apparatus.

本発明は、主としてリチウムイオンまたはナトリウムイオン二次電池用の正極活物質として有用な有機硫黄系活物質を製造するために利用される。   The present invention is mainly used for producing an organic sulfur-based active material useful as a positive electrode active material for lithium ion or sodium ion secondary batteries.

1 反応容器
2 排出管
3 捕集装置
4 未反応硫黄除去装置
5 加熱源(電気炉)
6 加熱部
7 非加熱部
9 障害物
11 起伏機構
30 前段容器
31 後段容器
32 連結管
34 攪拌装置
40 処理容器
41 不活性ガス供給手段
42 加熱部
43 非加熱部
45 加熱源(電気炉)
C 粗生成物
L 硫化水素を吸収可能な液体
M 原料
S 硫黄(単体硫黄)
1 reaction vessel 2 discharge pipe 3 collection device 4 unreacted sulfur removal device 5 heating source (electric furnace)
6 Heating part 7 Non-heating part 9 Obstacle 11 Elevating mechanism 30 Pre-stage container 31 Rear-stage container 32 Connecting pipe 34 Stirring device 40 Processing container 41 Inert gas supply means 42 Heating part 43 Non-heating part 45 Heat source (electric furnace)
C Crude product L Liquid that can absorb hydrogen sulfide M Raw material S Sulfur (single sulfur)

Claims (7)

硫黄と有機物とを含む原料を収容する反応容器と、
前記反応容器を加熱する加熱源と、
前記反応容器内で発生した硫化水素を外部に取り出すための排出管と、
前記反応容器及び前記加熱源を一体的に起伏させる起伏機構と、
前記反応容器内に生成された粗生成物に含まれる未反応硫黄を除去するための未反応硫黄除去装置を備えており、
前記反応容器は、前記原料が前記加熱源により加熱される加熱部と、前記加熱部における加熱により生じた硫黄蒸気を凝結させる非加熱部を有し、
前記起伏機構は、前記加熱部が前記非加熱部より低位置となる起立状態と、前記非加熱部が前記加熱部より低位置となる傾斜状態と、を切り換え可能であり、
前記未反応硫黄除去装置は、前記粗生成物を収容する処理容器と、
前記処理容器を加熱する加熱源と、
前記処理容器内に不活性ガスを供給する不活性ガス供給手段を有し、
前記処理容器は、前記粗生成物が前記加熱源により加熱される加熱部と、前記加熱部における加熱により生じた硫黄蒸気を凝結させる非加熱部を有するとともに、前記非加熱部が前記加熱部よりも低位置となるように傾斜して配置され、
前記不活性ガス供給手段は、前記加熱部から非加熱部に向けて不活性ガスが流れるように前記処理容器内に不活性ガスを供給する、
二次電池用有機硫黄系正極材料製造装置。
A reaction vessel containing a raw material containing sulfur and organic matter;
A heating source for heating the reaction vessel;
A discharge pipe for taking out hydrogen sulfide generated in the reaction vessel to the outside;
An undulation mechanism for integrally raising and lowering the reaction vessel and the heating source;
An unreacted sulfur removing device for removing unreacted sulfur contained in the crude product produced in the reaction vessel,
The reaction vessel has a heating part in which the raw material is heated by the heating source, and a non-heating part for condensing sulfur vapor generated by heating in the heating part,
The undulation mechanism is capable of switching between a standing state where the heating part is lower than the non-heating part and an inclined state where the non-heating part is lower than the heating part,
The unreacted sulfur removing device includes a processing container for storing the crude product,
A heating source for heating the processing vessel;
An inert gas supply means for supplying an inert gas into the processing vessel;
The processing container includes a heating unit in which the crude product is heated by the heating source, and a non-heating unit that condenses sulfur vapor generated by heating in the heating unit, and the non-heating unit is more than the heating unit. Is also inclined to be at a low position,
The inert gas supply means supplies the inert gas into the processing container so that the inert gas flows from the heating unit toward the non-heating unit;
Equipment for producing organic sulfur-based positive electrode materials for secondary batteries.
前記排出管から取り出した硫化水素を捕集する捕集装置を備えており、
前記捕集装置は、硫化水素を吸収可能な液体を収容した複数の捕集容器を備え、
前記捕集容器は、前記排出管の端部が内部に配置される前段容器と、該前段容器にて捕集されなかった硫化水素を捕集する後段容器を有し、
前記排出管の端部は、前記前段容器に収容された液体と接触していない、
請求項1記載の二次電池用有機硫黄系正極材料製造装置。
Comprising a collecting device for collecting hydrogen sulfide taken out from the discharge pipe;
The collection device includes a plurality of collection containers containing a liquid capable of absorbing hydrogen sulfide,
The collection container has a front container in which an end of the discharge pipe is disposed inside, and a rear container for collecting hydrogen sulfide not collected in the front container,
The end of the discharge pipe is not in contact with the liquid accommodated in the preceding container,
Claim 1 Symbol placement of organosulfur positive electrode material manufacturing apparatus for a secondary battery.
前記前段容器と前記後段容器は、前記前段容器にて捕集されなかった硫化水素を前記後段容器へと導く連結管により連結されており、
前記連結管の一方の端部は、前記前段容器に収容された液体と接触しておらず、
前記連結管の他方の端部は、前記後段容器内に収容された液体と接触している、
請求項記載の二次電池用有機硫黄系正極材料製造装置。
The front-stage container and the rear-stage container are connected by a connecting pipe that guides hydrogen sulfide that has not been collected in the front-stage container to the rear-stage container,
One end of the connecting pipe is not in contact with the liquid stored in the front container,
The other end of the connecting pipe is in contact with the liquid stored in the rear container,
The organic sulfur type positive electrode material manufacturing apparatus for secondary batteries of Claim 2 .
前記前段容器内に収容された液体を攪拌するための攪拌装置を備えている、請求項又は記載の二次電池用有機硫黄系正極材料製造装置。 The organic sulfur type positive electrode material manufacturing apparatus for secondary batteries of Claim 2 or 3 provided with the stirring apparatus for stirring the liquid accommodated in the said front stage container. 前記排出管は、前記反応容器に接続された端部の内径が10mm以上である、請求項1乃至いずれかに記載の二次電池用有機硫黄系正極材料製造装置。 The said exhaust pipe is an organic sulfur type positive electrode material manufacturing apparatus for secondary batteries in any one of Claims 1 thru | or 4 whose internal diameter of the edge part connected to the said reaction container is 10 mm or more. 前記反応容器は、下方に前記加熱部を、上方に前記非加熱部をそれぞれ有し、
前記非加熱部における前記排出管の下方には、前記原料の加熱により発生した硫黄蒸気を接触させて凝結させるための障害物が配設されている、請求項1乃至いずれかに記載の二次電池用有機硫黄系正極材料製造装置。
The reaction vessel has the heating part below and the non-heating part above,
The obstacle according to any one of claims 1 to 5 , wherein an obstacle for contacting and condensing sulfur vapor generated by heating the raw material is disposed below the discharge pipe in the non-heating portion. Equipment for manufacturing organic sulfur-based positive electrode materials for secondary batteries.
硫黄と有機物とを含む原料を反応容器内の下方部に収容し、該下方部を加熱することにより、前記反応容器内にて硫黄と有機物との硫化反応を生じさせて粗生成物を生成する硫化熱処理工程と、
前記生成された粗生成物に含まれる未反応硫黄を除去する精製工程と、を含み、
前記精製工程は、
前記生成された粗生成物を収容した反応容器を、その上方部が前記下方部よりも低位置となるように傾斜させる段階と、
前記傾斜した反応容器の高位置にある前記下方部を加熱することにより、前記粗生成物から未反応硫黄を硫黄蒸気として取り出し、取り出された硫黄蒸気を低位置にある前記上方部において凝結させる段階、とを含む、
二次電池用有機硫黄系正極材料製造方法。
A raw material containing sulfur and organic matter is contained in the lower part of the reaction vessel, and the lower part is heated to cause a sulfurization reaction between sulfur and organic matter in the reaction vessel to produce a crude product. A sulfurization heat treatment step;
A purification step of removing unreacted sulfur contained in the generated crude product,
The purification step includes
Inclining the reaction vessel containing the generated crude product so that the upper part is lower than the lower part;
Heating the lower part at a high position of the inclined reaction vessel to extract unreacted sulfur from the crude product as sulfur vapor, and condensing the extracted sulfur vapor at the upper part at a low position Including,
A method for producing an organic sulfur-based positive electrode material for a secondary battery.
JP2012070443A 2012-03-26 2012-03-26 Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery Active JP5713162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070443A JP5713162B2 (en) 2012-03-26 2012-03-26 Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070443A JP5713162B2 (en) 2012-03-26 2012-03-26 Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery

Publications (2)

Publication Number Publication Date
JP2013201100A JP2013201100A (en) 2013-10-03
JP5713162B2 true JP5713162B2 (en) 2015-05-07

Family

ID=49521175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070443A Active JP5713162B2 (en) 2012-03-26 2012-03-26 Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery

Country Status (1)

Country Link
JP (1) JP5713162B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971705B2 (en) * 2012-07-13 2016-08-17 国立研究開発法人産業技術総合研究所 Continuous production equipment for organic sulfur positive electrode materials for secondary batteries
JP6719755B2 (en) * 2016-11-25 2020-07-08 住友ゴム工業株式会社 Sulfur-based active material, electrode, and method for manufacturing lithium-ion secondary battery
JP6721928B2 (en) * 2016-11-25 2020-07-15 住友ゴム工業株式会社 Sulfur-based active material, electrode, and method for manufacturing lithium-ion secondary battery
WO2021060044A1 (en) * 2019-09-27 2021-04-01 株式会社Adeka Production method of sulfur-modified polyacrylonitrile
CN113828299A (en) * 2021-04-28 2021-12-24 广东石油化工学院 Process for preparing high-dispersity multi-element nano inorganic metal oxide single-phase crystal structure by one-step thermal reaction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066177B2 (en) * 1987-01-13 1994-01-26 大豊産業株式会社 Immobilization treatment agent for liquid organic halides using industrial waste, immobilization treatment method and combustion treatment method
JPH074858A (en) * 1993-06-14 1995-01-10 Olympus Optical Co Ltd Heating and melting device
JP5534227B2 (en) * 2008-10-17 2014-06-25 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP2013201100A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5713162B2 (en) Apparatus and method for producing organic sulfur-based positive electrode material for secondary battery
JP5870129B2 (en) Powder for negative electrode of lithium ion secondary battery and method for producing the same
JP6311948B2 (en) Method for producing carbon-coated silicon material
CN111052464B (en) Method for producing positive electrode active material for lithium ion secondary battery, and heat treatment device
CN111052463B (en) Lithium ion secondary battery, positive electrode active material, and method for producing same
US10906869B2 (en) Organic sulfur material and method for producing same
US11848443B2 (en) Lithium metal composite oxide powder with suppressed gas generation
JP5971705B2 (en) Continuous production equipment for organic sulfur positive electrode materials for secondary batteries
JP6685557B2 (en) Organic sulfur material and method for producing the same
JP2011084438A (en) Lithium sulfide and method for producing the same
CN108539185A (en) A kind of lithium or anode material of lithium-ion battery and preparation method thereof
JPWO2016031126A1 (en) Method for producing carbon-coated silicon material
JP2010186744A (en) Method of manufacturing lithium ion conductive solid electrolyte
CN109888370A (en) Waste and old lithium ion battery method for pyrolysis and system
CA2701648C (en) Hydrogen production method, hydrogen production system, and fuel cell system
Pircheraghi et al. Fabrication of polyethylene separator for lead-acid batteries from waste and recycled silica and investigation of its performance
JP6926873B2 (en) Al and O-containing silicon material
CN115336046A (en) Electrode active material for sodium secondary battery, electrode mixture for sodium secondary battery, electrode for sodium secondary battery, and all-solid-state sodium secondary battery
CN105742589B (en) A kind of negative electrode of lithium ion battery silicon-cobalt-carbon composite and preparation method thereof
Liu et al. Effect of pore structures on the electrochemical performance of porous silicon synthesized from magnesiothermic reduction of biosilica
KR20210010449A (en) Silicon fine particles and manufacturing method thereof
JP2010001188A (en) Hydrogen production apparatus and fuel cell
JP6410146B2 (en) Sulfur-containing compound, positive electrode and lithium ion secondary battery
CN113996260B (en) Sulfide preparation device and method and application thereof
CN117737433A (en) Device for recycling metal elements in lithium battery by using chlorination method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5713162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250