JP5712894B2 - (Z) Process for producing 1-chloro-3,3,3-trifluoropropene - Google Patents

(Z) Process for producing 1-chloro-3,3,3-trifluoropropene Download PDF

Info

Publication number
JP5712894B2
JP5712894B2 JP2011226841A JP2011226841A JP5712894B2 JP 5712894 B2 JP5712894 B2 JP 5712894B2 JP 2011226841 A JP2011226841 A JP 2011226841A JP 2011226841 A JP2011226841 A JP 2011226841A JP 5712894 B2 JP5712894 B2 JP 5712894B2
Authority
JP
Japan
Prior art keywords
hcfc
composition
chloro
mol
trifluoropropene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011226841A
Other languages
Japanese (ja)
Other versions
JP2013087066A (en
Inventor
井村 英明
英明 井村
高田 直門
直門 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2011226841A priority Critical patent/JP5712894B2/en
Publication of JP2013087066A publication Critical patent/JP2013087066A/en
Application granted granted Critical
Publication of JP5712894B2 publication Critical patent/JP5712894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、3−クロロ−1,1,1,3−テトラフルオロプロパン(以下、「HCFC−244fa」という。)を含む(Z)−1−クロロ−3,3,3−トリフルオロプロペン(以下、「OF−1233Z」という。)からHCFC−244faを除去する方法に関し、より詳しくは、塩基と接触させてHCFC−244faを含まないOF−1233Zを製造する方法に関する。   The present invention relates to (Z) -1-chloro-3,3,3-trifluoropropene (including 3-chloro-1,1,1,3-tetrafluoropropane (hereinafter referred to as “HCFC-244fa”)) ( Hereinafter, the present invention relates to a method of removing HCFC-244fa from “OF-1233Z”, and more particularly, to a method of producing OF-1233Z containing no HCFC-244fa by contacting with a base.

OF−1233Zは、洗浄剤、冷媒、ヒートポンプ用の熱媒体、高温作動流体などとして有用である。OF−1233Zは、1,1,1,3,3−ペンタクロロプロパン(HCC−240fa)をフッ化水素でフッ素化して得られる(特許文献1)。その際、得られたOF−1233Z組成物中には、異性体の(E)−1−クロロ−3,3,3−トリフルオロプロペン(以下、「OF−1233E」という。)、過フッ素化生成物である1,3,3,3−テトラフルオロプロペン(1234ze)、1,1,1,3,3−ペンタフルオロプロパン(HFC−245fa)、前駆体である1,3−ジクロロ−3,3−ジフルオロプロペン、およびその他の塩素化フッ素化プロパンまたはプロペンが含まれる。   OF-1233Z is useful as a cleaning agent, a refrigerant, a heat medium for a heat pump, a high-temperature working fluid, and the like. OF-1233Z is obtained by fluorinating 1,1,1,3,3-pentachloropropane (HCC-240fa) with hydrogen fluoride (Patent Document 1). At that time, in the obtained OF-1233Z composition, the isomer (E) -1-chloro-3,3,3-trifluoropropene (hereinafter referred to as “OF-1233E”), perfluorinated. The product 1,3,3,3-tetrafluoropropene (1234ze), 1,1,1,3,3-pentafluoropropane (HFC-245fa), the precursor 1,3-dichloro-3, 3-difluoropropene and other chlorinated fluorinated propane or propene are included.

この反応で得られるOF−1233Z組成物に対しても、最も汎用かつ確立された有機物の分離方法である蒸留が適用されるが、この様なハロカーボン類は相互に共沸組成物を形成することがあり、OF−1233Z(沸点39℃)は、HCFC−244fa(沸点42℃)、HCFC−235da(沸点38℃)と沸点が近接し、共沸様挙動を示すため通常の蒸留分離が困難である。   Distillation, which is the most general and established organic separation method, is also applied to the OF-1233Z composition obtained by this reaction, but such halocarbons form an azeotropic composition with each other. OF-1233Z (boiling point 39 ° C.) is close to the boiling point of HCFC-244fa (boiling point 42 ° C.) and HCFC-235da (boiling point 38 ° C.) and exhibits an azeotrope-like behavior, making normal distillation separation difficult. It is.

飽和の(クロロ)フルオロヒドロアルカンに含まれるオレフィンの除去については、開始剤または触媒の存在下での塩素処理、触媒の存在下での水素化、フッ化水素との反応、酸素含有化合物との反応、その他試薬との反応などの飽和化合物とオレフィンの反応性の相違に基づく化学的な手法がある。   For removal of olefins in saturated (chloro) fluorohydroalkanes, chlorination in the presence of an initiator or catalyst, hydrogenation in the presence of a catalyst, reaction with hydrogen fluoride, with oxygen-containing compounds There are chemical methods based on the difference in reactivity between saturated compounds and olefins, such as reactions and reactions with other reagents.

しかし、OF−1233Z中のHCFC−244faまたはHCFC−235daのように、(クロロ)フルオロヒドロアルケン中の(クロロ)フルオロヒドロアルカンの除去についてはこれらの方法は適用できないため、複雑でコストの掛かる抽出蒸留が行われている(特許文献2)。   However, these methods are not applicable for the removal of (chloro) fluorohydroalkanes in (chloro) fluorohydroalkenes, such as HCFC-244fa or HCFC-235da in OF-1233Z, so that complex and costly extraction Distillation is performed (Patent Document 2).

また、飽和の(クロロ)フルオロヒドロアルカンに含まれるオレフィンの除去については、2−クロロ−1,1,1,2−テトラフルオロプロパン(HCFC−244bb)を2−クロロ−3,3,3−トリフルオロプロペン(OF−1233xf)から融点の違いを利用して分離する方法が知られている(特許文献3)   For removal of olefins contained in saturated (chloro) fluorohydroalkane, 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) is replaced with 2-chloro-3,3,3- A method of separating from trifluoropropene (OF-1233xf) using a difference in melting point is known (Patent Document 3).

特開平11−269105号公報JP 11-269105 A 特開2010−202640号公報JP 2010-202640 A 特開2010−47573号公報JP 2010-47573 A

HCFC−244faを含むOF−1233Zから実質的にHCFC−244faを含まないOF−1233Zを効率的に製造する。   OF-1233Z substantially free of HCFC-244fa is efficiently produced from OF-1233Z containing HCFC-244fa.

隣接する炭素原子に塩素原子と水素原子を有するハロゲン化炭化水素は、脱塩化水素され易く、とりわけ塩基性物質が存在すると反応は加速されることが知られている。HCFC−244faについて検討すると、塩基性物質が水酸化ナトリウムなどの金属水酸化物である場合、非常に効率よく脱塩化水素反応が起こり対応するプロペン類またはプロピン類が生成した。   It is known that a halogenated hydrocarbon having a chlorine atom and a hydrogen atom on adjacent carbon atoms is easily dehydrochlorinated, and the reaction is accelerated particularly when a basic substance is present. When HCFC-244fa was examined, when the basic substance was a metal hydroxide such as sodium hydroxide, the dehydrochlorination reaction occurred very efficiently, and the corresponding propenes or propines were produced.

しかしながら、この知見に基づいて、HCFC−244fa含有のOF−1233Zを水酸化ナトリウム等の無機塩基と接触させたところ、HCFC−244faの脱塩化水素は効率的に起こるが、同時にOF−1233Zが脱塩化水素してトリフルオロプロピンが生成しこの処理ではOF−1233Z回収率が低下することが判明した。   However, based on this finding, when OF-1233Z containing HCFC-244fa is brought into contact with an inorganic base such as sodium hydroxide, dehydrochlorination of HCFC-244fa occurs efficiently, but at the same time, OF-1233Z is desorbed. It has been found that hydrogen chloride produces trifluoropropyne and this treatment reduces the OF-1233Z recovery.

そこで、さらに検討したところ、塩基性物質として特定の有機塩基を用いると、OF−1233Zは脱塩化水素等の反応に受けず、HCFC−244faが十分に脱塩化水素して対応する含フッ素オレフィンに変換でき、この含フッ素オレフィンはOF−1233Zと十分な沸点差を有し、かつ共沸組成物の形成または共沸様の挙動を示さないため容易に蒸留分離できることを見出し、本発明を完成させた。   Therefore, further investigation revealed that when a specific organic base was used as the basic substance, OF-1233Z was not subjected to a reaction such as dehydrochlorination, and HCFC-244fa was sufficiently dehydrochlorinated to produce a corresponding fluorinated olefin. This fluorine-containing olefin has a sufficient boiling point difference from OF-1233Z and does not show the formation of an azeotropic composition or azeotrope-like behavior, so that it can be easily separated by distillation, and the present invention has been completed. It was.

本発明は、次の通りである。   The present invention is as follows.

[発明1]
3−クロロ−1,1,1,3−テトラフルオロプロパンを含む(Z)−1−クロロ−3,3,3−トリフルオロプロペン組成物を第三アミンと接触させてアミン処理組成物とする工程を含む(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。
[Invention 1]
A (Z) -1-chloro-3,3,3-trifluoropropene composition containing 3-chloro-1,1,1,3-tetrafluoropropane is contacted with a tertiary amine to form an amine-treated composition. A process for producing (Z) -1-chloro-3,3,3-trifluoropropene comprising a step.

[発明2]
(Z)−1−クロロ−3,3,3−トリフルオロプロペン組成物が、さらに2−クロロ−1,1,1,3,3−ペンタフルオロプロパンを含む組成物である、発明1の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。
[Invention 2]
(Z) -1-Chloro-3,3,3-trifluoropropene composition is a composition further comprising 2-chloro-1,1,1,3,3-pentafluoropropane of the invention 1 ( Z) A process for producing 1-chloro-3,3,3-trifluoropropene.

[発明3]
さらに、アミン処理組成物に含まれる有機成分を無機塩基と接触させる工程を含む発明2の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。
[Invention 3]
Furthermore, the manufacturing method of (Z) -1-chloro-3,3,3-trifluoropropene of the invention 2 including the process of making the organic component contained in an amine processing composition contact an inorganic base.

[発明4]
さらに、アミン処理組成物に含まれる第三アミン/塩化水素塩から第三アミンを回収し、再使用する工程を含む発明1〜3の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。
[Invention 4]
Furthermore, (Z) -1-chloro-3,3,3-tri of the inventions 1 to 3 including a step of recovering and reusing the tertiary amine from the tertiary amine / hydrogen chloride salt contained in the amine treatment composition. A method for producing fluoropropene.

本発明の方法は、HCFC−244faを効率的に脱塩化水素させてOF−1233Zと沸点差のある物質に変換でき、一方、目的物OF−1233Zを脱塩化水素しないため、HCFC−244faを含むOF−1233Zから実質的にHCFC−244faを含まないOF−1233Zを効率的に製造できる。   The method of the present invention can efficiently dehydrochlorinate HCFC-244fa into a substance having a boiling point difference from OF-1233Z, but does not dehydrochlorinate the object OF-1233Z, and therefore includes HCFC-244fa. OF-1233Z substantially free of HCFC-244fa can be efficiently produced from OF-1233Z.

本明細書において、第三アミンとの接触(以下において、「接触処理」、または単に「処理」ということがある。)を行うためのHCFC−244faを含むOF−1233Z組成物を「第一組成物」といい、第一組成物を第三アミンと接触(処理)させた後のOF−1233Z組成物を「アミン処理組成物」といい、「アミン処理組成物」に含まれる有機成分を「第二組成物」ということがある。
本発明に係る反応を模式的に次に示す。これは、本発明の方法に係る反応をこれらの反応系路に限定する目的ではなく、本発明の理解を容易にするために掲げるものである。
In the present specification, an OF-1233Z composition containing HCFC-244fa for carrying out contact with a tertiary amine (hereinafter sometimes referred to as “contact treatment” or simply “treatment”) is referred to as “first composition”. The OF-1233Z composition after contacting (treating) the first composition with a tertiary amine is referred to as an “amine treated composition”, and the organic component contained in the “amine treated composition” is referred to as “the product”. Sometimes referred to as "second composition".
The reaction according to the present invention is schematically shown below. This is not intended to limit the reaction according to the method of the present invention to these reaction systems, but is intended to facilitate understanding of the present invention.

HCC-240fa + HF
→ OF-1233Z + OF-1233E + HCFC-244fa + HCFC-235da (式1)
HCFC-224fa + 第三アミン → OF-1234ze (式2)
HCFC-235da + 無機塩基 → OF-1224 (式3)
OF-1233Z + 無機塩基 → トリフルオロプロピン(TFPy) (式4)
本発明で第三アミンと接触させるHCFC−244faを含むOF−1233Z組成物は、どの様な経緯で得られた組成物であってもよい。
HCC-240fa + HF
→ OF-1233Z + OF-1233E + HCFC-244fa + HCFC-235da (Formula 1)
HCFC-224fa + Tertiary amine → OF-1234ze (Formula 2)
HCFC-235da + inorganic base → OF-1224 (Formula 3)
OF-1233Z + inorganic base → trifluoropropyne (TFPy) (Formula 4)
The OF-1233Z composition containing HCFC-244fa to be contacted with a tertiary amine in the present invention may be a composition obtained by any process.

OF−1233Zは、1,1,1,3,3−ペンタクロロプロパンを酸化クロム、アルミナまたはこれらのフッ素化物などの触媒存在下気相でフッ化水素と反応させ、または無触媒液相加条件で反応させることでOF−1233Eと共に得られる。OF−1233Eのほかにも、この反応で得られるOF−1233Zには多種のフッ素化炭化水素(「フッ素化炭化水素」は水素原子を含んでもよく、フッ素以外のハロゲン原子を含んでもよい。)が前駆体または副生成物として含まれる。この反応生成物を蒸留するとOF−1233Eを含めて大部分の種類のフッ素化炭化水素を分離することができるが、HCFC−244faとHCFC−235daはそれぞれOF−1233Zと沸点差が小さく、共沸様の挙動を示すため分離効率が著しく低いことから、結果としてHCFC−244faまたはHCFC−235daを含むOF−1233Z組成物が得られる。   OF-1233Z is obtained by reacting 1,1,1,3,3-pentachloropropane with hydrogen fluoride in the gas phase in the presence of a catalyst such as chromium oxide, alumina or a fluoride thereof, or under non-catalytic liquid addition conditions. It is obtained together with OF-1233E by reaction. In addition to OF-1233E, OF-1233Z obtained by this reaction contains various fluorinated hydrocarbons ("fluorinated hydrocarbon" may contain a hydrogen atom or a halogen atom other than fluorine). Is included as a precursor or by-product. When this reaction product is distilled, most types of fluorinated hydrocarbons including OF-1233E can be separated. However, HCFC-244fa and HCFC-235da have a small difference in boiling point from OF-1233Z and are azeotropic. Since the separation efficiency is remarkably low due to such behavior, an OF-1233Z composition containing HCFC-244fa or HCFC-235da is obtained as a result.

この蒸留後に、またはこの蒸留に替えて抽出蒸留または固体吸着材による選択吸着によりOF−1233Zの純度を高めた組成物であってもよい。   It may be a composition in which the purity of OF-1233Z is increased after this distillation or in place of this distillation by selective distillation or selective adsorption with a solid adsorbent.

また、HCFC−244f組成物は、溶媒、洗浄剤、冷媒、熱媒などの用途のため混合調製した混合物であってもよい。   Further, the HCFC-244f composition may be a mixture prepared for use such as a solvent, a cleaning agent, a refrigerant, and a heat medium.

第一組成物においては、HCFC−244faの含有量に限定はないが、0.001〜50質量%であり、0.001〜30質量%が好ましく、0.001〜10質量%がより好ましい。0.001質量%未満では、敢えて本発明の方法を適用するまでもない。50質量%以上とすることは、HCFC−244faはOF−1233Zの過フッ素化物であるので、脱塩化水素して廃棄することはHCC−240faからのOF−1233Z収率を低下させて好ましくない。   In the first composition, the content of HCFC-244fa is not limited, but is 0.001 to 50% by mass, preferably 0.001 to 30% by mass, and more preferably 0.001 to 10% by mass. If it is less than 0.001% by mass, it is not necessary to apply the method of the present invention. Setting it to 50% by mass or more is not preferable because HCFC-244fa is a perfluorinated product of OF-1233Z, and dehydrochlorinating and discarding it decreases the yield of OF-1233Z from HCC-240fa.

第一組成物においては、その他の飽和または不飽和フッ素化炭化水素を含んでいてもよい。そのようなフッ素化炭化水素としては、本発明の処理条件において安定なもの、脱塩化水素に対して安定なもの、または脱塩化水素によりOF−1233Zと蒸留分離できる化合物に変換されるものであるのが好ましい。好ましいものを例示すると、OF−1233E、HCFC−235daなどが挙げられる。OF−1233Eは本発明の処理条件では殆ど反応しないため、特に制限なく含むことができる。しかし、OF−1233Zを製造する目的では、第一組成物は予めOF−1233Eの含有量を減らしておくのが効率的であるので、第一組成物に含まれるOF−1233Eは、10質量%未満とし、5質量%未満としておくのが好ましい。   The first composition may contain other saturated or unsaturated fluorinated hydrocarbons. Such fluorinated hydrocarbons are those that are stable under the treatment conditions of the present invention, those that are stable against dehydrochlorination, or those that can be converted into a compound that can be distilled off from OF-1233Z by dehydrochlorination. Is preferred. Examples of preferred ones include OF-1233E and HCFC-235da. Since OF-1233E hardly reacts under the processing conditions of the present invention, it can be contained without any particular limitation. However, since it is efficient to reduce the content of OF-1233E in advance for the purpose of producing OF-1233Z, OF-1233E contained in the first composition is 10% by mass. And less than 5% by mass.

第三アミンとしては、特に限定されないが、一般式、

(R、R、Rは直鎖状、分岐状または環状のアルキル基であって、全炭素数が3〜15である。)で表される第三アミンであるのが好ましく、4〜12であるのがより好ましい。全炭素数が16以上の第三アミンであっても使用できるが、重量あたりの塩化水素捕捉量が小さく実用上避けるのが好ましい。
The tertiary amine is not particularly limited, but the general formula,
R 1 R 2 R 3 N
A tertiary amine represented by (R 1 , R 2 , R 3 is a linear, branched or cyclic alkyl group having 3 to 15 carbon atoms in total) is preferred. More preferably, it is ~ 12. Although tertiary amines having a total carbon number of 16 or more can be used, it is preferable to avoid them practically because the amount of hydrogen chloride captured per weight is small.

具体的には、鎖状のアミンとしては、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−イソプロピルアミン、トリ−n−ブチルアミン、トリ−イソブチルアミン、トリ−sec−ブチルアミン、トリ−tert−ブチルアミン、トリ−n−アミルアミン、トリ−イソアミルアミン、トリ−sec−アミルアミン、トリ−tert−アミルアミン、N,N,N′,N′−テトラメチルエチレンジアミン、N,N,N′,N′−テトラメチルプロパン−1,3−ジアミン、テトラメチルグアニジンなどの鎖状の対称第三アミン、N−メチルジエチルアミン、N−メチルジ−n−プロピルアミン、N−メチルジイソプロピルアミン、N−メチルジ−n−ブチルアミン、N−メチルジイソブチルアミン、N−メチルジ−tert−ブチルアミン、N,N−ジイソプロピルブチルアミン、N,N−ジメチル−n−オクチルアミン、N,N−ジメチルノニルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルウンデシルアミン、N,N−ジメチルドデシルアミン、N−メチルジヘキシルアミンなどの非対称第三アミンなどが挙げられる。環式のアミンとしては、テトラメチルグアニジン、N,N′−ジメチルピペラジン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、ビス(2−ジメチルアミノエチル)エーテルなどが挙げられる。   Specifically, as the chain amine, trimethylamine, triethylamine, tri-n-propylamine, tri-isopropylamine, tri-n-butylamine, tri-isobutylamine, tri-sec-butylamine, tri-tert-butylamine , Tri-n-amylamine, tri-isoamylamine, tri-sec-amylamine, tri-tert-amylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyl Chain symmetrical tertiary amines such as propane-1,3-diamine, tetramethylguanidine, N-methyldiethylamine, N-methyldi-n-propylamine, N-methyldiisopropylamine, N-methyldi-n-butylamine, N -Methyldiisobutylamine, N-methyldi-te t-butylamine, N, N-diisopropylbutylamine, N, N-dimethyl-n-octylamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine, N, N-dimethylundecylamine, N, N -Asymmetric tertiary amines such as dimethyldodecylamine and N-methyldihexylamine. Cyclic amines include tetramethylguanidine, N, N′-dimethylpiperazine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,4-diazabicyclo [2.2.2. ] Octane (DABCO), bis (2-dimethylaminoethyl) ether, etc. are mentioned.

これらのうち、具体的には、トリエチルアミン、トリ−n−プロピルアミン、トリ−イソプロピルアミン、トリ−n−ブチルアミン、トリ−イソブチルアミン、トリ−n−アミルアミン、トリ−イソアミルアミン、メチルジイソプロピルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)などが好ましく、トリエチルアミンが特に好ましい。これらの三級アミンは混合物としても使用できる。   Among these, specifically, triethylamine, tri-n-propylamine, tri-isopropylamine, tri-n-butylamine, tri-isobutylamine, tri-n-amylamine, tri-isoamylamine, methyldiisopropylamine, 1 , 8-diazabicyclo [5.4.0] -7-undecene (DBU) is preferred, and triethylamine is particularly preferred. These tertiary amines can also be used as a mixture.

溶媒を用いることもできる。溶媒としては、有機塩基と反応せず、OF−1233Zと実質上相互に溶解しないかまたは蒸留で容易に分離できる溶媒であるのが好ましい。例えば、塩素系溶剤を挙げることができる。具体的には、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンなどが挙げられる。アミンとの接触の際には、容器内に水はないことが好ましいが、少量の水は許容される。したがって、第三アミンは約10質量%未満の水を含むことも差し支えない。   A solvent can also be used. The solvent is preferably a solvent that does not react with the organic base, does not substantially dissolve in the OF-1233Z, or can be easily separated by distillation. For example, a chlorinated solvent can be mentioned. Specific examples include chloroform, carbon tetrachloride, dichloroethane, and trichloroethane. In contact with the amine, it is preferred that there is no water in the container, but a small amount of water is acceptable. Thus, the tertiary amine can contain less than about 10% water by weight.

第一組成物を第三アミンと接触させる方法は、特に限定されない。第一組成物と第三アミンは液−液で接触させるのが簡便であり好ましいが、第三アミンがトリメチルアミン、トリメチルアミンなどの沸点の低いアミンの場合は加圧下または低温状態で接触させる。接触方法としては、反応(処理)容器中に第一組成物と第三アミンを仕込み、攪拌する方法が挙げられる。攪拌方法としては、スクリュー型のほか公知の攪拌効率を高めた攪拌羽根を用いる方法、内部または外部のポンプによる液流攪拌、また、液流中にラインミキサーを設け、あるいは吐出部をスパージャーとするなどの攪拌方法を取ることができる。処理容器は、ガラス、ステンレス鋼、フッ素樹脂(PFA樹脂、四フッ化エチレン樹脂、フッ化ビニリデン樹脂など)などの材料またはこれらの材質でライニングされた材料で作成するのが好ましい。   The method for bringing the first composition into contact with the tertiary amine is not particularly limited. The first composition and the tertiary amine are conveniently and preferably contacted in a liquid-liquid manner. However, when the tertiary amine is an amine having a low boiling point such as trimethylamine or trimethylamine, the primary composition and the tertiary amine are contacted under pressure or at a low temperature. Examples of the contact method include a method in which the first composition and the tertiary amine are charged in a reaction (treatment) vessel and stirred. As a stirring method, in addition to a screw type, a method using a known stirring blade with enhanced stirring efficiency, liquid flow stirring by an internal or external pump, a line mixer is provided in the liquid flow, or a discharge part is a sparger. A stirring method such as carrying out can be taken. The processing container is preferably made of a material such as glass, stainless steel, fluororesin (PFA resin, tetrafluoroethylene resin, vinylidene fluoride resin, etc.) or a material lined with these materials.

第一組成物の処理に必要な第三アミンの必要量は、第一組成物に含まれるHCFC−244fa1モルに対して1モルであるが、通常、1〜50モルを使用し、1〜20モルが好ましく、1〜10モルがより好ましい。50モルを超えるのは第三アミンの廃棄または回収処理が煩雑となり好ましくない。   The required amount of the tertiary amine necessary for the treatment of the first composition is 1 mol with respect to 1 mol of HCFC-244fa contained in the first composition, but usually 1 to 50 mol is used and 1 to 20 is used. Mole is preferable, and 1 to 10 mol is more preferable. Exceeding 50 moles is undesirable because the disposal or recovery of tertiary amines becomes complicated.

処理温度は、50〜200℃であり、80〜180℃が好ましい。50℃未満では処理に時間がかかり、HCFC−244faが残留することがあり好ましくない。また、200℃を超えると生成した第三アミン/塩化水素塩が分解してクロロエタンなどの塩素化炭化水素またはエナミンが生成するので好ましくない。処理圧力は、大気圧でよいが、沸点の低い第三アミンを用いる場合、または装置を密閉するために自圧下で行うことができる。したがって、通常0.1〜5MPaで行う。処理は、大気(空気)、窒素、アルゴンなどの雰囲気で行うことができる。   Processing temperature is 50-200 degreeC, and 80-180 degreeC is preferable. If it is less than 50 degreeC, processing will take time and HCFC-244fa may remain, and it is not preferable. On the other hand, when the temperature exceeds 200 ° C., the generated tertiary amine / hydrogen chloride salt is decomposed to produce chlorinated hydrocarbons such as chloroethane or enamine, which is not preferable. The processing pressure may be atmospheric pressure, but can be performed under a self-pressure when a tertiary amine having a low boiling point is used or in order to seal the apparatus. Therefore, it is usually performed at 0.1 to 5 MPa. The treatment can be performed in an atmosphere such as air (air), nitrogen, or argon.

処理に要する時間は、第三アミンと第一組成物の比率、処理温度等の処理条件に依存するが、1分〜100時間であり、10分〜50時間が好ましい。   The time required for the treatment depends on the treatment conditions such as the ratio of the tertiary amine and the first composition and the treatment temperature, but is 1 minute to 100 hours, preferably 10 minutes to 50 hours.

脱塩化水素の処理をした後の処理組成物(容器内容物)には、OF−1233Z、OF−1233EなどのほかにHCFC−244faが脱塩化水素した1,3,3,3−テトラフルオロプロペン(式2)および第三アミン/塩化水素塩が含まれる。この処理組成物から第三アミン/塩化水素塩を除去する方法は特に限定されない。水と接触させて第三アミン/塩化水素塩を水層に移行させることで行うことが簡便で好ましい。有機層にはOF−1233Zなどの有機物を含み、HCFC−244faが実質上含まれず、新たに発生したOF−1234zeが含まれる。この組成物には、OF−1233Zと沸点が近接し、また共沸様挙動を示すHCFC−244faを含まないため容易に蒸留で精製することができる。   The treatment composition (container contents) after the dehydrochlorination treatment is 1,3,3,3-tetrafluoropropene in which HCFC-244fa is dehydrochlorinated in addition to OF-1233Z, OF-1233E, etc. (Formula 2) and tertiary amine / hydrogen chloride salts are included. The method for removing tertiary amine / hydrogen chloride from the treatment composition is not particularly limited. It is convenient and preferable to carry out by transferring the tertiary amine / hydrogen chloride salt to water layer by contacting with water. The organic layer contains an organic substance such as OF-1233Z, is substantially free of HCFC-244fa, and contains newly generated OF-1234ze. Since this composition does not contain HCFC-244fa, which has a boiling point close to that of OF-1233Z and exhibits azeotropic behavior, it can be easily purified by distillation.

有機層は蒸留の前または後に乾燥させることができる。乾燥は、合成ゼオライト、シリカゲル、無水塩化カルシウム、五酸化リンなどの固体乾燥剤を用いるのが簡便で好ましい。合成ゼオライトとしては、3A、4A、5A、13Xなどが使用できる。   The organic layer can be dried before or after distillation. It is convenient and preferable to use a solid desiccant such as synthetic zeolite, silica gel, anhydrous calcium chloride, phosphorus pentoxide for drying. As synthetic zeolite, 3A, 4A, 5A, 13X and the like can be used.

第三アミン/塩化水素塩を含む水層に無機塩基などの強塩基性物質を添加し、次いで、下部完溶温度以上とすることで第三アミンを遊離させ水層から分離することができる。無機塩基としては、特に限定されないが、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、酸化物、水素化物などが挙げられる。アルカリ金属としては、ナトリウム、カリウム、リチウムなど、アルカリ土類金属としては、カルシウム、マグネシウムなどが挙げられる。無機塩基としては、具体的には、水酸化ナトリウム、炭酸ナトリウム(NaCO)、リン酸ナトリウム(NaPO)、酸化ナトリウム(NaO)、水素化ナトリウム(NaH)、水酸化カリウム、炭酸カリウム(KCO)、リン酸カリウム(KPO)、酸化カリウム(KO)、水素化カリウム(KH)、水酸化リチウム、水酸化カルシウム、酸化カルシウム、水酸化マグネシウムが挙げられ、ナトリウムまたはカリウムの水酸化物または炭酸塩が好ましく、水酸化ナトリウム、水酸化カリウムが特に好ましい。 A strong basic substance such as an inorganic base is added to an aqueous layer containing a tertiary amine / hydrogen chloride salt, and then the tertiary amine is liberated and separated from the aqueous layer by setting the temperature to the lower complete dissolution temperature or higher. Examples of the inorganic base include, but are not limited to, alkali metal or alkaline earth metal hydroxides, carbonates, phosphates, oxides, hydrides, and the like. Examples of the alkali metal include sodium, potassium, and lithium, and examples of the alkaline earth metal include calcium and magnesium. Specific examples of the inorganic base include sodium hydroxide, sodium carbonate (NaCO 3 ), sodium phosphate (Na 3 PO 4 ), sodium oxide (Na 2 O), sodium hydride (NaH), potassium hydroxide, Potassium carbonate (KCO 3 ), potassium phosphate (K 3 PO 4 ), potassium oxide (K 2 O), potassium hydride (KH), lithium hydroxide, calcium hydroxide, calcium oxide, magnesium hydroxide, and the like. Sodium or potassium hydroxide or carbonate is preferred, and sodium hydroxide and potassium hydroxide are particularly preferred.

この様にして回収した第三アミンは、そのままで、または、乾燥した後、あるいはまた、蒸留精製した後に本発明のHCFC−244faの脱塩化水素による処理に使用することができる。   The tertiary amine thus recovered can be used as it is, after being dried, or after being purified by distillation, for the treatment with HCFC-244fa of the present invention by dehydrochlorination.

OF−1233Z組成物が、1,1,1,3,3−ペンタクロロプロパン(HCC−240fa)をフッ化水素と反応させて得られたものである場合、HCFC−235daを含むことが多い。HCFC−244faとHCFC−235daを含むOF−1233Z組成物を第三アミンで処理すると、HCFC−244faは除去されるものの、HCFC−235daは脱塩化水素、脱フッ化水素などの化学変化は受けず、結果として、HCFC−235daの残留したOF−1233Z組成物(第二組成物)が得られる。   When the OF-1233Z composition is obtained by reacting 1,1,1,3,3-pentachloropropane (HCC-240fa) with hydrogen fluoride, it often contains HCFC-235da. When an OF-1233Z composition containing HCFC-244fa and HCFC-235da is treated with a tertiary amine, HCFC-244fa is removed, but HCFC-235da is not subject to chemical changes such as dehydrochlorination and dehydrofluorination. As a result, an OF-1233Z composition (second composition) in which HCFC-235da remains is obtained.

HCFC−235daを含むOF−1233Z組成物(第二組成物)からHCFC−235daを蒸留分離するのは困難であるが、第二組成物を無機塩基と接触させることでHCFC−235daを2−クロロ−1,3,3,3−テトラフルオロプロペン(OF−1224)とした後、蒸留で除去することができる。   Although it is difficult to distill and separate HCFC-235da from an OF-1233Z composition (second composition) containing HCFC-235da, HCFC-235da is converted to 2-chloro by contacting the second composition with an inorganic base. After -1,3,3,3-tetrafluoropropene (OF-1224), it can be removed by distillation.

第二組成物においては、HCFC−235daの含有量は充分に少量であることが好ましい。HCFC−235daの含有量は組成物の0.001〜5質量%であり、0.001〜3質量%が好ましく、0.001〜1質量%がより好ましい。0.001質量%未満では、敢えて本発明の方法を適用するまでもない。OF−1233Zは無機塩基との接触により分解することがあるので、HCFC−235daの含有量が5質量%を超えると比較的多量のOF−1233Zが分解することがあり、その様な条件は回避するのが好ましい。   In the second composition, the content of HCFC-235da is preferably sufficiently small. The content of HCFC-235da is 0.001 to 5% by mass of the composition, preferably 0.001 to 3% by mass, and more preferably 0.001 to 1% by mass. If it is less than 0.001% by mass, it is not necessary to apply the method of the present invention. Since OF-1233Z may be decomposed by contact with an inorganic base, a relatively large amount of OF-1233Z may be decomposed when the content of HCFC-235da exceeds 5% by mass, and such a condition is avoided. It is preferable to do this.

第二組成物においては、OF−1233ZとHCFC−235da以外の飽和または不飽和フッ素化炭化水素を含んでいることもある。そのようなフッ素化炭化水素としては、第三アミンとの接触で安定なOF−1233Eなどの化合物、第三アミンとの接触で生成したOF−1234などの化合物(式2)が挙げられる。これらの化合物は処理後の有機物を蒸留することで容易に分離できる。また、無機塩基との接触の前に予め蒸留塔の手段により除くこともでき、好ましい。   The second composition may contain saturated or unsaturated fluorinated hydrocarbons other than OF-1233Z and HCFC-235da. Such fluorinated hydrocarbons include compounds such as OF-1233E which are stable upon contact with tertiary amines, and compounds such as OF-1234 produced upon contact with tertiary amines (Formula 2). These compounds can be easily separated by distilling the treated organic matter. Further, it can be removed in advance by means of a distillation column before the contact with the inorganic base, which is preferable.

無機塩基としては、特に限定されないが、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、アルコキシド、酸化物、水素化物などが挙げられる。アルカリ金属としては、ナトリウム、カリウム、リチウムなど、アルカリ土類金属としては、カルシウム、マグネシウムなどが挙げられる。無機塩基としては、具体的には、水酸化ナトリウム、炭酸ナトリウム(NaCO)、リン酸ナトリウム(NaPO)、酸化ナトリウム(NaO)、水素化ナトリウム(NaH)、水酸化カリウム、炭酸カリウム(KCO)、リン酸カリウム(KPO)、酸化カリウム(KO)、水素化カリウム(KH)、水酸化リチウム、水酸化カルシウム、酸化カルシウム、水酸化マグネシウムが挙げられ、ナトリウムまたはカリウムの水酸化物または炭酸塩が好ましく、水酸化ナトリウム、水酸化カリウムが特に好ましい。 Examples of the inorganic base include, but are not limited to, alkali metal or alkaline earth metal hydroxides, carbonates, phosphates, alkoxides, oxides, hydrides, and the like. Examples of the alkali metal include sodium, potassium, and lithium, and examples of the alkaline earth metal include calcium and magnesium. Specific examples of the inorganic base include sodium hydroxide, sodium carbonate (NaCO 3 ), sodium phosphate (Na 3 PO 4 ), sodium oxide (Na 2 O), sodium hydride (NaH), potassium hydroxide, Potassium carbonate (KCO 3 ), potassium phosphate (K 3 PO 4 ), potassium oxide (K 2 O), potassium hydride (KH), lithium hydroxide, calcium hydroxide, calcium oxide, magnesium hydroxide, and the like. Sodium or potassium hydroxide or carbonate is preferred, and sodium hydroxide and potassium hydroxide are particularly preferred.

第二組成物を無機塩基と接触させる方法は、特に限定されない。無機塩基は水または有機溶媒と共に溶液として用いるのが好ましく、水は特に好ましく、有機溶媒と共に用いることもできる。有機溶媒としては、アルコール類が好ましく、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール(各異性体)など、またはこれらの混合物が挙げられる。   The method for bringing the second composition into contact with the inorganic base is not particularly limited. The inorganic base is preferably used as a solution with water or an organic solvent, water is particularly preferred, and can also be used with an organic solvent. As the organic solvent, alcohols are preferable, and examples thereof include methanol, ethanol, propanol, isopropanol, butanol (each isomer), and a mixture thereof.

無機塩基の溶液の濃度は適宜であってよく、取り扱いが容易であるので、不溶解分のない状態とするのが好ましい。通常は0.1〜50質量%の濃度として用いる。   The concentration of the solution of the inorganic base may be appropriate and is easy to handle, so it is preferable to have a state without insoluble matter. Usually, it uses as a density | concentration of 0.1-50 mass%.

第二組成物と無機塩基は液−液で接触させるのが簡便であり好ましい。接触方法としては、反応(処理)容器中に組成物と無機塩基および水などを仕込み、攪拌する方法が挙げられる。攪拌方法としては、スクリュー型のほか公知の攪拌効率を高めた攪拌羽根を用いる方法、内部または外部のポンプによる液流攪拌、また、液流中にラインミキサーを設け、あるいは吐出部をスパージャーとするなどの攪拌方法を取ることができる。処理容器は、ガラス、ステンレス鋼、フッ素樹脂(PFA樹脂、四フッ化エチレン樹脂、フッ化ビニリデン樹脂など)などの材料またはこれらの材質でライニングされた材料で作成するのが好ましい。   It is convenient and preferable that the second composition and the inorganic base are brought into contact with each other in a liquid-liquid manner. Examples of the contact method include a method in which a composition, an inorganic base, water, and the like are charged in a reaction (treatment) vessel and stirred. As a stirring method, in addition to a screw type, a method using a known stirring blade with enhanced stirring efficiency, liquid flow stirring by an internal or external pump, a line mixer is provided in the liquid flow, or a discharge part is a sparger. A stirring method such as carrying out can be taken. The processing container is preferably made of a material such as glass, stainless steel, fluororesin (PFA resin, tetrafluoroethylene resin, vinylidene fluoride resin, etc.) or a material lined with these materials.

組成物の処理に必要な無機塩基の必要量は、OF−1233組成物に含まれるHCFC−235da1モルに対して1モルであるが、通常、1〜50モルを使用し、1〜20モルが好ましく、1〜10モルがより好ましい。50モルを超えると、OF−1233Zが分解して処理での回収率が低下するので好ましくない。   The necessary amount of the inorganic base necessary for the treatment of the composition is 1 mol with respect to 1 mol of HCFC-235da contained in the OF-1233 composition, but usually 1 to 50 mol is used, and 1 to 20 mol is used. 1-10 mol is preferable and more preferable. If it exceeds 50 mol, OF-1233Z is decomposed and the recovery rate in the treatment is lowered, which is not preferable.

処理温度は、−10〜60℃であり、0〜40℃が好ましい。−10℃未満では処理に時間がかかり、HCFC−235daが在留することがあり好ましくない。また、60℃を超えるとOF−1233Zが分解して収率が低下するので好ましくない。処理圧力は、大気圧でよいが、または装置を密閉するために自圧下で行うことができる。したがって、通常0.1〜1MPaで行う。   Processing temperature is -10-60 degreeC, and 0-40 degreeC is preferable. If it is less than -10 degreeC, processing will take time and HCFC-235da may stay, and is unpreferable. Moreover, when it exceeds 60 degreeC, since OF-1233Z will decompose | disassemble and a yield will fall, it is unpreferable. The processing pressure can be atmospheric pressure or can be performed under autogenous pressure to seal the apparatus. Therefore, it is usually performed at 0.1 to 1 MPa.

処理に要する時間は、無機塩基と第二組成物の比率、処理温度等の処理条件に依存するが、1分〜100時間であり、10分〜50時間が好ましい。   The time required for the treatment depends on the treatment conditions such as the ratio of the inorganic base and the second composition, the treatment temperature, etc., but is 1 minute to 100 hours, preferably 10 minutes to 50 hours.

処理後の容器内容物の有機層には、OF−1233Z、OF−1233Eなどのほかに、1,3,3,3−テトラフルオロプロペン(式2)、2−クロロ−1,3,3,3−テトラフルオロプロペン(式3)、トリフルオロプロピン(式4)などが含まれ、水層には金属フッ化物、未反応の無機塩基などが含まれる。有機層を水層から分離し、得られた有機層は、水洗、乾燥、蒸留などの公知の精製処理によりOF−1233Zが得られる。   In addition to OF-1233Z, OF-1233E, etc., 1,3,3,3-tetrafluoropropene (formula 2), 2-chloro-1,3,3, 3-tetrafluoropropene (formula 3), trifluoropropyne (formula 4) and the like are included, and the aqueous layer contains a metal fluoride, an unreacted inorganic base and the like. The organic layer is separated from the aqueous layer, and OF-1233Z is obtained from the obtained organic layer by a known purification treatment such as washing with water, drying and distillation.

処理前にOF−1233Eを除去していない場合には、OF−1233Eが含まれるが、これは蒸留によりOF−1233Zから容易に分離することができるので、前記蒸留によって1,3,3,3−テトラフルオロプロペンと共に除去し、OF−1233Eの含まないOF−1233Zとすることもできる。   If OF-1233E has not been removed prior to treatment, OF-1233E is included, which can be easily separated from OF-1233Z by distillation, so that 1, 3, 3, 3 by distillation. -It can also be removed together with tetrafluoropropene to form OF-1233Z free of OF-1233E.

以下、具体的に、実施例を示して、より詳細に説明するが、実施態様はこれに限定されない。有機物の組成は、別途注釈のない限り、FID検出器によるガスクロマトグラフィにより測定し、記録された「面積%」を「GC%」と表示した。   Hereinafter, although an example is shown and explained in detail, an embodiment is not limited to this. Unless otherwise noted, the composition of the organic substance was measured by gas chromatography using an FID detector, and the recorded “area%” was displayed as “GC%”.

[実施例1]
圧力計、バルブ、撹拌子を備えたステンレス鋼製50mLオートクレーブ(耐圧硝子工業製TVS−1型 50mLポータプルリアクター)に、トリエチルアミン9.66g(0.096mol)と、3−クロロ−1,1,1,3−テトラフルオロプロパン(HCFC−244fa)10.7GC%、2−クロロ−1,1,1,3,3−ペンタフルオロプロパン(HCFC−235da)1.56GC%、(Z)−1−クロロ−3,3,3−トリフルオロプロペン(OF−1233Z)86.4GC%を含む粗OF−1233Z25.07g(HCFC−244faを0.018mol、HCFC−235daを0.0002mol含有。)を仕込み、150℃のオイルバスで加熱し3時間撹拌した。反応終了後、氷水浴で0℃付近まで冷却したのち、ドライアイスアセトン浴で−50℃以下まで冷却した。オートクレーブを開放し、ポリエチレン製5mLシリンジで反応液を採取し、ディスポーサブルシリンジフィルター(孔径0.45μmPTFE製)でろ過した液をガスクロマトグラフ分析したところ、HCFC−244faは0.47GC%、HCFC−235daは0.71GC%、OF−1233Zは87.22GC%、OF−1234Eは6.98GC%、OF−1234Eは1.69GC%、2−クロロ−1,3,3,3−テトラフルオロプロペン(OF−1224)は0.73GC%であった。トリフルオロプロピン(TFPy)は、検出されなかった。HCFC−244faの変換率は96%、HCFC−235daの変換率は55%であった。
[Example 1]
In a 50 mL autoclave made of stainless steel equipped with a pressure gauge, a valve, and a stirrer (TVS-1 type 50 mL portable reactor made by pressure-resistant glass industry), 9.66 g (0.096 mol) of triethylamine and 3-chloro-1,1,1 , 3-tetrafluoropropane (HCFC-244fa) 10.7 GC%, 2-chloro-1,1,1,3,3-pentafluoropropane (HCFC-235da) 1.56 GC%, (Z) -1-chloro -25,007 g of crude OF-1233Z containing 86.4 GC% of 3,3,3-trifluoropropene (OF-1233Z) (containing 0.018 mol of HCFC-244fa and 0.0002 mol of HCFC-235da), 150 The mixture was heated in an oil bath at 0 ° C. and stirred for 3 hours. After completion of the reaction, the reaction mixture was cooled to about 0 ° C. with an ice-water bath and then cooled to −50 ° C. or less with a dry ice acetone bath. The autoclave was opened, the reaction liquid was collected with a polyethylene 5 mL syringe, and the liquid filtered with a disposable syringe filter (pore diameter 0.45 μm PTFE) was subjected to gas chromatographic analysis. As a result, HCFC-244fa was 0.47 GC%, 0.71 GC%, OF-1233Z is 87.22 GC%, OF-1234E is 6.98 GC%, OF-1234E is 1.69 GC%, 2-chloro-1,3,3,3-tetrafluoropropene (OF- 1224) was 0.73 GC%. Trifluoropropyne (TFPy) was not detected. The conversion rate of HCFC-244fa was 96%, and the conversion rate of HCFC-235da was 55%.

[実施例2]
実施例1と同じ装置を用い、トリエチルアミン3.77g(0.037mol)、イオン交換水0.20g(トリエチルアミンに対して5重量%相当)、実施例1と同一の粗OF−1233Z25.47g(HCFC−244faとして0.018mol、HCFC−235daとして0.0002mol含有)を仕込み、150℃のオイルバスで3.5時間加熱撹拌した。反応終了後、実施例1と同じ操作をして、有機液をガスクロマトグラフ分析したところ、HCFC−244faは0.02GC%、HCFC−235daは0.52GC%、OF−1233Zは82.64GC%、OF−1234Eは6.88GC%、OF−1234Zは2.00GC%、OF−1224は0.54GC%、TFPyは0.02GC%であった。HCFC−244faの変換率は100%、HCFC−235daの変換率は67%であった。
[Example 2]
Using the same apparatus as in Example 1, 3.77 g (0.037 mol) of triethylamine, 0.20 g of ion-exchanged water (corresponding to 5% by weight with respect to triethylamine), 25.47 g of crude OF-1233Z as in Example 1 (HCFC) 0.018 mol as -244fa and 0.0002 mol as HCFC-235da) was added, and the mixture was heated and stirred in an oil bath at 150 ° C for 3.5 hours. After completion of the reaction, the same operation as in Example 1 was performed, and the organic liquid was analyzed by gas chromatography. As a result, HCFC-244fa was 0.02 GC%, HCFC-235da was 0.52 GC%, OF-1233Z was 82.64 GC%, OF-1234E was 6.88 GC%, OF-1234Z was 2.00 GC%, OF-1224 was 0.54 GC%, and TFPy was 0.02 GC%. The conversion rate of HCFC-244fa was 100%, and the conversion rate of HCFC-235da was 67%.

[実施例3]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンに替えて17.78gのトリブチルアミンを用いて実施例1と同様の操作を行った。処理した液を分析したところ、HCFC−244faは8.76GC%、HCFC−235daは1.44GC%、OF−1233Zは86.49GC%、OF−1234Eは1.28GC%、OF−1224は0.02GC%であった。OF−1234Z及びTFPyは検出されなかった。HCFC−244faの変換率は18%、HCFC−235daの変換率は8%であった。
[Example 3]
The same operation as in Example 1 was carried out using the same amount of the same crude OF-1233Z as in Example 1 but using 17.78 g of tributylamine instead of triethylamine. When the treated liquid was analyzed, HCFC-244fa was 8.76 GC%, HCFC-235da was 1.44 GC%, OF-1233Z was 86.49 GC%, OF-1234E was 1.28 GC%, and OF-1224 was 0.00. It was 02 GC%. OF-1234Z and TFPy were not detected. The conversion rate of HCFC-244fa was 18%, and the conversion rate of HCFC-235da was 8%.

[実施例4]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンに替えて12.36gのメチルジイソプロピルアミンを用いて実施例1と同様の操作を行った。処理した液を分析したところ、HCFC−244faは8.44GC%、HCFC−235daは1.26GC%、OF−1233Zは86.74GC%、OF−1234Eは1.49GC%、OF−1234Zは0.35GC%、OF−1224は0.25C%であった。TFPyは検出されなかった。HCFC−244faの変換率は21%、HCFC−235daの変換率は19%であった。
[Example 4]
The same operation as in Example 1 was performed using the same amount of the same crude OF-1233Z as in Example 1 but using 12.36 g of methyldiisopropylamine instead of triethylamine. When the treated liquid was analyzed, HCFC-244fa was 8.44 GC%, HCFC-235da was 1.26 GC%, OF-1233Z was 86.74 GC%, OF-1234E was 1.49 GC%, and OF-1234Z was 0.00. 35 GC% and OF-1224 were 0.25 C%. TFPy was not detected. The conversion rate of HCFC-244fa was 21%, and the conversion rate of HCFC-235da was 19%.

[実施例5]
容器内に撹拌子を、開放側にテドラー(登録商標)バックを取り付け−15℃の冷媒を流したジムロートを備えた100mLナスフラスコを氷水浴で冷却しながら、そこへ実施例1と同一の粗OF−1233Zを50.34g(HCFC−244faを0.018mol含有。)、次いで、1,8−ジアザビシクロ[5,4,0]ウンデカ−7−エン)6.04g(DBU、0.040mol)を仕込み、氷水浴で冷却したまま30分撹拌した後、50℃の湯浴に替えて還流下、3時間攪拌を続けた。氷水浴で冷却した後、反応液をガスクロマトグラフ分析したところ、HCFC−244faは5.80GC%、HCFC−235daは0.83GC%、OFC−1233Zは88.51GC%、OF−1234Eは1.91GC%、OF−1234Zは0.87GC%、OF−1224は0.32GC%、TFPyは0.41GC%であった。HCFC−244faの変換率は46%、HCFC−235daの変換率は47%であった。テドラーパックで捕集されたガスを分析したところ、HCFC−244faは0.66GC%、HCFC−235daは0.07GC%、OF−1233Zは11.99GC%、OF−1234Eは55.94GC%、OF−1234Zは1.33GC%、OF−1224は0.19GC%、TFPyは29.36GC%であった。
[Example 5]
A stirrer in the container, a Tedlar (registered trademark) bag on the open side, and a 100 mL eggplant flask equipped with a Dimroth in which a 15 ° C. refrigerant was flowed were cooled in an ice-water bath, and the same crude as in Example 1 50.34 g (containing 0.018 mol of HCFC-244fa) of OF-1233Z, and then 6.04 g (DBU, 0.040 mol) of 1,8-diazabicyclo [5,4,0] undec-7-ene). The mixture was stirred and stirred for 30 minutes while being cooled in an ice-water bath, and the stirring was continued for 3 hours under reflux in place of a 50 ° C. hot water bath. After cooling in an ice-water bath, the reaction mixture was analyzed by gas chromatography. As a result, HCFC-244fa was 5.80 GC%, HCFC-235da was 0.83 GC%, OFC-1233Z was 88.51 GC%, and OF-1234E was 1.91 GC. %, OF-1234Z was 0.87 GC%, OF-1224 was 0.32 GC%, and TFPy was 0.41 GC%. The conversion rate of HCFC-244fa was 46%, and the conversion rate of HCFC-235da was 47%. When the gas collected by the Tedlar pack was analyzed, HCFC-244fa was 0.66 GC%, HCFC-235da was 0.07 GC%, OF-1233Z was 11.99 GC%, OF-1234E was 55.94 GC%, OF- 1234Z was 1.33 GC%, OF-1224 was 0.19 GC%, and TFPy was 29.36 GC%.

[実施例6]
真空ポンプで減圧状態にしたステンレス鋼製1000mLオートクレーブ(耐圧硝子工業製簡易型オートクレーブTEM−D1000M)に、実施例1と同一の粗OF−1233Zを501.11g(HCFC−244faを0.355mol、HCFC−235daを0.047mol含有。)、次いで、トリエチルアミン74.37g(0.736mol)をPFAチューブから吸引して仕込んだ。500rpmで撹拌し、約1時間かけ内温150℃に昇温し、その温度で3時間撹拌を継続した。3時間後の圧力は1.62MPaであった。反応後、氷水浴、次いでドライアイスアセトン浴で冷却し、内温が−50℃以下になったところで、オートクレーブを開放し、ポリエチレン製5mLシリンジで反応液を採取し、ディスポーサブルシリンジフィルター(孔径0.45μmのPTFE製)でろ過した液をガスクロマトグラフ分析したところ、HCFC−244faは0.06GC%、HCFC−235daは0.63GC%、OF−1233Zは84.58GC%、OF−1234Eは6.64GC%、OF−1234Zは1.90GC%、OF−1224は0.75GC%であり、TFPyは検出されなかった。HCFC−244faの変換率は99%、HCFC−235daの変換率は60%であった。
[Example 6]
In a 1000 mL autoclave made of stainless steel (simple type autoclave TEM-D1000M manufactured by Pressure Glass Industrial Co., Ltd.) reduced in pressure by a vacuum pump, 501.11 g of crude OF-1233Z identical to Example 1 (0.355 mol of HCFC-244fa, HCFC) -235da was contained at 0.047 mol), and then, 74.37 g (0.736 mol) of triethylamine was sucked from the PFA tube and charged. The mixture was stirred at 500 rpm, the internal temperature was raised to 150 ° C. over about 1 hour, and stirring was continued at that temperature for 3 hours. The pressure after 3 hours was 1.62 MPa. After the reaction, the reaction mixture was cooled in an ice water bath and then in a dry ice acetone bath. When the internal temperature became −50 ° C. or lower, the autoclave was opened, the reaction solution was collected with a polyethylene 5 mL syringe, and a disposable syringe filter (pore size 0. When the liquid filtered with 45 μm PTFE was analyzed by gas chromatography, HCFC-244fa was 0.06 GC%, HCFC-235da was 0.63 GC%, OF-1233Z was 84.58 GC%, and OF-1234E was 6.64 GC. %, OF-1234Z was 1.90 GC%, OF-1224 was 0.75 GC%, and TFPy was not detected. The conversion rate of HCFC-244fa was 99%, and the conversion rate of HCFC-235da was 60%.

[実施例7]
真空ポンプで減圧状態にしたステンレス鋼製1000mLオートクレーブ(耐圧硝子工業製簡易型オートクレーブTEM−D1000M)に、実施例1と同一の粗OF−1233Zを501.11g(HCFC−244faを0.355mol、HCFC−235daを0.047mol含有。)、次いで、トリエチルアミン150.02g(1.485mol)をPFAチューブから吸引して仕込んだ。500rpmで撹拌し、約1時間かけ内温100℃に昇温し、その温度で24時間撹拌を継続した。24時間後の圧力は0.49MPaであった。反応後、氷水浴、次いでドライアイスアセトン浴で冷却し、内温が−50℃以下になったところで、オートクレーブを開放し、ポリエチレン製5mLシリンジで反応液を採取し、ディスポーサブルシリンジフィルター(孔径0.45μmのPTFE製)でろ過した液をガスクロマトグラフ分析したところ、HCFC−244faは0.22GC%、HCFC−235daは0.85GC%、OF−1233Zは87.32GC%、OF−1234Eは6.64GC%、OF−1234Zは1.90GC%、OF−1224は0.59GC%であり、TFPyは検出されなかった。HCFC−244faの変換率は98%、HCFC−235daの変換率は45%であった。
[Example 7]
In a 1000 mL autoclave made of stainless steel (simple type autoclave TEM-D1000M manufactured by Pressure Glass Industrial Co., Ltd.) reduced in pressure by a vacuum pump, 501.11 g of crude OF-1233Z identical to Example 1 (0.355 mol of HCFC-244fa, HCFC) -235da was contained at 0.047 mol), and then 150.02 g (1.485 mol) of triethylamine was sucked from the PFA tube and charged. The mixture was stirred at 500 rpm, the internal temperature was raised to 100 ° C. over about 1 hour, and stirring was continued at that temperature for 24 hours. The pressure after 24 hours was 0.49 MPa. After the reaction, the reaction mixture was cooled in an ice-water bath and then in a dry ice acetone bath. When the internal temperature became −50 ° C. or lower, the autoclave was opened, and the reaction solution was collected with a 5 mL syringe made of polyethylene. When the liquid filtered with 45 μm PTFE was analyzed by gas chromatography, HCFC-244fa was 0.22 GC%, HCFC-235da was 0.85 GC%, OF-1233Z was 87.32 GC%, and OF-1234E was 6.64 GC. %, OF-1234Z was 1.90 GC%, OF-1224 was 0.59 GC%, and TFPy was not detected. The conversion rate of HCFC-244fa was 98%, and the conversion rate of HCFC-235da was 45%.

[実施例8]
真空ポンプで減圧状態にしたステンレス鋼製1000mLオートクレーブ(耐圧硝子工業製簡易型オートクレーブTEM−D1000M)に、実施例1と同一の粗OF−1233Zを501.11g(HCFC−244faを0.355mol、HCFC−235daを0.047mol含有。)、次いで、トリエチルアミン74.37g(0.736mol)をPFAチューブから吸引して仕込んだ。500rpmで撹拌し、約1時間かけ内温150℃に昇温し、その温度で3時間撹拌を継続した。3時間後の圧力は1.62MPaであった。
[Example 8]
In a 1000 mL autoclave made of stainless steel (simple type autoclave TEM-D1000M manufactured by Pressure Glass Industrial Co., Ltd.) reduced in pressure by a vacuum pump, 501.11 g of crude OF-1233Z identical to Example 1 (0.355 mol of HCFC-244fa, HCFC) -235da was contained at 0.047 mol), and then, 74.37 g (0.736 mol) of triethylamine was sucked from the PFA tube and charged. The mixture was stirred at 500 rpm, the internal temperature was raised to 150 ° C. over about 1 hour, and stirring was continued at that temperature for 3 hours. The pressure after 3 hours was 1.62 MPa.

水400gを仕込み0.6MPaに加圧した、ディップ管と圧力計を備えた500mLステンレス製シリンダーから、氷水浴で冷却して内温を2℃以下としたステンレス鋼製1000mLオートクレーブに水201.92gを内温が5℃を超えないように徐々に添加した。そのまま30分間撹拌したのち、分液ロートへ移液して5分静定し、下層有機層496.27g、上層水層269.74gを回収した。下層有機層をガスクロマトグラフ分析したところ、HCFC−244faは0.05GC%、HCFC−235daは0.61GC%、OF−1233Zは85.90GC%、OF−1234Eは5.95GC%、OF−1234Zは1.95GC%、OF−1224は0.81GC%であり、TFPyは検出されなかった。HCFC−244faの変換率は100%、HCFC−235daの変換率は61%であった。   From a 500 mL stainless steel cylinder equipped with a dip tube and pressure gauge charged with 400 g of water and pressurized to 0.6 MPa, 201.92 g of water was added to a 1000 mL stainless steel autoclave cooled to an internal temperature of 2 ° C. or less by cooling with an ice water bath. Was gradually added so that the internal temperature did not exceed 5 ° C. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and allowed to stand for 5 minutes to recover 496.27 g of the lower organic layer and 269.74 g of the upper aqueous layer. When the lower organic layer was analyzed by gas chromatography, HCFC-244fa was 0.05 GC%, HCFC-235da was 0.61 GC%, OF-1233Z was 85.90 GC%, OF-1234E was 5.95 GC%, and OF-1234Z was 1.95 GC% and OF-1224 were 0.81 GC%, and TFPy was not detected. The conversion rate of HCFC-244fa was 100%, and the conversion rate of HCFC-235da was 61%.

[実施例9]
−15℃の冷媒を流し外部側に風船を付けたジムロートを備えた100mLナスフラスコに、実施例7で得られた有機層25.38g(HCFC−235daを0.001mol含有。)、33%水酸化カリウム水溶液0.41g(0.002mol)、メタノール(MeOH)0.26gを仕込み、室温(約25℃、以下同じ。)下5時間撹拌した。内容液を分析したところ、HCFC−244faは0.05GC%、HCFC−235daは0.01GC%、OF−1233Zは85.05GC%、OF−1234Eは6.20GC%、OF−1234Zは1.99GC%、OF−1224は1.39GC%、TFPyは0.10GC%であった。HCFC−244faの変換率は1%、HCFC−235daの変換率は98%であった。
[Example 9]
In a 100 mL eggplant flask equipped with a Dimroth having a refrigerant flow of −15 ° C. and balloons on the outside, 25.38 g of the organic layer obtained in Example 7 (containing 0.001 mol of HCFC-235da), 33% water A potassium oxide aqueous solution (0.41 g, 0.002 mol) and methanol (MeOH) (0.26 g) were charged, and the mixture was stirred at room temperature (about 25 ° C., the same applies hereinafter) for 5 hours. As a result of analyzing the content liquid, HCFC-244fa was 0.05 GC%, HCFC-235da was 0.01 GC%, OF-1233Z was 85.05 GC%, OF-1234E was 6.20 GC%, and OF-1234Z was 1.99 GC. %, OF-1224 was 1.39 GC%, and TFPy was 0.10 GC%. The conversion rate of HCFC-244fa was 1%, and the conversion rate of HCFC-235da was 98%.

[実施例10]
−15℃の冷媒を流し外部側に風船を付けたジムロートを備えた100mLナスフラスコに、実施例8で得られた有機層25.38g(HCFC−235daを0.001mol含有。)、33%水酸化カリウム水溶液0.39g(0.002mol)を仕込み、室温下5時間撹拌した。内容液を分析したところ、HCFC−244fa 0.04GC%、OF−1233Z 84.72GC%、OF−1234E5.89GC%、OF−1234Z1.90GC%、OF−1224 1.40GC%、TFPy 0.21GC%、HCFC−235daは検出されなかった。HCFC−244faの変換率は5%、HCFC−235daの変換率は100%であった。
[Example 10]
In a 100 mL eggplant flask equipped with a Dimroth having a refrigerant flow of −15 ° C. and balloons on the outside, 25.38 g of the organic layer obtained in Example 8 (containing 0.001 mol of HCFC-235da), 33% water. An aqueous potassium oxide solution (0.39 g, 0.002 mol) was charged and stirred at room temperature for 5 hours. Analysis of the content liquid revealed that HCFC-244fa 0.04 GC%, OF-1233Z 84.72 GC%, OF-1234E 5.89 GC%, OF-1234Z 1.90 GC%, OF-1224 1.40 GC%, TFPy 0.21 GC% , HCFC-235da was not detected. The conversion rate of HCFC-244fa was 5%, and the conversion rate of HCFC-235da was 100%.

[実施例11]
真空ポンプで減圧状態にしたステンレス鋼製1000mLオートクレーブ(耐圧硝子工業製簡易型オートクレーブTEM−D1000M)に、10.44GC%のHCFC−244fa、1.83GC%のHCFC−235da、87.02GC%のOF−1233Zを含む粗OF−1233をZ502g(HCFC−244faを0.349mol、HCFC−235daを0.055mol含有。)、次いで、トリエチルアミン74.60g(0.739mol)をPFAチューブから吸引して仕込み、残圧は窒素で大気圧に復圧した。500rpmで撹拌し、約1時間かけ内温150℃に昇温し、その温度で3時間撹拌を継続した。3時間後の圧力は1.70MPaであった。
[Example 11]
A stainless steel 1000 mL autoclave (a simple autoclave TEM-D1000M manufactured by Pressure Glass Industrial Co., Ltd.) that has been evacuated by a vacuum pump is used. 10.44 GC% HCFC-244fa, 1.83 GC% HCFC-235da, 87.02 GC% OF A crude OF-1233 containing -1233Z is charged with Z502g (containing 0.349 mol of HCFC-244fa and 0.055 mol of HCFC-235da), and then 74.60 g (0.739 mol) of triethylamine is sucked from a PFA tube, The residual pressure was restored to atmospheric pressure with nitrogen. The mixture was stirred at 500 rpm, the internal temperature was raised to 150 ° C. over about 1 hour, and stirring was continued at that temperature for 3 hours. The pressure after 3 hours was 1.70 MPa.

水400gを仕込み0.6MPaに加圧した、ディップ管と圧力計を備えた500mLステンレス製シリンダーから、氷水浴で冷却して内温を2℃以下としたステンレス鋼製1000mLオートクレーブに水201.70gを内温が5℃を超えないように徐々に添加した。そのまま30分間撹拌したのち、分液ロートへ移液して5分静定し、下層有機層499.55g、上層水層266.53gを回収した。下層有機層をガスクロマトグラフ分析したところ、HCFC−244faは0.04GC%、HCFC−235daは0.67GC%、OF−1233Zは85.10GC%、OF−1234Eは6.15GC%、OF−1234Zは1.89GC%、OF−1224は0.98GC%、TFPyは0.004GC%であった。HCFC−244faの変換率は100%、HCFC−235daの変換率は63%であった。   From a 500 mL stainless steel cylinder equipped with 400 g of water and pressurized to 0.6 MPa, equipped with a dip tube and a pressure gauge, cooled to an internal temperature of 2 ° C. or less by cooling with an ice water bath, 201.70 g of water. Was gradually added so that the internal temperature did not exceed 5 ° C. After stirring for 30 minutes, the solution was transferred to a separatory funnel and allowed to stand for 5 minutes to recover 499.55 g of the lower organic layer and 266.53 g of the upper aqueous layer. When the lower organic layer was analyzed by gas chromatography, HCFC-244fa was 0.04 GC%, HCFC-235da was 0.67 GC%, OF-1233Z was 85.10 GC%, OF-1234E was 6.15 GC%, and OF-1234Z was 1.89 GC%, OF-1224 was 0.98 GC%, and TFPy was 0.004 GC%. The conversion rate of HCFC-244fa was 100%, and the conversion rate of HCFC-235da was 63%.

[実施例12]
真空ポンプで減圧状態にしたステンレス鋼製1000mLオートクレーブ(耐圧硝子工業製簡易型オートクレーブTEM−D1000M)に、10.44GC%のHCFC−244fa、1.83GC%のHCFC−235da、87.02GC%のOF−1233Zを含む粗OF−1233Z502g(HCFC−244faを0.349mol、HCFC−235daを0.055mol含有。)、次いで、トリエチルアミン76.18g(0.754mol)をPFAチューブから吸引して仕込み、残圧は窒素で大気圧に復圧した。500rpmで撹拌し、約1時間かけ内温150℃に昇温し、その温度で3時間撹拌を継続した。3時間後の圧力は1.70MPaであった。
[Example 12]
A stainless steel 1000 mL autoclave (a simple autoclave TEM-D1000M manufactured by Pressure Glass Industrial Co., Ltd.) that has been evacuated by a vacuum pump is used. 10.44 GC% HCFC-244fa, 1.83 GC% HCFC-235da, 87.02 GC% OF Of crude OF-1233Z containing -1233Z (containing 0.349 mol of HCFC-244fa and 0.055 mol of HCFC-235da), and then charging 76.18 g (0.754 mol) of triethylamine through a PFA tube, Returned to atmospheric pressure with nitrogen. The mixture was stirred at 500 rpm, the internal temperature was raised to 150 ° C. over about 1 hour, and stirring was continued at that temperature for 3 hours. The pressure after 3 hours was 1.70 MPa.

水400gを仕込み0.6MPaに加圧した、ディップ管と圧力計を備えた500mLステンレス製シリンダーから、氷水浴で冷却して内温を2℃以下としたステンレス鋼製1000mLオートクレーブに水220.98gを内温が5℃を超えないように徐々に添加した。そのまま30分間撹拌したのち、分液ロートへ移液して5分静定し、下層有機層500.36g、上層水層285.92gを回収した。下層有機層をガスクロマトグラフ分析したところ、HCFC−244faは0.04GC%、HCFC−235daは0.69GC%、OF−1233Zは85.65GC%、OF−1234Eは6.00GC%、OF−1234Zは1.88GC%、OF−1224は0.97GC%、TFPyは0.005GC%であった。HCFC−244faの変換率は100%、HCFC−235daの変換率は63%であった。   From a 500 mL stainless steel cylinder equipped with 400 g of water and pressurized to 0.6 MPa, equipped with a dip tube and a pressure gauge, cooled in an ice water bath to a stainless steel 1000 mL autoclave with an internal temperature of 2 ° C. or less, 220.98 g of water Was gradually added so that the internal temperature did not exceed 5 ° C. After stirring for 30 minutes, the solution was transferred to a separatory funnel and allowed to stand for 5 minutes to recover 500.36 g of the lower organic layer and 285.92 g of the upper aqueous layer. Gas chromatographic analysis of the lower organic layer revealed that HCFC-244fa was 0.04 GC%, HCFC-235da was 0.69 GC%, OF-1233Z was 85.65 GC%, OF-1234E was 6.00 GC%, and OF-1234Z was 1.88 GC%, OF-1224 was 0.97 GC%, and TFPy was 0.005 GC%. The conversion rate of HCFC-244fa was 100%, and the conversion rate of HCFC-235da was 63%.

[実施例13]
実施例10と11で得た有機層を混合して調合した粗OF−1233Z989.35gと33質量%水酸化カリウム水溶液12.2g(0.072mol)を撹拌子、温度計、出口側が風船でシールされたジムロートを備えた1000mL三口フラスコに仕込み、室温下、5時間撹拌した。5時間経過後ガスクロマトグラフ分析したところHCFC−244faは0.04GC%、HCFC−235daは0.05GC%、OF−1233Zは86.56GC%、OF−1234Eは5.07GC%、OF−1234Zは1.80GC%、OF−1224は1.59GC%、TFPyは0.04GC%であった。HCFC−235daの変換率は93%であった。
[Example 13]
Crude OF-1233Z989.35 g prepared by mixing the organic layers obtained in Examples 10 and 11 and 12.2 g (0.072 mol) of 33 mass% potassium hydroxide aqueous solution were sealed with a stirrer, a thermometer, and the outlet side sealed with a balloon. The resulting mixture was charged into a 1000 mL three-necked flask equipped with a Dimroth and stirred at room temperature for 5 hours. When gas chromatographic analysis was conducted after 5 hours, HCFC-244fa was 0.04 GC%, HCFC-235da was 0.05 GC%, OF-1233Z was 86.56 GC%, OF-1234E was 5.07 GC%, and OF-1234Z was 1 80 GC%, OF-1224 was 1.59 GC%, and TFPy was 0.04 GC%. The conversion of HCFC-235da was 93%.

この1000mL三口フラスコを高さ20cmの空塔を備えた単蒸留装置に組み替え、受け器を1000mL三口フラスコとし、その出口に、出口側を風船でシールしたドライアイスコンデンサを取り付け、蒸留した。徐々に加熱してオイルバス温度100℃までの留出液803.50gを回収した。この液をガスクロマトグラフ分析したところ、HCFC−244faは0.04GC%、HCFC−235daは0.007GC%、OF−1233Zは85.36GC%、OF−1234Eは6.66GC%、OF−1234Zは2.11GC%、OF−1224は1.80GC%、TFPyは0.13GC%であった。蒸留残渣は63.1gであった。留出液には僅かに水が浮遊し、有機層部分には630ppmが含まれていた。KOH処理と蒸留を通してのOF−1233Z回収率(留出液中のOF−1233Z/粗OF−1233Z中のOF−1233Zを示す百分率)は92%であった。   This 1000 mL three-necked flask was replaced with a single distillation apparatus equipped with a 20 cm high empty tower, the receiver was a 1000 mL three-necked flask, and a dry ice condenser whose outlet side was sealed with a balloon was attached to the outlet and distilled. By gradually heating, 803.50 g of a distillate having an oil bath temperature of 100 ° C. was recovered. When this liquid was analyzed by gas chromatography, HCFC-244fa was 0.04 GC%, HCFC-235da was 0.007 GC%, OF-1233Z was 85.36 GC%, OF-1234E was 6.66 GC%, and OF-1234Z was 2 .11 GC%, OF-1224 was 1.80 GC%, and TFPy was 0.13 GC%. The distillation residue was 63.1 g. Water slightly floated in the distillate, and the organic layer portion contained 630 ppm. The OF-1233Z recovery rate through the KOH treatment and distillation (OF-1233Z in the distillate / percentage indicating OF-1233Z in the crude OF-1233Z) was 92%.

[実施例14]
実施例12で得られた留出液800.0gを氷水浴で冷却し、孔径0.5μmPTFEフィルターを備えた加圧濾過器(アドバンテック製KST−142−UH)を用いて濾過し、濾液を1000mL高密度ポリエチレン製容器に回収した。そこへ、ゼオライト(東ソー ゼオラム(登録商標)3A)15gを投入して4℃で16時間乾燥した。定性濾紙No.1を備えた加圧濾過器(アドバンテック製KST−142−UH)を用いてゼオライトを濾別し、濾液を1000mL高密度ポリエチレン容器に783.4g回収した。乾燥後の水分は29ppmであった。
[Example 14]
800.0 g of the distillate obtained in Example 12 was cooled in an ice-water bath, filtered using a pressure filter (Advantech KST-142-UH) equipped with a 0.5 μm pore size PTFE filter, and the filtrate was 1000 mL. Collected in a high density polyethylene container. Thereto, 15 g of zeolite (Tosoh Zeolum (registered trademark) 3A) was added and dried at 4 ° C. for 16 hours. Qualitative filter paper No. Zeolite was filtered off using a pressure filter equipped with 1 (KST-142-UH manufactured by Advantech), and 783.4 g of the filtrate was recovered in a 1000 mL high-density polyethylene container. The water content after drying was 29 ppm.

[実施例15]
理論段数35段(充填材:ヘリパックNo.2)の蒸留塔を用いて、実施例14で得られた乾燥後の有機液739.29gを精密蒸留した。初留298.47gを留去した後、主留を387.9g回収した。蒸留残渣は47.16gであった。主留の組成は、OF−1233Zが99.57GC%、HCFC−244faが0.05GC%、HCFC−235daが0.003GC%、OF−1234Eが0.007GC%、OF−1234Zが0.05GC%、OF−1224が0.003GC%であった。蒸留でのOF−1233Z回収率(留出液中のOF−1233Z/有機液中のOF−1233Zを示す百分率)は61%であった。
[Example 15]
Using a distillation column having a theoretical plate number of 35 (filler: Helipak No. 2), 739.29 g of the dried organic liquid obtained in Example 14 was precisely distilled. After distilling off 298.47 g of the first fraction, 387.9 g of the main fraction was recovered. The distillation residue was 47.16 g. The composition of the main fraction is 99.57 GC% for OF-1233Z, 0.05 GC% for HCFC-244fa, 0.003 GC% for HCFC-235da, 0.007 GC% for OF-1234E, and 0.05 GC% for OF-1234Z. OF-1224 was 0.003 GC%. OF-1233Z recovery by distillation (OF-1233Z in the distillate / percentage indicating OF-1233Z in the organic liquid) was 61%.

[実施例16]
[トリエチルアミンの回収]
実施例8と同様の操作を6回返して得た、水層1485.8g(トリエチルアミンとして297.2g(2.94mol)含有。)を、温度計、滴下ロート、撹拌子を備えた2L三口フラスコに入れ、撹拌しながら氷水浴で冷却した。滴下ロートより48質量%水酸化カリウム水溶液379.3g(水酸化カリウム:3.25mol)を40分かけて滴下し、その温度で30分撹拌を継続したのち、オイルバスで内温70℃まで加温した。この液を、60℃に加熱した2L滴下ロートへ移液し、直ちに2層分離して、上層の橙色透明な有機層229.5gを回収した。ガスクロマトグラフ分析したところ、トリエチルアミン98.2GC%、その他不純物としてOF−1233Zを0.5GC%、1−(N,N−ジエチルアミノ)−3,3,3−トリフルオロ−1−プロペンを1.1GC%含まれていた。水分は3.0質量%であった。
[Example 16]
[Recovery of triethylamine]
A 1485.8 g aqueous layer (containing 297.2 g (2.94 mol) as triethylamine) obtained by returning the same operation as in Example 8 six times was added to a 2 L three-necked flask equipped with a thermometer, a dropping funnel, and a stirring bar. And cooled in an ice-water bath with stirring. From the dropping funnel, 379.3 g of a 48 mass% potassium hydroxide aqueous solution (potassium hydroxide: 3.25 mol) was added dropwise over 40 minutes, and stirring was continued at that temperature for 30 minutes. Then, the internal temperature was increased to 70 ° C. with an oil bath. Warm up. This liquid was transferred to a 2 L dropping funnel heated to 60 ° C., and immediately separated into two layers to recover 229.5 g of the upper orange transparent organic layer. As a result of gas chromatographic analysis, triethylamine was 98.2 GC%, other impurities were OF-1233Z of 0.5 GC%, and 1- (N, N-diethylamino) -3,3,3-trifluoro-1-propene was 1.1 GC. % Was included. The water content was 3.0% by mass.

[トリエチルアミンの蒸留回収]
回収した前記有機層120.3gを、6mmディクソンパッキンを充填した高さ30cm内径20mmφの蒸留塔を用い常圧蒸留した。留出温度90℃までの初留52.1gと、留出温度90℃の主留57.7gを回収し、蒸留残渣は7.0gであった。初留を分析したところ、トリエチルアミン98.9GC%であり、水分4.4質量%であった。主留を分析したところトリエチルアミン99.9%であり、水分0.2質量%であった。
[Distillation recovery of triethylamine]
The recovered organic layer (120.3 g) was subjected to atmospheric distillation using a distillation tower with a height of 30 cm and an inner diameter of 20 mmφ packed with 6 mm Dickson packing. An initial distillation of 52.1 g up to a distillation temperature of 90 ° C. and a main distillation of 57.7 g of a distillation temperature of 90 ° C. were recovered, and the distillation residue was 7.0 g. When the first distillation was analyzed, it was 98.9 GC% of triethylamine and 4.4% by mass of water. When the main fraction was analyzed, it was 99.9% triethylamine and 0.2% by mass water.

[再利用1]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンとして[トリエチルアミンの回収]で回収した水分3.0質量%を含むトリエチルアミン3.75g(0.036mol)を用いて実施例1と同様の操作(但し、150℃のオイルバスで3.5時間加熱撹拌した。)を行った。処理した液を分析したところ、HCFC−244faは0.05GC%、HCFC−235daは0.65GC%、OF−1233Zは84.05GC%、OFC−OF−1234Eは7.74GC%、OF−1234Zは2.03GC%、OF−1224は0.68GC%、TFPy0.02GC%であった。HCFC−244faの変換率は100%、HCFC−235daの変換率は59%であった。
[Reuse 1]
The same amount of the same crude OF-1233Z as in Example 1 was used, and as triethylamine, 3.75 g (0.036 mol) of triethylamine containing 3.0% by mass of water recovered in [Recovery of triethylamine] was used as in Example 1. (However, the mixture was heated and stirred for 3.5 hours in an oil bath at 150 ° C.). When the treated liquid was analyzed, HCFC-244fa was 0.05 GC%, HCFC-235da was 0.65 GC%, OF-1233Z was 84.05 GC%, OFC-OF-1234E was 7.74 GC%, and OF-1234Z was 2.03 GC% and OF-1224 were 0.68 GC% and TFPy 0.02 GC%. The conversion rate of HCFC-244fa was 100%, and the conversion rate of HCFC-235da was 59%.

[再利用2]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンとして[トリエチルアミンの蒸留回収]で回収した水分0.2%を含むトリエチルアミン3.70g(0.036mol)を用いて実施例1と同様の操作(但し、150℃のオイルバスで3.5時間加熱撹拌した。)を行った。処理した液を分析したところ、HCFC−244faは0.12GC%、HCFC−235daは0.69GC%、OF−1233Zは84.32GC%、OF−1234Eは7.84GC%、OF−1234Zは2.00GC%、OF−1224は0.66GC%であり、TFPyは検出されなかった。HCFC−244faの変換率は99%、HCFC−235daの変換率は58%であった。
[Reuse 2]
The same amount of the same crude OF-1233Z as in Example 1 was used, and as triethylamine, 3.70 g (0.036 mol) of triethylamine containing 0.2% of water recovered by [distillation recovery of triethylamine] was used as in Example 1. (However, the mixture was heated and stirred for 3.5 hours in an oil bath at 150 ° C.). When the treated liquid was analyzed, HCFC-244fa was 0.12 GC%, HCFC-235da was 0.69 GC%, OF-1233Z was 84.32 GC%, OF-1234E was 7.84 GC%, and OF-1234Z was 2.2. 00GC% and OF-1224 were 0.66 GC%, and TFPy was not detected. The conversion rate of HCFC-244fa was 99%, and the conversion rate of HCFC-235da was 58%.

[比較例1]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンに替えて7.6gのピリジンを用いて実施例1と同様の操作を行ったところ、黒色の粘稠物が生成した。処理した液を分析したところ、HCFC−244faは11.22GC%、HCFC−235daは1.66GC%、OF−1233Zは86.56GC%、OF−1234Eは0.07GC%、OF−1234Zは0.24GC%であり、OF−1224、TFPyは検出されなかった。HCFC−244fa、HCFC−235daの変換率は共に0%であった。
[Comparative Example 1]
When the same amount of the same crude OF-1233Z as in Example 1 was used, and 7.6 g of pyridine was used instead of triethylamine, the same operation as in Example 1 was performed. As a result, a black viscous product was produced. When the treated liquid was analyzed, HCFC-244fa was 11.22 GC%, HCFC-235da was 1.66 GC%, OF-1233Z was 86.56 GC%, OF-1234E was 0.07 GC%, and OF-1234Z was 0.00. It was 24 GC%, and OF-1224 and TFPy were not detected. The conversion rates of HCFC-244fa and HCFC-235da were both 0%.

[比較例2]
実施例1と同一の粗OF−1233Zを同量用い、トリエチルアミンに替えて10.07gの2,6−ルチジンを用いて実施例1と同様の操作を行ったところ、黒色の粘稠物が生成した。処理した液を分析したところ、HCFC−244faは10.30GC%、HCFC−235daは1.62GC%、OF−1233Zは86.57GC%、OF−1234Eは0.01GC%、OF−1234Zは0.01GC%、OF−1224は0.02GC%であり、TFPyは検出されなかった。HCFC−244fa、HCFC−235daの変換率は共に0%であった。
[Comparative Example 2]
When the same amount of the same crude OF-1233Z as in Example 1 was used, and the same operation as in Example 1 was carried out using 10.07 g of 2,6-lutidine instead of triethylamine, a black viscous product was produced. did. When the treated liquid was analyzed, HCFC-244fa was 10.30 GC%, HCFC-235da was 1.62 GC%, OF-1233Z was 86.57 GC%, OF-1234E was 0.01 GC%, and OF-1234Z was 0.00. 01GC% and OF-1224 were 0.02 GC%, and TFPy was not detected. The conversion rates of HCFC-244fa and HCFC-235da were both 0%.

[比較例3]
実施例1と同じオートクレーブに、33質量%水酸化ナトリウム水溶液5.65g(0.042mol)と、実施例1と同一の粗OF−1233Zを25.07g(HCFC−244faを0.018mol、HCFC−235daを0.0002mol含有。)を仕込み、室温下6時間撹拌した。反応終了後、氷水浴で0℃付近まで冷却したのち、オートクレーブを開放し、下層の有機層をガスクロマトグラフ分析したところ、HCFC−244faは1.64GC%、OF−1233Zは78.80GC%、OF−1234Eは4.62GC%、OF−1234Zは1.34GC%、OF−1224とOF−1233Eを併せて6.63GC%であり、TFPyは1.88GC%であり、HCFC−235daは検出されなかった。HCFC−244faの変換率は85%、HCFC−235daの変換率は100%であった。
[Comparative Example 3]
In the same autoclave as in Example 1, 5.65 g (0.042 mol) of 33% by weight aqueous sodium hydroxide solution and 25.07 g of crude OF-1233Z identical to Example 1 (0.018 mol of HCFC-244fa, HCFC- 235da was contained at 0.0002 mol.) And stirred at room temperature for 6 hours. After completion of the reaction, the mixture was cooled to about 0 ° C. in an ice water bath, the autoclave was opened, and the lower organic layer was analyzed by gas chromatography. As a result, HCFC-244fa was 1.64 GC%, OF-1233Z was 78.80 GC%, OF -1234E is 4.62 GC%, OF-1234Z is 1.34 GC%, OF-1224 and OF-1233E are combined, 6.63 GC%, TFPy is 1.88 GC%, and HCFC-235da is not detected It was. The conversion rate of HCFC-244fa was 85%, and the conversion rate of HCFC-235da was 100%.

本発明の製造方法により得られる高純度のOF−1233Zは洗浄剤、冷媒、ヒートポンプ用の熱媒体、高温作動流体などとして有用である。   The high-purity OF-1233Z obtained by the production method of the present invention is useful as a cleaning agent, a refrigerant, a heat medium for a heat pump, a high-temperature working fluid, and the like.

Claims (4)

3−クロロ−1,1,1,3−テトラフルオロプロパンを含む(Z)−1−クロロ−3,3,3−トリフルオロプロペン組成物を第三アミンと接触させてアミン処理組成物とする工程を含む(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。 A (Z) -1-chloro-3,3,3-trifluoropropene composition containing 3-chloro-1,1,1,3-tetrafluoropropane is contacted with a tertiary amine to form an amine-treated composition. A process for producing (Z) -1-chloro-3,3,3-trifluoropropene comprising a step. (Z)−1−クロロ−3,3,3−トリフルオロプロペン組成物が、さらに2−クロロ−1,1,1,3,3−ペンタフルオロプロパンを含む組成物である、請求項1に記載の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。 The (Z) -1-chloro-3,3,3-trifluoropropene composition is a composition further comprising 2-chloro-1,1,1,3,3-pentafluoropropane. A method for producing (Z) -1-chloro-3,3,3-trifluoropropene as described. さらに、アミン処理組成物に含まれる有機成分を無機塩基と接触させる工程を含む請求項2に記載の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。 The method for producing (Z) -1-chloro-3,3,3-trifluoropropene according to claim 2, further comprising a step of bringing an organic component contained in the amine treatment composition into contact with an inorganic base. さらに、アミン処理組成物に含まれる第三アミン/塩化水素塩から第三アミンを回収し、再使用する工程を含む請求項1〜3の何れか1項に記載の(Z)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法。 The (Z) -1-chloro according to any one of claims 1 to 3, further comprising a step of recovering and reusing the tertiary amine from the tertiary amine / hydrogen chloride salt contained in the amine treatment composition. A method for producing -3,3,3-trifluoropropene.
JP2011226841A 2011-10-14 2011-10-14 (Z) Process for producing 1-chloro-3,3,3-trifluoropropene Active JP5712894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226841A JP5712894B2 (en) 2011-10-14 2011-10-14 (Z) Process for producing 1-chloro-3,3,3-trifluoropropene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226841A JP5712894B2 (en) 2011-10-14 2011-10-14 (Z) Process for producing 1-chloro-3,3,3-trifluoropropene

Publications (2)

Publication Number Publication Date
JP2013087066A JP2013087066A (en) 2013-05-13
JP5712894B2 true JP5712894B2 (en) 2015-05-07

Family

ID=48531335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226841A Active JP5712894B2 (en) 2011-10-14 2011-10-14 (Z) Process for producing 1-chloro-3,3,3-trifluoropropene

Country Status (1)

Country Link
JP (1) JP5712894B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597954B2 (en) * 2014-09-29 2019-10-30 セントラル硝子株式会社 Process for producing 2-chloro-1,3,3,3-tetrafluoropropene
EP3202882B1 (en) * 2014-10-02 2019-09-18 Central Glass Company, Limited Azeotropic like composition containing 2-chloro-1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene
US20180056210A1 (en) * 2016-09-01 2018-03-01 Honeywell International Inc. SEPARATION OF (Z)-1-CHLORO-3,3,3-TRIFLUOROPROPENE (HCFO-1233zd(Z)) AND 1-CHLORO-1,3,3,3-TETRAFLUOROPROPANE (HCFC-244fa) BY ADDING A THIRD COMPONENT
CN117083364A (en) * 2021-04-09 2023-11-17 中央硝子株式会社 Composition, cleaning agent comprising composition, aerosol composition, water scavenger, foaming agent or heat-conducting medium, system using heat-conducting medium, and method for cleaning article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710056B1 (en) * 1993-09-17 1995-12-01 Enichem Elastomeres France Process for dehydrochlorination of 3,4-dichloro-1-butene to chloroprene.
JP4120043B2 (en) * 1998-04-01 2008-07-16 日本ゼオン株式会社 Method for producing fluorinated unsaturated hydrocarbon
US6548719B1 (en) * 2001-09-25 2003-04-15 Honeywell International Process for producing fluoroolefins
US7230146B2 (en) * 2003-10-27 2007-06-12 Honeywell International Inc. Process for producing fluoropropenes
US20050119512A1 (en) * 2003-04-29 2005-06-02 Central Glass Company, Limited Fluorobutene derivatives and process for producing same
US7829747B2 (en) * 2008-04-24 2010-11-09 Honeywell International Inc. Process for dehydrofluorination of 3-chloro-1,1,1,3-tetrafluoropropane to 1-chloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
JP2013087066A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
US9296670B2 (en) Process for the manufacture of 2,3,3,3-tetrafluoropropene
JP6234411B2 (en) Integrated process to produce 2,3,3,3-tetrafluoropropene
CN101665405B (en) Method for producing 2,3,3,3-tetrafluoropropene
JP2019070050A (en) Method for reducing alkyne impurities in fluoroolefin
KR102025958B1 (en) Catalytic fluorination process of making hydrohaloalkane
MX2014010346A (en) Process for producing 2,3,3,3-tetrafluoropropene.
KR20140077958A (en) Process for producing 2,3,3,3-tetrafluoropropene
JP5712894B2 (en) (Z) Process for producing 1-chloro-3,3,3-trifluoropropene
KR20140075790A (en) Process for producing 2,3,3,3-tetrafluoropropene
JP7216791B2 (en) Method for reducing 3,3,3-trifluoropropyne in 2,3,3,3-tetrafluoropropene
JP7151257B2 (en) Method for producing 2-chloro-3,3-difluoropropene, method for producing 2-chloro-1,1,2-trifluoropropane, method for producing 2,3,3-trifluoropropene, 1,2-dichloro- Method for producing 2,3,3-trifluoropropane, method for producing 1-chloro-2,3,3-trifluoropropene
JP2016023145A (en) Method for purifying trifluoroethylene
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP2019151629A (en) Method of producing compound
KR20220086717A (en) METHOD FOR REMOVING UNSATURATED HALOGENATED IMPURITIES FROM 2,3,3,3-TETRAFLUOROPROPENE(HFO-1234yf)
GB2543872A (en) Process

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5712894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250