JP5705453B2 - Refrigerant charging method for air conditioner - Google Patents

Refrigerant charging method for air conditioner Download PDF

Info

Publication number
JP5705453B2
JP5705453B2 JP2010097957A JP2010097957A JP5705453B2 JP 5705453 B2 JP5705453 B2 JP 5705453B2 JP 2010097957 A JP2010097957 A JP 2010097957A JP 2010097957 A JP2010097957 A JP 2010097957A JP 5705453 B2 JP5705453 B2 JP 5705453B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
amount
air conditioner
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010097957A
Other languages
Japanese (ja)
Other versions
JP2011226715A (en
Inventor
隆博 加藤
隆博 加藤
篤 塩谷
篤 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010097957A priority Critical patent/JP5705453B2/en
Priority to PCT/JP2011/059061 priority patent/WO2011132564A1/en
Priority to CN201180004616.0A priority patent/CN102695930B/en
Priority to EP11771899.9A priority patent/EP2562493B1/en
Publication of JP2011226715A publication Critical patent/JP2011226715A/en
Application granted granted Critical
Publication of JP5705453B2 publication Critical patent/JP5705453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置の冷媒回路に対して、最適量の冷媒を精度よくかつ迅速に追加充填することができる空気調和装置の冷媒充填方法に関するものである。   The present invention relates to a refrigerant charging method for an air conditioner that can accurately and quickly add an optimum amount of refrigerant to the refrigerant circuit of the air conditioner.

ビル等の空調に用いられるマルチタイプの空気調和装置は、1台の室外機に対して室内機が複数台接続された構成とされている。このような空気調和装置では、室外機と複数台の室内機との間を接続する冷媒配管(渡り配管)の長さが、現場毎に、あるいは接続する室内機の台数に応じて変わるため、現場において渡り配管の仕様、すなわち配管長および配管径に応じた量の冷媒を追加充填する必要がある。現場での冷媒の追加充填は、渡り配管の配管長および配管径に基づいて規定の冷媒量を計算により求め、その規定量の冷媒を追加充填するのが通常である。   A multi-type air conditioner used for air conditioning of a building or the like has a configuration in which a plurality of indoor units are connected to one outdoor unit. In such an air conditioner, since the length of the refrigerant pipe (crossover pipe) connecting between the outdoor unit and the plurality of indoor units varies depending on the site or the number of connected indoor units, It is necessary to additionally fill the refrigerant in an amount corresponding to the specifications of the transition pipe, that is, the pipe length and the pipe diameter at the site. In the field, additional charging of the refrigerant is usually performed by calculating a specified amount of refrigerant based on the pipe length and the pipe diameter of the transition pipe, and additionally charging the specified amount of refrigerant.

このように、追加充填する冷媒の量は、現場で渡り配管の仕様に基づいて計算し、算出する方法が一般的である。従って、空気調和装置を新たに設置する現場では、渡り配管の仕様を詳細に把握できることから、そのデータに基づいて人的または機械的に規定の冷媒量を容易にかつ正確に計算することができる。しかし、既設の空気調和装置の室外機および室内機を更新し、渡り配管をそのまま再利用して空気調和装置をリニューアルする現場においては、渡り配管の仕様が不明な場合があり、追加充填する冷媒量を正確に計算することができない場合があった。   As described above, the amount of refrigerant to be additionally charged is generally calculated on the site based on the specifications of the crossover piping and is generally calculated. Therefore, at the site where a new air conditioner is newly installed, the specifications of the transition pipe can be grasped in detail, so that the specified refrigerant amount can be easily and accurately calculated based on the data. . However, at the site where the outdoor unit and the indoor unit of the existing air conditioner are renewed and the crossover piping is reused as it is to renew the air conditioner, the specifications of the crossover piping may not be known. In some cases, the amount could not be calculated accurately.

そこで、冷媒回路内に規定量の冷媒を自動的に充填することができる冷媒自動充填機能を備えた空気調和装置や、渡り配管に関する情報を入力する手間を減らしつつ、冷媒回路内に冷媒を自動的に充填し、その冷媒量の適否を高精度に判定できるようにした空気調和装置が提供されている(例えば、特許文献1−3参照)。   Therefore, an air conditioner equipped with an automatic refrigerant filling function that can automatically fill a specified amount of refrigerant in the refrigerant circuit, and the time required to input information related to the transition pipe, while automatically reducing the refrigerant in the refrigerant circuit. There is provided an air conditioner that can be charged in an accurate manner so that the suitability of the refrigerant amount can be determined with high accuracy (see, for example, Patent Documents 1-3).

特開2002−350014号公報JP 2002-350014 A 特許第3719246号公報Japanese Patent No. 3719246 特開2007−292429号公報JP 2007-292429 A

しかしながら、上記の如く、冷媒自動充填機能を備えた空気調和装置であっても、渡り配管の仕様(配管長および配管径)が不明であった場合、本来追加充填すべき渡り配管相当分の冷媒に対しては、ゼロからの充填となってしまう。このため、規定量の冷媒を充填するのに要する時間が長くなるという課題があった。これは、冷媒自動充填機能を使った場合の冷媒充填スピードが遅いことによるものであり、空気調和装置の据え付け作業時間が長引く要因の一つともなっていた。   However, as described above, even in an air conditioner equipped with an automatic refrigerant filling function, if the specifications of the transition pipe (pipe length and pipe diameter) are unknown, the refrigerant corresponding to the transition pipe that should be additionally charged For, filling from zero. For this reason, there existed a subject that time required to fill with the specified amount of refrigerant became long. This is due to the fact that the refrigerant filling speed is slow when the automatic refrigerant filling function is used, and this has been one of the factors that prolongs the installation time of the air conditioner.

本発明は、このような事情に鑑みてなされたものであって、冷媒回路に対して最適量の冷媒を精度よくかつ迅速に追加充填することができる空気調和装置の冷媒充填方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a refrigerant filling method for an air conditioner capable of accurately and quickly additionally filling an optimum amount of refrigerant into a refrigerant circuit. With the goal.

上記した課題を解決するために、本発明の空気調和装置の冷媒充填方法は、以下の手段を採用する。
すなわち、本発明にかかる空気調和装置の冷媒充填方法は、室外機と複数台の室内機とが冷媒配管を介して接続されている閉サイクルの冷媒回路に規定量の冷媒を充填する空気調和装置の冷媒充填方法において、前記室外機と建屋の各階に設置される複数台の前記室内機との間を接続する冷媒配管の配管長とその配管径を確実に実測もしくは想定できる範囲内で特定し、該配管長および配管径に基づいて当該空気調和装置で最低限必要な冷媒量を算出し、前記最低限必要な冷媒量の冷媒を前記冷媒回路に追加充填した後、冷媒自動充填機能を用いて、前記冷媒回路に冷媒を自動充填しながら冷媒が前記冷媒回路に規定量充填されたかどうかを検知し、前記規定量に達するまで冷媒を冷媒回路に自動充填し、前記規定量に達するまで冷媒を前記冷媒回路に自動充填するスピードは、前記最低限必要な冷媒量の冷媒を前記冷媒回路に充填するスピードより遅いことを特徴とする。
In order to solve the above-described problems, the refrigerant filling method for an air conditioner according to the present invention employs the following means.
That is, the refrigerant filling method for an air conditioner according to the present invention is an air conditioner that fills a closed cycle refrigerant circuit in which an outdoor unit and a plurality of indoor units are connected via a refrigerant pipe with a specified amount of refrigerant. In the refrigerant charging method, the pipe length of the refrigerant pipe connecting between the outdoor unit and the plurality of indoor units installed on each floor of the building and the pipe diameter are specified within a range that can be reliably measured or assumed. Then, after calculating the minimum amount of refrigerant in the air conditioner based on the pipe length and pipe diameter, and additionally charging the refrigerant circuit with the minimum amount of refrigerant, the automatic refrigerant filling function is used. The refrigerant circuit is automatically filled with the refrigerant to detect whether or not the refrigerant circuit has been charged to the specified amount, and the refrigerant circuit is automatically charged until the specified amount is reached. The above Speed automatic charging the medium circuit is characterized by slower than the speed of filling the minimum required refrigerant amount of the refrigerant in the refrigerant circuit.

本発明によれば、室外機と建屋の各階に設置される複数台の室内機との間を接続する冷媒配管の仕様が不明であっても、その配管長および配管径を確実に実測もしくは想定できる範囲内で特定することにより、それに基づいて最低限必要な冷媒量を算出し、予めその冷媒量を追加充填した後、冷媒自動充填機能を用いて規定の充填量に達するまで冷媒を自動充填するようにしているため、最終的に充填する必要がある規定量の冷媒を過不足なく正確に充填することができる。従って、最適量の冷媒を精度よく充填でき、空気調和装置を安定的に運転することができる。また、本来追加充填すべき冷媒量をゼロから自動充填する必要がなくなるため、冷媒充填に要する時間を短くし、据え付け作業時間の短縮化とその容易化を図ることができる。   According to the present invention, even if the specifications of the refrigerant pipe connecting between the outdoor unit and a plurality of indoor units installed on each floor of the building are unknown, the pipe length and pipe diameter are reliably measured or assumed. By specifying within the possible range, the minimum amount of refrigerant is calculated based on that, and after the amount of refrigerant is added in advance, the refrigerant is automatically charged until the specified amount is reached using the automatic refrigerant filling function. Therefore, the specified amount of refrigerant that needs to be finally filled can be accurately filled without excess or deficiency. Therefore, the optimum amount of refrigerant can be charged with high accuracy, and the air conditioner can be stably operated. In addition, since it is not necessary to automatically fill the amount of refrigerant that should be additionally charged from zero, the time required for filling the refrigerant can be shortened, and the installation work time can be shortened and facilitated.

さらに、本発明の空気調和装置の冷媒充填方法は、上記の空気調和装置の冷媒充填方法において、前記最低限必要な冷媒量を、少なくとも前記室外機の設置位置から建屋の各階に沿う縦配管位置までの冷媒配管の横配管長とその配管径、前記冷媒配管の建屋の各階の分岐部位置までの縦配管長とその配管径、および前記各階に設置されている複数台の前記室内機のうち、各階の前記縦配管位置から最も遠方に配置されている前記室内機までの間を直線で結んだ分岐配管長とその配管径に基づいて算出することを特徴とする。   Furthermore, the refrigerant filling method for an air conditioning apparatus according to the present invention is the above-described refrigerant filling method for an air conditioning apparatus, wherein the minimum required refrigerant amount is at least a vertical piping position along each floor of the building from the installation position of the outdoor unit. The horizontal pipe length and the pipe diameter of the refrigerant pipe up to, the vertical pipe length and the pipe diameter to the branching position of each floor of the refrigerant pipe building, and the plurality of indoor units installed on each floor The calculation is based on the length of the branch pipe and the pipe diameter connecting the straight line from the vertical pipe position on each floor to the indoor unit arranged farthest.

本発明によれば、最低限必要な冷媒量を、室外機の設置位置から建屋の各階に沿う縦配管位置までの冷媒配管の横配管長とその配管径、冷媒配管の建屋の各階の分岐部位置までの縦配管長とその配管径、および各階に設置されている複数台の室内機のうち、各階の縦配管位置から最も遠方に配置されている室内機までの間を直線で結んだ分岐配管長とその配管径に基づいて算出するようにしているため、室外機と建屋の各階に設置される複数台の室内機との間を接続する冷媒配管の詳細仕様が不明にあっても、確実に実測もしくは想定できる配管長とその配管径に基づいて、本来追加充填すべき冷媒量を超えない範囲の最低限必要な冷媒量を算出し、その冷媒を予め追加充填することができる。つまり、室外機に接続される横配管(主管)の長さおよび径は、確実に実測可能であり、また、建屋の各階に沿う縦配管の長さおよび最初の分岐部位置まで配管径は、実際の配管長が不明または実測不可であっても建屋の階高と横配管の径から想定可能であり、更に、各階に配置されている複数台の室内機に接続される分岐配管の長さおよび径は、実際の配管長が不明または実測不可であっても各階の縦配管位置から最も遠方に配置されている室内機までの間を直線で結んだ距離とその分岐配管径から想定可能である。従って、これらの配管長および配管径に基づいて冷媒量を算出することにより、本来追加充填すべき冷媒量を超えない範囲において、最低限必要な冷媒量を確実に算出することができる。   According to the present invention, the minimum required refrigerant amount is determined by dividing the horizontal pipe length and diameter of the refrigerant pipe from the installation position of the outdoor unit to the vertical pipe position along each floor of the building, and the branching portion of each floor of the refrigerant pipe building. The length of the vertical pipe to the position and its pipe diameter, and among the multiple indoor units installed on each floor, a branch that connects the straight line to the indoor unit located farthest from the vertical pipe position on each floor Because it is calculated based on the pipe length and its pipe diameter, even if the detailed specifications of the refrigerant pipe connecting between the outdoor unit and multiple indoor units installed on each floor of the building are unknown, Based on the pipe length and the pipe diameter that can be reliably measured or assumed, the minimum necessary refrigerant amount within a range that does not exceed the refrigerant amount that should be additionally charged can be calculated, and the refrigerant can be additionally charged in advance. That is, the length and diameter of the horizontal pipe (main pipe) connected to the outdoor unit can be measured with certainty, and the length of the vertical pipe along each floor of the building and the pipe diameter up to the first branch position are Even if the actual pipe length is unknown or cannot be measured, it can be assumed from the floor height of the building and the diameter of the horizontal pipe, and the length of the branch pipe connected to multiple indoor units arranged on each floor Even if the actual pipe length is unknown or cannot be measured, it can be estimated from the distance between the vertical pipe position on each floor to the farthest indoor unit and the branch pipe diameter. is there. Therefore, by calculating the refrigerant amount based on these pipe lengths and pipe diameters, it is possible to reliably calculate the minimum necessary refrigerant quantity within a range that does not exceed the refrigerant quantity that should be additionally charged.

さらに、本発明の空気調和装置の冷媒充填方法は、上記の空気調和装置の冷媒充填方法において、前記横配管の配管径および前記縦配管の最初の分岐部位置までの配管径を、前記室外機の機種もしくはその直近の冷媒配管の実測値から求めた径として前記冷媒量を算出することを特徴とする。   Furthermore, the refrigerant filling method for an air conditioner according to the present invention is the above-described refrigerant filling method for an air conditioner, wherein the pipe diameter of the horizontal pipe and the pipe diameter to the first branch position of the vertical pipe are set as the outdoor unit. The amount of the refrigerant is calculated as a diameter obtained from an actually measured value of the model or the latest refrigerant pipe.

本発明によれば、横配管の配管径および縦配管の最初の分岐部位置までの配管径を、室外機の機種もしくはその直近の冷媒配管の実測値から求めた径として冷媒量を算出するようにしているため、横配管および縦配管の最初の分岐部位置までの配管の配管径が例え不明にあっても、この横配管および縦配管はいわゆる主管であり、室外機直近の冷媒配管がそのまま延長されていると確実に想定することができる。従って、室外機の機種もしくはその直近の冷媒配管の実測値から求めた配管径を該横配管および縦配管の配管径とすることによって、最低限必要な冷媒量を精度よく算出することができる。   According to the present invention, the refrigerant amount is calculated by using the pipe diameter of the horizontal pipe and the pipe diameter up to the first branch position of the vertical pipe as the diameter obtained from the measured value of the outdoor unit model or the nearest refrigerant pipe. Therefore, even if the pipe diameter of the pipe up to the position of the first branch of the horizontal pipe and the vertical pipe is unknown, the horizontal pipe and the vertical pipe are so-called main pipes, and the refrigerant pipe closest to the outdoor unit remains as it is. It can be reliably assumed that it has been extended. Therefore, the minimum required refrigerant amount can be accurately calculated by using the pipe diameter obtained from the measured value of the model of the outdoor unit or the nearest refrigerant pipe as the pipe diameter of the horizontal pipe and the vertical pipe.

さらに、本発明の空気調和装置の冷媒充填方法は、上述のいずれかの空気調和装置の冷媒充填方法において、前記分岐配管の配管径および/または前記縦配管の最初の分岐部以降の配管径を、それぞれ前記縦配管から最も遠方に配置されている前記室内機の機種もしくはその直近の冷媒配管の実測値から求めた径として前記冷媒量を算出することを特徴とする。   Furthermore, the refrigerant filling method for an air conditioner according to the present invention is the refrigerant filling method for any one of the above air conditioners, wherein the pipe diameter of the branch pipe and / or the pipe diameter after the first branch portion of the vertical pipe is set. The refrigerant amount is calculated as a diameter obtained from an actually measured value of the model of the indoor unit arranged farthest from the vertical pipe or the refrigerant pipe nearest to the model.

本発明によれば、分岐配管の配管径および/または縦配管の最初の分岐部以降の配管径を、それぞれ縦配管から最も遠方に配置されている室内機の機種もしくはその直近の冷媒配管の実測値から求めた径として冷媒量を算出するようにしているため、各階に配設されている分岐配管および/または縦配管の最初の分岐部以降の配管の配管径が例え不明にあっても、該分岐配管および/または縦配管の配管径を、少なくとも縦配管から最も遠方の室内機の機種もしくはその室内機に接続されている冷媒配管の配管径と確実に想定することができる。従って、最遠方に配置されている室内機の機種もしくはその直近の冷媒配管の実測値から求めた配管径を分岐配管および/または最初の分岐部以降の縦配管の配管径とすることによって、最低限必要な冷媒量を精度よく算出することができる。   According to the present invention, the pipe diameter of the branch pipe and / or the pipe diameter after the first branch portion of the vertical pipe are respectively measured for the model of the indoor unit arranged farthest from the vertical pipe or the refrigerant pipe nearest to it. Since the refrigerant amount is calculated as the diameter obtained from the value, even if the pipe diameter of the branch pipe and / or the pipe after the first branch part of the vertical pipe arranged on each floor is unknown, The pipe diameter of the branch pipe and / or the vertical pipe can be reliably assumed to be at least the model of the indoor unit farthest from the vertical pipe or the pipe diameter of the refrigerant pipe connected to the indoor unit. Therefore, the pipe diameter obtained from the measured value of the model of the indoor unit located at the farthest or the nearest refrigerant pipe is set as the pipe diameter of the branch pipe and / or the vertical pipe after the first branch section. The required amount of refrigerant can be accurately calculated.

さらに、本発明にかかる空気調和装置の冷媒充填方法は、既設の空気調和装置の前記室外機および前記室内機を更新し、既設の冷媒配管を再利用して更新した前記室外機および前記室内機を接続することにより空気調和装置をリニューアルする際、上述のいずれかの方法を用いて冷媒を充填することを特徴とする。   Furthermore, the refrigerant filling method of the air conditioner according to the present invention includes the outdoor unit and the indoor unit updated by renewing the outdoor unit and the indoor unit of the existing air conditioner and reusing the existing refrigerant pipe. When the air conditioner is renewed by connecting the refrigerant, the refrigerant is filled using any one of the methods described above.

本発明によれば、既設の空気調和装置の室外機および室内機を更新し、既設の冷媒配管を再利用して更新した室外機および室内機を接続することにより空気調和装置をリニューアルする際、上述のいずれかの方法を用いて冷媒を充填するようにしているため、例え既設の冷媒配管の詳細仕様が不明であったとしても、その配管長と配管径を正確に実測もしくは想定できる範囲内で特定し、それに基づいて最低限必要な冷媒量を算出することによって、予めその冷媒量を追加充填した後、冷媒自動充填機能を用いて規定の充填量に達するまで冷媒を自動充填することができる。従って、既設の冷媒配管を再利用してリニューアルする空気調和装置に対しても、規定量の冷媒を過不足なく確実にかつ迅速に充填することができる。   According to the present invention, when an outdoor unit and an indoor unit of an existing air conditioner are updated, and the air conditioner is renewed by connecting the updated outdoor unit and the indoor unit by reusing an existing refrigerant pipe, Since any one of the above-mentioned methods is used to fill the refrigerant, even if the detailed specifications of the existing refrigerant pipe are unknown, the pipe length and pipe diameter are within the range that can be measured or assumed accurately. In this way, the minimum required amount of refrigerant is calculated based on this, and after the refrigerant amount is additionally filled in advance, the refrigerant is automatically charged until the specified filling amount is reached using the automatic refrigerant filling function. it can. Therefore, the specified amount of refrigerant can be reliably and quickly charged without excess or deficiency even in an air conditioner that renews by reusing existing refrigerant piping.

本発明によると、確実に実測もしくは想定可能な範囲内で特定した冷媒配管長および配管径に基づいて最低限必要な冷媒量を算出し、予めその冷媒量を追加充填した後、冷媒自動充填機能を用いて規定量の冷媒を自動充填するようにしているため、規定量の冷媒を過不足なく正確に充填できる。従って、最適量の冷媒を精度よく充填でき、空気調和装置を安定的に運転することができる。また、本来追加充填すべき冷媒量をゼロから自動充填する必要がなくなるため、冷媒充填に要する時間を短くし、据え付け作業時間の短縮化とその容易化を図ることができる。   According to the present invention, the minimum refrigerant quantity required is calculated based on the refrigerant pipe length and pipe diameter specified within the range that can be actually measured or assumed, and after the refrigerant quantity is additionally charged in advance, the automatic refrigerant filling function Since a specified amount of refrigerant is automatically charged using the, a specified amount of refrigerant can be charged accurately without excess or deficiency. Therefore, the optimum amount of refrigerant can be charged with high accuracy, and the air conditioner can be stably operated. In addition, since it is not necessary to automatically fill the amount of refrigerant that should be additionally charged from zero, the time required for filling the refrigerant can be shortened, and the installation work time can be shortened and facilitated.

本発明の実施形態に係る冷媒充填方法を適用する空気調和装置の設置形態例と冷媒配管の配管長および配管径の想定方法の概念を示す概略斜視図である。It is a schematic perspective view which shows the concept of the installation form example of the air conditioning apparatus which applies the refrigerant | coolant filling method which concerns on embodiment of this invention, and the assumption method of the pipe length and pipe diameter of refrigerant | coolant piping. 図1に示す空気調和装置の各階における分岐配管の配管長を想定する方法の概念図である。It is a conceptual diagram of the method of assuming the piping length of the branch piping in each floor of the air conditioning apparatus shown in FIG. 本発明の実施形態に係る冷媒充填方法を適用する際の判断要領のフロー図である。It is a flowchart of the judgment point at the time of applying the refrigerant filling method concerning the embodiment of the present invention. 本発明の実施形態に係る冷媒充填方法に適用する冷媒自動充填機能付き空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device with a refrigerant automatic filling function applied to the refrigerant filling method concerning the embodiment of the present invention.

以下に、本発明にかかる一実施形態について、図1ないし図4を参照して説明する。
図1には、本発明の一実施形態に係る冷媒充填方法を適用する空気調和装置の設置形態例と冷媒配管の配管長および配管径の想定方法の概念を示す概略斜視図が示されている。
本実施形態の空気調和装置1として、ビル用マルチタイプの空気調和装置1が示されている。この空気調和装置1は、ビル(建屋)40の屋上に設置された1台の室外機10に対して、1階および2階の天井に設置された各3台の室内機11ないし13および室内機14ないし16が冷媒配管(ガス側配管および液側配管)2を介して接続され、1系統の閉サイクルの冷媒回路3を形成した構成とされている。
An embodiment according to the present invention will be described below with reference to FIGS.
FIG. 1 is a schematic perspective view showing a concept of an installation mode example of an air conditioner to which a refrigerant filling method according to an embodiment of the present invention is applied and a method for assuming a pipe length and a pipe diameter of a refrigerant pipe. .
As the air conditioner 1 of this embodiment, a multi-type air conditioner 1 for buildings is shown. This air conditioner 1 has three indoor units 11 to 13 and three indoor units installed on the ceilings of the first and second floors with respect to one outdoor unit 10 installed on the roof of a building (building) 40. The machines 14 to 16 are connected via a refrigerant pipe (gas side pipe and liquid side pipe) 2 to form a closed cycle refrigerant circuit 3 of one system.

この冷媒回路3を構成する冷媒配管(渡り配管)2の仕様(ガス側配管/液側配管の配管径φ(mm)および配管長(m))は、例えば、図1に示されるように、ビル40等の屋上に設置されている室外機10から屋上に沿って横方向に延長された横配管2Aが、φ28.58mm/φ12.7mm×10m、横配管2Aからビル40の階高方向に2階の天井部まで延長された縦配管2Bが、φ28.58mm/φ12.7mm×20m、縦配管2Bから2階天井部に設置されている室内機11ないし13側に分岐された分岐配管2Cが、φ19.05mm/φ9.52mm×2m、分岐配管2Cから延長された分岐配管2Dが、φ15.88mm/φ9.52mm×4m、分岐配管2Cの先端から室内機13まで延長された分岐配管2Eが、φ12.7mm/φ6.35mm×2m、分岐配管2Dの先端から室内機12まで延長された分岐配管2Fが、φ12.7mm/φ6.35mm×2m、分岐配管2Dの先端から室内機11まで延長された分岐配管2Gが、φ12.7mm/φ6.35mm×8mとされている。   The specifications of the refrigerant pipe (crossover pipe) 2 constituting the refrigerant circuit 3 (the pipe diameter φ (mm) and the pipe length (m) of the gas side pipe / liquid side pipe) are, for example, as shown in FIG. A horizontal pipe 2A extending laterally along the roof from the outdoor unit 10 installed on the roof of the building 40 or the like is φ28.58 mm / φ12.7 mm × 10 m, and from the horizontal pipe 2A to the floor height direction of the building 40. The vertical pipe 2B extended to the ceiling part of the second floor is φ28.58 mm / φ12.7 mm × 20 m, and the branch pipe 2C branched from the vertical pipe 2B to the indoor units 11 to 13 installed on the second floor ceiling part. However, φ19.05 mm / φ9.52 mm × 2 m, branch pipe 2D extended from branch pipe 2C is φ15.88 mm / φ9.52 mm × 4 m, branch pipe 2E extended from the end of branch pipe 2C to indoor unit 13 Is φ12. 7mm / φ6.35mm × 2m, branch pipe 2F extended from the tip of the branch pipe 2D to the indoor unit 12 is φ12.7mm / φ6.35mm × 2m, branch extended from the tip of the branch pipe 2D to the indoor unit 11 The piping 2G is set to φ12.7 mm / φ6.35 mm × 8 m.

また、縦配管2Bからビル40の階高方向に1階天井部まで延長された縦配管2Hは、φ19.05mm/φ9.52mm×4mとされ、更に、1階天井部に設置されている室内機14ないし16側に分岐された分岐配管2I,2J,2K,2Lおよび2Mは、それぞれ上記分岐配管2C,2D,2E,2Fおよび2Gと同様、分岐配管2Iが、φ19.05mm/φ9.52mm×2m、分岐配管2Jが、φ15.88mm/φ9.52mm×4m、分岐配管2Kが、φ12.7mm/φ6.35mm×2m、分岐配管2Lが、φ12.7mm/φ6.35mm×2m、分岐配管2Mが、φ12.7mm/φ6.35mm×8mとされている。   Further, the vertical pipe 2H extended from the vertical pipe 2B to the first floor ceiling in the height direction of the building 40 is φ19.05 mm / φ9.52 mm × 4 m, and is further installed in the first floor ceiling. The branch pipes 2I, 2J, 2K, 2L and 2M branched to the machines 14 to 16 are the same as the above-described branch pipes 2C, 2D, 2E, 2F and 2G, and the branch pipe 2I is φ19.05 mm / φ9.52 mm. × 2m, branch piping 2J is φ15.88mm / φ9.52mm × 4m, branch piping 2K is φ12.7mm / φ6.35mm × 2m, branch piping 2L is φ12.7mm / φ6.35mm × 2m, branch piping 2M is set to φ12.7 mm / φ6.35 mm × 8 m.

上記空気調和装置1の場合、本来であれば、冷媒配管(渡り配管)2の相当分として追加充填すべき冷媒量は、冷媒配管2(ここでの冷媒配管2は、追加冷媒量を決める液側配管を意味する)の配管仕様(配管径および配管長)に基づいて計算する必要がある。この空気調和装置1では、各液側配管の配管径毎の長さは、以下となる。
φ12.7mmの液側配管長=配管2A:10m+配管2B:20m=30m
φ9.52mmの液側配管長=配管2C:2m+配管2D:4m+配管2H:4m+配管2I:2m+配管2J:4m=16m
φ6.35mmの液側配管長=配管2E:2m+配管2F:2m+配管2G:8m+配管2K:2m+配管2L:2m+配管2M:8m=24m
In the case of the air conditioning apparatus 1, the amount of refrigerant to be additionally charged as the equivalent of the refrigerant pipe (crossover pipe) 2 is originally the refrigerant pipe 2 (the refrigerant pipe 2 here is a liquid that determines the amount of additional refrigerant. It is necessary to calculate based on piping specifications (pipe diameter and length). In this air conditioning apparatus 1, the length for each pipe diameter of each liquid side pipe is as follows.
φ12.7mm liquid side piping length = piping 2A: 10m + piping 2B: 20m = 30m
φ9.52 mm liquid side piping length = piping 2C: 2m + piping 2D: 4m + piping 2H: 4m + piping 2I: 2m + piping 2J: 4m = 16m
φ6.35mm liquid side pipe length = Pipe 2E: 2m + Pipe 2F: 2m + Pipe 2G: 8m + Pipe 2K: 2m + Pipe 2L: 2m + Pipe 2M: 8m = 24m

これによって、本来追加充填すべき冷媒量(kg)は、配管径毎の長さ1m当りの追加冷媒量を、例えば下記として計算すると、
追加冷媒量=0.12kg×30m+0.059kg×16m+0.022kg×24m=5.072kg
となる。なお、上記した配管径毎の長さ1m当りの追加冷媒量は、あくまでも一例であって、メーカー毎に微妙に異なっている。
Accordingly, the amount of refrigerant (kg) that should be additionally charged is calculated by calculating the amount of additional refrigerant per 1 m length of each pipe diameter as follows, for example:
Additional refrigerant amount = 0.12 kg x 30 m + 0.059 kg x 16 m + 0.022 kg x 24 m = 5.072 kg
It becomes. Note that the amount of additional refrigerant per 1 m length for each pipe diameter is merely an example, and is slightly different for each manufacturer.

しかして、室外機10および室内機11ないし16を新たな機種に更新し、既設の冷媒配管(渡り配管)2を再利用して空気調和装置1をリニューアルする場合があり、このような場合、冷媒配管(渡り配管)2の配管仕様を記録したデータが失われ、配管仕様が全く判らないことが間々ある。昨今の空気調和装置1では、冷媒自動充填機能付きのものが多く、冷媒を自動充填により追加充填することが考えられるが、本来充填すべき渡り配管分の冷媒量に対してゼロから充填すると、冷媒自動充填機能を使った場合の充填スピードが遅いことから、冷媒の充填に時間がかかり過ぎるという難点があった。   Accordingly, the outdoor unit 10 and the indoor units 11 to 16 may be updated to new models, and the air conditioner 1 may be renewed by reusing the existing refrigerant pipe (crossover pipe) 2. Data that records the piping specifications of the refrigerant piping (crossover piping) 2 is lost, and the piping specifications are often unknown. Many of the recent air conditioners 1 have an automatic refrigerant charging function, and it is conceivable to add additional refrigerant by automatic charging. Since the charging speed when using the automatic refrigerant charging function is slow, there is a problem that it takes too much time to charge the refrigerant.

そこで、本実施形態では、以下の要領に従って、冷媒を追加充填するようにしている。
まず、図3に示されるように、ステップS1において、据え付け現場の配管系統図面または配管サイズ・配管長等を入手しているか否かを判断し、YESの場合は、ステップS2に移り、NOの場合は、ステップS3に移る。ステップS3においては、据え付け現場の配管系統図面または配管サイズ・配管長等をすぐ入手できるか否かを判断し、YESの場合は、ステップS4に移り、NOの場合は、ステップS5に移る。
Therefore, in this embodiment, the refrigerant is additionally charged according to the following procedure.
First, as shown in FIG. 3, in step S1, it is determined whether or not a piping system drawing or piping size / pipe length of the installation site is obtained. If YES, the process proceeds to step S2 and NO. If so, the process proceeds to step S3. In step S3, it is determined whether or not the piping system drawing of the installation site or the piping size / pipe length can be obtained immediately. If YES, the process moves to step S4, and if NO, the process moves to step S5.

ステップS2およびS4(図面の入手後)は、配管サイズ・長さ等が完全に想定できる方が対象とされ、それに基づいて追加充填すべき冷媒量を算出し、規定量の冷媒を追加封入(充填)する。一方、ステップS5は、配管サイズ・長さ等が把握できていない、またはできない方が対象とされ、配管サイズ・配管長等を後述の方法によって推定し、それに基づいて最低限必要な冷媒量を計算した後、その冷媒量を追加封入する。ステップS5において最低限必要な冷媒量が充填されると、ステップS6に移行し、後述する空気調和装置1の冷媒自動充填機能を使って規定量まで冷媒を追加充填すべく自動運転を行う。   Steps S2 and S4 (after obtaining the drawing) are targeted for those who can completely assume the pipe size, length, etc., and based on this, the amount of refrigerant to be additionally charged is calculated, and a prescribed amount of refrigerant is additionally sealed ( Filling). On the other hand, step S5 is intended for those who cannot or cannot grasp the pipe size / length, etc., and the pipe size / pipe length, etc. are estimated by the method described later, and based on this, the minimum required refrigerant amount is determined. After the calculation, the refrigerant amount is additionally enclosed. When the minimum necessary amount of refrigerant is charged in step S5, the process proceeds to step S6, and automatic operation is performed to additionally charge the refrigerant to a specified amount using a refrigerant automatic charging function of the air conditioner 1 described later.

上記ステップS2,S4およびS6において、冷媒配管(渡り配管)2の容量に相当する規定量の冷媒が追加充填された後、ステップS7において、冷暖房運転、その他の各種試運転が実行される。そして、試運転により異常のないことが確認されると、据え付け工事・作業が完了され、ステップS8に移行してお客さんに引き渡される。   In steps S2, S4, and S6, after a specified amount of refrigerant corresponding to the capacity of the refrigerant pipe (crossover pipe) 2 is additionally charged, in step S7, an air conditioning operation and other various test operations are performed. Then, when it is confirmed that there is no abnormality by the trial operation, the installation work / work is completed, and the process proceeds to step S8 and delivered to the customer.

ここで、冷媒配管(渡り配管)2の配管径および配管長等の仕様が不明な場合における最低限必要な冷媒量の算出方法について、図1および図2を参照して以下に説明する。
(1)室外機10に接続されている横配管2Aに関する想定
この横配管2Aの配管径は、既設機の機種もしくはその配管を実測することにより主管としての横配管2Aの径を確認することができる。なお、配管の実測は、既設室外機10の直近の配管にて実測することが可能である。また、配管長は、室外機10の設置位置からビル40の階高方向に沿う縦配管2B位置までの距離を実測もしくは想定することによって確認することができる。なお、想定長は、配管が確実に存在する最低限の長さとするため、直線距離にて想定する(以下も同様である)。
Here, the calculation method of the minimum refrigerant | coolant amount when specifications, such as the pipe diameter of the refrigerant | coolant piping (crossover piping) 2 and piping length, are unknown is demonstrated below with reference to FIG. 1 and FIG.
(1) Assumption regarding the horizontal pipe 2A connected to the outdoor unit 10 The pipe diameter of the horizontal pipe 2A can be confirmed by confirming the diameter of the horizontal pipe 2A as the main pipe by actually measuring the model of the existing machine or the pipe. it can. Note that the actual measurement of the piping can be performed with the piping closest to the existing outdoor unit 10. The pipe length can be confirmed by actually measuring or assuming the distance from the installation position of the outdoor unit 10 to the vertical pipe 2B position along the floor height direction of the building 40. Note that the assumed length is assumed to be a straight line distance so that the pipe can be surely present (the same applies to the following).

(2)横配管2Aからビル40の階高方向に延長されている縦配管2Bに関する想定
この縦配管2Bは、横配管2Aと同様の主管であり、その径は、横配管2Aと同様に既設機の機種もしくはその配管を実測することによって確認することができる。また、配管長は、最初の分岐部位置、つまり2階天井部位置までの縦配管長を実測もしくは想定することによって確認することができる。なお、想定長は、ビル40の1階分高さ(実測もしくは目視)×階数分(実測)で想定できる。例えば、1階分高さが3mで、階数が3階分の場合、想定長は、3m×3=9mとなる。
(2) Assumptions about the vertical pipe 2B extending from the horizontal pipe 2A in the height direction of the building 40 The vertical pipe 2B is the same main pipe as the horizontal pipe 2A, and its diameter is the same as that of the horizontal pipe 2A. This can be confirmed by actually measuring the model of the machine or its piping. The pipe length can be confirmed by actually measuring or assuming the length of the vertical pipe up to the first branch position, that is, the second floor ceiling position. The assumed length can be assumed as the height of the first floor of the building 40 (actual measurement or visual observation) × the number of floors (actual measurement). For example, when the height of one floor is 3 m and the number of floors is three floors, the assumed length is 3 m × 3 = 9 m.

(3)各階における分岐配管2Cないし2Mに関する想定
これらの分岐配管2Cないし2Mについては、天井内に配設されており、実際に配管経路を確認することが困難な場合が多い。そこで、確実に存在する最低限の配管長さを想定するため、図2に示されるように、各階における縦配管2B,2Hの位置から、最も遠方に配置されている室内機11,14までの間を直線で結んだ場合の距離を実際に測定するかもしくは想定することにより確認する。また、配管径については、既設室内機11ないし16の機種もしくはその直近の配管径を実測することにより確認することができる。
(3) Assumptions about the branch pipes 2C to 2M on each floor These branch pipes 2C to 2M are arranged in the ceiling, and it is often difficult to actually confirm the pipe route. Therefore, in order to assume the minimum pipe length that exists reliably, as shown in FIG. 2, from the position of the vertical pipes 2B and 2H on each floor to the indoor units 11 and 14 arranged farthest away. Confirm by actually measuring or assuming the distance when connecting the lines with a straight line. In addition, the pipe diameter can be confirmed by actually measuring the model of the existing indoor units 11 to 16 or the pipe diameter nearest to it.

そして、上記(1),(2),(3)により確認した配管長および配管径に基づいて、最低限必要とする冷媒量を計算することができる。図1に示されている例に当て嵌め、最低限必要な冷媒量を計算すると、以下の通りとなる。
φ12.7mmの横配管2A分の冷媒量=10m×0.12=1.2kg
φ12.7mmの縦配管2B分の冷媒量=20m×0.12=2.4kg
φ6.35mmの各階分岐配管2Cないし2M分の冷媒量=12m(実測値)×2(階数分)×0.022=0.528kg
よって、最低限必要な冷媒量は、1.2+2.4+0.528=4.128kgと計算することができる。
And based on the piping length and piping diameter confirmed by said (1), (2), (3), the refrigerant | coolant amount required at the minimum can be calculated. By applying the example shown in FIG. 1 and calculating the minimum amount of refrigerant, the following is obtained.
Refrigerant amount for 2A φ12.7mm horizontal pipe = 10m × 0.12 = 1.2kg
φ12.7mm vertical pipe 2B refrigerant amount = 20m × 0.12 = 2.4kg
Refrigerant amount for 2C or 2M of each 6.65mm floor piping = 12m (actual measured value) x 2 (for number of floors) x 0.022 = 0.528kg
Therefore, the minimum required refrigerant amount can be calculated as 1.2 + 2.4 + 0.528 = 4.128 kg.

なお、上記例では、縦配管2Hについて、配管径が想定し難いことから、冷媒量を計算する際の対象外としているが、この縦配管2Hについて、配管長を1階分高さと想定するとともに、配管径を最も細い分岐配管相当のφ6.35mmと想定することにより、最低限必要な冷媒量の計算に含めてもよいことはもちろんである。   In the above example, since it is difficult to assume the pipe diameter of the vertical pipe 2H, the refrigerant amount is excluded from the calculation target. However, for the vertical pipe 2H, the pipe length is assumed to be one floor high. Of course, by assuming that the pipe diameter is φ6.35 mm corresponding to the thinnest branch pipe, it may be included in the calculation of the minimum necessary refrigerant amount.

以上の如く、上記空気調和装置1において本来追加充填すべき冷媒量は、図1に示されるように、太い実線で表記された部分の冷媒配管(渡り配管)2Aないし2Mに相当する分の5.072kgである。これに対して、配管仕様が不明であっても、図1中に太い破線で示されているように、確実に実測もしくは想定できる範囲の冷媒配管を特定し、その配管仕様に基づいて大まかに最低限必要とする冷媒量を計算することによって、その冷媒4.128kgを自動充填する前に事前に冷媒回路3の追加充填することができる。この最低限必要の冷媒量は、本来追加充填すべき冷媒量の80%を超えており、自動充填するのは残りの20%弱でよいことになる。   As described above, the amount of refrigerant that should be additionally charged in the air conditioner 1 is, as shown in FIG. 1, 5 corresponding to the refrigerant pipes (crossover pipes) 2A to 2M in the portions indicated by thick solid lines. .072 kg. On the other hand, even if the piping specifications are unknown, as shown by the thick broken line in FIG. 1, refrigerant piping in a range that can be reliably measured or assumed can be specified and roughly determined based on the piping specifications. By calculating the minimum required refrigerant amount, the refrigerant circuit 3 can be additionally charged in advance before automatically charging 4.128 kg of the refrigerant. This minimum required refrigerant amount exceeds 80% of the refrigerant amount that should be additionally charged, and the remaining 20% may be automatically charged.

一方、冷媒の自動充填は、例えば以下により行われる。
図4には、冷媒自動充填機能付き空気調和装置1の冷媒回路図が示されている。
この空気調和装置1は、室外機10に対して複数台の室内機11ないし16(室内機11のみが図示されている)が冷媒配管(ガス側配管および液側配管)2を介して接続されているマルチタイプの空気調和装置1である。室外機10は、圧縮機20、四方切替え弁21、室外熱交換器22、室外膨張弁23、レシーバ24および室外ファン25を備えるとともに、レシーバ24の所定高さ位置と圧縮機20の吸入配管との間に接続されている減圧手段26および電磁弁27が介装された冷媒検知回路28と、この冷媒検知回路28の電磁弁27の下流側に設けられている温度センサ29の検出値に基づいて冷媒が規定量充填されたことを検知する冷媒充填量検知手段30とを備えた構成とされている。
On the other hand, the automatic charging of the refrigerant is performed, for example, as follows.
FIG. 4 shows a refrigerant circuit diagram of the air conditioner 1 with the automatic refrigerant charging function.
In the air conditioner 1, a plurality of indoor units 11 to 16 (only the indoor unit 11 is illustrated) are connected to an outdoor unit 10 via a refrigerant pipe (gas side pipe and liquid side pipe) 2. This is a multi-type air conditioner 1. The outdoor unit 10 includes a compressor 20, a four-way switching valve 21, an outdoor heat exchanger 22, an outdoor expansion valve 23, a receiver 24, and an outdoor fan 25, and a predetermined height position of the receiver 24 and a suction pipe of the compressor 20. Based on a detection value of a temperature sensor 29 provided on the downstream side of the electromagnetic valve 27 of the refrigerant detection circuit 28 and a refrigerant detection circuit 28 in which a decompression means 26 and an electromagnetic valve 27 are connected. And a refrigerant filling amount detecting means 30 for detecting that a prescribed amount of refrigerant has been filled.

室内機11(室内機12ないし16も同様)は、室内熱交換器31、室内膨張弁32および室内ファン33を備えた構成とされており、上記室外機10に対して冷媒配管2および図示省略の分岐器等を介して複数台並列に接続されることにより、閉サイクルの冷媒回路3を形成した構成とされている。   The indoor unit 11 (the same applies to the indoor units 12 to 16) includes an indoor heat exchanger 31, an indoor expansion valve 32, and an indoor fan 33. The refrigerant pipe 2 and the illustration of the outdoor unit 10 are omitted. A closed cycle refrigerant circuit 3 is formed by connecting a plurality of units in parallel via a branching device or the like.

この空気調和装置1に対する冷媒自動充填は、圧縮機20の吸入側で冷媒回路3に接続された冷媒ボンベから冷媒を吸引しながら、空気調和装置1を冷房サイクルにより運転して行われる。この冷媒充填運転により追加充填された冷媒は、レシーバ24内に徐々に溜まりその液面が上昇する。レシーバ24内の冷媒液面が冷媒検知回路28の開口端位置に到達するまでは、冷媒検知回路28に飽和状態のガス冷媒が取り出され、その冷媒が減圧手段26で減圧された後の温度が温度センサ29により検出される。一方、冷媒液面が冷媒検知回路28の開口端位置に到達すると、飽和状態の液冷媒が取り出され、その冷媒が減圧手段26で減圧された後の温度が温度センサ29により検出される。   The automatic refrigerant charging to the air conditioner 1 is performed by operating the air conditioner 1 by a cooling cycle while sucking the refrigerant from the refrigerant cylinder connected to the refrigerant circuit 3 on the suction side of the compressor 20. The refrigerant additionally charged by this refrigerant charging operation is gradually accumulated in the receiver 24 and its liquid level rises. Until the refrigerant liquid level in the receiver 24 reaches the opening end position of the refrigerant detection circuit 28, the saturated gas refrigerant is taken out by the refrigerant detection circuit 28, and the temperature after the refrigerant is depressurized by the decompression means 26 is It is detected by the temperature sensor 29. On the other hand, when the refrigerant liquid level reaches the opening end position of the refrigerant detection circuit 28, the saturated liquid refrigerant is taken out, and the temperature after the refrigerant is depressurized by the decompression means 26 is detected by the temperature sensor 29.

こうして検出された飽和ガス状態から減圧されたときの冷媒温度と、飽和液状態から減圧されたときの冷媒温度との温度差から、冷媒充填量検知手段30を介してレシーバ24内に設定液面まで冷媒が溜まったことを検知し、これによって、規定量の冷媒が冷媒回路3内に充填されたことを検知することができる。このため、追加充填すべき規定の冷媒量に対し、その約80%を最低限必要な冷媒量として予め追加充填した後、残りの約20%に相当する冷媒を上記方法で自動充填することにより、規定量の冷媒を精度よくかつ迅速に充填することができる。   From the temperature difference between the refrigerant temperature when the pressure is reduced from the saturated gas state thus detected and the refrigerant temperature when the pressure is reduced from the saturated liquid state, the set liquid level is set in the receiver 24 via the refrigerant filling amount detection means 30. It is possible to detect that the refrigerant has accumulated in the refrigerant circuit 3. For this reason, about 80% of the specified amount of refrigerant to be additionally charged is preliminarily charged as the minimum required amount of refrigerant in advance, and then the remaining amount of refrigerant corresponding to about 20% is automatically charged by the above method. The specified amount of refrigerant can be filled accurately and quickly.

斯くして、本実施形態によると、以下の効果が得られる。
室外機10とビル40の各階に設置される複数台の室内機11ないし16との間を接続している配管2Aないし2Mの仕様(配管長および配管径)が例え不明であっても、その配管長および配管径を確実に実測もしくは想定できる範囲内で特定することにより、それに基づいて最低限必要な冷媒量を算出し、予めその冷媒量を追加充填した後、冷媒自動充填機能を用いて規定量の冷媒を自動充填することができるため、最終的に充填が必要な規定量の冷媒を過不足なく正確に充填することができ、その結果、最適量の冷媒を精度よく充填し、空気調和装置を安定的に運転することができる。また、本来追加充填すべき冷媒量をゼロから自動充填する必要がなくなるため、冷媒充填に要する時間を短くし、据え付け作業時間の短縮化とその容易化を図ることができる。
Thus, according to the present embodiment, the following effects can be obtained.
Even if the specifications (pipe length and pipe diameter) of the pipes 2A to 2M connecting the outdoor unit 10 and the plurality of indoor units 11 to 16 installed on each floor of the building 40 are unknown, By specifying the pipe length and pipe diameter within a range that can be reliably measured or assumed, calculate the minimum amount of refrigerant based on it, add the refrigerant amount in advance, and then use the automatic refrigerant filling function. Since the specified amount of refrigerant can be automatically charged, the specified amount of refrigerant that needs to be finally filled can be accurately filled without excess or deficiency. The harmony device can be operated stably. In addition, since it is not necessary to automatically fill the amount of refrigerant that should be additionally charged from zero, the time required for filling the refrigerant can be shortened, and the installation work time can be shortened and facilitated.

しかも、最低限必要な冷媒量を、室外機10の設置位置からビル40の各階に沿う縦配管2B,2H位置までの横配管2Aの配管長とその配管径、冷媒配管2のビル40の各階の分岐部位置までの縦配管2B,2Hの配管長とその配管径、および各階に設置されている複数台の室内機11ないし16のうち、各階の縦配管位置から最も遠方に配置されている室内機11,14までの間を直線で結んだ分岐配管長とその配管径に基づいて算出するようにしているため、室外機11とビル40の各階に設置される複数台の室内機11ないし16との間を接続する冷媒配管2の詳細仕様が不明であっても、確実に実測もしくは想定できる配管長とその配管径に基づいて、本来追加充填すべき冷媒量を超えない範囲の最低限必要な冷媒量を算出し、その冷媒を予め追加充填することができる。この最低限必要な冷媒量は、大まかに予測しているとは云え、本来追加充填すべき冷媒量の約80%に相当し、冷媒充填時間を大幅に短縮することができる。   In addition, the minimum required refrigerant amount is set such that the pipe length of the horizontal pipe 2A and the pipe diameter from the installation position of the outdoor unit 10 to the vertical pipes 2B and 2H along each floor of the building 40, the pipe diameter, and each floor of the building 40 of the refrigerant pipe 2 Among the plurality of indoor units 11 to 16 installed on each floor, the pipe lengths of the vertical pipes 2B and 2H up to the branching position and the pipe diameter thereof are arranged farthest from the vertical pipe position on each floor. Since the calculation is made based on the length of the branch pipe that connects the indoor units 11 and 14 with a straight line and the pipe diameter, a plurality of indoor units 11 or 11 installed on each floor of the outdoor unit 11 and the building 40 are used. Even if the detailed specifications of the refrigerant pipe 2 connecting between the pipe 16 and the pipe 16 are unknown, the minimum of the range that does not exceed the amount of refrigerant to be additionally charged based on the pipe length and the pipe diameter that can be reliably measured or assumed Calculate the required amount of refrigerant and It can be previously added filling the refrigerant. Although the minimum required amount of refrigerant is roughly estimated, it corresponds to about 80% of the amount of refrigerant originally to be additionally charged, and the refrigerant charging time can be greatly shortened.

つまり、室外機10に接続される横配管(主管)2Aの長さおよび径は、確実に実測可能であり、また、ビル40の各階に沿う縦配管2Bの長さおよび最初の分岐部位置まで配管径は、実際の配管長が不明または実測不可であってもビル40の階高と横配管2Aの径から想定可能であり、更に、各階に各々配置される複数台の室内機11ないし16に接続される分岐配管2Cないし2Mの長さおよび径は、実際の配管長が不明または実測不可であっても各階の縦配管2B,2H位置から最も遠方に配置されている室内機11,14までの間を直線で結んだ距離とその分岐配管径から想定可能である。従って、これらの配管長および配管径に基づいて冷媒量を算出することにより、本来追加充填すべき正規の冷媒量に対して、それを超えない範囲で約80%相当の最低限必要な冷媒量を確実に算出することができる。   That is, the length and diameter of the horizontal pipe (main pipe) 2A connected to the outdoor unit 10 can be measured with certainty, and the length of the vertical pipe 2B along each floor of the building 40 and the position of the first branch portion The pipe diameter can be assumed from the floor height of the building 40 and the diameter of the horizontal pipe 2A even if the actual pipe length is unknown or cannot be measured, and a plurality of indoor units 11 to 16 arranged on each floor. The lengths and diameters of the branch pipes 2C to 2M connected to the indoor units 11, 14 arranged farthest from the positions of the vertical pipes 2B, 2H on each floor even if the actual pipe length is unknown or cannot be measured. It can be assumed from the distance between the straight lines and the branch pipe diameter. Therefore, by calculating the amount of refrigerant based on these pipe lengths and pipe diameters, the minimum necessary refrigerant amount corresponding to about 80% within a range not exceeding the normal refrigerant amount that should be additionally charged. Can be calculated reliably.

また、横配管2Aの配管径および縦配管の最初の分岐部位置までの配管径を、室外機10の機種もしくはその直近の冷媒配管の実測値から求めた径として冷媒量を算出するようにし、更に、分岐配管2Cないし2Mの配管径および/または縦配管2Hの配管径を、それぞれ縦配管2B,2Hから最も遠方に配置されている室内機の機種もしくはその直近の冷媒配管の実測値から求めた径として冷媒量を算出するようにしているため、各々の配管の配管径が例え不明であっても、それらの配管径を確実に想定することができ、その結果として、規定の冷媒量に対し、より近い範囲で最低限必要な冷媒量を精度よく算出することができる。   Further, the amount of refrigerant is calculated using the pipe diameter of the horizontal pipe 2A and the pipe diameter up to the first branch position of the vertical pipe as the diameter obtained from the measured value of the model of the outdoor unit 10 or the nearest refrigerant pipe, Further, the pipe diameters of the branch pipes 2C to 2M and / or the pipe diameter of the vertical pipe 2H are obtained from the measured values of the models of the indoor units arranged farthest from the vertical pipes 2B and 2H or the refrigerant pipes closest thereto. Therefore, even if the pipe diameter of each pipe is unknown, those pipe diameters can be reliably assumed, and as a result, the specified refrigerant quantity can be obtained. On the other hand, the minimum required refrigerant amount can be accurately calculated within a closer range.

さらに、既設の空気調和装置1の室外機10および室内機11ないし16を更新し、既設の冷媒配管2を再利用して更新した室外機10および室内機11ないし16を接続することにより空気調和装置1をリニューアルする際において、既設の配管2Aないし2Mの詳細仕様が不明であったとしても、その配管長と配管径を正確に実測もしくは想定可能な範囲内で特定し、それに基づいて最低限必要な冷媒量を算出することにより、予めその冷媒量を充填した後、空気調和装置1の冷媒自動充填機能を用いて規定量の冷媒を自動充填することができる。従って、既設の冷媒配管2を再利用してリニューアルする空気調和装置1に対しても、規定量の冷媒を過不足なく確実にかつ迅速に充填することができる。   Further, the outdoor unit 10 and the indoor units 11 to 16 of the existing air conditioner 1 are updated, and the outdoor unit 10 and the indoor units 11 to 16 that are updated by reusing the existing refrigerant pipe 2 are connected to the air conditioner. Even when the detailed specifications of the existing pipes 2A to 2M are unclear when the device 1 is renewed, the pipe length and pipe diameter are specified within a range that can be measured or assumed accurately, and based on that By calculating the necessary amount of refrigerant, it is possible to automatically charge a specified amount of refrigerant using the automatic refrigerant charging function of the air-conditioning apparatus 1 after charging the refrigerant amount in advance. Therefore, the air conditioning apparatus 1 that renews by reusing the existing refrigerant pipe 2 can be reliably and quickly charged with a specified amount of refrigerant without excess or deficiency.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、室外機10をビル40の屋上に設置した例について説明したが、室外機10は、地上等に設置されていてもよく、特に設置場所が制約されるものではない。いかなる場所に設置されていても同様に冷媒配管の配管長および配管径を想定することができる。また、室内機11ないし16の接続台数についても、特に制限されるものではない。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, in the above embodiment, the example in which the outdoor unit 10 is installed on the roof of the building 40 has been described. However, the outdoor unit 10 may be installed on the ground or the like, and the installation location is not particularly limited. The pipe length and pipe diameter of the refrigerant pipe can be assumed in the same manner regardless of the location. Further, the number of connected indoor units 11 to 16 is not particularly limited.

さらに、冷媒の自動充填について、上記実施形態では、レシーバ24内の冷媒液面を冷媒検知回路28により検知する方式を用いた例ついて説明したが、これに限定されないことは云うまでもなく、空気調和装置1の運転状態を見ながら規定量の冷媒が充填されたことを検知して自動充填するものであれば、いかなる方式であってもよい。また、上記実施形態では、空気調和装置1をリニューアルする場合の例について説明したが、空気調和装置1を新設する場合の据え付け時にも同様に適用できることはもちろんである。   Further, in the above embodiment, the automatic charging of the refrigerant has been described with respect to the example using the method of detecting the liquid level of the refrigerant in the receiver 24 by the refrigerant detection circuit 28. However, the present invention is not limited to this. Any method may be used as long as it detects that the specified amount of refrigerant is filled while observing the operating state of the harmony device 1 and automatically fills it. Moreover, although the example in the case of renewing the air conditioning apparatus 1 was demonstrated in the said embodiment, of course, it can apply similarly at the time of installation in the case of newly installing the air conditioning apparatus 1.

1 空気調和装置
2 冷媒配管
2A 横配管
2B,2H 縦配管
2C,2D,2E,2F,2G,2I,2J,2K,2L,2M 分岐配管
3 冷媒回路
10 室外機
11,12,13,14,15,16 室内機
28 冷媒検知回路
30 冷媒充填量検知手段
40 ビル(建屋)
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Refrigerant piping 2A Horizontal piping 2B, 2H Vertical piping 2C, 2D, 2E, 2F, 2G, 2I, 2J, 2K, 2L, 2M Branch piping 3 Refrigerant circuit 10 Outdoor unit 11, 12, 13, 14, 15, 16 Indoor unit 28 Refrigerant detection circuit 30 Refrigerant filling amount detection means 40 Building (building)

Claims (5)

室外機と複数台の室内機とが冷媒配管を介して接続されている閉サイクルの冷媒回路に規定量の冷媒を充填する空気調和装置の冷媒充填方法において、
前記室外機と建屋の各階に設置される複数台の前記室内機との間を接続する冷媒配管の配管長とその配管径を確実に実測もしくは想定できる範囲内で特定し、該配管長および配管径に基づいて当該空気調和装置で最低限必要な冷媒量を算出し、前記最低限必要な冷媒量の冷媒を前記冷媒回路に追加充填した後、冷媒自動充填機能を用いて、前記冷媒回路に冷媒を自動充填しながら冷媒が前記冷媒回路に規定量充填されたかどうかを検知し、前記規定量に達するまで冷媒を前記冷媒回路に自動充填し、
前記規定量に達するまで冷媒を前記冷媒回路に自動充填するスピードは、前記最低限必要な冷媒量の冷媒を前記冷媒回路に充填するスピードより遅いことを特徴とする空気調和装置の冷媒充填方法。
In the refrigerant filling method for an air conditioner, in which a closed circuit refrigerant circuit in which an outdoor unit and a plurality of indoor units are connected via a refrigerant pipe is filled with a specified amount of refrigerant,
The pipe length and the pipe diameter of the refrigerant pipe connecting between the outdoor unit and the plurality of indoor units installed on each floor of the building are specified within a range that can be reliably measured or assumed, and the pipe length and pipe Based on the diameter, the air conditioner calculates the minimum necessary amount of refrigerant, and after the refrigerant circuit is additionally charged with the minimum necessary amount of refrigerant, the refrigerant circuit is filled with the automatic refrigerant charging function. Detecting whether or not the refrigerant circuit is filled in a prescribed amount while automatically filling the refrigerant, automatically filling the refrigerant circuit in the refrigerant circuit until the prescribed amount is reached ,
The refrigerant charging method for an air conditioner , wherein a speed at which the refrigerant circuit is automatically filled with the refrigerant until the specified amount is reached is slower than a speed at which the refrigerant refrigerant with the minimum necessary refrigerant amount is filled into the refrigerant circuit .
前記最低限必要な冷媒量を、少なくとも前記室外機の設置位置から建屋の各階に沿う縦配管位置までの冷媒配管の横配管長とその配管径、前記冷媒配管の建屋の各階の分岐部位置までの縦配管長とその配管径、および前記各階に設置されている複数台の前記室内機のうち、各階の前記縦配管位置から最も遠方に配置されている前記室内機までの間を直線で結んだ分岐配管長とその配管径に基づいて算出することを特徴とする請求項1に記載の空気調和装置の冷媒充填方法。   The minimum required refrigerant amount is at least from the installation position of the outdoor unit to the length of the horizontal pipe of the refrigerant pipe from the position of the vertical pipe along each floor of the building and its pipe diameter, to the position of the branching section of each floor of the building of the refrigerant pipe The length of the vertical pipe and the pipe diameter, and among the plurality of indoor units installed on each floor, a straight line is connected to the indoor unit located farthest from the vertical pipe position on each floor The refrigerant charging method for an air conditioner according to claim 1, wherein the calculation is based on the length of the branched pipe and the pipe diameter. 前記横配管の配管径および前記縦配管の最初の分岐部位置までの配管径を、前記室外機の機種もしくはその直近の冷媒配管の実測値から求めた径として前記冷媒量を算出することを特徴とする請求項2に記載の空気調和装置の冷媒充填方法。   The refrigerant quantity is calculated using the pipe diameter of the horizontal pipe and the pipe diameter to the position of the first branch of the vertical pipe as the diameter obtained from the measured value of the model of the outdoor unit or the nearest refrigerant pipe. The refrigerant filling method for an air conditioner according to claim 2. 前記分岐配管の配管径および/または前記縦配管の最初の分岐部以降の配管径を、それぞれ前記縦配管から最も遠方に配置されている前記室内機の機種もしくはその直近の冷媒配管の実測値から求めた径として前記冷媒量を算出することを特徴とする請求項2または3に記載の空気調和装置の冷媒充填方法。   The pipe diameter of the branch pipe and / or the pipe diameter after the first branch portion of the vertical pipe is determined based on the measured value of the model of the indoor unit or the nearest refrigerant pipe disposed farthest from the vertical pipe, respectively. The refrigerant filling method for an air conditioner according to claim 2 or 3, wherein the refrigerant amount is calculated as the obtained diameter. 既設の空気調和装置の前記室外機および前記室内機を更新し、既設の冷媒配管を再利用して更新した前記室外機および前記室内機を接続することにより空気調和装置をリニューアルする際、請求項1ないし4のいずれかに記載の方法を用いて冷媒を充填することを特徴とする空気調和装置の冷媒充填方法。   When renewing the air conditioner by renewing the outdoor unit and the indoor unit of an existing air conditioner and connecting the outdoor unit and the indoor unit updated by reusing an existing refrigerant pipe, A refrigerant filling method for an air conditioner, wherein the refrigerant is filled using the method according to any one of 1 to 4.
JP2010097957A 2010-04-21 2010-04-21 Refrigerant charging method for air conditioner Expired - Fee Related JP5705453B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010097957A JP5705453B2 (en) 2010-04-21 2010-04-21 Refrigerant charging method for air conditioner
PCT/JP2011/059061 WO2011132564A1 (en) 2010-04-21 2011-04-12 Air conditioner refrigerant filling method
CN201180004616.0A CN102695930B (en) 2010-04-21 2011-04-12 The coolant filling method of aircondition
EP11771899.9A EP2562493B1 (en) 2010-04-21 2011-04-12 Air conditioner refrigerant filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097957A JP5705453B2 (en) 2010-04-21 2010-04-21 Refrigerant charging method for air conditioner

Publications (2)

Publication Number Publication Date
JP2011226715A JP2011226715A (en) 2011-11-10
JP5705453B2 true JP5705453B2 (en) 2015-04-22

Family

ID=44834090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097957A Expired - Fee Related JP5705453B2 (en) 2010-04-21 2010-04-21 Refrigerant charging method for air conditioner

Country Status (4)

Country Link
EP (1) EP2562493B1 (en)
JP (1) JP5705453B2 (en)
CN (1) CN102695930B (en)
WO (1) WO2011132564A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642098B2 (en) * 2012-02-21 2014-12-17 三菱電機株式会社 Refrigerant amount estimation device and refrigerant amount estimation method
CN104748287A (en) * 2013-12-25 2015-07-01 珠海格力电器股份有限公司 Selection software construction and pipe length calculation method and system and central air conditioner
CN104990320A (en) * 2015-07-16 2015-10-21 广东美的暖通设备有限公司 Control method and system capable of automatically filling refrigerants
CN106766304B (en) * 2016-12-22 2019-04-26 中科美菱低温科技股份有限公司 A kind of separate type cryogenic refrigeration equipment
JP2019011899A (en) * 2017-06-30 2019-01-24 株式会社富士通ゼネラル Air conditioning device
CN113932503B (en) * 2021-11-24 2023-04-07 宁波奥克斯电气股份有限公司 Refrigerant charging device and control method
CN114674095B (en) * 2022-03-16 2024-04-23 青岛海尔空调器有限总公司 Air conditioner, method and device for controlling air conditioner refrigerant and storage medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821675A (en) * 1994-07-06 1996-01-23 Hitachi Ltd Air conditioner and refrigerant quantity-determining method therefor
JPH08200905A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Indicator for amount of refrigerant
JPH1163745A (en) * 1997-08-08 1999-03-05 Hitachi Ltd Refrigerant feeding amount indicating device for air conditioner and monitoring device
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigerating equipment
JP3719246B2 (en) * 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
JP4155313B2 (en) * 2006-06-26 2008-09-24 ダイキン工業株式会社 Air conditioner
JP2008111584A (en) * 2006-10-30 2008-05-15 Daikin Ind Ltd Air conditioner
KR100850952B1 (en) * 2007-03-14 2008-08-08 엘지전자 주식회사 Air conditioner, method for calculating the length of the refrigerant pipe and calculating proper amount of refrigerant thereof
JP4902866B2 (en) * 2007-03-23 2012-03-21 三菱電機株式会社 Refrigerant filling method
JP5326488B2 (en) * 2008-02-29 2013-10-30 ダイキン工業株式会社 Air conditioner
KR101250243B1 (en) * 2008-09-05 2013-04-04 엘지전자 주식회사 Apparatus and Method for Measuring the Length of a Pipe
US8666684B2 (en) * 2010-03-10 2014-03-04 Lg Electronics Inc. Air conditioning system and method for calculating amount of filling refrigerants of the same

Also Published As

Publication number Publication date
CN102695930A (en) 2012-09-26
EP2562493B1 (en) 2018-03-28
EP2562493A1 (en) 2013-02-27
EP2562493A4 (en) 2016-09-14
WO2011132564A1 (en) 2011-10-27
JP2011226715A (en) 2011-11-10
CN102695930B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5705453B2 (en) Refrigerant charging method for air conditioner
KR101207004B1 (en) Air conditioner
JP4120676B2 (en) Air conditioner
CN106247676B (en) Control method, control device and the air conditioner of air conditioner
JP5130910B2 (en) Air conditioner and refrigerant quantity determination method
KR20090013187A (en) Air conditioner
KR20080081281A (en) Air conditioner
JP4075933B2 (en) Air conditioner
JP2007163100A (en) Air conditioner
JP2007263539A (en) Outdoor unit for air conditioner
CN104833041A (en) Multi-connected air conditioner pipeline balance method and multi-connected air condition
WO2016063550A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP2007212134A (en) Air conditioner
JP2008064456A (en) Air conditioner
JP3933179B1 (en) Air conditioner
EP1965159A1 (en) Air conditioner
JP2008051496A (en) Air conditioner
JP2007198680A (en) Air conditioner
JP5183531B2 (en) Refrigeration cycle equipment
JP4311470B2 (en) Air conditioner
JP3609560B2 (en) Refrigeration equipment inspection equipment
KR101356969B1 (en) System for designing fire line and the method of the same
JP3583877B2 (en) Inspection system for electrical equipment
JP2008025936A (en) Air conditioner
CN112856573A (en) Multi-split system refrigerant quantity detection control method based on air return side parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R151 Written notification of patent or utility model registration

Ref document number: 5705453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees