JP5705448B2 - Microbial activity evaluation method, and water-based microorganism control method using the evaluation method - Google Patents

Microbial activity evaluation method, and water-based microorganism control method using the evaluation method Download PDF

Info

Publication number
JP5705448B2
JP5705448B2 JP2010080821A JP2010080821A JP5705448B2 JP 5705448 B2 JP5705448 B2 JP 5705448B2 JP 2010080821 A JP2010080821 A JP 2010080821A JP 2010080821 A JP2010080821 A JP 2010080821A JP 5705448 B2 JP5705448 B2 JP 5705448B2
Authority
JP
Japan
Prior art keywords
microbial activity
microorganism
sample
microorganisms
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010080821A
Other languages
Japanese (ja)
Other versions
JP2011211919A (en
Inventor
浩章 井上
浩章 井上
石間 智生
智生 石間
Original Assignee
アクアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクアス株式会社 filed Critical アクアス株式会社
Priority to JP2010080821A priority Critical patent/JP5705448B2/en
Publication of JP2011211919A publication Critical patent/JP2011211919A/en
Application granted granted Critical
Publication of JP5705448B2 publication Critical patent/JP5705448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、試料中の微生物活性を評価する微生物活性の評価方法、および、このような微生物活性の評価方法を用いる水系の微生物制御方法に関する。   The present invention relates to a microbial activity evaluation method for evaluating microbial activity in a sample, and an aqueous microbial control method using such a microbial activity evaluation method.

食品衛生や、排水の生物処理の分野では、試料中の微生物活性が管理上重要視され、様々な方法で微生物活性の測定が行われてきた。このような微生物活性の具体的な測定方法として、呼吸速度(酸素消費速度)を測定する方法(特開平06−181742号公報等)、脱水素酵素活性を測定する方法、アデノシン三リン酸(ATP)量を測定する方法等が採用されてきた。   In the fields of food hygiene and biological treatment of wastewater, microbial activity in samples is regarded as important for management, and microbial activity has been measured by various methods. Specific methods for measuring such microbial activity include a method for measuring respiration rate (oxygen consumption rate) (Japanese Patent Laid-Open No. 06-181742, etc.), a method for measuring dehydrogenase activity, and adenosine triphosphate (ATP). ) A method for measuring the amount has been adopted.

また、最近の新しい技術として、生物フォント(生態組織や細胞、生体関連物質から生じる微弱な光)を検出する方法(特開平05−23169号公報、特開平05−168461号公報)、誘電泳動と電気インピーダンスとを組み合わせた方法(特開2003−224公報)等を挙げることができる。   Moreover, as a recent new technique, a method for detecting a biological font (weak light generated from an ecological tissue, a cell, or a biological substance) (JP 05-23169, JP 05-168461), dielectrophoresis and Examples include a method in combination with electrical impedance (Japanese Patent Laid-Open No. 2003-224).

これらの方法のうち、ATP量を測定する方法は、簡便で現場測定も可能なために、微生物制御が必要な技術分野に広く応用されており、開放循環冷却水系をはじめとする水系における微生物制御(スライムコントロール)にも、このATP測定による微生物活性の評価が利用されてきた。   Among these methods, the method for measuring the amount of ATP is simple and capable of on-site measurement, so it has been widely applied to technical fields that require microbial control. Microbial control in water systems including open circulation cooling water systems The evaluation of microbial activity based on this ATP measurement has also been used for (slime control).

上記の微生物活性の評価方法は、いずれも試料中に存在する微生物量を相対的に測定するものであるが、その測定値だけでは、活性の高い微生物が少量存在する場合と、活性の低い微生物が多量に存在する場合との区別がつかないという欠点がある。特に、微生物制御剤により処理を行っている開放循環冷却水系等の水系では、微生物制御剤により弱まった活性の低い微生物が多量に存在する場合と、微生物制御剤に耐性を持つ活性の高い微生物が少量存在する場合とでは、その後の微生物制御の方向性に大きな違いが生じてくる。つまり、このような水系では、試料中の微生物の総量に対して、活性の高い微生物がどの程度の割合で存在するかが重要となるが、そのような情報の指標となる評価方法は従来なかった。   All of the above methods for evaluating microbial activity measure the relative amount of microorganisms present in a sample. However, when only a small amount of highly active microorganisms are present, There is a disadvantage that it cannot be distinguished from the case where a large amount of is present. In particular, in an aqueous system such as an open circulation cooling water system that is treated with a microbial control agent, there are a large amount of low-activity microorganisms that are weakened by the microbial control agent, and there are highly active microorganisms that are resistant to the microbial control agent. There is a big difference in the direction of subsequent microorganism control when it is present in a small amount. In other words, in such an aqueous system, it is important to determine the proportion of highly active microorganisms with respect to the total amount of microorganisms in the sample, but there has been no evaluation method as an index for such information. It was.

特開平06−181742号公報Japanese Patent Laid-Open No. 06-181742 特開平05−23169号公報JP 05-23169 A 特開平05−168461号公報JP 05-168461 A 特開2003−224号公報Japanese Patent Laid-Open No. 2003-224

ここで、上記のような試料中の微生物の総量に対して、活性の高い微生物がどの程度の割合で存在するかを評価する評価方法があると、該評価方法を薬剤添加などの微生物制御手段により微生物を制御している水系に応用することで、適用している微生物制御手段(例えば添加している薬剤の濃度や頻度、さらには薬剤の種類等)が十分有効に機能しているか、あるいは、過剰であるかの判断が可能となる。しかし、該評価方法に時間や手間がかかると、当然対策も遅れてしまい、好ましくない。   Here, when there is an evaluation method for evaluating the proportion of highly active microorganisms with respect to the total amount of microorganisms in the sample as described above, the evaluation method is used as a microorganism control means such as drug addition. By applying to an aqueous system that controls microorganisms, the applied microorganism control means (for example, the concentration and frequency of the added drug, and the type of drug, etc.) are functioning sufficiently effectively, or It is possible to determine whether there is an excess. However, if the evaluation method takes time and labor, the measures are naturally delayed, which is not preferable.

このため、上記のような評価方法を水系の微生物制御方法に応用するためには、簡便に、かつ、短時間で行えることが必要である。   For this reason, in order to apply the above evaluation method to the water-based microorganism control method, it is necessary to be able to be performed simply and in a short time.

本発明は、上記した従来の問題点を改善する、すなわち、簡便にかつ短時間で行うことができ、かつ、試料中の微生物の総量に対して、活性の高い微生物がどの程度の割合で存在するかを知る方法である、微生物活性の評価方法を提供することを目的とする。   The present invention improves the above-mentioned conventional problems, that is, it can be carried out simply and in a short time, and the proportion of highly active microorganisms is present relative to the total amount of microorganisms in the sample. It is an object of the present invention to provide a method for evaluating microbial activity, which is a method for knowing whether or not to do so.

本発明者等は上記のような微生物活性の評価方法を得るために種々検討を行った。   The present inventors conducted various studies in order to obtain the above-described method for evaluating microbial activity.

上記課題を解決するためには、従来から測定されてきた微生物活性とは別に、試料中の総微生物量を測定し、これら総微生物量と微生物活性とを比較評価する必要がある。   In order to solve the above problems, it is necessary to measure the total amount of microorganisms in a sample separately from the conventionally measured microorganism activity, and to compare and evaluate the total amount of microorganisms and the activity of microorganisms.

ここで、試料中の総微生物量を測定する方法としては、試料水の濁度測定や、生菌数の測定が行なわれているが、濁度測定では微生物以外の濁質分と微生物との区別がつかず、生菌数の測定では微生物の培養操作が必要となり、時間と手間とを要する。また、排水処理の分野では、MLSS(活性汚泥浮遊物)やMLVSS(活性汚泥有機性浮遊物)を活性汚泥中の総微生物量の指標として利用しているが、これらの方法は少なくとも1000mg/L以上の高濃度の微生物懸濁液に利用されるものであり、開放循環冷却水系等の微生物障害に応用するには、大量の微生物塊(スライム)が必要となり実際的でなく、また測定操作にも、ろ過・乾燥・燃焼等の操作が必要で、手間を要する。   Here, as a method of measuring the total amount of microorganisms in the sample, turbidity measurement of the sample water and measurement of the number of viable bacteria are performed. In the turbidity measurement, turbidity other than microorganisms and microorganisms are measured. Indistinguishable, measurement of the number of viable bacteria requires a culture operation of microorganisms, which requires time and labor. In the field of wastewater treatment, MLSS (activated sludge suspended matter) and MLVSS (activated sludge organic suspended matter) are used as an indicator of the total amount of microorganisms in activated sludge, but these methods are at least 1000 mg / L. It is used for the above high-concentration microbial suspensions. To apply to microbial disorders such as open circulation cooling water systems, a large amount of microbial mass (slime) is required, which is impractical and can be used for measurement operations. However, operations such as filtration, drying, and combustion are required, which requires labor.

このような検討の末、本発明者等は本発明に到った。   After such studies, the present inventors have arrived at the present invention.

すなわち、本発明の微生物活性の評価方法は、上記課題を解決するために、請求項1に記載の通り、試料中に含まれるタンパク質量およびアデノシン三リン酸量を測定し、該アデノシン三リン酸量を該タンパク質量で除して得られる微生物活性度により、該試料中の微生物の活性を評価することを特徴とする微生物活性の評価方法である。   That is, in order to solve the above problems, the method for evaluating microbial activity of the present invention measures the amount of protein and adenosine triphosphate contained in a sample as described in claim 1, and the adenosine triphosphate is measured. It is a method for evaluating microbial activity, wherein the activity of microorganisms in the sample is evaluated based on the microbial activity obtained by dividing the amount by the amount of protein.

また、本発明の水系の微生物制御方法は請求項2に記載の通り、前記試料が水系から採取した試料であり、かつ、請求項1に記載の微生物活性の評価方法により得られる微生物活性度が、所定の上限値以上の場合に、該水系の微生物の抑制レベルを強化することを特徴とする。   In addition, the water-based microorganism control method of the present invention is a sample collected from an aqueous system as described in claim 2, and the microorganism activity obtained by the method for evaluating microorganism activity according to claim 1 In the case of a predetermined upper limit value or more, the suppression level of the water-based microorganisms is enhanced.

また、本発明の水系の微生物制御方法は請求項5に記載の通り、前記試料が水系から採取した試料であり、かつ、請求項1に記載の微生物活性の評価方法により得られる微生物活性度が、所定の下限値以下の場合に、該水系の微生物の抑制レベルを低減することを特徴とする水系の微生物制御方法である。   Further, according to the aqueous microorganism control method of the present invention, as described in claim 5, the sample is a sample collected from the aqueous system, and the microorganism activity obtained by the microorganism activity evaluation method according to claim 1 is obtained. The water-based microorganism control method is characterized in that the level of inhibition of the water-based microorganism is reduced when it is equal to or lower than a predetermined lower limit value.

本発明の微生物活性の評価方法によれば、きわめて簡便な方法でありながら、微生物活性の測定・評価が可能となる。   According to the method for evaluating microbial activity of the present invention, it is possible to measure and evaluate microbial activity while being a very simple method.

また、本発明の水系の微生物制御方法によれば、水系における微生物障害を未然に防止できると共に、微生物処理剤等の微生物制御手段の利用を最適化させることが可能となり、過剰な微生物制御を行う無駄を防止することができる。   In addition, according to the water-based microorganism control method of the present invention, it is possible to prevent microbial damage in the water system and to optimize the use of microorganism control means such as a microorganism treatment agent, thereby performing excessive microorganism control. Waste can be prevented.

本発明の微生物活性の評価方法は、試料中の微生物総量をタンパク質量で、微生物の活性をアデノシン三リン酸(ATP)量で測定し、微生物活性度(=ATP量/タンパク質量)を計算し、その値により評価する方法である。   In the method for evaluating microbial activity of the present invention, the total amount of microorganisms in a sample is measured by the amount of protein, the activity of microorganisms is measured by the amount of adenosine triphosphate (ATP), and the microbial activity (= ATP amount / protein amount) is calculated. This is a method of evaluating based on the value.

本発明における試料とは、活性汚泥、微生物制御が必要な水系水、バイオフィルム(ぬめり)、微生物を含むスライム、スラッジ等の、微生物活性の測定・評価が必要な試料であれば、いかなるものでも構わない。   The sample in the present invention is any sample that requires measurement / evaluation of microbial activity, such as activated sludge, aqueous water that requires microbial control, biofilm (slime), slime containing microorganisms, and sludge. I do not care.

ここで、試料が水溶液または水性懸濁液の場合は、そのまま、あるいは、希釈して微生物活性度の測定を行う。また、固形(スライム状またはスラッジ状の場合を含む)の場合は、適当量の滅菌水に懸濁し、必要に応じてホモジェナイザー等を用いて粒子をすり潰し水性懸濁液としたものを、そのまま、または、希釈してサンプルとする。さらに、水系のバイオフィルムのように直接採取しにくい試料の場合には、滅菌綿棒等を用いて拭い取り、採取された試料を滅菌水に懸濁させて、タンパク質量とATP量を測定するサンプルとすることができる。   Here, when the sample is an aqueous solution or an aqueous suspension, the microbial activity is measured as it is or after dilution. In the case of solid (including slime or sludge), suspend in an appropriate amount of sterilized water and, if necessary, grind the particles using a homogenizer or the like to form an aqueous suspension. The sample is used as it is or after dilution. Furthermore, in the case of a sample that is difficult to collect directly, such as an aqueous biofilm, wipe the sample with a sterilized cotton swab, etc., suspend the collected sample in sterilized water, and measure the amount of protein and ATP. It can be.

ここで本発明ではアデノシン三リン酸量とタンパク質量との比を用いるので、微生物活性度は上記のようなサンプルの試料濃度に左右されることがなく、このために、水系水の場合に多量に採取可能なスライム状の試料のみならず、機器や配管に薄く付着したバイオフィルムのような採取可能量が少ない試料であっても評価を行うことができる。   Here, since the ratio of the amount of adenosine triphosphate to the amount of protein is used in the present invention, the microbial activity does not depend on the sample concentration of the sample as described above. Evaluation is possible not only for slime-like samples that can be collected at the same time, but also for samples that have a small amount of collection, such as biofilms that are thinly attached to equipment and piping.

タンパク質の測定はブラドフォード(Bradford)法、ローリー(Lowry)法、BCA法等、公知のタンパク質の定量法を用いることができるが、このうち、定量下限が低く、操作が簡便で妨害物質が少ない点から、ブラドフォード法を用いることが好ましい。   For protein measurement, known protein quantification methods such as Bradford method, Lowry method, BCA method and the like can be used. Among these, the lower limit of quantification is low, the operation is simple, and there are few interfering substances. From the point of view, it is preferable to use the Bradford method.

ブラドフォード法は、試料にクマ−シーブルーを混合し、クマ−シーブルーとタンパク質とが結合する際の吸光度の変化を測定する方法であり、この方法によれば、吸光光度計があれば試料採取現場での迅速で簡易な測定が可能となる。   The Bradford method is a method in which Coomassie blue is mixed with a sample and the change in absorbance when Coomassie blue and protein are bound is measured. According to this method, if there is an absorptiometer, Quick and simple measurement at the sampling site is possible.

一方、ATPの測定は、試料中の細菌に含まれるATPをATP抽出試薬により抽出し、この抽出されたATPをルシフェラーゼにより発光させ、このときの発光量を測定することにより行うことができる。ATPを測定するための各種の測定装置が知られており、簡易測定装置も市販されているために試料採取現場での迅速な測定が可能である。   On the other hand, ATP can be measured by extracting ATP contained in bacteria in a sample with an ATP extraction reagent, causing the extracted ATP to emit light with luciferase, and measuring the amount of light emitted at this time. Various measuring devices for measuring ATP are known, and simple measuring devices are also commercially available, so that quick measurement at the sampling site is possible.

本発明の微生物活性の評価方法ではこれら測定された試料のアデノシン三リン酸量を試料のタンパク質量で除して得られる微生物活性度により、試料中の微生物の活性を評価するが、評価の際にアデノシン三リン酸濃度とタンパク質濃度との比を用いた場合も実質同一であり、本発明に含まれる。   In the method for evaluating microbial activity of the present invention, the activity of microorganisms in a sample is evaluated based on the microbial activity obtained by dividing the amount of adenosine triphosphate in the sample by the amount of protein in the sample. The ratio of adenosine triphosphate concentration to protein concentration is substantially the same, and is included in the present invention.

ここで、このような微生物活性の評価方法を水系に応用して、水系の微生物制御を行うことができる。   Here, such a microorganism activity evaluation method can be applied to an aqueous system to control an aqueous microorganism.

すなわち、微生物活性度が高いときには、水系に存在する微生物中に活性の高い微生物が多いと判断し、微生物活性度が低いときには、水系に存在する微生物中に活性の高い微生物が少ないと判断する。   That is, when the microbial activity is high, it is determined that there are many highly active microorganisms in the microorganisms present in the aqueous system, and when the microbial activity is low, it is determined that there are few active microorganisms among the microorganisms present in the aqueous system.

具体的には、水系から得られた試料の場合、一般的に、水系に存在する微生物中に活性の高い微生物が多いと判断する微生物活性度の境界値(所定の上限値)は、例えば1000nmol/gであり、微生物活性度がこの値以上であるときには、活性の高い微生物が相対的に多いと判断し、該水系の微生物の抑制レベルを強化して、活性の高い微生物の抑制を図る。一方、水系に存在する微生物中に活性の高い微生物が少ないと判断する微生物活性度の境界値(所定の下限値)は、例えば100nmol/gであり、微生物活性度がこの値以下である場合には、活性の高い微生物が相対的に少ないと判断し、該水系の微生物の抑制レベルを低減することができる。   Specifically, in the case of a sample obtained from an aqueous system, generally, the boundary value (predetermined upper limit value) of the microbial activity at which it is determined that there are many highly active microorganisms among the microorganisms present in the aqueous system is, for example, 1000 nmol. When the microbial activity is greater than or equal to this value, it is judged that there are relatively many highly active microorganisms, and the suppression level of the water-based microorganisms is strengthened to suppress the highly active microorganisms. On the other hand, the boundary value (predetermined lower limit value) of the microbial activity at which it is judged that there are few highly active microorganisms among the microorganisms present in the water system is, for example, 100 nmol / g, and the microbial activity is below this value. Can determine that there are relatively few highly active microorganisms, and can reduce the suppression level of the water-based microorganisms.

水系の微生物抑制(制御)の手段としては、微生物制御剤(バイオサイド)の添加、水系の化学洗浄の他、水系の物理的殺菌(紫外線処理や電解殺菌等)、オゾン処理等の、水系に適用可能な、あらゆる微生物制御手段を用いることができる。   Water-based microbial control (control) includes water-based physical sterilization (ultraviolet treatment, electrolytic sterilization, etc.), ozone treatment, etc. Any applicable microbial control means can be used.

微生物制御剤としては、例えば5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オン、1,2−べンゾイソチアゾリン−3−オン等のイソチアゾリン系化合物、グルタルアルデヒド、フタルアルデヒド等のアルデヒド類、過酸化水素、ヒドラジン、塩素系殺菌剤(次亜塩素酸ナトリウム等)、臭素系殺菌剤およびヨウ素系殺菌剤、ピリチオン系化合物、ジチオール系化合物、メチレンビスチオシアネート等のチオシアネート系化合物、ヨーネンポリマ、ビス型四級アンモニウム塩、ビス型四級アンモニウム塩以外の四級アンモニウム塩、四級ホスホニウム塩等のカチオン系化合物などを挙げることができる。   Examples of the microorganism control agent include isothiazolines such as 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, and 1,2-benzisothiazolin-3-one. Compounds, glutaraldehyde, aldehydes such as phthalaldehyde, hydrogen peroxide, hydrazine, chlorinated fungicides (sodium hypochlorite, etc.), bromine and iodine fungicides, pyrithione compounds, dithiol compounds, Examples include thiocyanate compounds such as methylene bis thiocyanate, ionene polymers, bis-type quaternary ammonium salts, quaternary ammonium salts other than bis-type quaternary ammonium salts, and cation-type compounds such as quaternary phosphonium salts.

また、水系の化学洗浄を行う際に用いる化学洗浄剤としては、過酸化水素、高濃度塩素剤、高濃度グルタルアルデヒド等を挙げることができる。   Examples of the chemical cleaning agent used when performing the aqueous chemical cleaning include hydrogen peroxide, a high concentration chlorine agent, and a high concentration glutaraldehyde.

ここで、微生物制御剤の該水系への添加濃度の増加、微生物制御剤の該水系への添加頻度の増加、および、該水系に添加する微生物制御剤の種類の変更、から選ばれる少なくとも一つ、または、該水系の化学洗浄、を行うことで水系での微生物の抑制レベルを強化することができ、微生物制御剤の該水系への添加濃度の減少、および、微生物制御剤の該水系への添加頻度の減少、から選ばれる少なくとも1つ、または、微生物制御剤添加の中止を行うことで、水系の微生物の抑制レベルを低減させることができる。   Here, at least one selected from an increase in the concentration of the microorganism control agent added to the aqueous system, an increase in the frequency of addition of the microorganism control agent to the aqueous system, and a change in the type of the microorganism control agent added to the aqueous system. Or by performing chemical cleaning of the aqueous system, the level of suppression of microorganisms in the aqueous system can be enhanced, and the concentration of the microorganism control agent added to the aqueous system can be reduced, and the microorganism control agent can be added to the aqueous system. By suppressing the addition of at least one selected from the decrease in the frequency of addition or the microorganism control agent, the level of suppression of water-based microorganisms can be reduced.

以下に、本発明の微生物活性の評価方法、および、水系の微生物制御方法の実施例について具体的に説明する。   Examples of the microbial activity evaluation method and the water-based microbial control method of the present invention will be specifically described below.

<実施例1>
微生物制御剤として5−クロロ−2−メチル−4−イソチアゾリン−3−オンを用いて1年間継続処理していた茨城県内のある工場の冷却水系の冷凍機チュ−ブから採取されたスライム、および、同冷却水系の冷却塔の充填材に付着していた付着物(バイオフィルム)の一部を滅菌綿棒を用いて拭い取った試料を、各々滅菌水に懸濁した後、それぞれ3つに分けてサンプルとした。
<Example 1>
Slime collected from a cooling water system refrigerator tube at a factory in Ibaraki Prefecture that had been treated continuously for 5 years with 5-chloro-2-methyl-4-isothiazolin-3-one as a microorganism control agent; and Samples wiped off with a sterilized cotton swab from a part of the adhering material (biofilm) adhering to the cooling tower filler of the same cooling water system were each suspended in sterilized water and then divided into three parts. Sample.

これら各サンプルに対して5−クロロ−2−メチル−4−イソチアゾリン−3−オン(以下、「CMI」と云う)を20mg/Lの濃度で添加したもの(CMI添加系)、2,2−ジブロモ−3−ニトリロプロピオンアミド(DBNPA)を20mg/Lの濃度で添加したもの(DBNPA添加系)、薬剤無添加のもの(無添加系)を調製し、それぞれ27℃で3日間静置した後、ATP濃度(ATPアナライザー(東亜DKK製AF−100)を使用)、タンパク質濃度(ブラドフォード法による)を測定した。   To each of these samples, 5-chloro-2-methyl-4-isothiazolin-3-one (hereinafter referred to as “CMI”) added at a concentration of 20 mg / L (CMI added system), 2,2- After preparing dibromo-3-nitrilopropionamide (DBNPA) at a concentration of 20 mg / L (DBNPA added system) and no drug (added system), each was allowed to stand at 27 ° C. for 3 days. , ATP concentration (ATP analyzer (using Toa DKK AF-100)) and protein concentration (by Bradford method) were measured.

こうして得られたATP濃度をタンパク質濃度で除して微生物活性度を求めた。また、上記各サンプルの、従属栄養細菌数(JIS K0101 63.3に準拠)の測定を行った。これらの結果を表1に記載した。   The ATP concentration thus obtained was divided by the protein concentration to determine the microbial activity. In addition, the number of heterotrophic bacteria (based on JIS K0101 63.3) of each sample was measured. These results are shown in Table 1.

Figure 0005705448
Figure 0005705448

表1より、冷凍機チューブに付着したスライムでの微生物活性度と、充填材に付着したバイオフィルムでの微生物活性度とは同レベルであり、充填材に付着したバイオフィルムと同種の微生物が冷凍機チューブで繁殖していることが示唆された。   From Table 1, the microbial activity in the slime adhering to the refrigerator tube is the same level as the microbial activity in the biofilm adhering to the filler, and the same type of microorganism as the biofilm adhering to the filler is frozen. It was suggested that it was breeding in the machine tube.

また、この微生物に対しては、CMIは抑制効果がなく、DBNPAが有効であることも判った。   It was also found that CMI has no inhibitory effect against this microorganism and DBNPA is effective.

そこで、この冷却水系の処理をCMIからDBNPAへ変更し、定期的に充填材付着物の微生物活性度を測定しながら6ヶ月間処理を継続した。この間、微生物活性度は、100nmol/g未満を維持し、充填材への付着物、冷却塔下部水槽への堆積物共に殆ど認められなかった。   Therefore, the treatment of this cooling water system was changed from CMI to DBNPA, and the treatment was continued for 6 months while periodically measuring the microbial activity of the filler deposit. During this period, the microbial activity was maintained at less than 100 nmol / g, and almost no deposits on the packing material and no deposits on the cooling tank lower water tank were observed.

<実施例2>
微生物制御を行っていない、東京都内のあるビルの冷却水系の冷却塔下部水槽に堆積している堆積物を試料として採取し、その微生物活性度を測定したところ、3200nmol/gと高かった。このために、過酸化水素による化学洗浄を実施し、その後、この水系の運転を、微生物制御なしで再開した。
<Example 2>
The deposit deposited in the cooling tank lower water tank of the cooling water system of a building in Tokyo without microbial control was taken as a sample, and its microbial activity was measured and found to be as high as 3200 nmol / g. For this purpose, chemical cleaning with hydrogen peroxide was carried out, after which the aqueous operation was resumed without microbial control.

運転再開の1週間後に冷却塔下部水槽に再び堆積物が認められたので、この堆積物を採取し、その微生物活性度を測定したところ、75nmol/gであった。   One week after the restart of operation, deposits were observed again in the cooling tower lower water tank. The deposits were collected and the microbial activity was measured, and it was 75 nmol / g.

また、これら堆積物の顕微鏡観察を行ったところ、化学洗浄前の堆積物は細菌類が主体で、運転再開後の堆積物は土砂等の無機物が主体であった。また、冷凍機のLTD(汚れ指標)は、化学洗浄前が6.0℃、化学洗浄後が0.6℃であった。   When these deposits were observed with a microscope, the deposits before chemical cleaning were mainly bacteria, and the deposits after restarting operation were mainly inorganic substances such as earth and sand. The LTD (dirt index) of the refrigerator was 6.0 ° C. before chemical cleaning and 0.6 ° C. after chemical cleaning.

運転再開1週間後の堆積物の微生物活性度が上記のように低かったので、下部水槽を手洗浄したのち、微生物制御を行わない状態(無処理)での運転をさらに2ヶ月間継続した。この継続運転の期間中、下部水槽への堆積物は殆ど認められなかったが、1週間おきに冷却塔充填材に付着した付着物を滅菌綿棒で採取して、その微生物活性度を測定したところ、微生物活性度は徐々に上昇し、継続運転開始の2ヵ月後には1200nmol/gに達した。そこで、以降の運転では、微生物制御剤として1,4−ビス(3,3’−(1−デシルピリジニウム)メチルオキシ)ブタンジブロマイドを、冷却水中の濃度が10mg/Lを維持するように、継続的に添加した。   Since the microbial activity of the sediment one week after the resumption of the operation was low as described above, the operation was continued for another two months after the lower aquarium was manually washed and the microbial control was not performed (no treatment). During this continuous operation, almost no deposits were found in the lower water tank, but the adhering matter adhering to the cooling tower packing was sampled with a sterile cotton swab every other week, and its microbial activity was measured. The microbial activity gradually increased and reached 1200 nmol / g two months after the start of continuous operation. Therefore, in the subsequent operation, 1,4-bis (3,3 ′-(1-decylpyridinium) methyloxy) butanedibromide as a microorganism control agent, so that the concentration in cooling water is maintained at 10 mg / L, Added continuously.

その後、冷却塔充填材に付着する付着物の微生物活性度は徐々に低下して行き、薬剤濃度維持開始の1ヵ月後には60nmol/gとなった。   Thereafter, the microbial activity of the deposits adhering to the cooling tower packing gradually decreased, and reached 60 nmol / g one month after starting the maintenance of the drug concentration.

Claims (7)

試料中に含まれるタンパク質量およびアデノシン三リン酸量を測定し、該アデノシン三リン酸量を該タンパク質量で除して得られる微生物活性度により、該試料中の微生物の活性を評価することを特徴とする微生物活性の評価方法。   Measuring the amount of protein and adenosine triphosphate contained in a sample, and evaluating the activity of microorganisms in the sample by the microbial activity obtained by dividing the amount of adenosine triphosphate by the amount of protein. A method for evaluating a characteristic microbial activity. 前記試料が水系から採取した試料であり、かつ、請求項1に記載の微生物活性の評価方法により得られる微生物活性度が、所定の上限値以上の場合に、該水系の微生物の抑制レベルを強化することを特徴とする水系の微生物制御方法。   When the sample is a sample collected from an aqueous system and the microbial activity obtained by the microbial activity evaluation method according to claim 1 is a predetermined upper limit value or more, the suppression level of the microbial activity in the aqueous system is enhanced. A method for controlling an aqueous microorganism. 前記水系の微生物の抑制レベルの強化が、微生物制御剤の該水系への添加濃度の増加、微生物制御剤の該水系への添加頻度の増加、および、該水系に添加する微生物制御剤の種類の変更、から選ばれる少なくとも一つ、または、該水系の化学洗浄、であることを特徴とする請求項2に記載の水系の微生物制御方法。   The enhancement of the suppression level of the microorganisms in the water system can be achieved by increasing the concentration of the microorganism control agent added to the water system, increasing the frequency of addition of the microorganism control agent to the water system, and the type of microorganism control agent added to the water system. The method of controlling an aqueous microorganism according to claim 2, wherein the method is at least one selected from modification, or chemical cleaning of the aqueous system. 前記所定の上限値が1000nmol/gであることを特徴とする請求項2または請求項3に記載の水系の微生物制御方法。   The water-based microorganism control method according to claim 2 or 3, wherein the predetermined upper limit value is 1000 nmol / g. 前記試料が水系から採取した試料であり、かつ、請求項1に記載の微生物活性の評価方法により得られる微生物活性度が、所定の下限値以下の場合に、該水系の微生物の抑制レベルを低減することを特徴とする水系の微生物制御方法。   When the sample is a sample collected from an aqueous system and the microbial activity obtained by the microbial activity evaluation method according to claim 1 is not more than a predetermined lower limit value, the suppression level of the microbial activity in the aqueous system is reduced. A method for controlling an aqueous microorganism. 前記水系の微生物の抑制レベルの低減が、微生物制御剤の該水系への添加濃度の減少、および、微生物制御剤の該水系への添加頻度の減少、から選ばれる少なくとも1つ、または、微生物制御剤添加の中止、であることを特徴とする請求項5に記載の水系の微生物制御方法。   The suppression level of the microorganisms in the water system is at least one selected from a decrease in the concentration of the microorganism control agent added to the water system and a frequency of addition of the microorganism control agent to the water system, or the microorganism control The method for controlling an aqueous microorganism according to claim 5, wherein the addition of the agent is stopped. 前記所定の下限値が100nmol/gであることを特徴とする請求項5または請求項6に記載の水系の微生物制御方法。  The water-based microorganism control method according to claim 5 or 6, wherein the predetermined lower limit value is 100 nmol / g.
JP2010080821A 2010-03-31 2010-03-31 Microbial activity evaluation method, and water-based microorganism control method using the evaluation method Active JP5705448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080821A JP5705448B2 (en) 2010-03-31 2010-03-31 Microbial activity evaluation method, and water-based microorganism control method using the evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080821A JP5705448B2 (en) 2010-03-31 2010-03-31 Microbial activity evaluation method, and water-based microorganism control method using the evaluation method

Publications (2)

Publication Number Publication Date
JP2011211919A JP2011211919A (en) 2011-10-27
JP5705448B2 true JP5705448B2 (en) 2015-04-22

Family

ID=44942368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080821A Active JP5705448B2 (en) 2010-03-31 2010-03-31 Microbial activity evaluation method, and water-based microorganism control method using the evaluation method

Country Status (1)

Country Link
JP (1) JP5705448B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712304B2 (en) * 1986-01-28 1995-02-15 三菱電機株式会社 Measuring device of microbial concentration or microbial activity
JPS63256191A (en) * 1987-04-14 1988-10-24 Nishihara Environ Sanit Res Corp Method and instrument for measuring activity of microorganism
JPH03249559A (en) * 1990-02-28 1991-11-07 Meidensha Corp Method for measuring concentration of material in activated sludge
JPH0460460A (en) * 1990-06-29 1992-02-26 Meidensha Corp Introducing method of liquid of distributor
GB9902659D0 (en) * 1999-02-05 1999-03-31 Microbiological Res Authority Assay with reduced background
JP2001149094A (en) * 1999-11-26 2001-06-05 Nissin Electric Co Ltd Determination of activity of nitrifying bacteria and treatment of water using the method
JP2005210937A (en) * 2004-01-28 2005-08-11 Mitsubishi Electric Corp Microorganism number-measuring method and microorganism number-measuring device used therefor
US20060246595A1 (en) * 2005-05-02 2006-11-02 Banks Rodney H Method for using an all solid-state fluorometer in monitoring and controlling chemicals in water

Also Published As

Publication number Publication date
JP2011211919A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
Liu et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems
KR101370689B1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
Sun et al. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid
Liu et al. Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems
WO2017189997A1 (en) Wastewater treatment method
Helmi et al. Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency
Wang et al. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies
Soliman et al. Virus removal by ceramic pot filter disks: Effect of biofilm growth and surface cleaning
JP4632839B2 (en) Legionella selective culture medium and Legionella culturing method
Valentina et al. Assessment of physico-chemical characteristics and fish diversity of hill streams in Karbi Anglong district, Assam, India
JP5705448B2 (en) Microbial activity evaluation method, and water-based microorganism control method using the evaluation method
Morgenthau et al. Assessment of the working range and effect of sodium dichloroisocyanurate on Pseudomonas aeruginosa biofilms and planktonic cells
Aalto et al. Peracetic acid mode-of-action on aquaculture microbes evaluated by dual-staining flow cytometry
JP5175583B2 (en) Biofilm release agent and biofilm release method
Lenz et al. Verification of the efficiency of chemical disinfection and sanitation measures in in-building distribution systems
Affek et al. Ecotoxicological effects of disinfection of treated wastewater
JPWO2013129111A1 (en) Fresh water generation method
JP2018114471A (en) Water treatment system
Yurudu Study of biofilm associated bacteria on polyvinyl chloride, stainless steel and glass surfaces in a model cooling tower system with different microbiological methods
JP5744882B2 (en) Composition of dibromomalonamide and its use as a biocide
Randall et al. Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent
JP2016015947A (en) Oyster husbandry method
JP2014188385A (en) Method for generating freshwater
JP4676154B2 (en) How to determine when to wash water
Gora et al. Control of biofilms with UV light: A critical review of methodologies, research gaps, and future directions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R150 Certificate of patent or registration of utility model

Ref document number: 5705448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250