JP5708331B2 - Steel welded joint structure - Google Patents

Steel welded joint structure Download PDF

Info

Publication number
JP5708331B2
JP5708331B2 JP2011157041A JP2011157041A JP5708331B2 JP 5708331 B2 JP5708331 B2 JP 5708331B2 JP 2011157041 A JP2011157041 A JP 2011157041A JP 2011157041 A JP2011157041 A JP 2011157041A JP 5708331 B2 JP5708331 B2 JP 5708331B2
Authority
JP
Japan
Prior art keywords
strength
weld
soft
base material
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011157041A
Other languages
Japanese (ja)
Other versions
JP2013022599A (en
Inventor
博巳 平山
博巳 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011157041A priority Critical patent/JP5708331B2/en
Publication of JP2013022599A publication Critical patent/JP2013022599A/en
Application granted granted Critical
Publication of JP5708331B2 publication Critical patent/JP5708331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超高強度の鋼材の溶接に適した鋼材の溶接継手構造に関する。   The present invention relates to a welded joint structure of steel suitable for welding ultra-high strength steel.

近年、建築構造物の高層化・大規模化の進展により、柱材に鋼材として800N/mm級〜1000N/mm級の超高強度材の適用例が出現している。超高強度材の適用は柱断面のスリム化に適するが、溶接継手の性能確保については技術上の課題がある。
建築構造物に適用される溶接継手は、溶接部の材料強度を母材の材料強度より高くする、いわゆるオーバーマッチング継手が一般的である。
Recently, with the progress of high-rise and large-scale building structures, application of 800 N / mm 2 class ~1000N / mm 2 grade ultra-high strength material has emerged as a steel pillar material. Although application of ultra-high strength material is suitable for slimming the column cross section, there is a technical problem in securing the performance of the welded joint.
A weld joint applied to a building structure is generally a so-called overmatching joint in which the material strength of the welded portion is higher than the material strength of the base material.

しかしながら、800N/mm級〜1000N/mm級の超高強度材である母材の強度を上回るオーバーマッチング継手を実現するための溶接材料は、より低強度の溶接材料に比して溶接割れ(初層割れ)が生じやすく、これを防止するためには厳密な予後熱管理と、溶接入熱およびパス間温度の制限とが必要とされるため、特に現場溶接が必要とされる建築構造物の継手への適用には、非常に厳格な施工条件を課され、溶接継手の生産性が著しく低下する。 However, a welding material for realizing an overmatching joint that exceeds the strength of the base material, which is an ultra-high strength material of 800 N / mm class 2 to 1000 N / mm class 2 , is weld cracking compared to a welding material of lower strength. (Initial cracks) are likely to occur, and in order to prevent this, strict prognostic heat management and welding heat input and temperature limits between passes are required. Application of an object to a joint is subject to very strict construction conditions, and the productivity of the welded joint is significantly reduced.

一方、溶接部の材料強度を母材の材料強度より低くした、いわゆるアンダーマッチングである軟質継手は、高強度の溶接材料の適用に比較して、溶接割れが生じ難く、低コストかつ予後熱管理や溶接入熱およびパス間温度の条件が緩和されるメリットがあり、ペンストック等への適用例がある。軟質継手については、溶接部の形状条件によって母材の引張強度を上回る溶接継手を得る事が可能である事は従来から知られている。   On the other hand, soft joints with so-called undermatching, in which the material strength of the weld is lower than that of the base metal, are less susceptible to weld cracking compared to the application of high-strength welding materials, and are low cost and prognostic heat management There is a merit that the conditions of welding heat input and interpass temperature are relaxed, and there are examples of application to penstock and the like. As for the soft joint, it is conventionally known that a weld joint exceeding the tensile strength of the base material can be obtained depending on the shape condition of the welded portion.

例えば、軟質継手の強度は、軟質溶接部の相対厚さ(板厚に対する軟質溶接部の厚さの比率)に依存し、相対厚さが小さいほど継手強度は上昇し、母材の引張強度を上回る事も可能である(例えば、非特許文献1参照)。   For example, the strength of a soft joint depends on the relative thickness of the soft weld (the ratio of the thickness of the soft weld to the plate thickness). The smaller the relative thickness, the higher the joint strength and the tensile strength of the base metal. It is also possible to exceed (for example, refer nonpatent literature 1).

しかし、軟質溶接部の相対厚さを小さくするためには、溶接部の開先寸法を小さくした、いわゆる狭開先溶接とする必要があるが、実際の構造物の現場施工においては、部材の寸法や建方の誤差により厳密な狭開先の確保は難しく、また狭開先を確保できたとしても、その溶接の実施により欠陥の少ない健全な継手を得るためには、特別な溶接技能・技術を必要とする。   However, in order to reduce the relative thickness of the soft weld, it is necessary to use a so-called narrow groove welding in which the groove dimension of the weld is reduced. It is difficult to ensure strict narrow gaps due to errors in dimensions and construction, and even if narrow gaps can be secured, special welding skills and Requires technology.

また、溶接金属全てではなく、ルート側の一部の溶接層のみに、母材強度より低い強度の溶接材料を適用した、いわゆる部分軟質継手の適用は、ルート側の初層割れを防止するとともに、引張力を受けた場合の脆性破断の防止に効果が高いことが知られている。   In addition, the application of so-called partial soft joints, in which a welding material with a strength lower than the base metal strength is applied to only a part of the weld layer on the root side, not all of the weld metal, prevents cracking of the initial layer on the root side. It is known that it is highly effective in preventing brittle fracture when subjected to a tensile force.

また、レ形開先の溶接継手におけるルート側の初層を、母材より低強度で高延性の溶接材料で溶接し、その余の層を、母材と同等またはそれ以上の強度を有する溶接材料で溶接する部分軟質継手の溶接工法が提案されている(例えば、特許文献1参照)。さらに、特許文献1においては、490N/mmの母材のレ形開先の溶接継手の母材板厚の1/3未満のルート側初層または複数層を母材より低強度で高延性の溶接材料を適用した試験体で母材破断が確認できる事が例示されている。 In addition, the root-side first layer of a welded joint with a grooving groove is welded with a welding material that has lower strength and higher ductility than the base material, and the remaining layers are welded with strength equal to or higher than that of the base material. A welding method for a partial soft joint that is welded with a material has been proposed (see, for example, Patent Document 1). Furthermore, in Patent Document 1, a root-side initial layer or a plurality of layers less than 1/3 of the base metal plate thickness of a welded joint of a 490 N / mm 2 base metal groove is lower in strength and higher in ductility than the base material. It is exemplified that the fracture of the base material can be confirmed with a test body to which the above welding material is applied.

特許第3820493号公報Japanese Patent No. 3820493

「軟層を含む溶接継手の静的強度に関する寸法効果」、溶接学会誌、第37巻、第11号、1968年"Dimensional effect on static strength of welded joints including soft layer", Journal of the Japan Welding Society, Vol. 37, No. 11, 1968

ところで、特許文献1において開示された技術は、600N/mm級より高い強度の母材について、ルート側初層または複数層を母材より低強度で高延性の溶接材料を適用した事例は明示されていない。オーバーマッチング溶接の適用条件がより厳しい800N/mm級〜1000N/mm級の超高強度鋼材の溶接継手にこそ、部分軟質継手を適用するメリットが大きいのであるが、その適用条件については、特許文献1で開示された従来技術においては明らかでない。 Incidentally, the technique disclosed in Patent Document 1, for the base material of higher strength than 600N / mm 2 class, instances where the root-side first layer or layers are applied weld material having a high ductility at lower strength than the base metal is expressly It has not been. Although the application conditions for overmatching welding are more severe, welded joints of 800 N / mm class 2 to 1000 N / mm class 2 ultra-high-strength steel materials have great merit of applying partial soft joints. In the prior art disclosed in Patent Document 1, it is not clear.

本発明は、上記事情に鑑みてなされたものであり、主として780N/mm以上の超高強度の鋼材の溶接継手部について、現場施工に適用可能で、初層割れの抑止および脆性破断の防止に効果の高い部分軟質継手を適用しながら、母材強度より高い継手強度を有する溶接継手部の構造を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is applicable to on-site construction mainly for welded joints of ultra-high-strength steel materials of 780 N / mm 2 or more, suppressing initial layer cracking and preventing brittle fracture. An object of the present invention is to provide a welded joint structure having a joint strength higher than that of the base material while applying a partially soft joint having a high effect to the above.

上述の部分軟質溶接継手が軸方向に漸増する引張力を受けた場合、ルート側の軟質溶接部が最初に塑性化する。この際、ポアソン比分の圧縮ひずみが軟質溶接部(溶接金属の母材より低強度の部分)に生じようとするが、高強度の母材およびその余の等質溶接部(溶接金属の母材と同等以上の強度の部分)により拘束されているため、軟質溶接部内部においては3軸引張応力状態となり、溶接金属のみかけの軸方向の強度は上昇する。
このため、低強度の軟質溶接部およびより高強度の等質溶接部の各面積と各強度の単純0和から求められる継手強度より高い強度の継手を製造することが可能である。
When the above-mentioned partial soft weld joint receives a tensile force that gradually increases in the axial direction, the soft weld on the root side is first plasticized. At this time, compressive strain corresponding to the Poisson's ratio is likely to occur in the soft weld (the lower strength part of the weld metal base material), but the higher strength base material and the other homogeneous welds (weld metal base material). Therefore, a triaxial tensile stress is generated inside the soft weld and the apparent axial strength of the weld metal is increased.
For this reason, it is possible to manufacture a joint having a strength higher than the joint strength obtained from the respective areas of the low-strength soft weld and the higher-strength homogeneous weld and the simple sum of the strengths.

本発明者らは、特に780N/mm(800N/mm級)以上の超高強度鋼材を母材とし、継手の一部に母材強度よりも強度が低い溶接金属を使用した溶接継手についてFEM(Finite Element Method)により数値解析を行い、高い継手強度を有する溶接継手の要件を思案した。
FEMによる数値解析では、図1に示す各パラメータを表1に示すように変化させて解析を行った。
The present inventors, in particular a 780N / mm 2 (800N / mm 2 class) or ultra high strength steel as a base material, the weld joint using a weld metal strength is lower than the base material strength in a part of the joint Numerical analysis was performed by FEM (Finite Element Method), and the requirement of a welded joint having high joint strength was considered.
In the numerical analysis by FEM, the analysis was performed by changing each parameter shown in FIG. 1 as shown in Table 1.

Figure 0005708331
Figure 0005708331

なお、図1における鋼材の継手構造は、符号1が溶接される母材(鋼材)、符号2が母材1に設けられた開先、符号3が開先2内に設けられた溶接金属、符号5が溶接部分のルート、符号6が前記溶接金属3のうちのルート5側に形成されて母材1より強度が低い軟質溶接部、符号7が軟質溶接部6上に形成されて母材1と同等以上の強度を有する等質溶接部、符号9が裏当金である。なお、裏当金9の溶接継手の強度への影響は、今回の数値解析では、裏当て金は存在しないものとして無視し、等質溶接部6は、母材1と同じ強度特性を有するものとした。   The steel joint structure in FIG. 1 includes a base material (steel material) to which reference numeral 1 is welded, a groove provided to the base material 1, a weld metal provided to the inside of the groove 2, and reference numeral 3. Reference numeral 5 is a route of the welded portion, reference numeral 6 is a soft weld portion formed on the route 5 side of the weld metal 3 and having a lower strength than the base material 1, and reference symbol 7 is formed on the soft weld portion 6 and is a base material. 1 is a homogenous weld having a strength equal to or greater than 1. Reference numeral 9 is a backing metal. In this numerical analysis, the influence of the backing metal 9 on the strength of the welded joint is ignored because the backing metal does not exist, and the homogeneous weld 6 has the same strength characteristics as the base material 1. It was.

また、母材1の板厚をtoとし、軟質溶接部6の厚さをtwとし、ルートギャップをgとし、開先2の開先幅をWとし、開先2の開先角度をθとする。
解析結果は、継手強度σwを母材強度σoで無次元化した継手の無次元化強度σw/σoと、(2)式で表される継手パラメータαによりまとめた。
Further, the thickness of the base material 1 is to, the thickness of the soft weld 6 is tw, the root gap is g, the groove width of the groove 2 is W, and the groove angle of the groove 2 is θ. To do.
The analysis results were summarized by the dimensionless strength σw / σo of the joint obtained by making the joint strength σw dimensionless with the base material strength σo, and the joint parameter α expressed by the equation (2).

Figure 0005708331
Figure 0005708331

ここで、σw/σo≧1を満足すれば、継手強度が母材強度以上の強度を有することを意味する。
また、軟質溶接部厚さtwが薄く、開先幅Wが小さい方が継手強度が大きくなる傾向にあり、開先角度θが大きい方が継手強度が小さくなる傾向にあることから、(2)式に示すように、母材板厚toにて無次元化するとともに、これらの積をαとしてパラメータとした。
Here, if σw / σo ≧ 1 is satisfied, it means that the joint strength is higher than the base metal strength.
Further, since the soft welded portion thickness tw is thinner and the groove width W is smaller, the joint strength tends to increase, and when the groove angle θ is larger, the joint strength tends to decrease. (2) As shown in the equation, the dimension was made non-dimensional with the base material plate thickness to, and the product of these was used as a parameter.

数値解析結果について、縦軸をσw/σo(継手の無次元化強度)の値とし、横軸を(2)式のαの値としたσw/σo―α関係を、グラフとして図2〜図5に示す。なお、各グラフは、表1に示す条件の内、各母材強度と各軟質溶接部強度の各々の組合せ毎における数値解析結果として示しており、継手の無次元化強度σw/σoと、表1に示す上記強度条件以外の形状条件の各組合せの場合の(2)式におけるαの値との関係を示したものである。
また、図2が表1における母材強度が980N/mm(1000N/mm級)で軟質溶接部強度が590N/mm(600N/mm級)の場合の結果を示し、図3が表1における母材強度が780N/mm(800N/mm級)で軟質溶接部強度が590N/mm(600N/mm級)の場合の結果を示し、図4が表1における母材強度が980N/mm(1000N/mm級)で軟質溶接部強度が490N/mm(500N/mm級)の場合の結果を示し、図5が表1における母材強度が780N/mm(800N/mm級)で軟質溶接部強度が490N/mm(500N/mm級)の場合の結果を示している。
また、グラフの各マークは、開先形状がレ型で開先角度θが30度の場合と、同じくレ型で45度の場合と、開先形状がV型で開先角度θが30度の場合と、同じくV型で45度の場合に対応している。また、同じ5つのマークは、それぞれ軟質溶接層の厚さが、3,6,9,12,18mmの場合に対応している。
Regarding the numerical analysis results, the vertical axis represents the value of σw / σo (dimensionless strength of the joint), and the horizontal axis represents the value of α in equation (2). As shown in FIG. Each graph shows the result of numerical analysis for each combination of the base metal strength and the soft weld strength among the conditions shown in Table 1. The dimensionless strength σw / σo of the joint 1 shows the relationship with the value of α in equation (2) in the case of each combination of shape conditions other than the above-described strength conditions shown in FIG.
Also, FIG. 2 shows the results when the soft weld strength base metal strength is 980 N / mm 2 in Table 1 (1000 N / mm 2 class) is 590N / mm 2 (600N / mm 2 class), Figure 3 base material strength in Table 1 indicates the results when the soft weld strength 780N / mm 2 (800N / mm 2 class) is 590N / mm 2 (600N / mm 2 class), the base material 4 is in Table 1 FIG. 5 shows the results when the strength is 980 N / mm 2 (1000 N / mm 2 grade) and the soft weld strength is 490 N / mm 2 (500 N / mm 2 grade), and FIG. 5 shows the base material strength in Table 1 is 780 N / mm. 2 (800 N / mm class 2 ) and the soft weld strength is 490 N / mm 2 (500 N / mm class 2 ).
In addition, each mark of the graph has a groove shape with a groove shape and a groove angle θ of 30 degrees, and a mark shape with a groove shape of 45 degrees, and a groove shape with a V shape and a groove angle θ of 30 degrees. This corresponds to the case of the V type and 45 degrees. The same five marks correspond to cases where the thickness of the soft weld layer is 3, 6, 9, 12, and 18 mm, respectively.

図2〜図5より、σw/σoとパラメータαには相関関係があり、σw/σoが1以上、すなわち部分軟質継手が母材強度以上の強度を発揮できる形状条件は、母材強度が980N/mmの母材と軟質溶接部強度が590N/mmの組合せではα≦0.50、以下同様に、780N/mmの母材×590N/mmの軟質溶接部でα≦0.80、980N/mmの母材×490N/mmの軟質溶接部でα≦0.40、780N/mmの母材×490N/mmの軟質溶接部でα≦0.47とすればよい。 2 to 5, there is a correlation between σw / σo and parameter α, and σw / σo is 1 or more, that is, the shape condition that allows the partial soft joint to exhibit strength higher than the base material strength is that the base material strength is 980N. / mm 2 of the base material and the soft weld strength is alpha ≦ a combination of 590N / mm 2 0.50, and so on to, ≦ alpha in matrix × 590N / mm 2 of the soft weld 780N / mm 2 0. if 80,980N / mm 2 of the matrix × 490 N / mm 2 of the matrix × 490N / mm α ≦ 0.47 in the soft weld 2 of the soft weld α ≦ 0.40,780N / mm 2 Good.

しかしながら、(2)式のパラメータαは、図2〜図5の各グラフに示すように、同じ母材、溶接材料(軟質溶材)の組み合わせで、αの値を変えた場合に、成立するものであり、母材、溶接材料(軟質溶材)が異なれば成立しない。例えば、1000N/mm級母材と600N/mm級溶接材の組合せと、800N/mm級母材と600N/mm級溶接材の組合せとでは、σw/σoが1以上になるαの値が異なり、また、今回解析したケース以外の母材と溶接材料(軟質溶材)の各強度の組合せ条件におけるパラメータαの値は、明確でない。
そこで、母材強度および軟質溶接部強度の影響をパラメータに加味して整理したところ、(1)式で表されるパラメータβにより整理すれば、母材強度と軟質溶接部強度との影響を含めて一元的に表現できることが分かった。
However, as shown in the graphs of FIGS. 2 to 5, the parameter α in the formula (2) is established when the value of α is changed with a combination of the same base material and welding material (soft solution). This is not possible if the base material and the welding material (soft melt) are different. For example, in a combination of 1000 N / mm 2 grade base material and 600N / mm 2 class welding material, a combination of 800 N / mm 2 grade base material and 600N / mm 2 class welding material, .sigma.w / NA: 0.75, o is 1 or more α In addition, the value of the parameter α in the combination conditions of the strengths of the base material and the welding material (soft melt) other than the case analyzed this time is not clear.
Therefore, when the effects of the base metal strength and soft weld strength were taken into account and arranged, the parameters β expressed by equation (1) included the effects of the base metal strength and soft weld strength. It can be expressed in a unified manner.

Figure 0005708331
Figure 0005708331

数値解析結果を、縦軸をσw/σo(継手の無次元化強度)の値とし、横軸を(1)式のβの値としたσw/σo―β関係のグラフとして図6に示す。なお、図6においては、図2〜図5の場合と同様に表1に示される条件に対応した値のβとσw/σoの値との関係が、母材および軟質溶接部の強度に係わらず、一つのグラフにプロットされている。図6のグラフに示すように、母材強度が1000N/mm級または800N/mm級で、軟質溶接部強度が600N/mm級または500N/mm級での、いずれの強度レベルの母材と軟質溶接部の組合せの場合も、βとの相関関係が確認できる。
この場合、σw/σoが1以上となる形状条件は、β≦0.15となる。
The numerical analysis results are shown in FIG. 6 as a graph of the σw / σo-β relationship in which the vertical axis is the value of σw / σo (dimensionless strength of the joint) and the horizontal axis is the value of β in equation (1). In FIG. 6, as in FIGS. 2 to 5, the relationship between the values β and σw / σo corresponding to the conditions shown in Table 1 is related to the strength of the base metal and the soft weld. It is plotted in one graph. As shown in the graph of FIG. 6, the strength of the base material is 1000 N / mm class 2 or 800 N / mm class 2 and the strength of the soft weld is 600 N / mm class 2 or 500 N / mm class 2 . Also in the case of a combination of a base material and a soft weld, a correlation with β can be confirmed.
In this case, the shape condition for σw / σo to be 1 or more is β ≦ 0.15.

本発明は以上のような知見を得て完成したものである。
すなわち、本発明の鋼材の溶接継手構造は、鋼材同士を接続する鋼材の溶接継手の構造であって、開先の形状がレ型またはV型で、前記開先内の溶接金属が複数層からなる溶接工法により施工され、接続される母材の強度が780N/mm以上の強度を有し、前記母材を接続するルート側の前記溶接金属の初層を含む複数層からなる軟質溶接部の強度が、490N/mm以上とされるとともに、前記母材の強度より低く、前記軟質溶接部にさらにビードが複数層重ねられて、前記母材と同等以上の強度を有する等質溶接部が形成され、前記軟質溶接部は二つの母材と前記等質溶接部に拘束され、前記溶接金属の前記軟質溶接部を除く残りの層が前記母材と同等以上の強度を有する等質溶接部とされ、前記母材の板厚to、前記軟質溶接部の厚さtw、前記開先の開先幅W、および前記開先の開先角度θで表される形状と、母材強度σoおよびルート側の前記軟質溶接部の強度σsとから(1)式により表されるパラメータβが0.15以下であることを特徴とする。
The present invention has been completed by obtaining the above knowledge.
That is, the steel welded joint structure of the present invention is a steel welded joint structure for connecting steel materials, and the shape of the groove is a L shape or a V shape, and the weld metal in the groove is composed of a plurality of layers. A soft welded portion comprising a plurality of layers including the first layer of the weld metal on the route side connecting the base material, the strength of the base material to be connected is 780 N / mm 2 or more. The strength is 490 N / mm 2 or more and is lower than the strength of the base material, and a plurality of beads are further stacked on the soft weld portion to have a strength equal to or higher than that of the base material. And the soft weld is constrained by two base metals and the homogeneous weld, and the remaining layers of the weld metal except the soft weld have a strength equal to or higher than that of the base metal. And the thickness of the base metal to the soft weld (1) from the shape represented by the thickness tw, the groove width W of the groove, and the groove angle θ of the groove, the base material strength σo, and the strength σs of the soft weld on the root side The parameter β expressed by the equation is 0.15 or less.

Figure 0005708331
Figure 0005708331

本発明においては、上述の前記母材の板厚to、前記軟質溶接部の厚さtw、前記開先の開先幅W、および前記開先の開先角度θで表される形状と、母材強度σoおよびルート側の前記軟質溶接部の強度σsとから(1)式により表されるパラメータβを0.15以下とすることにより、溶接継手の強度を母材と同等以上とすることができる。   In the present invention, the shape represented by the plate thickness to of the base material, the thickness tw of the soft weld, the groove width W of the groove, and the groove angle θ of the groove, By setting the parameter β expressed by the equation (1) to 0.15 or less from the material strength σo and the strength σs of the soft weld on the root side, the strength of the welded joint can be equal to or higher than that of the base metal. it can.

本発明の鋼材の溶接継手構造によれば、780N/mm以上の超高強度の鋼材を溶接する際に、現場施工に適用可能で、初層割れの抑止および脆性破断の防止に効果の高い部分軟質継手を適用しながら、母材強度より高い継手強度を有するものとすることができる。 According to the welded joint structure of steel material of the present invention, when welding a super-high strength steel material of 780 N / mm 2 or more, it is applicable to on-site construction, and is highly effective in suppressing initial layer cracking and preventing brittle fracture. The joint strength can be higher than the base material strength while applying the partial soft joint.

本発明の実施形態に係る鋼材の溶接継手構造を示す概略図である。It is the schematic which shows the welded joint structure of the steel materials which concern on embodiment of this invention. FEMによる数値解析の結果として、継手の無次元化強度σw/σoと、(2)式で示されるαとの関係を示すグラフである。It is a graph which shows the relationship between the dimensionless intensity | strength (sigma) w / (sigma) o of a joint, and (alpha) shown by (2) Formula as a result of the numerical analysis by FEM. FEMによる数値解析の結果として、継手の無次元化強度σw/σoと、(2)式で示されるαとの関係を示すグラフである。It is a graph which shows the relationship between the dimensionless intensity | strength (sigma) w / (sigma) o of a joint, and (alpha) shown by (2) Formula as a result of the numerical analysis by FEM. FEMによる数値解析の結果として、継手の無次元化強度σw/σoと、(2)式で示されるαとの関係を示すグラフである。It is a graph which shows the relationship between the dimensionless intensity | strength (sigma) w / (sigma) o of a joint, and (alpha) shown by (2) Formula as a result of the numerical analysis by FEM. FEMによる数値解析の結果として、継手の無次元化強度σw/σoと、(2)式で示されるαとの関係を示すグラフである。It is a graph which shows the relationship between the dimensionless intensity | strength (sigma) w / (sigma) o of a joint, and (alpha) shown by (2) Formula as a result of the numerical analysis by FEM. FEMによる数値解析の結果として、継手の無次元化強度σw/σoと、(1)式で示されるβとの関係を示すグラフである。It is a graph which shows the relationship between dimensionless intensity | strength (sigma) w / (sigma) o of a joint, and (beta) shown by (1) as a result of the numerical analysis by FEM.

以下、図面を参照しながら本発明の実施の形態について説明する。
この実施形態の鋼材の溶接継手構造は、例えば、図1に示すように、互いに溶接すべき二つの母材1と、母材1に形成された開先2内に形成された溶接金属(溶材)3とを備える。この実施形態の溶接継手においては、開先2内の溶接金属3は、複数層に形成されている。すなわち、この溶接継手においては、溶接金属3が複数層からなる溶接工法(例えば、アーク溶接でビードを二層以上重ねる多層溶接)により施工されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, for example, the welded joint structure of a steel material of this embodiment includes two base metals 1 to be welded to each other and a weld metal (melting material) formed in a groove 2 formed in the base material 1. 3). In the weld joint of this embodiment, the weld metal 3 in the groove 2 is formed in a plurality of layers. That is, in this welded joint, the weld metal 3 is constructed by a welding method composed of a plurality of layers (for example, multilayer welding in which two or more beads are stacked by arc welding).

また、開先2内の溶接金属3は、ルート5側で最初に形成された初層を含む複数層からなり、母材1より強度が低い溶接金属3である軟質溶材からなる軟質溶接部6が形成され、この軟質溶接部6にさらにビードが複数層重ねられ、母材1と同等以上の強度を有する溶接金属3である等質溶材からなる等質溶接部(等質溶材)7が形成されている。
二つの母材1のルート5側の間隔がルートギャップgである。
The weld metal 3 in the groove 2 is composed of a plurality of layers including an initial layer formed first on the route 5 side, and a soft weld portion 6 made of a soft solution that is a weld metal 3 having a strength lower than that of the base material 1. A plurality of beads are further stacked on the soft weld 6 to form a homogeneous weld 7 (homogeneous melt) 7 made of a homogeneous melt that is a weld metal 3 having a strength equal to or higher than that of the base material 1. Has been.
The distance between the two base materials 1 on the route 5 side is a route gap g.

また、ルート5側には、例えば、裏当金9が設けられている。
なお、図1に示される鋼材(母材1)の溶接継手構造は、一例であり、例えば、図1では、開先形状が一方の母材1に形成されるレ型となっているが、両方の母材1に形成されるV型であってもよい。
Further, for example, a backing metal 9 is provided on the route 5 side.
In addition, the welded joint structure of the steel material (base material 1) shown in FIG. 1 is an example. For example, in FIG. 1, the groove shape is a mold formed on one base material 1. The V type formed in both base materials 1 may be sufficient.

ここで、図1に示すように、母材1の板厚をtoとし、軟質溶接部6の厚さをtwとし、ルートギャップをgとし、開先2の開先幅をWとし、開先2の開先角度をθとする。
母材1は、780N/mm以上(例えば、1000N/mm級も含まれる)の高強度の材料を前提とし、上述のように母材1の開先2の開先形状がレ型またはV型の溶接継手である。
Here, as shown in FIG. 1, the thickness of the base material 1 is to, the thickness of the soft weld 6 is tw, the root gap is g, the groove width of the groove 2 is W, and the groove The groove angle of 2 is θ.
The base material 1 is premised on a high-strength material of 780 N / mm 2 or more (for example, including 1000 N / mm 2 class), and the groove shape of the groove 2 of the base material 1 is a re-shaped or It is a V-type welded joint.

開先2内のルートギャップg近傍(ルート5側)は、母材1より強度の低い溶接材料(軟質溶材)により溶接され、上述の軟質溶接部6が形成される。
なお、低強度の溶接材料を使用することで、初層割れの抑制ができるとともに脆性破断を防止することが可能となる。
The vicinity of the route gap g (the route 5 side) in the groove 2 is welded with a welding material (soft solution) having a strength lower than that of the base material 1 to form the above-described soft weld 6.
By using a low-strength welding material, it is possible to suppress the initial layer cracking and to prevent brittle fracture.

低強度の溶接金属3すなわち軟質溶接部6上に母材と同等以上の強度を有する溶接金属3(等質溶接部7)により溶接を施す。以上の構成により、母材1に軸方向の引張力が与えられた場合、高強度の溶接金属3(等質溶接部7)は母材1同様に低強度の溶接金属3(軟質溶接部6)が塑性化した場合に拘束力を与える。低強度の溶接金属3(軟質溶接部6)は、二つの母材1と高強度溶接金属3(等質溶接部7)に拘束される事で、軟質溶接部6に3軸引張状態が与えられることになる。この結果、高い強度の溶接継手の製造が可能となる。なお、3軸方向に十分な拘束を得るためには、溶接線の長さが十分に長い事が必要であるが、溶接線方向に十分な拘束が得られる平面ひずみ状態となるために、溶接線の長さは母材板厚の5倍以上の長さであることが好ましい。   Welding is performed on the low-strength weld metal 3, that is, the soft weld 6 by the weld metal 3 (homogeneous weld 7) having a strength equal to or higher than that of the base metal. With the above configuration, when an axial tensile force is applied to the base material 1, the high-strength weld metal 3 (homogeneous weld portion 7) is similar to the base material 1 in the low-strength weld metal 3 (soft weld portion 6). ) Gives a binding force when it becomes plastic. The low-strength weld metal 3 (soft weld 6) is constrained by the two base metals 1 and the high-strength weld metal 3 (homogeneous weld 7), giving the soft weld 6 a triaxial tension state. Will be. As a result, it is possible to manufacture a high-strength welded joint. In order to obtain sufficient restraint in the three axis directions, it is necessary that the length of the weld line is sufficiently long. However, in order to obtain a plane strain state in which sufficient restraint is obtained in the weld line direction, The length of the line is preferably 5 times or more the base material plate thickness.

しかし、溶接金属3の軟質溶接部6自体の強度が小さすぎるとみかけ強度分の上昇があったとしても相対的に溶接継手の強度は低いままとなる。このため、溶接材料としての軟質溶材の強度を490N/mm以上とする。すなわち、軟質溶接部6の下限強度が490N/mmに規定される。また、軟質溶接部6の強度は、母材1の強度より低いものとなっている。なお、強度が490N/mmよりも低い溶接材料として、低強度の工業用純鉄を用いるものとした場合に、低強度の工業用純鉄が低炭素鋼であることから、製造に際し、脱炭の工程を必要とすることにより製造コストが高くなる点からも軟質溶材の強度を490N/mm以上とすることが好ましい。 However, if the strength of the soft weld 6 of the weld metal 3 is too small, the strength of the welded joint remains relatively low even if the apparent strength is increased. For this reason, the intensity | strength of the soft molten material as a welding material shall be 490 N / mm < 2 > or more. That is, the lower limit strength of the soft weld 6 is defined as 490 N / mm 2 . Further, the strength of the soft weld 6 is lower than that of the base material 1. In addition, when low-strength industrial pure iron is used as a welding material having a strength lower than 490 N / mm 2 , the low-strength industrial pure iron is low-carbon steel. It is preferable that the strength of the soft molten material is 490 N / mm 2 or more from the viewpoint that the manufacturing cost is increased by requiring a charcoal process.

ただし、溶接継手の強度は、母材1の板厚to、ルート5側の初層を含む複数層からなる軟質溶接部6の厚さtw、開先幅W、および開先角度θで表される形状と、母材強度σoおよびルート5近傍の低強度の溶接金属3(軟質溶接部6)の強度σsに依存する。軟質溶接部6に十分な拘束状態を与え、継手強度の高い溶接継手とするためには、(1)式により表されるパラメータβが0.15以下であることが必要である。   However, the strength of the welded joint is expressed by the plate thickness to of the base material 1, the thickness tw of the soft welded portion 6 including the first layer on the route 5 side, the groove width W, and the groove angle θ. And the base material strength σo and the strength σs of the low-strength weld metal 3 (soft weld 6) in the vicinity of the route 5. In order to give a sufficiently constrained state to the soft weld 6 and to obtain a welded joint with high joint strength, the parameter β represented by the equation (1) needs to be 0.15 or less.

Figure 0005708331
Figure 0005708331

上述の数値解析結果から明らかなように、(1)式で表されるパラメータβを0.15以下とすることにより、例えば、780N/mm以上、例えば、1000N/mm級の鋼材の溶接においても、溶接継手部分の強度を母材としての鋼材以上の強度とすることが可能である。 As it is apparent from the numerical analysis results described above, by setting the 0.15 parameter β which is expressed by equation (1), for example, 780N / mm 2 or more, for example, welding 1000 N / mm 2 class steels In this case, it is possible to make the strength of the welded joint portion higher than that of the steel material as the base material.

また、溶接金属のルート側の初層を含む軟質溶接部6は、母材1より低強度となっており、溶接部全体に母材1と同程度以上(例えば、780N/mm以上)の高強度の溶接材料を用いた場合に比較して、溶接割れが生じ難いことから、予後熱管理や溶接入熱およびパス間温度の条件が緩和され、現場溶接の生産性向上を可能にできる。
また、(1)式で示されるβを0.15以下とするものとしても、開先幅Wや開先角度θを有る程度確保することが可能であり、必ずしも狭開先とせずとも施工が可能である。これによって現場施工が容易になり、必ずしも特別な溶接技能・技術を必要としない。
Moreover, the soft weld part 6 including the first layer on the root side of the weld metal has a lower strength than the base material 1, and is approximately equal to or higher than the base material 1 (for example, 780 N / mm 2 or more) over the entire weld part. Compared to the case where a high-strength welding material is used, weld cracks are less likely to occur, so prognostic heat management, welding heat input, and interpass temperature conditions are relaxed, and on-site welding productivity can be improved.
Moreover, even if β shown by the equation (1) is 0.15 or less, it is possible to secure the groove width W and the groove angle θ, and the construction is not necessarily performed with a narrow groove. Is possible. This facilitates on-site construction and does not necessarily require special welding skills.

なお、図1では鋼板の端面同士を溶接する、いわゆる平継手の例を用いて本発明を説明しているが、建築構造物の柱スキンと梁フランジ等を溶接する、いわゆるT字継手や、鋼管同士を接合する継手等、レ形又はV形の開先を有する溶接継手全てに本発明の溶接継手構造が、適用可能な事は明らかである。   In addition, in FIG. 1, although this invention is demonstrated using the example of what is called a flat joint which welds the end surfaces of a steel plate, what is called a T-shaped joint which welds the column skin of a building structure, a beam flange, etc., It is obvious that the welded joint structure of the present invention can be applied to all welded joints having a L-shaped or V-shaped groove, such as joints for joining steel pipes.

なお、上述のFEMの数値解析においては、裏当金9を無視して解析を行っているが、ルート5側の軟質溶接部6の溶接時に、裏当金9が溶融して溶接金属3内に混入して溶接金属3を希釈するので、裏当金9が軟質溶接部6の強度と同等以上の強度の材料からなることが好ましい。
また、この実施の形態の軟質溶接材および等質溶接材は、母材(鋼材)に対応するとともに強度に対応した周知のものを用いることができる。
In the above FEM numerical analysis, the backing metal 9 is ignored and the analysis is performed. However, when the soft weld 6 on the route 5 side is welded, the backing metal 9 is melted and the inside of the weld metal 3 is melted. Therefore, the backing metal 9 is preferably made of a material having a strength equal to or higher than the strength of the soft weld 6.
In addition, as the soft welding material and the homogeneous welding material of this embodiment, known materials corresponding to the base material (steel material) and corresponding to the strength can be used.

1 母材(鋼材)
2 開先
3 溶接金属
5 ルート
6 軟質溶接部
7 等質溶接部
θ 開先角度
W 開先幅
to 母材板厚
tw 軟質溶接部の厚さ
1 Base material (steel)
2 Groove 3 Weld metal 5 Route 6 Soft weld 7 Homogeneous weld θ Groove angle W Groove width to base metal plate thickness tw Soft weld thickness

Claims (1)

鋼材同士を接続する鋼材の溶接継手の構造であって
開先の形状がレ型またはV型で、前記開先内の溶接金属が複数層からなる溶接工法により施工され、
接続される母材の強度が780N/mm以上の強度を有し、
前記母材を接続するルート側の前記溶接金属の初層を含む複数層からなる軟質溶接部の強度が、490N/mm以上で、かつ、前記母材の強度より低く、
前記軟質溶接部にさらにビードが複数層重ねられて、前記母材と同等以上の強度を有する等質溶接部が形成され、前記軟質溶接部は二つの母材と前記等質溶接部に拘束され、
前記母材の板厚to、前記軟質溶接部の厚さtw、前記開先の開先幅W、および前記開先の開先角度θで表される形状と、母材強度σoおよびルート側の前記軟質溶接部の強度σsから(1)式により表されるパラメータβが0.15以下であることを特徴とする鋼材の溶接継手構造。
Figure 0005708331
It is a structure of a steel welded joint that connects steel materials ,
The shape of the groove is a L shape or V shape, and the weld metal in the groove is constructed by a welding method consisting of a plurality of layers,
The strength of the base material to be connected has a strength of 780 N / mm 2 or more,
The strength of the soft weld consisting of a plurality of layers including the first layer of the weld metal on the root side connecting the base material is 490 N / mm 2 or more and lower than the strength of the base material,
Further, a plurality of beads are stacked on the soft weld to form a homogeneous weld having a strength equal to or higher than that of the base material, and the soft weld is constrained by two base materials and the homogeneous weld. ,
The shape expressed by the thickness to of the base material, the thickness tw of the soft weld, the groove width W of the groove, and the groove angle θ of the groove, the base material strength σo, and the root side A weld joint structure for steel, wherein a parameter β represented by the formula (1) is 0.15 or less from the strength σs of the soft weld.
Figure 0005708331
JP2011157041A 2011-07-15 2011-07-15 Steel welded joint structure Expired - Fee Related JP5708331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157041A JP5708331B2 (en) 2011-07-15 2011-07-15 Steel welded joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157041A JP5708331B2 (en) 2011-07-15 2011-07-15 Steel welded joint structure

Publications (2)

Publication Number Publication Date
JP2013022599A JP2013022599A (en) 2013-02-04
JP5708331B2 true JP5708331B2 (en) 2015-04-30

Family

ID=47781537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157041A Expired - Fee Related JP5708331B2 (en) 2011-07-15 2011-07-15 Steel welded joint structure

Country Status (1)

Country Link
JP (1) JP5708331B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098406B2 (en) * 2013-07-17 2017-03-22 Jfeスチール株式会社 Welded joint and welded joint method
JP6319027B2 (en) * 2013-10-03 2018-05-09 新日鐵住金株式会社 Welded joint, method for producing welded joint
JP6453109B2 (en) * 2015-02-26 2019-01-16 新日鐵住金株式会社 Through-diaphragm welded joint structure and method for manufacturing through-diaphragm welded joint structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524739A (en) * 1978-08-11 1980-02-22 Hitachi Ltd Steel welding method
JPS5922626B2 (en) * 1979-07-02 1984-05-28 株式会社日立製作所 Welding method for low alloy high tensile strength steel
JP3820493B2 (en) * 1998-03-27 2006-09-13 株式会社竹中工務店 Welding method for steel structures
JP2001001148A (en) * 1999-04-21 2001-01-09 Kawasaki Steel Corp GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS

Also Published As

Publication number Publication date
JP2013022599A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Palanivel et al. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys
TWI748660B (en) Double-sided friction stir welding method, cold rolled steel strip and plated steel strip manufacturing method, double-sided friction stir welding device, cold rolled steel strip and plated steel strip manufacturing equipment
Martin et al. Novel techniques for corner joints using friction stir welding
JP6322306B2 (en) Method for manufacturing aluminum structural member
JP2008307561A (en) Weld joint and steel plate deck, and manufacturing method of steel plate deck
JP5708331B2 (en) Steel welded joint structure
JP2009018312A (en) Friction stir welding device and method of manufacturing different thickness tailored blank material of different kinds of metals utilizing friction stir welding device
KR20150119349A (en) Spot welded joint
JP2015136705A (en) Laser weld fitting of high strength steel sheet and manufacturing method thereof
JP7127129B2 (en) Welded steel parts used as automobile parts and method for manufacturing said welded steel parts
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
Miriyev et al. Steel to titanium solid state joining displaying superior mechanical properties
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP5024980B2 (en) Stainless steel spiral screw manufacturing method
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JP2013180327A (en) Groove part for corner welding of welding-assembled four face box-shaped cross-sectional member
CN104818441A (en) Biaxial bending deformation device and processing method for processing welded joint
JP2019166526A (en) Clad thick steel plate with excellent fatigue characteristic and method for manufacturing the same
JP6319027B2 (en) Welded joint, method for producing welded joint
WO2017090400A1 (en) Steel h-beam joint structure and steel h-beam joining method
CN204625753U (en) The compound bending deformation device of process welding joint
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
KR102428483B1 (en) Projection welding bolt
WO2021182516A1 (en) Method for manufacturing welded structure
KR102046957B1 (en) High Efficient Welded Joint Having Excellent Brittle Crack Propagation Stopping Performance and Method for Manufacturing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5708331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees