JP5710089B2 - Green light emitting oxynitride phosphor and light emitting device using the same - Google Patents

Green light emitting oxynitride phosphor and light emitting device using the same Download PDF

Info

Publication number
JP5710089B2
JP5710089B2 JP2007167007A JP2007167007A JP5710089B2 JP 5710089 B2 JP5710089 B2 JP 5710089B2 JP 2007167007 A JP2007167007 A JP 2007167007A JP 2007167007 A JP2007167007 A JP 2007167007A JP 5710089 B2 JP5710089 B2 JP 5710089B2
Authority
JP
Japan
Prior art keywords
light emitting
green light
light
oxynitride phosphor
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007167007A
Other languages
Japanese (ja)
Other versions
JP2009001760A (en
Inventor
広朗 豊島
広朗 豊島
吉松 良
良 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2007167007A priority Critical patent/JP5710089B2/en
Priority to TW097122124A priority patent/TW200904946A/en
Priority to KR1020080059739A priority patent/KR20080114561A/en
Priority to CN2008101306057A priority patent/CN101333440B/en
Publication of JP2009001760A publication Critical patent/JP2009001760A/en
Application granted granted Critical
Publication of JP5710089B2 publication Critical patent/JP5710089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7702Chalogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/77067Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7707Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Description

本発明は、緑色発光酸窒化物蛍光体、及びそれを用いた発光素子に関する。 The present invention is a green light-emitting oxynitride fluorescent material, a light emitting element using Bisore.

発光ダイオードは、発光効率が良く、鮮やかな色で発光する。そのため各種インジケータや光源として利用されている。
しかし、発光ダイオードは、優れた単色性ピーク波長を有するので、白色系の発光をすることが困難である。
The light emitting diode has high luminous efficiency and emits light with a bright color. Therefore, it is used as various indicators and light sources.
However, since the light emitting diode has an excellent monochromatic peak wavelength, it is difficult to emit white light.

そこで、紫外線発光ダイオードと蛍光物質とを組み合わせ、紫外線発光ダイオードからの光と、その光により励起されて色変換された蛍光物質の発色との混色により白色系の光を生み出す技術が開示されている。
例えば、紫外線発光ダイオードにより青色蛍光体を励起し、その青色励起光によりYAG系蛍光体を励起する二段階励起により白色光を得る技術がある。
Therefore, a technology is disclosed in which a UV light emitting diode and a fluorescent material are combined, and white light is generated by mixing the light from the UV light emitting diode and the color of the fluorescent material that is excited by the light and converted in color. .
For example, there is a technique for obtaining white light by two-step excitation in which a blue phosphor is excited by an ultraviolet light emitting diode and a YAG phosphor is excited by the blue excitation light.

しかし、このような二段階励起の方式は高発光効率の白色光を得ることは困難である。
そこで、紫外線発光ダイオードと青色、緑色、赤色蛍光体を組み合わせた3波長型の白色発光素子が開発されている。そして、緑色発光蛍光体としては、例えば希土類元素を発光中心に用いた酸化物系蛍光体がある。
However, it is difficult to obtain white light with high luminous efficiency by such a two-stage excitation method.
Therefore, a three-wavelength type white light emitting element in which an ultraviolet light emitting diode and a blue, green, and red phosphor are combined has been developed. An example of the green light emitting phosphor is an oxide phosphor using a rare earth element as a light emission center.

しかし、緑色発光の酸窒化物蛍光体についてはあまり研究・開発されていない。例えば、特許文献1には緑色発光酸窒化物が開示されているが、発光効率が高いものとはいえない。   However, little research and development has been done on green-emitting oxynitride phosphors. For example, Patent Document 1 discloses a green light emitting oxynitride, but it cannot be said that the light emitting efficiency is high.

特許第2005−248184号公報Japanese Patent No. 2005-248184

本発明は、このような課題に鑑みてなされたものであり、発光効率の高い緑色発光酸窒化物蛍光体を提供することを目的とするものである。即ち、紫外線発光ダイオードの高い発光効率の波長領域の光を効率よく吸収して発光する緑色発光酸窒化物蛍光体を提供することを目的とするものである
らに、そのような緑色発光酸窒化物蛍光体を用いた高輝度の発光素子を提供することを目的とするものである。
This invention is made | formed in view of such a subject, and it aims at providing the green light emission oxynitride fluorescent substance with high luminous efficiency. That is, an object of the present invention is to provide a green light emitting oxynitride phosphor that efficiently absorbs light in the wavelength region of high light emission efficiency of an ultraviolet light emitting diode and emits light .
Et al is, it is an object to provide a high luminance light emitting device using such a green light-emitting oxynitride phosphor.

上記目的を達成するため、この発明の第1の観点に係る緑色発光酸窒化物蛍光体は、
一般式CaEuSi
(ここで、
0.01≦a≦0.20、
0.8≦x/(w+a)≦0.9、
0<z/y<1.0、
1.1≦w/x≦1.24
0.5≦x/y≦0.69
0.9≦x/z≦1.2)
で表され、緑色帯域の発光波長を有することを特徴とする。
In order to achieve the above object, a green light-emitting oxynitride phosphor according to the first aspect of the present invention includes:
General formula Ca w Eu a Si x O y N z
(here,
0.01 ≦ a ≦ 0.20,
0.8 ≦ x / (w + a) ≦ 0.9,
0 <z / y <1.0,
1.1 ≦ w / x ≦ 1.24
0.5 ≦ x / y ≦ 0.69 ,
0.9 ≦ x / z ≦ 1.2)
It is characterized by having an emission wavelength in the green band.

また、前記緑色発光酸窒化物蛍光体は、波長300nm以上400nm以下に励起帯を有する、とすることも可能である。   The green luminescent oxynitride phosphor may have an excitation band at a wavelength of 300 nm to 400 nm.

また、上記目的を達成するため、この発明の第の観点に係る発光素子は、
この発明の第1の観点に係る緑色発光酸窒化物蛍光体と、
蛍光体の励起光源としての紫外線発光ダイオードと、
を有する、ことを特徴とする。
In order to achieve the above object, a light emitting device according to the second aspect of the present invention is
A green light-emitting oxynitride phosphor according to the first aspect of the present invention ;
An ultraviolet light emitting diode as an excitation light source of the phosphor;
It is characterized by having.

また、赤色発光蛍光体と、青色発光蛍光体と、を有するとすることも可能である。   It is also possible to have a red light-emitting phosphor and a blue light-emitting phosphor.

また、前記赤色発光蛍光体は、SrS:Eu、CaS:Eu、CaAlSiN:Eu及びLaS:Euのうち少なくともいずれか一つを含有し、
前記青色発光蛍光体は、(Ba,Sr)MgAl1017:Eu,Mn、(Ba,Sr,Ca,Mg)10(POCl:Eu、Sr(POCl:Eu及びZnS:Agのうち少なくともいずれか一つを含有する、とすることも可能である。
The red light emitting phosphor contains at least one of SrS: Eu, CaS: Eu, CaAlSiN 3 : Eu, and La 2 O 2 S: Eu,
The blue light-emitting phosphor includes (Ba, Sr) MgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Sr 5 (PO 4 ) 3 Cl: It is also possible to contain at least one of Eu and ZnS: Ag.

本発明に係る緑色発光酸窒化物蛍光体は、発光効率が高い The green light emitting oxynitride phosphor according to the present invention has high luminous efficiency .

発明者らは鋭意研究を重ねた結果、
一般式M1ReM2
(ここで、
M1は、第II族元素若しくはSnを含有する金属、
M2は、Snを除く第IV族元素を含有する金属、
Reは付活剤であり、
0.01≦a≦0.20、
0.8≦x/(w+a)≦1.0、
0<z/y≦1.0)
で表される緑色発光酸窒化物蛍光体が、紫外線発光ダイオードの高い発光効率の波長領域の光を効率よく吸収して発光することを見いだした。
As a result of repeated researches, the inventors
General formula M1 w Re a M2 x O y N z
(here,
M1 is a group II element or a metal containing Sn,
M2 is a metal containing a group IV element excluding Sn,
Re is an activator,
0.01 ≦ a ≦ 0.20,
0.8 ≦ x / (w + a) ≦ 1.0,
0 <z / y ≦ 1.0)
It was found that the green light emitting oxynitride phosphor represented by the above formula efficiently absorbs light in the wavelength region of the high light emitting efficiency of the ultraviolet light emitting diode and emits light.

(実施例1)
実施例1に係る緑色発光酸窒化物蛍光体(組成式Ca8.97Eu0.03Si1010)の励起スペクトルを図1に、発光スペクトルを図2に示す。
図1に示されるように、実施例1に係る緑色発光酸窒化物蛍光体は、波長300〜400nm付近に励起帯がある。約360nmに発光ピークがあり、紫外線発光ダイオードに対して効率よく発光する。
また、図2に示されるように、発光スペクトルの発光ピークの半値幅は約58nm程度であり、ブロードな発光ピークである。
Example 1
The excitation spectrum of the green light emitting oxynitride phosphor (composition formula Ca 8.97 Eu 0.03 Si 8 O 10 N 10 ) according to Example 1 is shown in FIG. 1, and the emission spectrum is shown in FIG.
As shown in FIG. 1, the green light-emitting oxynitride phosphor according to Example 1 has an excitation band in the vicinity of a wavelength of 300 to 400 nm. There is an emission peak at about 360 nm, and light is emitted efficiently with respect to the ultraviolet light emitting diode.
Further, as shown in FIG. 2, the half-value width of the emission peak of the emission spectrum is about 58 nm, which is a broad emission peak.

(実施例1に係る緑色発光酸窒化物蛍光体の製造方法)
原料粉末として、窒化カルシウム(Ca)と、酸化ケイ素(SiO)と、窒化ケイ素(Si)と、ユーロピウム化合物としての塩化ユーロピウム(EuCl)と、を準備する。
窒化カルシウム(Ca)は、アルゴン雰囲気中で原料としてのカルシウムを粉砕し、粉砕したカルシウムを窒素雰囲気中で窒化することにより得る。カルシウムの窒化反応は、600〜900℃で、約5〜6時間行う。原料としてのカルシウムはカルシウム単体のものを使用するのが望ましいが、イミド化合物、アミド化合物、酸化カルシウム等のカルシウム化合物を用いることも可能である。
窒化ケイ素(Si)は、アルゴン雰囲気中で原料としてのケイ素を粉砕し、粉砕したケイ素を窒素雰囲気中で窒化することにより得る。ケイ素の窒化反応は、800〜1200℃で、約5〜6時間行う。原料としてのケイ素はケイ素単体のものを使用するのが望ましいが、イミド化合物、アミド化合物を用いることも可能である。Si(NH等を使用することができる。
ユーロピウム化合物は、塩化ユーロピウム(EuCl)やフッ化ユーロピウム(EuF)等であってもよい。また、ユーロピウム化合物はイミド化合物やアミド化合物を用いることも可能である。酸化ユーロピウム(Eu)は市販の物を用いることができるが、高純度の物が望ましい。
さらに、加熱処理の際に蛍光体粒子の結晶成長を促進するような添加物であるフラックス材として塩化アンモニウム(NHCl)を準備する。なお、フラックス材は、フッ化アルミニウム(AlF)等のハロゲン化アンモニウム、NaCO、LiCO等のアルカリ金属炭酸塩、LiCl、NaCl、KCl等のアルカリハロゲン化物、CaCl、CaF、BaFのようなアルカリ土類金属のハロゲン化物、B、HBO、NaBのようなホウ酸塩化合物、LiPO、NHPOのようなリン酸塩等が使用できる。
そして、窒化カルシウム(Ca)は1.0960g、酸化ケイ素(SiO)は0.7510g、窒化ケイ素(Si)は0.3507g、塩化ユーロピウム(EuCl)は0.0192g秤量する。塩化アンモニウム(NHCl)は0.03g秤量する。
(Method for producing green luminescent oxynitride phosphor according to Example 1)
As raw material powder, calcium nitride (Ca 3 N 2 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and europium chloride (EuCl 3 ) as a europium compound are prepared.
Calcium nitride (Ca 3 N 2 ) is obtained by pulverizing calcium as a raw material in an argon atmosphere and nitriding the pulverized calcium in a nitrogen atmosphere. The nitriding reaction of calcium is performed at 600 to 900 ° C. for about 5 to 6 hours. As the raw material calcium, it is desirable to use calcium alone, but calcium compounds such as imide compounds, amide compounds, and calcium oxide can also be used.
Silicon nitride (Si 3 N 4 ) is obtained by pulverizing silicon as a raw material in an argon atmosphere and nitriding the pulverized silicon in a nitrogen atmosphere. The nitridation reaction of silicon is performed at 800 to 1200 ° C. for about 5 to 6 hours. It is desirable to use silicon as a raw material, but it is also possible to use an imide compound or an amide compound. Si (NH 2 ) 2 or the like can be used.
The europium compound may be europium chloride (EuCl 3 ), europium fluoride (EuF 3 ), or the like. As the europium compound, an imide compound or an amide compound can be used. As europium oxide (Eu 2 O 3 ), a commercially available product can be used, but a highly pure product is desirable.
Further, ammonium chloride (NH 4 Cl) is prepared as a flux material that is an additive that promotes crystal growth of the phosphor particles during the heat treatment. Note that the flux material, an ammonium halide such as aluminum fluoride (AlF 3), NaCO 3, LiCO 3 alkali metal carbonate such as, LiCl, NaCl, alkali halides KCl, etc., CaCl 3, CaF 2, BaF 2 Alkaline earth metal halides such as B 2 O 3 , H 3 BO 3 , borate compounds such as NaB 4 O 7 , Li 3 PO 4 , phosphates such as NH 4 H 2 PO 4 Etc. can be used.
Then, 1.0960 g of calcium nitride (Ca 3 N 2 ), 0.7510 g of silicon oxide (SiO 2 ), 0.3507 g of silicon nitride (Si 3 N 4 ), and 0.0192 g of europium chloride (EuCl 3 ) are weighed. To do. 0.03 g of ammonium chloride (NH 4 Cl) is weighed.

これら原料粉末を、瑪瑙製若しくはアルミナ製乳鉢にて、15分間粉砕混合する。このような乾式の混合では、湿式の混合と比較して有機溶媒を乾燥させる工程がない点で有利である。   These raw material powders are pulverized and mixed for 15 minutes in a smoked or alumina mortar. Such dry mixing is advantageous in that there is no step of drying the organic solvent as compared with wet mixing.

次に、得られた原料粉末を、窒化ホウ素坩堝に充填し、電気炉にセットする。なお、得られた原料粉末は、アルミナ坩堝やアルミナトレイ、カーボン坩堝やカーボントレイ、窒化ホウ素トレイ等の耐熱容器に充填することも可能である。
そして、アンモニア雰囲気下で焼成する。なお、水素−窒素を混合させた還ガス元雰囲気中で焼成することも可能であり、さらには一酸化炭素気流中で焼成することも可能である。
Next, the obtained raw material powder is filled in a boron nitride crucible and set in an electric furnace. The obtained raw material powder can be filled in a heat-resistant container such as an alumina crucible, an alumina tray, a carbon crucible, a carbon tray, or a boron nitride tray.
Then, firing is performed in an ammonia atmosphere. It is also possible to fire in a return gas source atmosphere in which hydrogen-nitrogen is mixed, and it is also possible to fire in a carbon monoxide stream.

焼成する場合における圧力は1.1気圧である。焼成する場合における圧力は、1.00〜1.50気圧が良い。圧力が1.00気圧より低いと反応が十分に促進されない可能性があるからであり、一方、圧力が1.50気圧よりも高いと窒素ガスを閉じこめる容器を頑丈にする必要がありそのため製造装置が高価な物になる可能性があるからである。焼成する場合の圧力は、より好ましくは1.02〜1.3気圧、さらに好ましくは1.05〜1.2気圧にすると良い。   The pressure when firing is 1.1 atm. The pressure when firing is preferably 1.00 to 1.50 atm. This is because if the pressure is lower than 1.00 atm, the reaction may not be sufficiently promoted. On the other hand, if the pressure is higher than 1.50 atm, it is necessary to make the container for confining nitrogen gas sturdy, and thus the manufacturing apparatus. This is because there is a possibility that becomes expensive. The pressure for firing is more preferably 1.02 to 1.3 atm, and even more preferably 1.05 to 1.2 atm.

焼成温度は1350℃である。焼成温度は、1000℃〜1400℃が良い。焼成温度が1000℃よりも小さいと反応の進行度が遅くて反応に時間がかかるおそれがあるからであり、一方、焼成温度が1400℃よりも大きいと予期せぬ副反応が生じるおそれがあるからである。焼成する温度は、より好ましくは1100〜1350℃が良い。   The firing temperature is 1350 ° C. The firing temperature is preferably 1000 ° C to 1400 ° C. This is because if the calcination temperature is lower than 1000 ° C., the progress of the reaction is slow and the reaction may take a long time. On the other hand, if the calcination temperature is higher than 1400 ° C., an unexpected side reaction may occur. It is. The firing temperature is more preferably 1100 to 1350 ° C.

焼成時間は3時間である。焼成時間は、3〜10時間で焼成するのが好ましい。
焼成が終了すると、徐々に冷却し、そして得られた焼成物を粉砕し混合する。これにより実施例1に係る緑色発光酸窒化物蛍光体(組成式Ca8.97Eu0.03Si1010)を得ることができる。その後さらに得られた緑色発光酸窒化物蛍光体をさらに再焼成することも可能である。
The firing time is 3 hours. The firing time is preferably 3 to 10 hours.
When the calcination is completed, the mixture is gradually cooled, and the obtained baked product is pulverized and mixed. Thereby, the green light emitting oxynitride phosphor (compositional formula Ca 8.97 Eu 0.03 Si 8 O 10 N 10 ) according to Example 1 can be obtained. Thereafter, the obtained green light-emitting oxynitride phosphor can be further refired.

なお、得られた緑色発光酸窒化物蛍光体は、平均粒子径が20〜220μm、特に80〜160μmのものである。平均粒子径が220μmを超えると、蛍光体の均一な分散が得られなくなるおそれがあり、また、他の蛍光体と併用した場合、色むらが起こるおそれがあるからである。一方、平均粒子径が20μmより小さいと、かえって強度が低下するおそれがあるからである。   The obtained green light-emitting oxynitride phosphor has an average particle size of 20 to 220 μm, particularly 80 to 160 μm. If the average particle diameter exceeds 220 μm, uniform dispersion of the phosphor may not be obtained, and color unevenness may occur when used in combination with other phosphors. On the other hand, if the average particle size is smaller than 20 μm, the strength may be lowered.

(実施例2〜5)
実施例2に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si3.63.6である。実施例3に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si4.53.0である。実施例4に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si5.42.4である。実施例5に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si6.02.0である。
(Examples 2 to 5)
The green light-emitting oxynitride phosphor according to Example 2 has the composition formula Ca 2.97 Eu 0.03 Si 3 O 3.6 N 3.6 . The green light-emitting oxynitride phosphor according to Example 3 has the composition formula Ca 2.97 Eu 0.03 Si 3 O 4.5 N 3.0 . The green light-emitting oxynitride phosphor according to Example 4 has the composition formula Ca 2.97 Eu 0.03 Si 3 O 5.4 N 2.4 . The green light-emitting oxynitride phosphor according to Example 5 has the composition formula Ca 2.97 Eu 0.03 Si 3 O 6.0 N 2.0 .

実施例2に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.3711g、酸化ケイ素(SiO)を1.0311g、窒化ケイ素(Si)を0.5350g、塩化ユーロピウム(EuCl)を0.0739g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 The green light-emitting oxynitride phosphor according to Example 2 has 1.3711 g of calcium nitride (Ca 3 N 2 ), 1.0311 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) as a raw material powder. 0.5350 g, europium chloride (EuCl 3 ) 0.0739 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例3に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.3531g、酸化ケイ素(SiO)を1.2720g、窒化ケイ素(Si)を0.3300g、塩化ユーロピウム(EuCl)を0.0729g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 3, as raw material powder, 1.3531 g of calcium nitride (Ca 3 N 2 ), 1.2720 g of silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ) 0.3300 g, europium chloride (EuCl 3 ) 0.0729 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例4に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.3326g、酸化ケイ素(SiO)を1.5033g、窒化ケイ素(Si)を0.1300g、塩化ユーロピウム(EuCl)を0.0718g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 4, 1.3326 g of calcium nitride (Ca 3 N 2 ), 1.50333 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) are used as raw material powders. 0.1300 g, europium chloride (EuCl 3 ) 0.0718 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例5に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.3164g、酸化ケイ素(SiO)を1.6500g、塩化ユーロピウム(EuCl)を0.0709g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 5, 1.3164 g of calcium nitride (Ca 3 N 2 ), 1.6500 g of silicon oxide (SiO 2 ), and 0 of europium chloride (EuCl 3 ) are used as raw powders. 0.0709 g and 0.03 g of ammonium chloride (NH 4 Cl) are weighed. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例2〜5に係る緑色発光酸窒化物蛍光体の励起スペクトルを図3に示す。また、実施例2〜5に係る緑色発光酸窒化物蛍光体の発光スペクトルを図4に示す。
図3に示されるように、実施例2〜5に係る緑色発光酸窒化物蛍光体は、波長300〜400nm付近に励起帯がある。
実施例2に係る緑色発光酸窒化物蛍光体は350nmに近い位置に発光ピークがあり、実施例3に係る緑色発光酸窒化物蛍光体は340nmに近い位置に発光ピークがあり、実施例4に係る緑色発光酸窒化物蛍光体は340nmに近い位置に発光ピークがあり、実施例5に係る緑色発光酸窒化物蛍光体は330nmに近い位置に発光ピークがあり、実施例2〜5に係る緑色発光酸窒化物蛍光体は紫外線発光ダイオードに対して効率よく発光する。
また、図4に示されるように、実施例2に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約97nm程度であり、実施例3に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約107nm程度であり、実施例4に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約103nm程度であり、実施例5に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約103nm程度であり、いずれもブロードな発光ピークである。なお、実施例2に係る緑色発光酸窒化物蛍光体は、やや青緑色に発光する一方、実施例3に係る緑色発光酸窒化物蛍光体は、やや黄緑色に発光する。
The excitation spectrum of the green light emitting oxynitride phosphor according to Examples 2 to 5 is shown in FIG. Moreover, the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 2-5 is shown in FIG.
As shown in FIG. 3, the green light-emitting oxynitride phosphors according to Examples 2 to 5 have an excitation band in the vicinity of a wavelength of 300 to 400 nm.
The green light emitting oxynitride phosphor according to Example 2 has a light emission peak at a position close to 350 nm, and the green light emitting oxynitride phosphor according to Example 3 has a light emission peak at a position close to 340 nm. The green light-emitting oxynitride phosphor has a light emission peak at a position close to 340 nm, the green light-emitting oxynitride phosphor according to Example 5 has a light emission peak at a position close to 330 nm, and the green light emission according to Examples 2-5. The luminescent oxynitride phosphor emits light efficiently with respect to the ultraviolet light emitting diode.
As shown in FIG. 4, the green light-emitting oxynitride phosphor according to Example 2 has a half-value width of the emission peak of the emission spectrum of about 97 nm, and the green light-emitting oxynitride fluorescence according to Example 3 The half-width of the emission peak of the emission spectrum is about 107 nm, and the half-width of the emission peak of the emission spectrum of the green light-emitting oxynitride phosphor according to Example 4 is about 103 nm. The green light emitting oxynitride phosphor according to the present invention has a broad emission peak with a full width at half maximum of an emission peak of about 103 nm. The green light-emitting oxynitride phosphor according to Example 2 emits a little blue-green, while the green light-emitting oxynitride phosphor according to Example 3 emits a little yellow-green.

(実施例6〜8)
実施例6に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.73.43.4である。実施例7に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.73.93.0である。実施例8に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.74.82.4である。
(Examples 6 to 8)
The green light-emitting oxynitride phosphor according to Example 6 has the composition formula Ca 2.97 Eu 0.03 Si 2.7 O 3.4 N 3.4 . The green light-emitting oxynitride phosphor according to Example 7 has the composition formula Ca 2.97 Eu 0.03 Si 2.7 O 3.9 N 3.0 . The green light-emitting oxynitride phosphor according to Example 8 has the composition formula Ca 2.97 Eu 0.03 Si 2.7 O 4.8 N 2.4 .

実施例6係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.4472g、酸化ケイ素(SiO)を1.0158g、窒化ケイ素(Si)を0.4800g、塩化ユーロピウム(EuCl)を0.0780g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 6, 1.4472 g of calcium nitride (Ca 3 N 2 ), 1.0158 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) are used as raw material powders. 0.4800 g, 0.0780 g of europium chloride (EuCl 3 ), and 0.03 g of ammonium chloride (NH 4 Cl) are weighed. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例7に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.4351g、酸化ケイ素(SiO)を1.1692g、窒化ケイ素(Si)を0.3500g、塩化ユーロピウム(EuCl)を0.0773g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 7, 1.4351 g of calcium nitride (Ca 3 N 2 ), 1.1692 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) are used as raw material powders. 0.3500 g, europium chloride (EuCl 3 ) 0.0773 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例8に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.4146g、酸化ケイ素(SiO)を1.4185g、窒化ケイ素(Si)を0.1380g、塩化ユーロピウム(EuCl)を0.0762g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 The green light-emitting oxynitride phosphor according to Example 8 has 1.4146 g of calcium nitride (Ca 3 N 2 ), 1.4185 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) as a raw material powder. 0.1380 g, europium chloride (EuCl 3 ) 0.0762 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例6〜8に係る緑色発光酸窒化物蛍光体の励起スペクトルを図5に示す。また、実施例6〜8に係る緑色発光酸窒化物蛍光体の発光スペクトルを図6に示す。
図5に示されるように、実施例6〜8に係る緑色発光酸窒化物蛍光体は、波長300〜400nm付近に励起帯がある。
実施例6に係る緑色発光酸窒化物蛍光体は360nmに近い位置に発光ピークがあり、実施例7に係る緑色発光酸窒化物蛍光体は340nmに近い位置に発光ピークがあり、実施例8に係る緑色発光酸窒化物蛍光体は330nmに近い位置に発光ピークがあり、実施例6〜8に係る緑色発光酸窒化物蛍光体は紫外線発光ダイオードに対して効率よく発光する。
また、図6に示されるように、実施例6に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約83nm程度であり、実施例7に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約97nm程度であり、実施例8に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約100nm程度であり、いずれもブロードな発光ピークである。なお、実施例6に係る緑色発光酸窒化物蛍光体は、やや青緑色に発光する一方、実施例8に係る緑色発光酸窒化物蛍光体は、やや黄緑色に発光する。
The excitation spectrum of the green light emitting oxynitride phosphor according to Examples 6 to 8 is shown in FIG. Moreover, the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 6-8 is shown in FIG.
As shown in FIG. 5, the green light-emitting oxynitride phosphors according to Examples 6 to 8 have an excitation band in the vicinity of a wavelength of 300 to 400 nm.
The green light emitting oxynitride phosphor according to Example 6 has an emission peak at a position close to 360 nm, and the green light emitting oxynitride phosphor according to Example 7 has an emission peak at a position close to 340 nm. The green light emitting oxynitride phosphor has a light emission peak at a position close to 330 nm, and the green light emitting oxynitride phosphors according to Examples 6 to 8 emit light efficiently with respect to the ultraviolet light emitting diode.
Further, as shown in FIG. 6, the green light-emitting oxynitride phosphor according to Example 6 has a half-value width of an emission peak of an emission spectrum of about 83 nm, and the green light-emitting oxynitride fluorescent material according to Example 7 The half-width of the emission peak of the emission spectrum is about 97 nm, and the green emission oxynitride phosphor according to Example 8 has a half-width of the emission peak of the emission spectrum of about 100 nm. Emission peak. Note that the green light-emitting oxynitride phosphor according to Example 6 emits a little blue-green, while the green light-emitting oxynitride phosphor according to Example 8 emits a little yellow-green.

(実施例9〜11)
実施例9に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.43.13.1である。実施例10に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.44.22.4である。実施例11に係る緑色発光酸窒化物蛍光体は、組成式Ca2.97Eu0.03Si2.44.82.0である。
(Examples 9 to 11)
The green light-emitting oxynitride phosphor according to Example 9 has the composition formula Ca 2.97 Eu 0.03 Si 2.4 O 3.1 N 3.1 . The green light-emitting oxynitride phosphor according to Example 10 has the composition formula Ca 2.97 Eu 0.03 Si 2.4 O 4.2 N 2.4 . The green light-emitting oxynitride phosphor according to Example 11 has the composition formula Ca 2.97 Eu 0.03 Si 2.4 O 4.8 N 2.0 .

実施例9に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.5376g、酸化ケイ素(SiO)を1.0022g、窒化ケイ素(Si)を0.4200g、塩化ユーロピウム(EuCl)を0.0829g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 The green light-emitting oxynitride phosphor according to Example 9 includes 1.5376 g of calcium nitride (Ca 3 N 2 ), 1.0022 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) as raw material powders. 0.4200 g, europium chloride (EuCl 3 ) 0.0829 g, and ammonium chloride (NH 4 Cl) 0.03 g. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例10係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.4864g、酸化ケイ素(SiO)を1.3042g、窒化ケイ素(Si)を0.1450g、塩化ユーロピウム(EuCl)を0.0801g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 10, 1.4864 g of calcium nitride (Ca 3 N 2 ), 1.3042 g of silicon oxide (SiO 2 ), and silicon nitride (Si 3 N 4 ) are used as raw material powders. 0.1450 g, 0.0801 g of europium chloride (EuCl 3 ), and 0.03 g of ammonium chloride (NH 4 Cl) are weighed. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例11に係る緑色発光酸窒化物蛍光体は、原料粉末として、窒化カルシウム(Ca)を1.4759g、酸化ケイ素(SiO)を1.4800g、塩化ユーロピウム(EuCl)を0.0795g、塩化アンモニウム(NHCl)を0.03g秤量する。そしてこれら原料粉末を粉砕混合し、窒化ホウ素坩堝に充填してアンモニア雰囲気下で焼成し、焼成後は徐冷して得られた焼成物を粉砕混合して得た。 In the green light-emitting oxynitride phosphor according to Example 11, 1.4759 g of calcium nitride (Ca 3 N 2 ), 1.4800 g of silicon oxide (SiO 2 ), and 0 of europium chloride (EuCl 3 ) were used as raw powders. 0.095 g and 0.03 g of ammonium chloride (NH 4 Cl) are weighed. These raw material powders were pulverized and mixed, filled into a boron nitride crucible and fired in an ammonia atmosphere. After firing, the fired product obtained by gradual cooling was ground and mixed.

実施例9〜11に係る緑色発光酸窒化物蛍光体の励起スペクトルを図7に示す。また、実施例9〜11に係る緑色発光酸窒化物蛍光体の発光スペクトルを図8に示す。
図7に示されるように、実施例9〜11に係る緑色発光酸窒化物蛍光体は、波長300〜400nm付近に励起帯がある。
実施例9に係る緑色発光酸窒化物蛍光体は360nmに近い位置に発光ピークがあり、実施例10に係る緑色発光酸窒化物蛍光体は340nmに近い位置に発光ピークがあり、実施例11に係る緑色発光酸窒化物蛍光体は340nmに近い位置に発光ピークがあり、実施例9〜11に係る緑色発光酸窒化物蛍光体は紫外線発光ダイオードに対して効率よく発光する。
また、図8に示されるように、実施例9に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約60nm程度であり、実施例10に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約100nm程度であり、実施例11に係る緑色発光酸窒化物蛍光体は、発光スペクトルの発光ピークの半値幅は約100nm程度であり、いずれもブロードな発光ピークである。なお、実施例9に係る緑色発光酸窒化物蛍光体は、やや青緑色に発光する。
The excitation spectrum of the green light emitting oxynitride phosphor according to Examples 9 to 11 is shown in FIG. Moreover, the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 9-11 is shown in FIG.
As shown in FIG. 7, the green light-emitting oxynitride phosphors according to Examples 9 to 11 have an excitation band in the vicinity of a wavelength of 300 to 400 nm.
The green light-emitting oxynitride phosphor according to Example 9 has an emission peak at a position close to 360 nm, and the green light-emitting oxynitride phosphor according to Example 10 has an emission peak at a position close to 340 nm. The green light-emitting oxynitride phosphor has a light emission peak at a position close to 340 nm, and the green light-emitting oxynitride phosphors according to Examples 9 to 11 emit light efficiently with respect to the ultraviolet light-emitting diode.
Further, as shown in FIG. 8, the green light-emitting oxynitride phosphor according to Example 9 has a half-value width of the emission peak of the emission spectrum of about 60 nm, and the green light-emitting oxynitride fluorescence according to Example 10 The half-width of the emission peak of the emission spectrum is about 100 nm, and the half-width of the emission peak of the emission spectrum of the green light emitting oxynitride phosphor according to Example 11 is about 100 nm. Emission peak. Note that the green light emitting oxynitride phosphor according to Example 9 emits light blue-green light.

次に、表1に、上述した実施例1〜11における蛍光体組成式を一覧として示す。   Next, Table 1 shows a list of phosphor composition formulas in Examples 1 to 11 described above.

Figure 0005710089
Figure 0005710089

次に、表2に実施例1〜11における蛍光体組成式の組成比、及び、x/(w+a)及びz/yを示す。   Next, Table 2 shows the composition ratios of the phosphor composition formulas in Examples 1 to 11, and x / (w + a) and z / y.

Figure 0005710089
Figure 0005710089

(緑色発光酸窒化物蛍光体を用いた発光素子)
図9は、本実施例に係る緑色発光酸窒化物蛍光体を用いた発光素子111の断面図である。発光素子111は、前面に透明基板101を備える。また、発光素子111は、ドーム状に形成された透明樹脂103の内側に発光ダイオード105を配置する。
透明樹脂103は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリスチレン樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、等で構成される。なお、シリコン樹脂若しくはエポキシ樹脂を透明樹脂103として用いる方が、蛍光体粉の分散性が良い。
(Light-emitting device using green light-emitting oxynitride phosphor)
FIG. 9 is a cross-sectional view of a light emitting device 111 using the green light emitting oxynitride phosphor according to this example. The light emitting element 111 includes a transparent substrate 101 on the front surface. In the light emitting element 111, the light emitting diode 105 is arranged inside the transparent resin 103 formed in a dome shape.
The transparent resin 103 is composed of an epoxy resin, a urethane resin, a silicon resin, a polystyrene resin, a polyvinyl resin, a polyethylene resin, a polypropylene resin, and the like. Note that the use of silicon resin or epoxy resin as the transparent resin 103 provides better dispersibility of the phosphor powder.

蛍光体の粉を透明樹脂中に分散させる場合、蛍光体粉と透明樹脂との合計に対するその蛍光体粉の重量割合は、通常0.1〜20重量%、好ましくは0.3〜15重量%である。この範囲よりも蛍光体が多すぎると蛍光体粉の凝集により発光効率が低下することがあるからであり、一方、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがあるからである。透明樹脂中には、色斑(ムラ)を防止するため増量剤を添加してもよい。
発光ダイオード105は紫外線発光ダイオードInGaNまたはGaNが用いられている。
When the phosphor powder is dispersed in the transparent resin, the weight ratio of the phosphor powder to the total of the phosphor powder and the transparent resin is usually 0.1 to 20% by weight, preferably 0.3 to 15% by weight. It is. If there is too much phosphor within this range, the luminous efficiency may decrease due to aggregation of the phosphor powder. On the other hand, if it is too small, the luminous efficiency will decrease due to light absorption and scattering by the resin. Because there is. In the transparent resin, a bulking agent may be added to prevent color spots (unevenness).
The light emitting diode 105 is an ultraviolet light emitting diode InGaN or GaN.

透明樹脂103にはそれぞれ赤、緑、青色発光の三種類の蛍光体粉末102を混入してあり、透明樹脂の表面はミラー104として作用するようにミラー加工を施してある。赤色発光蛍光体にはSrS:Euを用いる。青色発光蛍光体にはSr(POCl:Euを用いる。そして、緑色発光酸窒化物蛍光体にはCa8.97Eu0.03Si1010を用いる。
赤、緑、青色の各色発光の蛍光体はその紫外線発光ダイオード105に励起されて、これにより透明基板101から白色光が放射される。そのため、発光素子111は白色発光素子である。
The transparent resin 103 is mixed with three kinds of phosphor powders 102 of red, green, and blue light emission, respectively, and the surface of the transparent resin is mirrored so as to act as a mirror 104. SrS: Eu is used for the red light emitting phosphor. Sr 5 (PO 4 ) 3 Cl: Eu is used for the blue light emitting phosphor. Then, Ca 8.97 Eu 0.03 Si 8 O 10 N 10 is used for the green light emitting oxynitride phosphor.
The phosphors that emit red, green, and blue light are excited by the ultraviolet light emitting diode 105, and thereby white light is emitted from the transparent substrate 101. Therefore, the light emitting element 111 is a white light emitting element.

なお、透明樹脂103に拡散剤を含有させることにより、紫外線発光ダイオード105からの指向性を緩和させて視野角をさらに増大させることも可能である。拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化ケイ素等を用いることができる。さらに透明樹脂103はドーム状に形成されるが、これを所望の形状に形成することにより、紫外線発光ダイオード105からの発光を収束させたり拡散させたり等のレンズ効果をもたらすことが可能である。   In addition, by including a diffusing agent in the transparent resin 103, the directivity from the ultraviolet light emitting diode 105 can be relaxed and the viewing angle can be further increased. As the diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, or the like can be used. Further, the transparent resin 103 is formed in a dome shape, but by forming the transparent resin 103 in a desired shape, it is possible to bring about a lens effect such as converging or diffusing the light emitted from the ultraviolet light emitting diode 105.

(その他の実施形態)
なお、本実施例に係る発光素子は、暖色系や寒色系等の色調の光を発光する発光素子としてもよい。勿論、緑色単色の発光素子としてもよい。
(Other embodiments)
The light emitting element according to this embodiment may be a light emitting element that emits light of a color tone such as a warm color or a cold color. Of course, a green light-emitting element may be used.

上述の実施例では、組成式Ca8.97Eu0.03Si8.01010(実施例1)、組成式Ca2.97Eu0.03Si3.03.63.6(実施例2)、組成式Ca2.97Eu0.03Si3.04.53.0(実施例3)、組成式Ca2.97Eu0.03Si3.05.42.4(実施例4)、組成式Ca2.97Eu0.03Si3.06.02.0(実施例5)、組成式Ca2.97Eu0.03Si2.73.43.4(実施例6)、組成式Ca2.97Eu0.03Si2.73.93.0(実施例7)、組成式Ca2.97Eu0.03Si2.74.82.4(実施例8)、組成式Ca2.97Eu0.03Si2.43.13.1(実施例9)、組成式Ca2.97Eu0.03Si2.44.22.4(実施例10)、組成式Ca2.97Eu0.03Si2.44.82.0(実施例11)の緑色発光酸窒化物蛍光体について、紫外線発光ダイオードに対して効率よく発光することを示した。 In the above-described examples, the composition formula Ca 8.97 Eu 0.03 Si 8.0 O 10 N 10 (Example 1), the composition formula Ca 2.97 Eu 0.03 Si 3.0 O 3.6 N 3 .6 (Example 2), composition formula Ca 2.97 Eu 0.03 Si 3.0 O 4.5 N 3.0 (Example 3), composition formula Ca 2.97 Eu 0.03 Si 3.0 O 5.4 N 2.4 (Example 4), compositional formula Ca 2.97 Eu 0.03 Si 3.0 O 6.0 N 2.0 (Example 5), compositional formula Ca 2.97 Eu 0 .03 Si 2.7 O 3.4 N 3.4 (Example 6), composition formula Ca 2.97 Eu 0.03 Si 2.7 O 3.9 N 3.0 (Example 7), composition formula Ca 2.97 Eu 0.03 Si 2.7 O 4.8 N 2.4 (Example 8), composition formula Ca 2.97 Eu 0.03 Si 2 .4 O 3.1 N 3.1 (Example 9), compositional formula Ca 2.97 Eu 0.03 Si 2.4 O 4.2 N 2.4 (Example 10), compositional formula Ca 2.97 The green light emitting oxynitride phosphor of Eu 0.03 Si 2.4 O 4.8 N 2.0 (Example 11) was shown to emit light efficiently with respect to the ultraviolet light emitting diode.

同様に、(Ca2.97Eu0.03Ge3.03.63.6)、(Ca2.97Eu0.03Zr3.03.63.6)、(Ca2.97Eu0.03Ti3.03.63.6)、(Ba2.97Eu0.03Si3.03.63.6)、(Ba2.97Eu0.03Ge3.03.63.6)、(Ba2.97Eu0.03Zr3.03.63.6)、(Ba2.97Eu0.03Ti3.03.63.6)、(Sr2.97Eu0.03Si3.03.63.6)、(Sr2.97Eu0.03Ge3.03.63.6)、(Sr2.97Eu0.03Zr3.03.63.6)、(Sr2.97Eu0.03Ti3.03.63.6)、(Mg2.97Eu0.03Si3.03.63.6)、(Mg2.97Eu0.03Ge3.03.63.6)、(Mg2.97Eu0.03Zr3.03.63.6)、(Mg2.97Eu0.03Ti3.03.63.6)、(Zn2.97Eu0.03Si3.03.63.6)、(Zn2.97Eu0.03Ge3.03.63.6)、(Zn2.97Eu0.03Zr3.03.63.6)、(Zn2.97Eu0.03Ti3.03.63.6)、(Sn2.97Eu0.03Si3.03.63.6)、(Sn2.97Eu0.03Ge3.03.63.6)、(Sn2.97Eu0.03Zr3.03.63.6)、(Sn2.97Eu0.03Ti3.03.63.6)等についても、紫外線発光ダイオードに対して効率よく発光する。 Similarly, (Ca 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.97 Eu 0.03 Zr 3.0 O 3.6 N 3.6 ), ( Ca 2.97 Eu 0.03 Ti 3.0 O 3.6 N 3.6 ), (Ba 2.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Ba 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6 ), (Ba 2.97 Eu 0.03 Zr 3.0 O 3.6 N 3.6 ), (Ba 2.97 Eu 0.03 Ti 3.0 O 3.6 N 3.6 ), (Sr 2.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Sr 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6), (Sr 2.97 Eu 0.03 Zr 3.0 O 3.6 N 3.6), (Sr 2.97 Eu 0.03 T 3.0 O 3.6 N 3.6), ( Mg 2.97 Eu 0.03 Si 3.0 O 3.6 N 3.6), (Mg 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6 ), (Mg 2.97 Eu 0.03 Zr 3.0 O 3.6 N 3.6 ), (Mg 2.97 Eu 0.03 Ti 3.0 O 3.6 N 3.6 ), (Zn 2.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Zn 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6 ) (Zn 2.97 Eu 0.03 Zr 3.0 O 3.6 N 3.6 ), (Zn 2.97 Eu 0.03 Ti 3.0 O 3.6 N 3.6 ), (Sn 2 .97 Eu 0.03 Si 3.0 O 3.6 N 3.6), (Sn 2.97 Eu 0.03 Ge 3.0 O 3.6 N 3.6), (Sn 2 97 Eu 0.03 Zr 3.0 O 3.6 N 3.6), also (Sn 2.97 Eu 0.03 Ti 3.0 O 3.6 N 3.6) or the like, with respect to ultraviolet light emitting diode And emits light efficiently.

また、(Ca2.97Eu0.03Ge2.44.82.0)、(Ca2.97Eu0.03Zr2.44.82.0)、(Ca2.97Eu0.03Ti2.44.82.0)、(Ba2.97Eu0.03Si2.44.82.0)、(Ba2.97Eu0.03Ge2.44.82.0)、(Ba2.97Eu0.03Zr2.44.82.0)、(Ba2.97Eu0.03Ti2.44.82.0)、(Sr2.97Eu0.03Si2.44.82.0)、(Sr2.97Eu0.03Ge2.44.82.0)、(Sr2.97Eu0.03Zr2.44.82.0)、(Sr2.97Eu0.03Ti2.44.82.0)、(Mg2.97Eu0.03Si2.44.82.0)、(Mg2.97Eu0.03Ge2.44.82.0)、(Mg2.97Eu0.03Zr2.44.82.0)、(Mg2.97Eu0.03Ti2.44.82.0)、(Zn2.97Eu0.03Si2.44.82.0)、(Zn2.97Eu0.03Ge2.44.82.0)、(Zn2.97Eu0.03Zr2.44.82.0)、(Zn2.97Eu0.03Ti2.44.82.0)、(Sn2.97Eu0.03Si2.44.82.0)、(Sn2.97Eu0.03Ge2.44.82.0)、(Sn2.97Eu0.03Zr2.44.82.0)、(Sn2.97Eu0.03Ti2.44.82.0)等についても、紫外線発光ダイオードに対して効率よく発光する。 Moreover, (Ca 2.97 Eu 0.03 Ge 2.4 O 4.8 N 2.0 ), (Ca 2.97 Eu 0.03 Zr 2.4 O 4.8 N 2.0 ), (Ca 2.97 Eu 0.03 Ti 2.4 O 4.8 N 2.0 ), (Ba 2.97 Eu 0.03 Si 2.4 O 4.8 N 2.0 ), (Ba 2.97 Eu 0.03 Ge 2.4 O 4.8 N 2.0 ), (Ba 2.97 Eu 0.03 Zr 2.4 O 4.8 N 2.0 ), (Ba 2.97 Eu 0.03 Ti 2.4 O 4.8 N 2.0 ), (Sr 2.97 Eu 0.03 Si 2.4 O 4.8 N 2.0 ), (Sr 2.97 Eu 0.03 Ge 2.4 O 4.8 N 2.0), (Sr 2.97 Eu 0.03 Zr 2.4 O 4.8 N 2.0), (Sr 2.97 Eu 0.03 Ti .4 O 4.8 N 2.0), ( Mg 2.97 Eu 0.03 Si 2.4 O 4.8 N 2.0), (Mg 2.97 Eu 0.03 Ge 2.4 O 4 .8 N 2.0 ), (Mg 2.97 Eu 0.03 Zr 2.4 O 4.8 N 2.0 ), (Mg 2.97 Eu 0.03 Ti 2.4 O 4.8 N 2 0.0 ), (Zn 2.97 Eu 0.03 Si 2.4 O 4.8 N 2.0 ), (Zn 2.97 Eu 0.03 Ge 2.4 O 4.8 N 2.0 ), (Zn 2.97 Eu 0.03 Zr 2.4 O 4.8 N 2.0 ), (Zn 2.97 Eu 0.03 Ti 2.4 O 4.8 N 2.0 ), (Sn 2. 97 Eu 0.03 Si 2.4 O 4.8 N 2.0), (Sn 2.97 Eu 0.03 Ge 2.4 O 4.8 N 2.0), (Sn 2. 7 Eu 0.03 Zr 2.4 O 4.8 N 2.0), also like (Sn 2.97 Eu 0.03 Ti 2.4 O 4.8 N 2.0), with respect to ultraviolet light emitting diodes And emits light efficiently.

また、(Ca2.99Eu0.01Ge3.03.63.6)、(Ca2.95Eu0.05Ge3.03.63.6)、(Ca2.93Eu0.07Ge3.03.63.6)、(Ca2.90Eu0.10Ge3.03.63.6)、(Ca2.87Eu0.13Ge3.03.63.6)、(Ca2.85Eu0.15Ge3.03.63.6)、(Ca2.83Eu0.17Ge3.03.63.6)、(Ca2.80Eu0.20Ge3.03.63.6)等についても、紫外線発光ダイオードに対して効率よく発光する。 Moreover, (Ca 2.99 Eu 0.01 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.95 Eu 0.05 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.93 Eu 0.07 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.90 Eu 0.10 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.87 Eu 0.13 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.85 Eu 0.15 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.83 Eu 0.17 Ge 3.0 O 3.6 N 3.6 ), (Ca 2.80 Eu 0.20 Ge 3.0 O 3.6 N 3.6 ) and the like also emit light efficiently with respect to the ultraviolet light emitting diode.

また、付活剤はEuについて示したものであるが、付活剤がLa、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mn、Bi、Sbであっても本実施例に係る緑色発光酸窒化物蛍光体は紫外線発光ダイオードに対して効率よく発光する。
例えば、(Ca2.97La0.03Si3.03.63.6)、(Ca2.97Ce0.03Si3.03.63.6)、(Ca2.97Pr0.03Si3.03.63.6)、(Ca2.97Nd0.03Si3.03.63.6)、(Ca2.97Sm0.03Si3.03.63.6)、(Ca2.97Gd0.03Si3.03.63.6)、(Ca2.97Tb0.03Si3.03.63.6)、(Ca2.97Dy0.03Si3.03.63.6)、(Ca2.97Ho0.03Si3.03.63.6)、(Ca2.97Er0.03Si3.03.63.6)、(Ca2.97Tm0.03Si3.03.63.6)、(Ca2.97Yb0.03Si3.03.63.6)、(Ca2.97Lu0.03Si3.03.63.6)、(Ca2.97Mn0.03Si3.03.63.6)、(Ca2.97Bi0.03Si3.03.63.6)、(Ca2.97Sb0.03Si3.03.63.6)等についても、紫外線発光ダイオードに対して効率よく発光する。
Further, the activator is shown for Eu, but the activator is La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Mn, Bi, Sb. Even so, the green light emitting oxynitride phosphor according to the present embodiment emits light efficiently with respect to the ultraviolet light emitting diode.
For example, (Ca 2.97 La 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Ce 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Pr 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Nd 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Sm 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Gd 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Tb 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Dy 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Ho 0.03 Si 3.0 O 3.6 N 3.6), (Ca 2.97 Er 0.03 Si 3.0 O 3.6 N 3.6), (Ca 2.97 Tm 0.03 S 3.0 O 3.6 N 3.6), ( Ca 2.97 Yb 0.03 Si 3.0 O 3.6 N 3.6), (Ca 2.97 Lu 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Mn 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Bi 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Sb 0.03 Si 3.0 O 3.6 N 3.6 ) and the like also emit light efficiently with respect to the ultraviolet light emitting diode.

また、M1とM2は、複数の金属を含有することも可能である。例えば、(Ba1.0Ca1.97Eu0.03Si3.03.63.6)、(Sr1.0Ca1.97Eu0.03Si3.03.63.6)、(Sn1.0Ca1.97Eu0.03Si3.03.63.6)、(Ca2.97Eu0.03Si2.0Ge1.03.63.6)、(Ca2.97Eu0.03Si2.0Zr1.03.63.6)、(Ca2.97Eu0.03Si2.0Ti1.03.63.6)、(Ba1.0Sr1.0Ca0.97Eu0.03Si3.03.63.6)、(Sr1.0Mg1.0Ca1.97Eu0.03Si3.03.63.6)、(Sn1.0Zn1.0Ca1.97Eu0.03Si3.03.63.6)、(Ba1.0Sr1.0Ca0.97Eu0.03Si2.0Ge1.03.63.6)、(Sr1.0Mg1.0Ca1.97Eu0.03Si2.0Zr1.03.63.6)等についても、紫外線発光ダイオードに対して効率よく発光する。 M1 and M2 can also contain a plurality of metals. For example, (Ba 1.0 Ca 1.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Sr 1.0 Ca 1.97 Eu 0.03 Si 3.0 O 3.6) N 3.6 ), (Sn 1.0 Ca 1.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Ca 2.97 Eu 0.03 Si 2.0 Ge 1.0 O 3.6 N 3.6 ), (Ca 2.97 Eu 0.03 Si 2.0 Zr 1.0 O 3.6 N 3.6 ), (Ca 2.97 Eu 0.03 Si 2.0 Ti 1.0 O 3.6 N 3.6 ), (Ba 1.0 Sr 1.0 Ca 0.97 Eu 0.03 Si 3.0 O 3.6 N 3.6 ), (Sr 1.0 mg 1.0 Ca 1.97 Eu 0.03 Si 3.0 O 3.6 N 3.6), (Sn 1.0 Zn 1.0 Ca 1.97 Eu .03 Si 3.0 O 3.6 N 3.6) , (Ba 1.0 Sr 1.0 Ca 0.97 Eu 0.03 Si 2.0 Ge 1.0 O 3.6 N 3.6) , (Sr 1.0 Mg 1.0 Ca 1.97 Eu 0.03 Si 2.0 Zr 1.0 O 3.6 N 3.6 ) and the like also emit light efficiently with respect to the ultraviolet light emitting diode.

また、上述の実施例では、原料粉末として、窒化カルシウム(Ca)と、酸化ケイ素(SiO)と、窒化ケイ素(Si)と、塩化ユーロピウム(EuCl)と、を混合させた。もっとも、本発明に係る緑色発光酸窒化物蛍光体はかかる実施例に限定されない。カルシウム化合物としては、炭酸カルシウム(CaCO)、亜塩素酸カルシウム(Ca(ClO)、亜硫酸カルシウム(CaSO)、亜リン酸カルシウム(CaPHO)、アルミノケイ酸一カルシウム(CaO・Al)、過塩素酸カルシウム(Ca(ClO)等を用いることも可能である。
また、原料粉末として、カルシウム化合物の代わりに、炭酸バリウム(BaCO)や硫酸バリウム(BaSO)、塩化バリウム(BaCl)、硝酸バリウム(BaNO)、水酸化バリウム(Ba(OH))、過酸化バリウム等のバリウム化合物を用いることも可能である。
また、原料粉末として、カルシウム化合物の代わりに、炭酸ストロンチウム(SrCO)や硫酸ストロンチウム(SrSO)、臭化ストロンチウム(SrBr)等のストロンチウム化合物を用いることも可能である。
さらには、これらのカルシウム化合物、ストロンチウム化合物及びバリウム化合物を混合して用いることも可能である。
また、原料粉末として、カルシウム化合物の代わりに、炭酸マグネシウム(MgCO)や硫酸マグネシウム(MgSO)、臭化マグネシウム(MgBr)等のマグネシウム化合物を用いることも可能である。
また、原料粉末として、カルシウム化合物の代わりに、塩化亜鉛(ZnCl)、炭酸亜鉛(ZnCO)、硫酸亜鉛(ZnSO)、臭化亜鉛(ZnBr)等の亜鉛化合物を用いることも可能である。
また、原料粉末として、カルシウム化合物の代わりに、塩化スズ(SnCl)、硫酸スズ(SnSO)等のスズ化合物を用いることも可能である。
さらには、これらのカルシウム化合物、バリウム化合物、ストロンチウム化合物、マグネシウム化合物、亜鉛化合物及びスズ化合物を混合して用いることも可能である。
In the above-described embodiment, calcium nitride (Ca 3 N 2 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and europium chloride (EuCl 3 ) are mixed as the raw material powder. I let you. But the green light emission oxynitride fluorescent substance which concerns on this invention is not limited to this Example. Examples of calcium compounds include calcium carbonate (CaCO 3 ), calcium chlorite (Ca (ClO 2 ) 2 ), calcium sulfite (CaSO 3 ), calcium phosphite (CaHO 3 ), monocalcium aluminosilicate (CaO · Al 2 O 3). ), Calcium perchlorate (Ca (ClO 4 ) 2 ), or the like can also be used.
In addition, as a raw material powder, instead of a calcium compound, barium carbonate (BaCO 3 ), barium sulfate (BaSO 4 ), barium chloride (BaCl 2 ), barium nitrate (BaNO 3 ), barium hydroxide (Ba (OH) 2 ) It is also possible to use barium compounds such as barium peroxide.
Moreover, it is also possible to use strontium compounds such as strontium carbonate (SrCO 3 ), strontium sulfate (SrSO 4 ), and strontium bromide (SrBr) instead of the calcium compound as the raw material powder.
Furthermore, these calcium compounds, strontium compounds, and barium compounds can be mixed and used.
As the raw material powder, magnesium compounds such as magnesium carbonate (MgCO 3 ), magnesium sulfate (MgSO 4 ), and magnesium bromide (MgBr 2 ) can be used instead of the calcium compound.
In addition, zinc compounds such as zinc chloride (ZnCl 2 ), zinc carbonate (ZnCO 3 ), zinc sulfate (ZnSO 4 ), and zinc bromide (ZnBr 2 ) can be used as the raw material powder instead of the calcium compound. is there.
Moreover, it is also possible to use tin compounds such as tin chloride (SnCl 2 ) and tin sulfate (SnSO 4 ) instead of the calcium compound as the raw material powder.
Furthermore, these calcium compounds, barium compounds, strontium compounds, magnesium compounds, zinc compounds, and tin compounds can be mixed and used.

また、酸化ケイ素(SiO)の代わりに、一酸化ゲルマニウム(GeO)や二酸化ゲルマニウム(GeO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)を用いることもできる。さらには、これらの酸化物を混合して用いることも可能である。 Further, germanium monoxide (GeO), germanium dioxide (GeO 2 ), zirconium oxide (ZrO 2 ), or titanium oxide (TiO 2 ) can be used instead of silicon oxide (SiO 2 ). Furthermore, it is also possible to use a mixture of these oxides.

また、窒化ケイ素(Si)の代わりに、窒化ゲルマニウム(Ge)、窒化ジルコニウム(ZrN)、窒化チタン(TiN)を用いることもできる。さらには、これらの窒化物を混合して用いることも可能である。 Further, germanium nitride (Ge 3 N 4 ), zirconium nitride (ZrN), and titanium nitride (TiN) can be used instead of silicon nitride (Si 3 N 4 ). Furthermore, it is also possible to use a mixture of these nitrides.

上述の実施例では、付活剤として塩化ユーロピウム(EuCl)を用いた。もっともこれに限定されない。塩化ランタン、硝酸ランタン、硝酸セリウム、塩化セリウム、硝酸第1セリウムアンモニウム、硝酸2アンモニウムセリウム、酸化プラセオジム、塩化プラセオジム、塩化ネオジム、酸化ネオジム、塩化サマリウム、塩化ガドリニウム、酸化ガドリニウム、塩化テルビウム、酸化テルビウム、塩化ジスプロシウム、酸化ジスプロシウム、塩化ホルミニウム、酸化ホルミニウム、酸化エルビウム、塩化ツリウム、酸化ツリウム、酸化イッテルビウム、塩化イッテルビウム、酸化ルテチウム、塩化マンガン、硝酸マンガン、硫酸マンガン、炭酸マンガン、硫酸ビスマス、酸化ビスマス、水酸化ビスマス、三塩化アンチモン、五酸化アンチモン、三酸化アンチモン、硫酸アンチモン等を用いることができる。 In the above examples, europium chloride (EuCl 3 ) was used as an activator. However, it is not limited to this. Lanthanum chloride, lanthanum nitrate, cerium nitrate, cerium chloride, ceric ammonium nitrate, diammonium cerium nitrate, praseodymium oxide, praseodymium chloride, neodymium chloride, neodymium oxide, samarium chloride, gadolinium chloride, gadolinium oxide, terbium chloride, terbium oxide, Dysprosium chloride, dysprosium oxide, holmium chloride, holmium oxide, erbium oxide, thulium chloride, thulium oxide, ytterbium oxide, ytterbium chloride, lutetium oxide, manganese chloride, manganese nitrate, manganese sulfate, manganese carbonate, bismuth sulfate, bismuth oxide, hydroxide Bismuth, antimony trichloride, antimony pentoxide, antimony trioxide, antimony sulfate, and the like can be used.

上述の実施例に係る発光素子111では、赤色発光蛍光体にはSrS:Euを、青色発光蛍光体にはSr(POCl:Euを、緑色発光酸窒化物蛍光体にはCa8.97Eu0.03Si1010を用いた。
もっとも、これに限定されない。赤色発光蛍光体には、CaS:Eu、CaAlSiN:Eu及びLaS:Eu等を用いることができる。また、青色発光蛍光体は、(Ba,Sr)MgAl1017:Eu,Mn、(Ba,Sr,Ca,Mg)10(POCl:Eu及びZnS:Ag等を用いることができる。さらに、緑色発光酸窒化物蛍光体には、本実施例に係る種々の緑色発光酸窒化物蛍光体を用いることができる。
In the light emitting device 111 according to the above-described embodiment, SrS: Eu is used for the red light emitting phosphor, Sr 5 (PO 4 ) 3 Cl: Eu is used for the blue light emitting phosphor, and Ca is used for the green light emitting oxynitride phosphor. 8.97 Eu 0.03 Si 8 O 10 N 10 was used.
However, it is not limited to this. As the red light emitting phosphor, CaS: Eu, CaAlSiN 3 : Eu, La 2 O 2 S: Eu, or the like can be used. As the blue light emitting phosphor , (Ba, Sr) MgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, ZnS: Ag, or the like may be used. it can. Furthermore, various green light emitting oxynitride phosphors according to the present embodiment can be used as the green light emitting oxynitride phosphor.

さらに、発光素子111では、本実施例に係る緑色発光酸窒化物蛍光体に加えて、以下に示す緑色発光酸窒化物蛍光体を混合して使用することも可能である。例えば、BaMgAl1627:Eu、MnやBaMgAl1017:Eu、Mnで表されるユーロピウム付活アルミン酸塩蛍光体、(MgCaSrBa)Si:Euで表されるユーロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、BaSiO:Euで表されるユーロピウム付活アルカリ土類金属珪酸塩系蛍光体等を、本実施例に係る緑色発光酸窒化物蛍光体に加えて使用することも可能である。 Furthermore, in the light emitting element 111, in addition to the green light emitting oxynitride phosphor according to the present embodiment, the following green light emitting oxynitride phosphor can be mixed and used. For example, europium-activated aluminate phosphor represented by BaMg 2 Al 16 O 27 : Eu, Mn, BaMgAl 10 O 17 : Eu, Mn, europium represented by (MgCaSrBa) Si 2 O 2 N 2 : Eu Activated alkaline earth silicon oxynitride phosphor, europium activated alkaline earth metal silicate phosphor represented by Ba 2 SiO 4 : Eu, etc., green light emitting oxynitride phosphor according to this example It is also possible to use it in addition to.

上述の実施例では、原料粉末を乾式で混合した。もっとも湿式で混合することも可能である。湿式で混合するためにアセトン、IPA(イソプロピルアルコール)、エタノール等の有機溶媒を用いる。水で混合することも可能であるが、有機溶媒を用いることが好ましい。アセトン等の有機溶媒と秤量した原料とに、さらにジルコニアボールを加えて、セラミックス製ボールミルに入れ、12時間混合する。混合時間は1時間以上24時間以下の範囲で行うことが好ましい。混合が終了するとジルコニアボールを篩により分離させ、その後、有機溶媒を乾燥させ、原料粉末を得る。なお、カルシウム化合物としての窒化カルシウム(Ca)は乾式混合の時のみ使用可能であるため、炭酸カルシウム(CaCO)、亜塩素酸カルシウム(Ca(ClO)等の他のカルシウム化合物を用いる。 In the above-described examples, the raw material powders were mixed by a dry method. It is also possible to mix in a wet manner. An organic solvent such as acetone, IPA (isopropyl alcohol) or ethanol is used for wet mixing. Although mixing with water is possible, it is preferable to use an organic solvent. A zirconia ball is further added to an organic solvent such as acetone and the weighed raw material, and the mixture is placed in a ceramic ball mill and mixed for 12 hours. The mixing time is preferably in the range of 1 hour to 24 hours. When mixing is completed, the zirconia balls are separated by a sieve, and then the organic solvent is dried to obtain a raw material powder. Since calcium nitride (Ca 3 N 2 ) as a calcium compound can be used only during dry mixing, other calcium such as calcium carbonate (CaCO 3 ), calcium chlorite (Ca (ClO 2 ) 2 ), etc. Use compounds.

上述の実施例では、紫外線発光ダイオードとしてInGaNまたはGaNが用いられた。もっともこれに限定されない。発光素子を形成するための発光ダイオードとしては、InAlGaN、AlGaN、BAlGaN、BInAlGaN等を用いることが可能である。   In the above embodiment, InGaN or GaN is used as the ultraviolet light emitting diode. However, it is not limited to this. As a light emitting diode for forming a light emitting element, InAlGaN, AlGaN, BAlGaN, BInAlGaN, or the like can be used.

本実施例に係る緑色発光酸窒化物蛍光体の製造方法において、あらかじめ、窒化ケイ素(Si)と酸化ケイ素(SiO)を0.9MPaの圧力下で反応させてSi−O−N系前駆体を合成し、その後に、窒化カルシウム(Ca)と塩化ユーロピウム(EuCl)とを混合させて原料粉末を得て、その原料粉末を焼成することも可能である。
原料に窒化ケイ素(Si)を用いる場合、1300℃以上の高温で焼成すると窒化ケイ素(Si)の分解飛散する場合がある。窒化ケイ素(Si)が分解飛散すると、目的とする組成の蛍光体を得ることが困難であり、高純度な緑色発光酸窒化物蛍光体が得られない可能性がある。そこで、窒化ケイ素(Si)の分解飛散による蛍光体純度の低下を抑制するために、あらかじめ(Si)と酸化ケイ素(SiO)を0.9MPaの圧力下で反応させてSi−O−N系前駆体を合成するのである。
In the method for producing a green light-emitting oxynitride phosphor according to the present example, silicon nitride (Si 3 N 4 ) and silicon oxide (SiO 2 ) are reacted in advance under a pressure of 0.9 MPa to obtain Si—O—N. It is also possible to synthesize a system precursor, and then mix calcium nitride (Ca 3 N 2 ) and europium chloride (EuCl 3 ) to obtain a raw material powder, and to fire the raw material powder.
When silicon nitride (Si 3 N 4 ) is used as a raw material, silicon nitride (Si 3 N 4 ) may be decomposed and scattered when fired at a high temperature of 1300 ° C. or higher. When silicon nitride (Si 3 N 4 ) decomposes and disperses, it is difficult to obtain a phosphor having the target composition, and a high-purity green light-emitting oxynitride phosphor may not be obtained. Therefore, in order to suppress a decrease in phosphor purity due to decomposition and scattering of silicon nitride (Si 3 N 4 ), (Si 3 N 4 ) and silicon oxide (SiO 2 ) are reacted in advance under a pressure of 0.9 MPa. A Si—O—N precursor is synthesized.

実施例1に係る緑色発光酸窒化物蛍光体の励起スペクトルを説明する図である。3 is a diagram illustrating an excitation spectrum of a green light-emitting oxynitride phosphor according to Example 1. FIG. 実施例1に係る緑色発光酸窒化物蛍光体の発光スペクトルを説明する図である。It is a figure explaining the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Example 1. FIG. 実施例2〜5に係る緑色発光酸窒化物蛍光体の励起スペクトルを説明する図である。It is a figure explaining the excitation spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 2-5. 実施例2〜5に係る緑色発光酸窒化物蛍光体の発光スペクトルを説明する図である。It is a figure explaining the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 2-5. 実施例6〜8に係る緑色発光酸窒化物蛍光体の励起スペクトルを説明する図である。It is a figure explaining the excitation spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 6-8. 実施例6〜8に係る緑色発光酸窒化物蛍光体の発光スペクトルを説明する図である。It is a figure explaining the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 6-8. 実施例9〜11に係る緑色発光酸窒化物蛍光体の励起スペクトルを説明する図である。It is a figure explaining the excitation spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 9-11. 実施例9〜11に係る緑色発光酸窒化物蛍光体の発光スペクトルを説明する図である。It is a figure explaining the emission spectrum of the green light emission oxynitride fluorescent substance which concerns on Examples 9-11. 実施例にかかる発光素子を説明する図である。It is a figure explaining the light emitting element concerning an Example.

符号の説明Explanation of symbols

101 透明基板
102 三種類の蛍光体粉末
103 透明樹脂
104 ミラー
105 発光ダイオード
111 実施例に係る発光素子
DESCRIPTION OF SYMBOLS 101 Transparent substrate 102 Three types of fluorescent substance powder 103 Transparent resin 104 Mirror 105 Light emitting diode 111 The light emitting element which concerns on an Example

Claims (5)

一般式CaEuSi
(ここで、
0.01≦a≦0.20、
0.8≦x/(w+a)≦0.9、
0<z/y<1.0、
1.1≦w/x≦1.24
0.5≦x/y≦0.69
0.9≦x/z≦1.2)
で表され、緑色帯域の発光波長を有することを特徴とする、緑色発光酸窒化物蛍光体。
General formula Ca w Eu a Si x O y N z
(here,
0.01 ≦ a ≦ 0.20,
0.8 ≦ x / (w + a) ≦ 0.9,
0 <z / y <1.0,
1.1 ≦ w / x ≦ 1.24
0.5 ≦ x / y ≦ 0.69 ,
0.9 ≦ x / z ≦ 1.2)
A green light emitting oxynitride phosphor represented by the formula (1) and having a light emission wavelength in the green band.
前記緑色発光酸窒化物蛍光体は、波長300nm以上400nm以下に励起帯を有する、
ことを特徴とする請求項1に記載の緑色発光酸窒化物蛍光体。
The green light emitting oxynitride phosphor has an excitation band at a wavelength of 300 nm to 400 nm,
The green light-emitting oxynitride phosphor according to claim 1.
請求項1又は2に記載の緑色発光酸窒化物蛍光体と、
蛍光体の励起光源としての紫外線発光ダイオードと、
を有することを特徴とする発光素子。
The green light-emitting oxynitride phosphor according to claim 1 or 2,
An ultraviolet light emitting diode as an excitation light source of the phosphor;
A light-emitting element including:
赤色発光蛍光体と、青色発光蛍光体と、
を有することを特徴とする請求項3記載の発光素子。
A red-emitting phosphor, a blue-emitting phosphor,
The light emitting device according to claim 3, wherein:
前記赤色発光蛍光体は、SrS:Eu、CaS:Eu、CaAlSiN:Eu及びLaS:Euのうち少なくともいずれか一つを含有し、
前記青色発光蛍光体は、(Ba,Sr)MgAl1017:Eu,Mn、(Ba,Sr,Ca,Mg)10(POCl:Eu、Sr(POCl:Eu及びZnS:Agのうち少なくともいずれか一つを含有する、
ことを特徴とする請求項4記載の発光素子。
The red light-emitting phosphor contains at least one of SrS: Eu, CaS: Eu, CaAlSiN 3 : Eu, and La 2 O 2 S: Eu,
The blue light-emitting phosphor includes (Ba, Sr) MgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu and ZnS: containing at least one of Ag:
The light-emitting element according to claim 4.
JP2007167007A 2007-06-25 2007-06-25 Green light emitting oxynitride phosphor and light emitting device using the same Active JP5710089B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007167007A JP5710089B2 (en) 2007-06-25 2007-06-25 Green light emitting oxynitride phosphor and light emitting device using the same
TW097122124A TW200904946A (en) 2007-06-25 2008-06-13 Green light-emitting fluorescent substance, method of manufacturing the same and light-emitting device using the same
KR1020080059739A KR20080114561A (en) 2007-06-25 2008-06-24 Green light-emitting fluorescent substance, method of manufacturing the same and light-emitting device using the same
CN2008101306057A CN101333440B (en) 2007-06-25 2008-06-25 Green light-emission fluorescent material, manufacturing method thereof and lighting device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167007A JP5710089B2 (en) 2007-06-25 2007-06-25 Green light emitting oxynitride phosphor and light emitting device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013207617A Division JP2013256675A (en) 2013-10-02 2013-10-02 Green emission oxynitride phosphor

Publications (2)

Publication Number Publication Date
JP2009001760A JP2009001760A (en) 2009-01-08
JP5710089B2 true JP5710089B2 (en) 2015-04-30

Family

ID=40196326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167007A Active JP5710089B2 (en) 2007-06-25 2007-06-25 Green light emitting oxynitride phosphor and light emitting device using the same

Country Status (4)

Country Link
JP (1) JP5710089B2 (en)
KR (1) KR20080114561A (en)
CN (1) CN101333440B (en)
TW (1) TW200904946A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404240B (en) * 2009-02-06 2013-08-01 Everlight Electronics Co Ltd Colorful light-emitting apparatus
JP5515141B2 (en) * 2009-03-16 2014-06-11 Necライティング株式会社 Phosphor and fluorescent lamp
JP5515142B2 (en) * 2009-03-16 2014-06-11 Necライティング株式会社 Phosphor and fluorescent lamp
WO2011019191A2 (en) * 2009-08-10 2011-02-17 엘지이노텍주식회사 Phosphor, preparation method thereof, and white light emitting device
KR101163902B1 (en) 2010-08-10 2012-07-09 엘지이노텍 주식회사 Light emitting device
US9909058B2 (en) 2009-09-02 2018-03-06 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
TWI456027B (en) * 2010-03-03 2014-10-11 Hitachi Ltd Closed material sheet with wavelength conversion material and solar cell using the same
KR101441485B1 (en) * 2013-09-17 2014-09-17 한국과학기술연구원 Green-emitting upconversion nanophosphor and synthesis method thereof
JP2013256675A (en) * 2013-10-02 2013-12-26 Nec Lighting Ltd Green emission oxynitride phosphor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790263A (en) * 1993-09-28 1995-04-04 Toshiba Corp Fluorescent material for color picture tube and production thereof
JP2000212556A (en) * 1998-11-19 2000-08-02 Ohara Inc Luminous phosphor, and luminous fluorescent powder, and their production
JP3609365B2 (en) * 2001-10-19 2005-01-12 株式会社東芝 Semiconductor light emitting device
EP1413618A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
AU2003263562A1 (en) * 2002-10-14 2004-05-04 Koninklijke Philips Electronics N.V. Light-emitting device comprising an eu(ii)-activated phosphor
JP4415548B2 (en) * 2002-10-16 2010-02-17 日亜化学工業株式会社 Light emitting device using oxynitride phosphor
JP4466447B2 (en) * 2002-10-16 2010-05-26 日亜化学工業株式会社 Oxynitride phosphor
JP4806889B2 (en) * 2003-09-05 2011-11-02 日亜化学工業株式会社 Light source device and illumination device
JP4524468B2 (en) * 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
EP2360225B1 (en) * 2004-09-22 2013-06-26 National Institute for Materials Science Phosphor, production method thereof and light emitting instrument
JP4988181B2 (en) * 2004-09-29 2012-08-01 昭和電工株式会社 Oxynitride phosphor and method for producing the same
JP4798335B2 (en) * 2004-12-20 2011-10-19 Dowaエレクトロニクス株式会社 Phosphor and light source using phosphor
WO2006093298A1 (en) * 2005-03-04 2006-09-08 Dowa Electronics Materials Co., Ltd. Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
KR100682874B1 (en) * 2005-05-02 2007-02-15 삼성전기주식회사 White light emitting device
JP4215046B2 (en) * 2005-11-24 2009-01-28 日亜化学工業株式会社 Nitride phosphor and light emitting device using the same
WO2007088966A1 (en) * 2006-02-02 2007-08-09 Mitsubishi Chemical Corporation Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride
CN101473015A (en) * 2006-06-22 2009-07-01 皇家飞利浦电子股份有限公司 Low-pressure gas discharge lamp
JP2008095091A (en) * 2006-09-15 2008-04-24 Mitsubishi Chemicals Corp Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
DE102007022566A1 (en) * 2007-05-14 2008-11-20 Merck Patent Gmbh Lighting unit consisting of discharge lamp, LEDs and conversion lamps

Also Published As

Publication number Publication date
JP2009001760A (en) 2009-01-08
KR20080114561A (en) 2008-12-31
CN101333440A (en) 2008-12-31
CN101333440B (en) 2013-04-24
TW200904946A (en) 2009-02-01

Similar Documents

Publication Publication Date Title
JP5710089B2 (en) Green light emitting oxynitride phosphor and light emitting device using the same
JP5360857B2 (en) Green light emitting phosphor, manufacturing method thereof, and light emitting device using the same
JP4625496B2 (en) Novel silicate yellow-green phosphor
JP4799549B2 (en) White light emitting diode
JP4415547B2 (en) Oxynitride phosphor and method for producing the same
WO2014021006A1 (en) Alkaline earth metal silicate phosphor and method for producing same
JP4466447B2 (en) Oxynitride phosphor
WO2012074102A1 (en) Method for producing crystalline material
JP6729393B2 (en) Phosphor, light emitting device, and method for manufacturing phosphor
CN109423285B (en) Aluminate phosphor and light-emitting device
JP6617659B2 (en) Aluminate phosphor and light emitting device
JP2013256675A (en) Green emission oxynitride phosphor
US9758725B2 (en) Fluorescent material and light-emitting device
US20130292733A1 (en) Crystalline material, and light-emitting device and white led using same
JP7318924B2 (en) Phosphor and light-emitting device using the same
JP7144002B2 (en) Phosphor, phosphor composition using the same, and light-emitting device, lighting device, and image display device using the same
US20130292609A1 (en) Phosphor manufacturing method
KR20160078113A (en) Mixed phosphor and white light emitted device using the same
TW201241153A (en) Yellow phosphor and manufacturing method therefor
JP2017048338A (en) Phosphor and light emitting device using the same
JP2019044159A (en) Aluminate phosphor and light emitting device
JP2017066340A (en) Oxide phosphor and light emitting device prepared therewith
US20170321120A1 (en) Phosphor and Light-Emitting Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131010

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250