JP5704742B2 - Contaminant diffusion prevention structure - Google Patents

Contaminant diffusion prevention structure Download PDF

Info

Publication number
JP5704742B2
JP5704742B2 JP2010116159A JP2010116159A JP5704742B2 JP 5704742 B2 JP5704742 B2 JP 5704742B2 JP 2010116159 A JP2010116159 A JP 2010116159A JP 2010116159 A JP2010116159 A JP 2010116159A JP 5704742 B2 JP5704742 B2 JP 5704742B2
Authority
JP
Japan
Prior art keywords
layer
water
contaminated soil
soil
permeable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010116159A
Other languages
Japanese (ja)
Other versions
JP2011240289A (en
Inventor
伊藤 洋
洋 伊藤
希和夫 門上
希和夫 門上
大石 徹
大石  徹
彰宣 安藤
彰宣 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Nippon Steel Eco Tech Corp
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology, Nippon Steel and Sumikin Eco Tech Corp filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2010116159A priority Critical patent/JP5704742B2/en
Publication of JP2011240289A publication Critical patent/JP2011240289A/en
Application granted granted Critical
Publication of JP5704742B2 publication Critical patent/JP5704742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、汚染土壌に含まれる汚染成分の拡散を防止する汚染成分拡散防止構造に関するものである。 The present invention relates to a contamination component diffusion preventing structure that prevents diffusion of contamination components contained in contaminated soil.

トンネルやダム等の掘削工事や建設工事等によって、重金属等の汚染成分が含まれる土壌(以下「汚染土壌」と称す)が大量に発生する。汚染土壌に含まれる汚染成分が拡散することを防止するため、特許文献1に開示されるように、汚染土壌を盛土内に封じ込めて処理する技術が知られている。
以下、図面を参照して、特許文献1に開示される技術を説明する。図12は特許文献1に開示される従来の汚染成分拡散防止構造を模式的に示す模式図である。
図12において、100は従来の汚染成分拡散防止構造、G1は地表、G2は地表G1の下方に位置する自由地下水面、101は汚染成分を捕捉する吸着剤を含み地表G1に敷設された吸着層、Sは吸着層101の上層に積層された汚染土壌、102は吸着層101及び汚染土壌Sを覆う盛土、103は盛土102の表層に形成されたアスファルト製やコンクリート製の覆土層である。
Due to excavation and construction work such as tunnels and dams, a large amount of soil containing contaminants such as heavy metals (hereinafter referred to as “contaminated soil”) is generated. In order to prevent the contamination component contained in the contaminated soil from diffusing, as disclosed in Patent Document 1, a technique for containing the contaminated soil in the embankment and treating it is known.
Hereinafter, the technique disclosed in Patent Document 1 will be described with reference to the drawings. FIG. 12 is a schematic view schematically showing a conventional contamination component diffusion preventing structure disclosed in Patent Document 1. As shown in FIG.
In FIG. 12, 100 is a conventional pollution component diffusion prevention structure, G1 is the ground surface, G2 is a free underground water surface located below the ground surface G1, and 101 is an adsorption layer laid on the ground surface G1 containing an adsorbent for capturing the pollutant components. , S is a contaminated soil laminated on the upper layer of the adsorption layer 101, 102 is a bank covering the adsorption layer 101 and the contaminated soil S, and 103 is an asphalt or concrete cover layer formed on the surface of the bank 102.

以上のように構成される汚染成分拡散防止構造100では、盛土102や覆土層103に降雨や積雪があると、雨水や雪解け水が盛土102に浸透し、盛土102を通過した浸透水が汚染土壌Sに浸透する。浸透水が汚染土壌Sを通過する間に、汚染土壌Sに含まれる重金属等の汚染成分が浸透水に溶出する。汚染成分を含む浸透水が吸着層101を通過する間に、汚染成分が吸着層101に捕捉される。これにより、汚染土壌Sを浄化できると共に、汚染成分が自由地下水面G2に到達することが防止され、汚染成分が地下水に流出して拡散することが防止される。   In the contamination component diffusion preventing structure 100 configured as described above, when there is rainfall or snow accumulation on the embankment 102 or the cover layer 103, rainwater or snowmelt permeates the embankment 102, and the permeated water that has passed through the embankment 102 is contaminated soil. Infiltrate S. While the permeated water passes through the contaminated soil S, contaminating components such as heavy metals contained in the contaminated soil S are eluted into the permeated water. While the permeated water containing the contaminating component passes through the adsorption layer 101, the contaminating component is captured by the adsorption layer 101. As a result, the contaminated soil S can be purified, the contaminated components are prevented from reaching the free groundwater surface G2, and the contaminated components are prevented from flowing out into the groundwater and diffusing.

特許文献2に開示される技術も、特許文献1と同様に、汚染土壌Sの汚染成分が拡散することを防止する技術である。特許文献2に開示される技術では、図12を参照して説明した吸着層101が、汚染成分を吸着する吸着剤と、砂利等の希釈材との混合物で構成されている。その混合物は、浸透水の空間速度(浸透水の流量÷混合物の体積)が60(hr−1)以下に設定されている。これにより、浸透水が吸着層101を通過する間に汚染成分が吸着剤に捕捉され、浸透水が浄化される。その結果、特許文献1に開示される技術と同様に、汚染土壌を浄化できると共に、汚染成分が地下水に流出して拡散することが防止される。 Similarly to Patent Document 1, the technique disclosed in Patent Document 2 is a technique that prevents the contaminated components of the contaminated soil S from diffusing. In the technique disclosed in Patent Document 2, the adsorption layer 101 described with reference to FIG. 12 is composed of a mixture of an adsorbent that adsorbs contaminating components and a diluent such as gravel. In the mixture, the space velocity of osmotic water (flow rate of osmotic water ÷ volume of the mixture) is set to 60 (hr −1 ) or less. Thereby, the contaminating component is captured by the adsorbent while the permeated water passes through the adsorption layer 101, and the permeated water is purified. As a result, like the technique disclosed in Patent Document 1, the contaminated soil can be purified, and the contaminated components are prevented from flowing out into the ground water and diffusing.

特開2009−279550号公報JP 2009-279550 A 特開2010−5624号公報JP 2010-5624 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)土壌に水が浸透する速度(浸透速度)は降雨量や降雪量(以下「降雨量等」と称す)によって変化するにも関わらず、特許文献1及び2に開示される技術は、浸透速度を制御することができなかった。そのため、降雨量等が少なく浸透速度が遅い場合は、浸透水に含まれる汚染成分を吸着剤で捕捉できるが、豪雨などのように降雨量等が多く浸透速度が速い場合は、浸透水に含まれる汚染成分を吸着剤で捕捉できなくなるという課題を有していた。
(2)豪雨などのように降雨量等が多い場合、汚染土壌を通過した浸透水は鉛直方向のみならず水平方向にも排出される可能性が高い。浸透水が水平方向に排出される場合には、汚染土壌の鉛直方向に形成された吸着層では汚染成分を捕捉することはできない。浸透水が水平方向に排出される場合には、特許文献2に開示されるように、汚染土壌を包囲するように吸着層を設ける必要があった。この場合には、吸着層の体積が増えるため大量の吸着剤が必要になるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) Although the speed at which water penetrates into soil (penetration speed) varies depending on the amount of rainfall and the amount of snow (hereinafter referred to as “rainfall, etc.”), the techniques disclosed in Patent Documents 1 and 2 are: The penetration rate could not be controlled. Therefore, when there is little rainfall, etc., and the infiltration rate is slow, the contaminating components contained in the infiltration water can be captured by the adsorbent, but when there is a lot of rainfall, such as heavy rain, and the infiltration rate is high, it is included in the infiltration water. There is a problem that it becomes impossible to capture the contaminated components with the adsorbent.
(2) When there is a lot of rainfall such as heavy rain, there is a high possibility that the seepage water that has passed through the contaminated soil will be discharged not only in the vertical direction but also in the horizontal direction. When the permeated water is discharged in the horizontal direction, the adsorbed layer formed in the vertical direction of the contaminated soil cannot capture the contaminating components. When the permeated water is discharged in the horizontal direction, as disclosed in Patent Document 2, it is necessary to provide an adsorption layer so as to surround the contaminated soil. In this case, since the volume of the adsorption layer increases, there is a problem that a large amount of adsorbent is required.

本発明は上記従来の課題を解決するもので、降雨量等に左右されることなく、難透水材を通過して汚染土壌に浸透する浸透水の量を制限することができ、汚染土壌の下層に埋設され従来と同程度以下の量の吸着剤で構成される第1吸着層で汚染成分を捕捉すると共に、汚染土壌から鉛直方向上向きに移動する汚染成分を難透水材と汚染土壌との間に埋設される第2吸着層で吸着して、汚染成分の拡散を防止する汚染成分拡散防止構造を提供することを目的とする。 The present invention solves the above-described conventional problems, and can limit the amount of permeated water that passes through the poorly permeable material and permeates into the contaminated soil without being affected by the rainfall or the like. The contaminated components are trapped in the first adsorbent layer composed of an adsorbent in the same amount or less as the conventional one, and the contaminated components moving upward in the vertical direction from the contaminated soil are placed between the hardly permeable material and the contaminated soil. An object of the present invention is to provide a contamination component diffusion preventing structure that is adsorbed by a second adsorption layer embedded in the substrate and prevents diffusion of the contamination component .

上記従来の課題を解決するために本発明の汚染成分拡散防止構造および汚染土壌の浄化方法は、以下の構成を有している。
請求項1記載の汚染成分拡散防止構造は、透湿性を有しつつ水の透過は妨げるものとして汚染土壌の上層に配設される難透水材と、前記汚染土壌の下層に埋設されて前記難透水材および前記汚染土壌を透過した浸透水に含まれる汚染成分が吸着される第1吸着層と、前記難透水材と前記汚染土壌との間に埋設され前記汚染土壌に含まれる汚染成分が吸着される第2吸着層と、を備えた構成を有している。
この構成により以下のような作用が得られる。
(1)汚染土壌の上層に配設される難透水材により、難透水材を通過して汚染土壌に浸透する浸透水の量(浸透量)が制限される。難透水材および汚染土壌を透過した浸透水は第1吸着層に浸透するが、その浸透水の量が制限されるので、浸透水に含まれる汚染成分は第1吸着層で捕捉される。
(2)難透水材を通過できない浸透水は、難透水材の下層に位置する汚染土壌とは接触しないため汚染されない。一方、降雨量等が多い場合でも、難透水材を通過する浸透水の量は制限されるので、浸透速度が規制される。その結果、汚染土壌を通過する浸透水は水平方向に排出される可能性が低く、ほとんどが鉛直方向に浸透する。鉛直方向に浸透する浸透水は、汚染土壌の下層に埋設される第1吸着層に浸透し、汚染成分は第1吸着層で捕捉される。
(3)以上のことから、汚染土壌を通過した浸透水が水平方向に排水されることを抑制できると共に、降雨量等に左右されることなく、汚染成分を第1吸着層で確実に捕捉することができる。また、難透水材により第1吸着層の浸透量は制限されるので、第1吸着層を構成する吸着剤の量を増やすことなく汚染成分を捕捉できる。これにより、汚染成分の拡散を防止できる。さらに、完全遮水構造とするのではなく難透水材を設けることで、汚染土壌に浸透水を通過させて汚染土壌を浄化することができる。
(4)汚染土壌に含まれる汚染成分は、降雨時には浸透水の移動に伴って鉛直方向下向きに移動するが、晴天時にはヒ素のように浸透水の蒸発に伴って鉛直方向上向きに移動し濃縮される可能性がある。汚染土壌から鉛直方向上向きに移動される汚染成分は第2吸着層に吸着されるので、浸透水の蒸発に伴う汚染成分の拡散を防止できる。
In order to solve the above-described conventional problems, the contaminated component diffusion preventing structure and the contaminated soil purification method of the present invention have the following configurations.
The pollutant component diffusion preventing structure according to claim 1 has a moisture-permeable material that prevents water from passing therethrough and a water-impervious material disposed in an upper layer of the contaminated soil, and is buried in the lower layer of the contaminated soil and has the difficulty. A first adsorbing layer that adsorbs pollutant components contained in the permeable material and permeated water that has passed through the contaminated soil, and a polluted component contained in the contaminated soil that is embedded between the hardly permeable material and the contaminated soil are adsorbed. And a second adsorption layer .
With this configuration, the following effects can be obtained.
(1) The amount of penetrating water (penetration amount) that passes through the poorly permeable material and permeates into the contaminated soil is limited by the hardly permeable material disposed in the upper layer of the contaminated soil. The permeated water that has permeated through the hardly permeable material and the contaminated soil permeates into the first adsorption layer, but the amount of the permeated water is limited, so that the contaminating component contained in the permeated water is captured by the first adsorption layer.
(2) The permeated water that cannot pass through the poorly permeable material is not contaminated because it does not contact the contaminated soil located in the lower layer of the hardly permeable material. On the other hand, even when the amount of rainfall is large, the amount of permeated water that passes through the poorly permeable material is limited, so that the permeation rate is regulated. As a result, penetrating water that passes through the contaminated soil is unlikely to be discharged in the horizontal direction, and most of it penetrates in the vertical direction. The permeated water that permeates in the vertical direction permeates the first adsorption layer embedded in the lower layer of the contaminated soil, and the contaminating component is captured by the first adsorption layer.
(3) From the above, the permeated water that has passed through the contaminated soil can be prevented from being drained in the horizontal direction, and the contaminated components can be reliably captured by the first adsorption layer without being affected by the amount of rainfall. be able to. Moreover, since the amount of permeation of the first adsorption layer is limited by the hardly permeable material, the contaminating component can be captured without increasing the amount of the adsorbent constituting the first adsorption layer. Thereby, the diffusion of contaminating components can be prevented. Furthermore, by providing a hardly water-permeable material instead of a completely water-impervious structure, the contaminated soil can be purified by passing the permeated water through the contaminated soil.
(4) Contaminated components contained in contaminated soil move downward in the vertical direction along with the permeated water during rainfall, but move upward in the vertical direction as the permeated water evaporates and concentrate in fine weather. There is a possibility. Since the contaminating component moved vertically upward from the contaminated soil is adsorbed by the second adsorption layer, it is possible to prevent diffusion of the contaminating component accompanying the evaporation of the permeated water.

ここで、難透水材としては、透湿性を有すると共に、浸透水の通過を完全に遮断することなく適度な雨水を透過させるシート状の部材で構成される。具体的には、透水係数が1×10−3〜1×10−8m/sの合成樹脂製単層や複合シート、不織布等が好適に用いられる。例えば、複合シートとして、AKアペックシート(登録商標)旭化成ジオテック社製等が好適に用いられる。難透水材の透水係数が1×10−3m/sより大きくなるにつれ、降雨量が多く浸透速度が速い場合に浸透水に含まれる汚染成分が第1吸着層を通過してしまう傾向がみられる。透水係数が1×10−8m/sより小さくなるにつれ、難透水材を通過する浸透水の量が少なくなり汚染土壌が浸透水で浄化され難くなる傾向がみられる。これら合成樹脂製単層や複合シートや不織布等を複数枚重ねて用いることも可能である。 Here, the hardly water-permeable material is composed of a sheet-like member that has moisture permeability and allows permeation of appropriate rainwater without completely blocking the passage of permeated water. Specifically, a synthetic resin single layer, a composite sheet, a nonwoven fabric, or the like having a water permeability coefficient of 1 × 10 −3 to 1 × 10 −8 m / s is preferably used. For example, as a composite sheet, an AK apec sheet (registered trademark) manufactured by Asahi Kasei Geotech Co., Ltd. is preferably used. As the permeability coefficient of the poorly permeable material becomes larger than 1 × 10 −3 m / s, there is a tendency that contaminated components contained in the permeated water pass through the first adsorption layer when there is a large amount of rainfall and the infiltration rate is high. It is done. As the water permeability coefficient becomes smaller than 1 × 10 −8 m / s, there is a tendency that the amount of the permeated water passing through the hardly permeable material decreases and the contaminated soil is hardly purified with the permeated water. It is also possible to use a plurality of these synthetic resin single layers, composite sheets, nonwoven fabrics and the like.

第1吸着層としては、吸着剤を敷設して形成することができる。吸着剤としては、汚染土壌に含まれる成分のうち人体に悪影響を及ぼす汚染成分を吸着可能なものであれば、特に制限なく用いることができる。例えば、鉄系化合物を含有する「エコメル(登録商標)」、セリウムを主成分とする複数の希土類化合物を含有する「アドセラ(登録商標)」を用いることができ、その他、Al,Fe,Si,P,Ca,Mg等の1種もしくは複数種を含有するもの、人工ゼオライト、火山灰土等を用いることも可能である。また、これらをロックウール、セルロース系等のろ材等と混合して用いることも可能である。   The first adsorption layer can be formed by laying an adsorbent. Any adsorbent can be used without particular limitation as long as it can adsorb contaminating components that adversely affect the human body among the components contained in the contaminated soil. For example, “Ecomel (registered trademark)” containing an iron-based compound, “Adcera (registered trademark)” containing a plurality of rare earth compounds mainly composed of cerium can be used, and Al, Fe, Si, Those containing one or more of P, Ca, Mg and the like, artificial zeolite, volcanic ash soil and the like can also be used. These can also be used by mixing with rock wool, cellulose-based filter media and the like.

なお、汚染土壌に含まれ吸着剤に捕捉される汚染成分としては、例えば、ヒ素、フッ素、ホウ素、セレン、鉛、クロム、カドミウム、マンガン、アンチモン、ニッケル等を挙げることができる。汚染成分拡散防止構造は、地表に盛土により構築することができる。また、地表を掘削して地中に構築することも可能である。
第2吸着層を構成する吸着剤は、前述の第1吸着層と同様であるので説明を省略する。
Examples of contaminating components contained in the contaminated soil and trapped by the adsorbent include arsenic, fluorine, boron, selenium, lead, chromium, cadmium, manganese, antimony, nickel and the like. The pollution component diffusion prevention structure can be constructed by embankment on the ground surface. It is also possible to excavate the ground and build it underground.
The adsorbent composing the second adsorbing layer is the same as that of the first adsorbing layer described above, and a description thereof is omitted.

請求項2記載の発明は、請求項1記載の汚染成分拡散防止構造であって、前記難透水材の上層に形成される粗粒層を備えた構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)汚染土壌に含まれる汚染成分は、降雨時には浸透水の移動に伴って鉛直方向下向きに移動するが、晴天時には浸透水の蒸発に伴って鉛直方向上向きに移動し濃縮される可能性がある。汚染成分が鉛直方向上向きに移動されるとしても、難透水材の上層に形成される粗粒層により毛管現象が遮断されるので、汚染成分の地表への毛管上昇を抑制することができ、汚染成分の拡散を防止できる。
The invention according to claim 2 is the contamination component diffusion preventing structure according to claim 1, and has a configuration including a coarse layer formed in an upper layer of the hardly water-permeable material.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Contaminating components contained in contaminated soil move downward in the vertical direction along with the movement of the permeated water during rain, but may move upward and concentrate in the fine weather as the permeated water evaporates. is there. Even if the pollutant component is moved upward in the vertical direction, the capillarity is blocked by the coarse layer formed in the upper layer of the poorly permeable material, so that the capillarity rise to the surface of the pollutant component can be suppressed. The diffusion of components can be prevented.

ここで、粗粒層としては、砕石、砂利、煉瓦屑、ガラス屑、貝殻屑、陶器屑等の充填されることによって粒子間に空隙が形成され、毛管現象が遮断される部材により構成される。   Here, the coarse-grained layer is constituted by a member in which voids are formed between particles by filling crushed stone, gravel, brick waste, glass waste, shell waste, ceramic waste, etc., and capillary action is blocked. .

請求項3記載の発明は、請求項1又は2に記載の汚染成分拡散防止構造であって、前記汚染土壌を覆う盛土と、前記第1吸着層の下層に埋設される止水材と、吸水性を有し止水材と前記第1吸着層との間に埋設される水平ドレーンと、前記盛土の外部に配設され前記水平ドレーンに導かれて排水される浸透水が通過し前記汚染土壌に含まれる汚染成分が吸着される吸着剤が交換可能に充填される吸着装置と、を備えた構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)第1吸着層の下層に止水材を有するので、盛土底部以下の土壌を汚染成分で汚染されるのを防止できる。
(2)第1吸着層は、比較的高濃度の汚染成分が含まれる初期の浸透水の汚染成分を捕捉した後、汚染成分の捕捉能が経時劣化する可能性がある。第1吸着層は汚染土壌の下層に埋め殺しにされているので、捕捉能が劣化した第1吸着層の吸着剤を交換することは不可能である。第1吸着層の捕捉能が劣化すると、汚染成分を含んだままの浸透水が流出し汚染成分が拡散してしまうところ、第1吸着層の下層に止水材が埋設されているので、止水材より下層に浸透水が流出することが防止される。
(3)止水材へ到達した浸透水は、水平ドレーンにより止水材に沿って水平方向へ導かれる。浸透水に含まれる汚染成分は吸着装置を通過することにより吸着され、流出が防止される。これにより、汚染成分の拡散を防止できると共に、長期に亘って汚染土壌を浄化できる。
(4)吸着装置は盛土の外部に配設されているので、吸着剤の交換も容易である。これにより、第1吸着層の吸着剤が経時劣化して汚染成分の捕捉能が低下した場合であっても、吸着装置の吸着剤により汚染成分を捕捉することができる。さらに吸着装置の吸着剤の捕捉能が低下した場合は、吸着剤を交換することにより汚染成分を確実に捕捉できる。
Invention of Claim 3 is the pollution component spreading | diffusion prevention structure of Claim 1 or 2, Comprising: The embankment which covers the said contaminated soil , the water stop material embed | buried under the said 1st adsorption layer, and water absorption a horizontal drain is embedded between the a waterproofing material has a sex first adsorption layer, the contaminated soil permeate passes drained disposed outside the embankment is guided to the horizontal drain And an adsorbing device in which an adsorbent for adsorbing the contaminating components contained therein is exchangeably filled .
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the water-stopping material is provided in the lower layer of the first adsorption layer, it is possible to prevent soil below the embankment bottom from being contaminated with contaminating components.
(2) After the first adsorbing layer captures the contaminating component of the initial permeated water containing the contaminating component having a relatively high concentration, the capturing ability of the contaminating component may deteriorate with time. Since the first adsorption layer is buried in the lower layer of the contaminated soil, it is impossible to exchange the adsorbent of the first adsorption layer whose capture ability has deteriorated. When the trapping ability of the first adsorption layer deteriorates, the permeated water containing the contaminating component flows out and the contaminating component diffuses. However, since the water-stopping material is buried under the first adsorbing layer, Osmotic water is prevented from flowing out to the lower layer than the water material.
(3) The permeated water that has reached the waterstop material is guided in the horizontal direction along the waterstop material by the horizontal drain. Contaminating components contained in the osmotic water are adsorbed by passing through the adsorbing device and are prevented from flowing out. Thereby, while being able to prevent the spreading | diffusion of a pollutant component, a contaminated soil can be purified over a long term.
(4) Since the adsorption device is disposed outside the embankment, it is easy to exchange the adsorbent. Thereby, even if it is a case where the adsorption agent of a 1st adsorption layer deteriorates with time and the capture capability of a contamination component falls, a contamination component can be captured with the adsorption agent of an adsorption | suction apparatus. Further, when the adsorbent capturing ability of the adsorbing device is lowered, the contaminating component can be reliably captured by exchanging the adsorbent.

ここで、止水材としては、合成樹脂製や合成ゴム系等の止水材、セメント固化材等の水の浸透を遮断する部材により構成される。
水平ドレーンとしては、サンドマットの他、天然繊維を絡み合わせたマット状やロープ状等の吸水性を有するもの(例えば特開平11−172666号公報や特開2001−3342号公報等に開示)を用いることができる。
吸着装置としては、前述の吸着剤が充填されたものを用いることができる。吸着装置は吸着剤を交換可能に構成することが好ましい。吸着剤の捕捉能が低下する度に交換することで、汚染土壌を長期に亘って浄化できるからである。
Here, the water-stopping material is constituted by a member that blocks water permeation, such as a water-stopping material made of synthetic resin or synthetic rubber, or a cement solidifying material.
As a horizontal drain, in addition to a sand mat, a mat-like or rope-like water entangled with natural fibers (for example, disclosed in JP-A-11-172666 and JP-A-2001-3342) is used. Can be used.
As the adsorption device, one filled with the aforementioned adsorbent can be used. The adsorbing device is preferably configured so that the adsorbent can be replaced. This is because the contaminated soil can be purified over a long period of time by exchanging it every time the adsorbent trapping capacity decreases.

汚染土壌の浄化方法は、透湿性を有しつつ水の透過を妨げる難透水材を通過した浸透水を汚染土壌に透過させる土壌透過工程と、前記土壌透過工程により前記汚染土壌を透過した浸透水を前記汚染土壌に含まれる汚染成分が吸着される吸着剤と接触させ前記汚染成分を前記吸着剤に捕捉させる汚染成分捕捉工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)難透水材を通過した浸透水を汚染土壌に透過させる土壌透過工程により、汚染土壌を透過する浸透水の量(浸透量)が制限される。その結果、吸着層の吸着剤と接触する浸透水の浸透速度を制限できるので、汚染成分捕捉工程により浸透水に含まれる汚染成分を吸着剤に負担をかけずに捕捉させることができる。これにより、汚染土壌を浄化することができる。
A method for purifying contaminated soil includes a soil permeation process that allows permeated water that has passed through a poorly permeable material that has moisture permeability to block water permeation to the contaminated soil, and permeated water that has permeated the contaminated soil through the soil permeation process. And a contaminating component capturing step of contacting the contaminating component with the adsorbent to adsorb the contaminating component contained in the contaminated soil.
With this configuration, the following effects can be obtained.
(1) The amount (permeation amount) of permeated water that permeates the contaminated soil is limited by the soil permeation step that permeates the permeated water that has passed through the poorly permeable material to the contaminated soil. As a result, since the permeation speed of the permeated water contacting the adsorbent in the adsorption layer can be limited, the contaminating component contained in the permeated water can be captured without imposing a burden on the adsorbent by the contaminated component capturing step. Thereby, contaminated soil can be purified.

請求項1記載の発明によれば、以下のような効果を有する。
(1)汚染土壌を通過した浸透水が水平方向に排水されることを抑制できると共に、降雨量に左右されることなく、汚染成分を第1吸着層で確実に捕捉することができ、汚染成分の拡散を防止できる汚染成分拡散防止構造を提供できる。
(2)難透水材により第1吸着層の浸透量は制限されるので、第1吸着層を構成する吸着剤の量を増やすことなく汚染成分を捕捉できる汚染成分拡散防止構造を提供できる。
(3)晴天時に浸透水の蒸発に伴って鉛直方向上向きに移動する汚染成分は第2吸着層に吸着されるので、浸透水の蒸発に伴う汚染成分の拡散を防止できる汚染成分拡散防止構造を提供できる。
According to invention of Claim 1, it has the following effects.
(1) The permeated water that has passed through the contaminated soil can be prevented from being drained in the horizontal direction, and the contaminated component can be reliably captured by the first adsorption layer without being affected by the amount of rainfall. It is possible to provide a structure for preventing the diffusion of pollutant components that can prevent the diffusion of water.
(2) Since the permeation amount of the first adsorption layer is limited by the hardly water-permeable material, it is possible to provide a contamination component diffusion prevention structure that can capture the contamination component without increasing the amount of the adsorbent constituting the first adsorption layer.
(3) Contaminant components that move upward in the vertical direction as the permeated water evaporates in fine weather are adsorbed by the second adsorption layer. Can be provided.

請求項2記載の発明によれば、請求項1の効果に加え、
(1)晴天時に浸透水の蒸発に伴って汚染成分が鉛直方向上向きに移動しても、難透水材の上層に形成される粗粒層により毛管現象が遮断されるので、汚染成分の地表への毛管上昇を抑制することができ、汚染成分の拡散を防止できる汚染成分拡散防止構造を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Even if the pollutant moves upward in the vertical direction as the permeated water evaporates in fine weather, the capillarity is blocked by the coarse layer formed in the upper layer of the poorly permeable material. It is possible to provide a contamination component diffusion preventing structure that can suppress the capillary rise and prevent the contamination component from diffusing.

請求項3記載の発明によれば、請求項1又は2の効果に加え、
(1)止水材へ浸透できない浸透水は水平ドレーンにより止水材に沿って水平方向へ導かれ、浸透水に含まれる汚染成分は吸着装置を通過することにより吸着されるので、汚染成分の拡散を防止できると共に、長期に亘って汚染土壌を浄化できる汚染成分拡散防止構造を提供できる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) The permeated water that cannot penetrate into the water-stopping material is guided horizontally along the water-stopping material by the horizontal drain, and the contaminating components contained in the permeated water are adsorbed by passing through the adsorption device. It is possible to provide a structure for preventing the diffusion of contaminating components that can prevent the diffusion and purify the contaminated soil over a long period of time.

本発明の一実施の形態における汚染成分拡散防止構造を模式的に示す模式図The schematic diagram which shows typically the contamination component spreading | diffusion prevention structure in one embodiment of this invention 図1のIIで示す部分を拡大して示す拡大図1 is an enlarged view showing a portion indicated by II in FIG. 図1のIIIで示す部分を拡大して示す拡大図1 is an enlarged view showing a portion indicated by III in FIG. 降雨浸透実験装置の模式図Schematic diagram of rainfall infiltration experiment equipment 浸出水のpHの経時変化図Temporal change diagram of pH of leachate 浸出水のAs,Pb溶出値の経時変化図Temporal changes of leachate As and Pb elution values 蒸発実験装置の模式図Schematic diagram of evaporation experiment equipment 各土壌の蛍光X線分析図X-ray fluorescence analysis of each soil 各土壌のAs,Pbの含有量分析図(蛍光X線分析)Content analysis of As and Pb in each soil (X-ray fluorescence analysis) 表層土壌の溶出試験におけるpHの経時変化図Time-dependent change diagram of pH in surface soil dissolution test 表層土壌のAsとPbの経時変化図Time course of As and Pb in surface soil 従来の汚染成分拡散防止構造を模式的に示す模式図Schematic diagram schematically showing a conventional contamination component diffusion prevention structure

(実施の形態)
以下、本発明の一実施の形態における汚染成分拡散防止構造について、図面を参照しながら説明する。
図1は本発明の一実施の形態における汚染成分拡散防止構造を模式的に示す模式図であり、図2は図1のIIで示す部分を拡大して示す拡大図であり、図3は図1のIIIで示す部分を拡大して示す拡大図である。
図1において、1は盛土構造として地表G1に構成された本発明の汚染成分拡散防止構造、2は土砂が盛り上げられた盛土、2aは地表G1に面した盛土底部、2bは盛土2の上層付近の盛土上部である。
(Embodiment)
Hereinafter, a contamination component diffusion preventing structure according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view schematically showing a contamination component diffusion preventing structure according to an embodiment of the present invention, FIG. 2 is an enlarged view showing a portion indicated by II in FIG. 1, and FIG. It is an enlarged view which expands and shows the part shown by III of 1.
In FIG. 1, 1 is a structure for preventing diffusion of pollutant components according to the present invention constructed on the ground surface G1 as an embankment structure, 2 is an embankment on which earth and sand are raised, 2a is a bottom of the embankment facing the ground surface G1, and 2b is near the upper layer of the embankment 2 It is the upper part of the embankment.

図1及び図2において、3は合成樹脂製や合成ゴム系等の止水材で形成され盛土底部2aの上面に敷設された止水材、4はサンドマット、プラスチックドレーン(例えば、旭化成ジオテック社製、商標「パブリックドレーン」)、吸水性を有する繊維マットや通水性の良いやしの実繊維や空際率の大きい不織布等で形成され止水材3の上面に配設された水平ドレーン、5は水平ドレーン4の上層に敷設され人工ゼオライト、ロックウール等と混合された土壌中の汚染成分を吸着固定する吸着剤を含んで構成された第1吸着層、Sは第1吸着層5の上面に堆積されトンネル掘削や建設工事等によって発生しヒ素、鉛、カドミウム等の汚染成分を含有する汚染土壌である。
図1及び図3において、6は汚染土壌Sの上面に堆積された盛土上部2bの上層に積層され人工ゼオライト、ロックウール等と混合され土壌中の汚染成分を吸着固定する吸着剤を含んで構成された第2吸着層、7は盛土2及び第2吸着層6の上面に敷設され、透水係数が1×10−3〜1×10−8m/sの合成樹脂製のシートや不織布等で形成され透湿性を有すると共に浸透水の通過を完全に遮断することなく透過を妨げる難透水材であり、本実施の形態では旭化成ジオテック社製の商品名「AKアペックシート(登録商標)」(10−5m/s相当の透水性があり、ガスは通過する)を用いた。8は砕石、砂利、煉瓦屑、ガラス屑等で形成され難透水材7の上面に積層された粗粒層、9は盛土、10は盛土9の上面に形成されたアスファルト製やコンクリート製等の覆土層である。
図1において、11は水平ドレーン4に連設されて盛土2の外部に配設された吸着装置、11aは吸着装置11に収容され水平ドレーン4に導かれて排水された浸透水に含まれる汚染成分を吸着する吸着剤である。
1 and 2, 3 is a water-stopping material formed of a water-stopping material made of synthetic resin or synthetic rubber and laid on the upper surface of the embankment bottom 2a, 4 is a sand mat, a plastic drain (for example, Asahi Kasei Geotech Co., Ltd.) Manufactured by the trademark “Public Drain”), a horizontal drain formed on the upper surface of the water-stopping material 3 and formed of a water-absorbing fiber mat, a real fiber having good water permeability, a non-woven fabric having a high porosity, and the like. Reference numeral 5 denotes a first adsorbing layer constructed by including an adsorbent that adsorbs and fixes contaminating components in soil mixed with artificial zeolite, rock wool, etc., which is laid on the upper layer of the horizontal drain 4, and S is the first adsorbing layer 5. Contaminated soil that is deposited on the top surface and is generated by tunnel excavation or construction work, and contains contaminating components such as arsenic, lead, and cadmium.
1 and 3, reference numeral 6 denotes an adsorbent that is laminated on the upper layer 2b of the embankment deposited on the upper surface of the contaminated soil S and mixed with artificial zeolite, rock wool or the like to adsorb and fix contaminating components in the soil. The second adsorbing layer 7, which is laid on the upper surfaces of the embankment 2 and the second adsorbing layer 6, is made of a synthetic resin sheet or nonwoven fabric having a water permeability of 1 × 10 −3 to 1 × 10 −8 m / s. It is a hardly water-permeable material that is formed and has moisture permeability and prevents permeation without completely blocking the passage of permeated water. In the present embodiment, the product name “AK Apec Sheet (registered trademark)” (10) manufactured by Asahi Kasei Geotech Co., Ltd. -5 m / s equivalent water permeability, gas passes). 8 is a coarse-grained layer formed of crushed stone, gravel, brick waste, glass waste, etc. and laminated on the upper surface of the hardly water-permeable material 7, 9 is embankment, 10 is made of asphalt or concrete formed on the upper surface of the embankment 9, etc. It is a soil covering layer.
In FIG. 1, reference numeral 11 denotes an adsorbing device connected to the horizontal drain 4 and disposed outside the embankment 2, and 11 a is a contamination contained in the permeated water that is accommodated in the adsorbing device 11 and led to the horizontal drain 4 and drained. An adsorbent that adsorbs components.

以上のように構成される汚染成分拡散防止構造1の構築は、まず、地表G1に土砂を盛り上げ転圧しながら盛土底部2aを形成した後、止水材3を敷設し水平ドレーン4を配設する。次いで、第1吸着層5を形成した後、汚染土壌Sを積み上げ、その周囲を盛土2で覆う。次に、盛土上部2bの上面に第2吸着層6を形成した後、第2吸着層6及び盛土2の上面が完全に覆われるように難透水材7を形成する。次いで、難透水材7の上面に粗粒層8を配設した後、盛土9を形成し、覆土層10で盛土9の上面を覆う。最後に、水平ドレーン4に吸着装置11を連設する。   The construction of the contamination component diffusion preventing structure 1 configured as described above is as follows. First, the embankment bottom 2a is formed while raising and rolling the earth and sand on the ground surface G1, and then the water stop material 3 is laid and the horizontal drain 4 is disposed. . Subsequently, after forming the 1st adsorption layer 5, the contaminated soil S is piled up and the circumference | surroundings are covered with the embankment 2. Next, after forming the 2nd adsorption layer 6 on the upper surface of the embankment upper part 2b, the poorly permeable material 7 is formed so that the 2nd adsorption layer 6 and the upper surface of the embankment 2 may be covered completely. Next, after the coarse particle layer 8 is disposed on the upper surface of the hardly water-permeable material 7, the embankment 9 is formed, and the upper surface of the embankment 9 is covered with the soil covering layer 10. Finally, the suction device 11 is connected to the horizontal drain 4.

次に、以上のように構成された汚染成分拡散防止構造1を用いた汚染土壌Sの浄化方法について説明する。
汚染成分拡散防止構造1に降った雨水は、覆土層10及び盛土9の表面から浸透水として粗粒層8に浸透し、難透水材7に導かれる。難透水材7は透水係数が1×10−3〜1×10−8m/sであるので、浸透水の一部は難透水材7を通過して汚染土壌Sを透過する(以上、土壌透過工程)。
一方、難透水材7を通過できない浸透水の残部は難透水材7の上部に滞留する。難透水材7の上面に粗粒層8が設けられているので、難透水材7の上部に滞留した浸透水は、水平方向に移動され次第に盛土2の外部に排水される。この浸透水は汚染土壌Sと接触していないので、浸透水を盛土2の外部に排水しても汚染成分が拡散されることはない。
なお、難透水材7の透水係数を1×10−5m/s程度とすることにより、通常の降雨の場合は、降雨量にもよるが、降雨量の20〜50%程度を難透水材7に沿って水平移動(排水)させることができ、豪雨の場合は、90%以上を難透水材7に沿って水平移動(排水)させることができる。このように難透水材7の透水係数を設定することにより浸透量を規制する。
Next, the purification method of the contaminated soil S using the contamination component diffusion prevention structure 1 configured as described above will be described.
Rainwater that has fallen on the contaminated component diffusion prevention structure 1 penetrates into the coarse-grained layer 8 as permeated water from the surfaces of the cover layer 10 and the embankment 9 and is guided to the hardly water-permeable material 7. Since the hardly permeable material 7 has a permeability coefficient of 1 × 10 −3 to 1 × 10 −8 m / s, part of the permeated water passes through the hardly permeable material 7 and permeates the contaminated soil S (the soil Transmission step).
On the other hand, the remaining portion of the permeated water that cannot pass through the poorly permeable material 7 stays in the upper part of the hardly permeable material 7. Since the coarse-grained layer 8 is provided on the upper surface of the hardly water-permeable material 7, the permeated water staying at the upper part of the hardly water-permeable material 7 is moved in the horizontal direction and gradually drained to the outside of the embankment 2. Since this permeated water is not in contact with the contaminated soil S, the contaminated components are not diffused even if the permeated water is drained outside the embankment 2.
In addition, by making the water permeability coefficient of the hardly water permeable material 7 about 1 × 10 −5 m / s, in the case of normal rainfall, depending on the amount of rainfall, about 20 to 50% of the rainfall amount is hardly permeable material. 7 can be moved horizontally (drainage), and in the case of heavy rain, 90% or more can be moved horizontally (drainage) along the hardly permeable material 7. In this way, the permeation amount is regulated by setting the water permeability coefficient of the hardly water permeable material 7.

さて、土壌浸透工程により汚染土壌Sを透過した浸透水は、汚染成分を溶かしつつ汚染土壌Sを下降し、第1吸着層5に到達する。これにより汚染土壌Sは次第に浄化される。また、浸透水に含まれる汚染成分は、第1吸着層5を透過する間に第1吸着層5の吸着剤に捕捉される(以上、汚染成分捕捉工程)。これにより汚染成分の拡散が防止される。
なお、汚染土壌Sを浸透する浸透水は、難透水材7により浸透速度が所定速度以下に規制されるので、水平方向の移動が抑制される。その結果、浸透水が第1吸着層5を通過せずに盛土2の外部に排出されることを防止できる。また、第1吸着層5を透過する浸透水の浸透速度も規制されるので、第1吸着層5の吸着剤に過度な負担をかけることなく汚染成分が確実に捕捉される。
Now, the permeated water that has permeated through the contaminated soil S in the soil infiltration step descends the contaminated soil S while dissolving the contaminating components, and reaches the first adsorption layer 5. Thereby, the contaminated soil S is gradually purified. Further, the contaminating component contained in the permeated water is captured by the adsorbent of the first adsorbing layer 5 while passing through the first adsorbing layer 5 (the contaminating component capturing step). This prevents the diffusion of contaminating components.
Note that the permeated water that permeates the contaminated soil S is restricted by the hardly permeable material 7 so that the permeation speed is not more than a predetermined speed, so that the horizontal movement is suppressed. As a result, it is possible to prevent the permeated water from being discharged outside the embankment 2 without passing through the first adsorption layer 5. Moreover, since the permeation speed of the permeated water that permeates the first adsorption layer 5 is also regulated, the contaminating component is reliably captured without imposing an excessive burden on the adsorbent of the first adsorption layer 5.

次に、第1吸着層5を通過した浸透水は、止水材3により鉛直方向への移動が遮断される。仮に、第1吸着層5の吸着剤が経時劣化して汚染成分の捕捉能が低下した場合は、第1吸着層5を通過した浸透水に汚染成分が残存することになる。このような場合であっても止水材3により浸透水の下方への移動が遮断されるので、汚染成分を含む浸透水が地下自由水面G2に到達することが防止され、汚染成分の拡散が防止される。   Next, the permeated water that has passed through the first adsorption layer 5 is blocked from moving in the vertical direction by the water blocking material 3. If the adsorbent of the first adsorbing layer 5 deteriorates with time and the trapping ability of the contaminating component is lowered, the contaminating component remains in the permeated water that has passed through the first adsorbing layer 5. Even in such a case, the downward movement of the permeated water is blocked by the water blocking material 3, so that the permeated water containing the contaminating component is prevented from reaching the underground free water surface G2, and the diffusion of the contaminated component is prevented. Is prevented.

止水材3に達した浸透水は、水平ドレーン4により止水材3に沿って盛土2の外部に排水され、水平ドレーン4に連設された吸着装置11に導入される。吸着装置11に導入された浸透水は吸着装置11に収容された吸着剤11aの間を通過する。浸透水に汚染成分が含まれていても、吸着装置11に収容された吸着剤11aにより捕捉される。また、吸着装置11は盛土2の外部に配設されているので、吸着剤11aの交換も容易である。これにより、第1吸着層5の吸着剤が経時劣化して汚染成分の捕捉能が低下した場合であっても、吸着装置11の吸着剤11aにより汚染成分を捕捉することができる。さらに吸着装置11の吸着剤11aの捕捉能が低下した場合は、吸着剤11aを交換することにより汚染成分を確実に捕捉できる。従って、汚染成分捕捉工程において、汚染成分が含まれる浸透水を接触させる吸着剤は、第1吸着層5の吸着剤に限定されるものではなく、吸着装置11の吸着剤11aも包含される。   The permeated water that has reached the water stop material 3 is drained to the outside of the embankment 2 along the water stop material 3 by the horizontal drain 4, and is introduced into the adsorbing device 11 connected to the horizontal drain 4. The permeated water introduced into the adsorption device 11 passes between the adsorbents 11 a accommodated in the adsorption device 11. Even if contaminated components are contained in the permeated water, it is captured by the adsorbent 11a accommodated in the adsorption device 11. Moreover, since the adsorption | suction apparatus 11 is arrange | positioned outside the embankment 2, replacement | exchange of the adsorption agent 11a is also easy. Thereby, even if it is a case where the adsorption agent of the 1st adsorption layer 5 deteriorates with time and the capture capability of a contamination component falls, a contamination component can be captured by adsorption agent 11a of adsorption device 11. Furthermore, when the capturing ability of the adsorbent 11a of the adsorbing device 11 is lowered, the contaminating component can be reliably captured by exchanging the adsorbent 11a. Therefore, the adsorbent with which the permeated water containing the contaminating component is brought into contact in the contaminated component capturing step is not limited to the adsorbent of the first adsorbing layer 5, and the adsorbent 11a of the adsorbing device 11 is also included.

次に、晴天時における浸透水の挙動について説明する。汚染成分拡散防止構造1においては、晴天時は汚染土壌S内の浸透水が温められて蒸発するのに伴い、汚染成分が鉛直方向上側に向かって移動する。移動した汚染成分は第2吸着層6により吸着され捕捉されるので、汚染成分がそれ以上に拡散することが防止される。仮に、汚染成分が難透水材7上に達したとしても、難透水材7の上層に形成される粗粒層8により毛管現象が遮断されるので、汚染成分の毛管上昇を抑制することができ、汚染成分の拡散を防止できる。   Next, the behavior of the permeated water at the time of fine weather will be described. In the contaminated component diffusion preventing structure 1, during fine weather, the contaminated component moves upward in the vertical direction as the permeated water in the contaminated soil S is warmed and evaporated. Since the moved contaminated component is adsorbed and captured by the second adsorption layer 6, it is prevented that the contaminated component is further diffused. Even if the contaminating component reaches the hardly water-permeable material 7, the capillary phenomenon is blocked by the coarse particle layer 8 formed on the upper layer of the hardly water-permeable material 7, so that the capillary rise of the contaminating component can be suppressed. , Can prevent the diffusion of contaminating components.

以上のように実施の形態1における汚染成分拡散防止構造1によれば、以下の作用を有する。
(1)汚染土壌Sの上層に配設される難透水材7により、難透水材7を通過して汚染土壌Sに浸透する浸透量が制限される。難透水材7及び汚染土壌Sを透過した浸透水は第1吸着層5に浸透するが、その浸透水の量が制限されるので、浸透水に含まれる汚染成分は第1吸着層5で捕捉される。
(2)難透水材7により浸透量が制限されるので、第1吸着層5を構成する吸着剤の量を増やすことなく(第1吸着層5の厚さを増やすことなく)汚染成分を捕捉できる。また、汚染成分拡散防止構造1を完全遮水構造とするのではなく、汚染土壌Sの上層に難透水材7を設けることで、汚染土壌Sに浸透水を通過させて汚染土壌Sを浄化することができる。
(3)降雨量等が多い場合でも、難透水材7を通過する浸透水の量は制限されるので、浸透速度が規制される。その結果、汚染土壌Sを通過する浸透水は水平方向に排出される可能性が低く、ほとんどが鉛直方向に浸透する。鉛直方向に浸透する浸透水は、汚染土壌Sの下層に埋設される第1吸着層5に浸透する。これにより降雨量等に左右されることなく、汚染成分を第1吸着層5で確実に捕捉することができる。
(4)汚染土壌Sに含まれる汚染成分が、晴天時に浸透水の蒸発に伴って鉛直方向上向きに移動されるとしても、難透水材7の上層に形成される粗粒層8により毛管現象が遮断されるので、汚染成分の毛管上昇を抑制することができ、汚染成分の拡散を防止できる。
As described above, the contamination component diffusion preventing structure 1 according to the first embodiment has the following effects.
(1) The amount of permeation that passes through the hardly permeable material 7 and permeates into the contaminated soil S is limited by the hardly permeable material 7 disposed in the upper layer of the contaminated soil S. The permeated water that has permeated through the poorly permeable material 7 and the contaminated soil S permeates the first adsorption layer 5, but the amount of the permeated water is limited, so that the contaminated components contained in the permeated water are captured by the first adsorption layer 5. Is done.
(2) Since the amount of permeation is limited by the hardly permeable material 7, the contamination component is captured without increasing the amount of the adsorbent constituting the first adsorption layer 5 (without increasing the thickness of the first adsorption layer 5). it can. In addition, the contaminated component diffusion prevention structure 1 is not a completely water-impervious structure, but the permeated water 7 is passed through the contaminated soil S to purify the contaminated soil S by providing the poorly permeable material 7 in the upper layer of the contaminated soil S. be able to.
(3) Even when the amount of rainfall is large, the amount of permeated water that passes through the hardly permeable material 7 is limited, so that the permeation rate is regulated. As a result, the permeated water that passes through the contaminated soil S is unlikely to be discharged in the horizontal direction, and most of it penetrates in the vertical direction. The permeated water that permeates in the vertical direction permeates the first adsorption layer 5 embedded in the lower layer of the contaminated soil S. Thereby, the contaminated component can be reliably captured by the first adsorption layer 5 without being influenced by the rainfall amount or the like.
(4) Even if the contaminating component contained in the contaminated soil S is moved upward in the vertical direction along with the evaporation of the permeated water in fine weather, the capillarity is caused by the coarse particle layer 8 formed in the upper layer of the hardly permeable material 7. Since it is blocked, the capillary rise of the contaminating component can be suppressed, and the diffusion of the contaminating component can be prevented.

(5)第1吸着層5の下層に止水材3が埋設されているので、止水材3より下層に浸透水が流出することが防止される。第1吸着層5による汚染成分の捕捉能が劣化した場合でも、汚染成分を含んだままの浸透水が自由地下水面G2に流出し汚染成分が拡散してしまうことが防止される。
(6)止水材3へ浸透できない浸透水は、水平ドレーン4により止水材3に沿って水平方向へ導かれる。これにより、汚染成分拡散防止構造1の盛土構造の含水率が高くなって崩壊することが防止される。また、浸透水に含まれる汚染成分は吸着装置11を通過することにより吸着され、流出が防止される。これにより、汚染成分の拡散を防止できると共に、吸着剤11aを必要に応じて交換することで、長期に亘って汚染土壌Sを浄化できる。
(7)難透水材7を通過できない浸透水は、粗粒層8により難透水材7に沿って水平方向に排水される。これにより、難透水材7より上層の排水性を向上でき、汚染成分拡散防止構造1の盛土構造の含水率が高くなって崩壊することが防止される。
(8)汚染土壌Sに含まれる汚染成分が、晴天時に浸透水の蒸発に伴って鉛直方向上向きに移動されるとしても、汚染土壌Sの上層に形成された第2吸着層6に吸着されるので、浸透水の蒸発に伴う汚染成分の拡散を防止できる。
(9)降雨量の変化による浸透水の増加や晴天による浸透水の蒸発等の気象条件の変化の影響を受けても、盛土2内の汚染土壌Sから浸透水に移行した汚染成分が拡散することを確実に防止することができると共に、汚染土壌Sを長期間に亘って浄化することができ、汚染成分の盛土2の外部への拡散リスクを長期的に低減することができる。
(5) Since the water blocking material 3 is embedded in the lower layer of the first adsorption layer 5, the permeated water is prevented from flowing out from the water blocking material 3 to the lower layer. Even when the capturing ability of the contaminating component by the first adsorbing layer 5 is deteriorated, the permeated water containing the contaminating component is prevented from flowing out to the free ground water surface G2 and diffusing the contaminating component.
(6) The permeated water that cannot penetrate into the water stop material 3 is guided in the horizontal direction along the water stop material 3 by the horizontal drain 4. Thereby, it is prevented that the moisture content of the embankment structure of the contamination component diffusion preventing structure 1 becomes high and collapses. Moreover, the contaminating component contained in the permeated water is adsorbed by passing through the adsorbing device 11, and the outflow is prevented. Thereby, while being able to prevent the spreading | diffusion of a contaminating component, the contaminated soil S can be purified over a long period of time by replacing | exchanging adsorption agent 11a as needed.
(7) The permeated water that cannot pass through the hardly water-permeable material 7 is drained in the horizontal direction along the hardly water-permeable material 7 by the coarse particle layer 8. Thereby, the drainage property of the upper layer from the hardly permeable material 7 can be improved, and the water content of the embankment structure of the contamination component diffusion preventing structure 1 is prevented from being collapsed.
(8) Even if the contaminated component contained in the contaminated soil S is moved upward in the vertical direction as the permeated water evaporates in fine weather, it is adsorbed by the second adsorption layer 6 formed in the upper layer of the contaminated soil S. Therefore, it is possible to prevent the diffusion of contaminating components accompanying evaporation of the permeated water.
(9) Contaminated components transferred from the contaminated soil S in the embankment 2 to the infiltrated water diffuse even under the influence of changes in weather conditions such as increase in the infiltrated water due to changes in rainfall and evaporation of the infiltrated water due to clear weather. This can be reliably prevented, the contaminated soil S can be purified over a long period of time, and the risk of diffusion of contaminating components to the outside of the embankment 2 can be reduced over the long term.

また、以上のような汚染土壌の浄化方法によれば、以下の作用を有する。
(1)難透水材7を通過した浸透水を汚染土壌Sに透過させる土壌透過工程により、汚染土壌Sを透過する浸透水の量(浸透量)が制限される。その結果、吸着剤11a(又は第1吸着層5)と接触する浸透水の浸透速度を制限できるので、汚染成分捕捉工程により浸透水に含まれる汚染成分を吸着剤11a(又は第1吸着層5)に負担をかけずに捕捉させることができる。これにより汚染成分の拡散を防止しつつ汚染土壌Sを浄化できる。
Moreover, according to the purification method of the above contaminated soil, it has the following effects.
(1) The amount of permeated water that permeates the contaminated soil S (the amount of permeation) is limited by the soil permeation step that permeates the contaminated soil S with the permeated water that has passed through the hardly permeable material 7. As a result, since the permeation rate of the permeated water that contacts the adsorbent 11a (or the first adsorbing layer 5) can be limited, the contaminating component contained in the permeated water is removed from the adsorbent 11a (or the first adsorbing layer 5) by the contaminating component capturing step. ) Can be captured without burden. Thereby, the contaminated soil S can be purified while preventing the diffusion of contaminating components.

1.降雨浸透実験(実験例1〜3)
次に、図面を参照しながら、本発明の効果を確認する実験例として降雨浸透実験について説明する。図4は降雨実験装置を模式的に示す模式図である。
図4において、20は降雨実験に用いる実験槽、21は長さ(図4左右方向)約60cmの直方体の土槽、21a,21bは所定の間隔をあけて土槽21内に立設され土槽21内を3区(実験例1、実験例2及び実験例3)に分割する分割板、22aは実施例1における土壌層が形成される土槽21の底部に形成された排水管、22bは実験例2における土壌層が形成される土槽21の底部に形成された排水管、22cは実験例3における土壌層が形成される土槽21の底部に形成された排水管、23は標準砂(山口県下関産のまさ土)が5cmの厚さで土槽21の底部に充填された標準砂層、24はヒ素を含有する硫化鉄鉱残さが標準砂に1wt%混合されて調製された汚染土壌が5cmの厚さで標準砂層23の上に充填された汚染土壌層、25は標準砂が10cmの厚さで汚染土壌層24の上に充填された標準砂層、26は豆砂利(粒径5〜10mm程度)が3cmの厚さで標準砂層25の上に充填された豆砂利層である。なお、標準砂層23、汚染土壌層24、標準砂層25、豆砂利層26は3区(実験例1、実験例2及び実験例3)とも同様に積層されている。
1. Rain penetration test (Experimental Examples 1-3)
Next, a rainfall infiltration experiment will be described as an experimental example for confirming the effect of the present invention with reference to the drawings. FIG. 4 is a schematic diagram schematically showing a rainfall experiment apparatus.
In FIG. 4, 20 is an experimental tank used for a rain test, 21 is a rectangular parallelepiped soil tank of about 60 cm in length (left and right direction in FIG. 4), and 21a and 21b are erected in the earth tank 21 with a predetermined interval. A dividing plate that divides the tank 21 into three sections (Experimental Example 1, Experimental Example 2 and Experimental Example 3), 22a is a drain pipe formed at the bottom of the soil tank 21 in which the soil layer in Example 1 is formed, 22b Is a drain pipe formed at the bottom of the soil tank 21 where the soil layer is formed in Experimental Example 2, 22c is a drain pipe formed at the bottom of the soil tank 21 where the soil layer is formed in Experimental Example 3, and 23 is a standard Standard sand layer of sand (massite from Shimonoseki, Yamaguchi Prefecture) filled to the bottom of the soil tank 21 with a thickness of 5 cm, 24 is a contamination prepared by mixing 1 wt% of arsenic sulfide ore residue with standard sand Contaminated soil layer in which the soil is 5 cm thick and filled on the standard sand layer 23 25 is a standard sand layer filled with a standard sand of 10 cm in thickness on the contaminated soil layer 24, and 26 is a bean gravel (particle size of about 5 to 10 mm) filled with a thickness of 3 cm on the standard sand layer 25. It is a bean gravel layer. The standard sand layer 23, the contaminated soil layer 24, the standard sand layer 25, and the bean gravel layer 26 are laminated in the same manner in the three sections (Experimental Example 1, Experimental Example 2 and Experimental Example 3).

27は実験例2における土壌層において標準砂層23の一部に形成された吸着層である。吸着層27は、マグネシウム珪酸カルシウム添加のロックウール系(MRW剤)の吸着剤を標準砂に10wt%混合して調製され3cmの厚さで充填されている。従って実施例2における土壌層では、標準砂層23の厚さは2cmであり、その標準砂層23と汚染土壌層24との間に吸着層27が形成されている。28は実験例1における土壌層において標準砂層25の上面と豆砂利層26の下面との間に配設された完全な遮水シートではなく、ガスを通過させ、水分も若干浸透・通過する難透水材(透水係数1×10−5m/s、商品名「AKアペックシート」旭化成ジオテック社製)、29は土槽21の側面に形成された排水管であり実験例1における土壌層の豆砂利層28の底部(難透水材28の上面)に連設されている。30は人工降雨装置、31は土槽21の上部に覆設された下面が開放された筐体、31aは筐体31の側壁、31bは筐体31の天板、32は吐出口が側壁31aに配設された微粒状の水滴を空気と共に噴出する加湿器(シーシーピー社製、商品名超音波ペットボトル加湿器)、33は目開きが2cmの合成樹脂製のメッシュ、33aはメッシュ33の節部に下方に向けて針状に突起した針状突起、34は微粒状の水滴と空気の混合した過飽和室である。 Reference numeral 27 denotes an adsorption layer formed in a part of the standard sand layer 23 in the soil layer in Experimental Example 2. The adsorbing layer 27 is prepared by mixing 10 wt% of a rock wool-based (MRW agent) adsorbent containing magnesium calcium silicate with standard sand, and is filled with a thickness of 3 cm. Therefore, in the soil layer in Example 2, the thickness of the standard sand layer 23 is 2 cm, and the adsorption layer 27 is formed between the standard sand layer 23 and the contaminated soil layer 24. 28 is not a complete water-impervious sheet disposed between the upper surface of the standard sand layer 25 and the lower surface of the bean gravel layer 26 in the soil layer in Experimental Example 1, but allows gas to pass therethrough and hardly penetrates and passes moisture. Water permeable material (permeability coefficient 1 × 10 −5 m / s, trade name “AK APEC sheet” manufactured by Asahi Kasei Geotech Co., Ltd.), 29 is a drain pipe formed on the side of the earth tub 21, and the soil layer beans in Experimental Example 1 It is connected to the bottom of the gravel layer 28 (the upper surface of the hardly permeable material 28). 30 is an artificial rain apparatus, 31 is a housing whose upper surface is covered with the upper part of the earth tub 21, 31 a is a side wall of the housing 31, 31 b is a top plate of the housing 31, and 32 is a discharge port having a side wall 31 a Humidifier (trade name Ultrasonic PET bottle humidifier manufactured by CCP Corporation) that spouts fine water droplets disposed on the air together with air, 33 is a mesh made of a synthetic resin having an opening of 2 cm, 33a is a mesh 33 A needle-like protrusion 34 that protrudes in a needle-like manner downward on the node is a supersaturated chamber in which fine water droplets and air are mixed.

調製した汚染土壌の溶出値はAsが0.099mg/L、Pbが0.011mg/Lであり、溶出液のpHは5.7であった。標準砂、豆砂利、吸着剤の溶出値はいずれも検出限界未満であり、溶出液のpHはそれぞれ8.7,3.7,11.0であった。
透水係数は、汚染土壌が6.4×10−6m/s、吸着層が3.6×10−5m/s、標準砂が3.2×10−5m/sであった。汚染土壌の透水係数は、粒径の小さいシルト状の残渣を混合したため小さくなっている。
As for the elution value of the prepared contaminated soil, As was 0.099 mg / L, Pb was 0.011 mg / L, and the pH of the eluate was 5.7. The elution values of standard sand, bean gravel and adsorbent were all below the detection limit, and the pH of the eluate was 8.7, 3.7, and 11.0, respectively.
The hydraulic conductivity was 6.4 × 10 −6 m / s for the contaminated soil, 3.6 × 10 −5 m / s for the adsorption layer, and 3.2 × 10 −5 m / s for the standard sand. The hydraulic conductivity of the contaminated soil is small because silt-like residues having a small particle size are mixed.

1.1 実験方法
実験は、降雨装置を用いて実験槽20(豆砂利層26の上面)に降雨を与えることにより行った。降雨の発生方法は、従来方法(細管落下、噴霧など)とは異なり、加湿器32による水蒸気をメッシュ33及び縦状突起33aに結露させ、雨滴を発生させるものである。実際の降雨量を実験室規模で再現する場合、たとえば1m2の5mm/d降雨は3.5mL/minという非常に小さい量となる。そのため、連続降雨として与えることが困難となり、通常はたとえば1日の降水量を短時間に集中して与え、それを繰り返す間欠式になる。新しく考案したこの方法は、少量の降雨を連続的に与えることができ、かつ均一性が高いといったメリットがある。本実験では、500mL/5〜6h能力の加湿器2台を用いて、1日約14時間連続して作動させ、5.8〜7.4mm/d相当の降雨を与えることができた。
実験期間中、降雨は、1週間の内、5日間連続して与え2日間休止するパターンで2週間継続的に与えた。実験期間中は1日1回各実験槽の22a,22b,22c,29からの浸出流量を測定し、併せて重金属分析を実施した。分析方法は、公定法により得られた検液30mlに対して5mlの硝酸を加え、マイクロウェーブで分解したのち、ICP−MSで測定した。また、実験中には、土槽内部の温度・湿度の計測を超小型温度・湿度計を用いて計測した。実験槽20に与えた雨量は5.8〜7.4mm/日であった。実験期間中の土槽21内の温度は21.5〜26.0℃であり、湿度は96.6〜100%RHであった。
さらに、排水管22b,22cからの浸出水のAs分析を行った。浸出水の分析は、公定法により得られた検液30mLに対して5mLの硝酸を加えマイクロウェーブで分解した後、ICP−MSで測定することにより行った。
1.1 Experimental Method The experiment was performed by giving rain to the experimental tank 20 (the upper surface of the bean gravel layer 26) using a rain apparatus. The rain generation method is different from the conventional methods (capillary drop, spray, etc.) in that water vapor generated by the humidifier 32 is condensed on the mesh 33 and the vertical protrusions 33a to generate raindrops. When reproducing actual rainfall on a laboratory scale, for example, 5 mm / d rainfall of 1 m 2 is a very small amount of 3.5 mL / min. Therefore, it becomes difficult to give as continuous rain, and usually, for example, the daily precipitation is given in a short time and is intermittently repeated. This newly devised method has the advantage that it can give a small amount of rainfall continuously and has high uniformity. In this experiment, using two humidifiers with a capacity of 500 mL / 5 to 6 h, it was operated continuously for about 14 hours a day, and it was possible to give rain equivalent to 5.8 to 7.4 mm / d.
During the experiment, rainfall was continuously given for 2 weeks in a pattern of giving 5 consecutive days and resting for 2 days within 1 week. During the experimental period, the leaching flow rate from 22a, 22b, 22c, 29 of each experimental tank was measured once a day, and heavy metal analysis was also performed. As an analysis method, 5 ml of nitric acid was added to 30 ml of a test solution obtained by an official method, and the sample was decomposed by microwave and then measured by ICP-MS. During the experiment, the temperature and humidity inside the earth tub were measured using a miniature temperature and humidity meter. The amount of rain applied to the experimental tank 20 was 5.8 to 7.4 mm / day. The temperature in the earth tub 21 during the experiment period was 21.5 to 26.0 ° C., and the humidity was 96.6 to 100% RH.
Further, As analysis of leachate from the drain pipes 22b and 22c was performed. The analysis of the leachate was performed by adding 5 mL of nitric acid to 30 mL of the test solution obtained by the official method, decomposing with microwaves, and measuring by ICP-MS.

1.2 実験結果
浸出流量の測定の結果、排水管22a(実験例1)からは0mL/日、排水管22b(実験例2)からは210〜566mL/日、排水管22c(実験例3)からは225〜466mL、排水管29(実験例1の難透水材28)からは600〜972mL/日であった。実験例1においては難透水材28により浸透量が規制された結果、排水管22aからの浸出がなくなったと考えられる。
1.2 Experimental Results As a result of measuring the leaching flow rate, 0 mL / day from the drainage pipe 22a (Experimental Example 1), 210 to 566 mL / day from the drainage pipe 22b (Experimental Example 2), and the drainage pipe 22c (Experimental Example 3) From 225 to 466 mL, and from the drainage pipe 29 (the poorly permeable material 28 of Experimental Example 1) was 600 to 972 mL / day. In Experimental Example 1, it is thought that as a result of the amount of permeation being restricted by the hardly permeable material 28, the leaching from the drain pipe 22a was eliminated.

図5は、対策の排水管22bおよび無対策の排水管22cにおける浸出水のpHの経時変化を示している。降雨対策における排水管22aからの浸出水のpHが7.7であるから、それから推定すると汚染土壌を通過した浸出水は、大きくpHが下がることになる(pH=3.3〜3.7)。その後、吸着層を通過するとpHが上昇することになる(pH=5.7〜7.1)。
図6は、対策の排水管22bおよび無対策の排水管22cにおける浸出水のAs,Pb濃度の経時変化を示したものである。まず、Pbに着目すると、濃度はAsに比較すると小さいが、対策(排水管22b(実験例2))の方が無対策(排水管22c(実験例3))より小さくなっている。3日後に無対策(排水管22c)のPb濃度が大きくなっているが、局所的に高濃度の間隙水が浸出したものと思われる。つぎに、Asの濃度に着目すると、明確に対策(排水管22b)の濃度の方が無対策(排水管22c)のそれより小さくなっていることがわかる。本実験では、吸着層の厚さを3cmとしているが、吸着性能は浸透速度にも大きく依存することから、浸透流量が変動する過程の中でやや上昇する傾向も認められる。
上述の結果から、基本的にMRW剤を使用した吸着層により、汚染土壌を通過した浸出水からのAsおよびPbの除去・低減が可能であり、浄化効果が期待できることがわかった。
次に、As濃度は、対策(排水管22b(実験例2))の浸出水は0.003〜0.040mg/Lであり、無対策(排水管22c(実験例3))の浸出水は0.042〜0.064mg/Lであった。実験例2の土壌層は吸着層27を備えているのに対し、実験例3の土壌層は吸着層を備えていない。この差が浸出水のAs分析の結果に表れている。しかし、実験例2の土壌層は吸着層27を備えているにも関わらず、As濃度が0.003〜0.040mg/Lと変動している。このAs濃度が変動する原因の一つに浸透量の変動がある。実験例1のように難透水材28を配設することにより、浸透量を規制し汚染成分の拡散を防止しつつ汚染土壌を長期的に浄化できることが確認された。
FIG. 5 shows changes over time in the pH of leachate in the countermeasure drain pipe 22b and the non-measure drain pipe 22c. Since the pH of the leachate from the drainage pipe 22a in the measure against rainfall is 7.7, the pH of the leachate that has passed through the contaminated soil is greatly reduced (pH = 3.3 to 3.7). . After that, when passing through the adsorption layer, the pH increases (pH = 5.7 to 7.1).
FIG. 6 shows changes over time in the As and Pb concentrations of leachate in the countermeasure drain pipe 22b and the non-measure drain pipe 22c. First, focusing on Pb, the concentration is smaller than that of As, but the countermeasure (drainage pipe 22b (Experimental Example 2)) is smaller than the countermeasure (drainage pipe 22c (Experimental Example 3)). After 3 days, the Pb concentration of no countermeasure (drainage pipe 22c) increased, but it seems that high-concentration pore water was leached locally. Next, paying attention to the concentration of As, it can be seen that the concentration of the countermeasure (drainage pipe 22b) is clearly smaller than that of the countermeasureless (drainage pipe 22c). In this experiment, although the thickness of the adsorption layer is 3 cm, the adsorption performance greatly depends on the permeation speed, and therefore, a tendency to slightly increase in the process in which the permeation flow rate fluctuates is recognized.
From the above results, it was found that the adsorption layer basically using the MRW agent can remove and reduce As and Pb from the leachate that has passed through the contaminated soil, and a purification effect can be expected.
Next, the As concentration is 0.003 to 0.040 mg / L of leachate for countermeasures (drainage pipe 22b (experimental example 2)), and leachable water for no countermeasures (drainage pipe 22c (experimental example 3)) It was 0.042-0.064 mg / L. The soil layer of Experimental Example 2 includes the adsorption layer 27, whereas the soil layer of Experimental Example 3 does not include the adsorption layer. This difference appears in the results of As analysis of leachate. However, although the soil layer of Experimental Example 2 includes the adsorption layer 27, the As concentration varies from 0.003 to 0.040 mg / L. One of the causes of fluctuations in this As concentration is fluctuation in the amount of penetration. It was confirmed that by arranging the hardly water-permeable material 28 as in Experimental Example 1, the contaminated soil can be purified over a long period of time while restricting the amount of permeation and preventing the diffusion of contaminating components.

2.蒸発実験(実験例4,5)
蒸発実験は、蒸発過程において浸透水は毛管上昇して表面に濃縮する可能性があることを確認し、併せてその対策工法として吸着剤を使用し、その効果を確認することを目的として実施した。
2.1 実験方法
図7は、蒸発実験の実験装置の模式図である。
40は蒸発実験装置、41は実験槽、41aは実験槽41を分割する分割壁、42は合成樹脂シートで作成した排水ドレーン、43は排水ドレーン42のコック43a付き排水管、44は層厚5cmで充填された下関産のまさ土からなる標準砂層、45は標準砂にヒ素を含有する硫化鉄鉱残渣を1wt%混合して作成した層厚10cmの汚染土壌である。その溶出値はAsが0.099mg/L、Pbが0.011mg/Lで溶出液のpHは5.7であった。46が標準砂にマグネシウム珪酸カルシウム添加ロックウール系吸着剤(MRW剤と称する)を10wt%混合して作成した吸着層、47は出力800Wのハロゲンヒーター、48はアルミ板で作成した反射板、49は排水ドレーン42と給水管49aで連結された給水タンク、49bは給水タンク49の溢水管、50は外部給水槽である。
実験槽41内は、対策(吸着層あり,E1槽,実験例4)、無対策(吸着層なし,E2槽,実験例5)の2つに分割している。
蒸発の条件は、外部給水管50の水位と連動させて水位を地表面より8cmの位置に設定し、室内の温度を20±1℃に設定した。また、太陽輻射による蒸発促進を想定し、ハロゲンヒータを用いて9時から15時の6時間照射した。このときの土壌層表面付近の最高温度は、27±2℃程度となった。蒸発量は、外部給水槽50の減少量を1日1回測定した。その結果、ほぼ安定した蒸発量が得られ、平均2.2mm/dとなった。一般的に降雨量の1/3程度が蒸発散量になるとされていることから、降水量を1800mm/yとすると1.64mm/dとなる。実験中には、表土を分割して、実験開始後21日後から土壌採取を開始し、数日間隔で85日後までのデータを取得した。また、50日後および81日後の表面土壌を用いて、蛍光X線分析装置による土壌成分分析を行った。
2.2 実験結果
実験状況の観察結果から、無対策(E2槽)の表面が時間を経るごとに茶褐色に変色してきた。このため、その原因を調べるため、表層土壌の蛍光X線分析を実施した。図8は、汚染土壌、標準砂および実験表層土壌の含有量分析結果である。これをみると、Ca,K,Feが高いことがわかる、Kは、それぞれの土壌であまり変化はないが、Caは対策(E1槽)で、Feは無対策(E2槽)で高くなっている。対策(E1槽)でCaが高くなっているのは、酸性の汚染土壌通過水と吸着層で使用したMRW剤が反応し、中和生成物の硫酸カルシウムが表層土壌中に移動、析出したためであると考えられる。Feが無対策(E2槽)で大きくなっているのは、汚染土壌中に含まれる硫化鉄鉱粉が酸化して生じた硫酸鉄が表層土壌に移動、析出したためと推察される。また、無対策(E2槽)の表面の色が、茶褐色に変色したのは、表層土壌に移動した硫酸鉄の一部が更に酸化して茶褐色の水酸化鉄が生成した結果と考えられる。図9は、AsとPbのみの含有量を示したものである。これをみるとPbはあまり変化はないが、Asは無対策で大きくなっていることがわかる。これは、PbよりAsの方の移動性が大きく、水分の蒸発に伴って汚染土壌から表層に向かって移動し、濃縮されつつあることを示していると考えられる。
図10は、表層土壌の溶出試験におけるpHを示したものである。同図をみると対策(E1槽)で変動はあるが、pHは6〜11と高くなっている。無対策(E2槽)ではpHは4以下となっている。これは、対策(E1槽)では吸着層の高pH(11.2)の影響が表れ、無対策(E2槽)では汚染土壌の低pH(5.7)の影響が表れていると考えられる。図11は、表層土壌のAsとPbの経時変化を示したものである。Asに着目すると無対策(E2槽)では大きく変動しているものの対策(E1槽)に比較して大きくなっていることが確認できる。変動の原因としては、標準砂密度の微妙な変化によって毛管上昇・濃縮は、面的に不均一となる可能性があるものと推察される。つぎに、Pbをみると、いずれも低濃度であり明確な差は認められない。
以上のことから、表面の蒸発によって土壌内水分は表面に向かって移動し、移動性の大きいAsなどは上方移動・濃縮される可能性があることが確認できた。また、MRW剤を用いた吸着層を汚染土壌の上部に設置することにより、Asの上方移動・拡散を抑止できる可能性があることがわかった。
2. Evaporation experiment (Experimental Examples 4 and 5)
The evaporation experiment was carried out with the aim of confirming that the permeated water might rise in the capillaries and concentrate on the surface during the evaporation process, and at the same time, use an adsorbent as a countermeasure method to confirm the effect. .
2.1 Experimental Method FIG. 7 is a schematic diagram of an experimental apparatus for an evaporation experiment.
40 is an evaporation experimental apparatus, 41 is an experimental tank, 41a is a dividing wall for dividing the experimental tank 41, 42 is a drainage drain made of a synthetic resin sheet, 43 is a drainage pipe with a cock 43a of the drainage drain 42, 44 is a layer thickness of 5 cm Reference numeral 45 denotes a standard sand layer made of Shimonoseki mashed soil filled with 1 and a contaminated soil having a layer thickness of 10 cm prepared by mixing 1 wt% of iron sulfide ore residue containing arsenic with standard sand. The elution value was 0.099 mg / L for As, 0.011 mg / L for Pb, and the pH of the eluate was 5.7. 46 is an adsorption layer prepared by mixing 10 wt% of a rock wool-based adsorbent containing magnesium calcium silicate (referred to as MRW agent) with standard sand, 47 is a halogen heater with an output of 800 W, 48 is a reflector made of an aluminum plate, 49 Is a water supply tank connected to the drainage drain 42 and a water supply pipe 49a, 49b is an overflow pipe of the water supply tank 49, and 50 is an external water supply tank.
The inside of the experimental tank 41 is divided into two countermeasures (with an adsorption layer, E1 tank, Experimental Example 4) and no countermeasures (without an adsorption layer, E2 tank, Experimental Example 5).
The conditions for evaporation were the water level set to 8 cm from the ground surface in conjunction with the water level of the external water supply pipe 50, and the room temperature set to 20 ± 1 ° C. Further, assuming evaporation promotion by solar radiation, irradiation was performed for 6 hours from 9:00 to 15:00 using a halogen heater. The maximum temperature near the soil layer surface at this time was about 27 ± 2 ° C. The amount of evaporation was determined by measuring the amount of decrease in the external water tank 50 once a day. As a result, a substantially stable evaporation amount was obtained, and the average was 2.2 mm / d. Generally, about 1/3 of the rainfall is supposed to be evapotranspiration, and if the precipitation is 1800 mm / y, it is 1.64 mm / d. During the experiment, the topsoil was divided, and soil collection was started 21 days after the start of the experiment, and data was acquired up to 85 days after several days. Moreover, the soil component analysis by the fluorescent X ray analyzer was performed using the surface soil after 50 days and 81 days.
2.2 Experimental results From the observation results of the experimental situation, the surface of the non-measure (E2 tank) has turned brown with time. For this reason, in order to investigate the cause, fluorescent X-ray analysis of surface soil was performed. FIG. 8 shows the results of content analysis of contaminated soil, standard sand, and experimental surface soil. Looking at this, it can be seen that Ca, K, and Fe are high. K does not change much in each soil, but Ca is a countermeasure (E1 tank) and Fe is high without countermeasure (E2 tank). Yes. The reason why Ca is high in the countermeasure (E1 tank) is that the acid contaminated soil passing water and the MRW agent used in the adsorption layer reacted, and the neutralized product calcium sulfate moved and precipitated in the surface soil. It is believed that there is. The reason why Fe is increased without countermeasures (E2 tank) is presumed to be that iron sulfate produced by oxidation of iron sulfide ore powder contained in the contaminated soil moved and deposited on the surface soil. Moreover, it is thought that the surface color of the non-measure (E2 tank) changed to brownish brown was a result of further oxidation of a portion of the iron sulfate that had moved to the surface soil to produce brownish iron hydroxide. FIG. 9 shows the contents of only As and Pb. From this, it can be seen that Pb does not change much, but As increases without countermeasures. This is considered to indicate that As is more mobile than Pb, and is moving from the contaminated soil to the surface layer and being concentrated as the water evaporates.
FIG. 10 shows the pH in the surface soil dissolution test. Looking at the figure, the pH is as high as 6 to 11 although there is a change in the countermeasure (E1 tank). With no countermeasure (E2 tank), the pH is 4 or less. It is thought that the effect of high pH (11.2) of the adsorption layer appears in the countermeasure (E1 tank), and the influence of low pH (5.7) of the contaminated soil appears in the non-measure (E2 tank). . FIG. 11 shows temporal changes in As and Pb of the surface soil. When attention is paid to As, it can be confirmed that there is a large variation compared to the countermeasure (E1 tank) although there is a large variation in the non-measure (E2 tank). As a cause of the fluctuation, it is surmised that the capillary rise / concentration may be uneven due to the subtle changes in the standard sand density. Next, when looking at Pb, all have low concentrations and no clear difference is observed.
From the above, it was confirmed that the moisture in the soil moved toward the surface due to the evaporation of the surface, and As or the like having a high mobility might move and concentrate upward. Moreover, it was found that the upward movement / diffusion of As may be suppressed by installing an adsorption layer using an MRW agent above the contaminated soil.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではない。
上記実施の形態では、汚染成分拡散防止構造1が地表G1に盛土を行い構成される場合について説明したが、必ずしもこれに限られるものではなく、地表G1を掘削しその掘削した部分に構成することも可能である。この場合も、汚染土壌Sの上層に難透水材7を配設することで同様の作用が得られる。
上記実施の形態では、難透水材7の上面に粗粒層8を配設した場合について説明したが、必ずしもこれに限られるものではなく、粗粒層8の排水性に応じて部分的に設けることや、配設しないことも可能である。
Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments.
In the above embodiment, the case where the contamination component diffusion preventing structure 1 is configured by embankment on the ground surface G1 is described. However, the structure is not necessarily limited to this, and the ground surface G1 is excavated and configured in the excavated portion. Is also possible. In this case as well, the same effect can be obtained by disposing the poorly permeable material 7 in the upper layer of the contaminated soil S.
In the above embodiment, the case where the coarse-grained layer 8 is provided on the upper surface of the hardly permeable material 7 has been described. However, the present invention is not necessarily limited to this, and the coarse-grained layer 8 is partially provided according to the drainage property. It is also possible not to arrange them.

本発明は、トンネルやダム等の掘削工事や建設工事等によって大量に発生する汚染土壌の処理技術に関し、降雨量の変化による浸透水の増加や晴天による浸透水の蒸発等の気象条件の変化の影響を受けても、汚染土壌から浸透水に移行した汚染成分が拡散することを確実に防止することができると共に、汚染土壌を長期間に亘って浄化でき、環境問題に貢献できる。   The present invention relates to a treatment technique for contaminated soil generated in large quantities due to excavation work or construction work such as tunnels and dams, etc., and changes in weather conditions such as increase in permeated water due to changes in rainfall and evaporation of permeated water due to clear weather Even if it is affected, it is possible to reliably prevent the contaminated components that have migrated from the contaminated soil to the permeated water from diffusing and to purify the contaminated soil over a long period of time, thereby contributing to environmental problems.

1 汚染成分拡散防止構造
2 盛土
2a 盛土底部
2b 盛土上部
3 止水材
4 水平ドレーン
5 第1吸着層
6 第2吸着層
7 難透水材
8 粗粒層
9 盛土
10 覆土層
11 吸着装置
11a 吸着剤
20 実験槽
21 土槽
21a,21b 分割板
22a,22b,22c,29 排水管
23,25 標準砂層
24 汚染土壌層
26 豆砂利層
27 吸着層
28 難透水材
30 人工降雨装置
31 筐体
31a 側壁
31b 天板
32 加湿器
33 メッシュ
33a 針状突起
34 過飽和室
40 蒸発実験装置
41 実験槽
41a 分割壁
42 排水ドレーン
43 排水管
44 標準砂層
45 汚染土壌
46 吸着層
47 ハロゲンヒーター
48 反射板
49 給水タンク
49a 給水管
49b 溢水管
50 外部給水槽
DESCRIPTION OF SYMBOLS 1 Contamination component diffusion prevention structure 2 Embankment 2a Embankment bottom part 2b Embankment upper part 3 Water stop material 4 Horizontal drain 5 1st adsorption layer 6 2nd adsorption layer 7 Water-impervious material 8 Coarse grain layer 9 Embankment 10 Covering layer 11 Adsorber 11a Adsorbent 20 Experimental tank 21 Soil tank 21a, 21b Dividing plate 22a, 22b, 22c, 29 Drain pipe 23, 25 Standard sand layer 24 Contaminated soil layer 26 Bean gravel layer 27 Adsorption layer 28 Non-permeable material
30 Artificial rainfall device
31 housing
31a side wall
31b Top plate
32 Humidifier
33 mesh
33a Needle-like protrusion
34 Supersaturated chamber 40 Evaporation experiment device 41 Experimental tank 41a Dividing wall 42 Drain drain 43 Drain pipe 44 Standard sand layer 45 Contaminated soil 46 Adsorbed layer 47 Halogen heater 48 Reflector plate 49 Water supply tank 49a Water supply pipe 49b Overflow pipe 50 External water supply tank

Claims (3)

透湿性を有しつつ水の透過は妨げるものとして汚染土壌の上層に配設される難透水材と、
前記汚染土壌の下層に埋設されて前記難透水材および前記汚染土壌を透過した浸透水に含まれる汚染成分が吸着される第1吸着層と、前記難透水材と前記汚染土壌との間に埋設され前記汚染土壌に含まれる汚染成分が吸着される第2吸着層と、を備えていることを特徴とする汚染成分拡散防止構造。
A poorly permeable material disposed in the upper layer of the contaminated soil as having a moisture permeability while preventing water permeation,
A first adsorption layer that is buried in a lower layer of the contaminated soil and adsorbs a contaminant component contained in the hardly permeable material and the permeated water that has passed through the contaminated soil, and is buried between the hardly permeable material and the contaminated soil. And a second adsorbing layer on which the contaminating component contained in the contaminated soil is adsorbed .
前記難透水材の上層に形成される粗粒層を備えていることを特徴とする請求項1記載の汚染成分拡散防止構造。   The contamination component diffusion preventing structure according to claim 1, further comprising a coarse particle layer formed on an upper layer of the hardly water-permeable material. 前記汚染土壌を覆う盛土と、
前記第1吸着層の下層に埋設される止水材と、
吸水性を有し止水材と前記第1吸着層との間に埋設される水平ドレーンと、
前記盛土の外部に配設され前記水平ドレーンに導かれて排水される浸透水が通過し前記汚染土壌に含まれる汚染成分が吸着される吸着剤が交換可能に充填される吸着装置と、を備えていることを特徴とする請求項1又は2に記載の汚染成分拡散防止構造。
Embankment covering the contaminated soil;
A water stop material embedded in a lower layer of the first adsorption layer;
A horizontal drain having water absorption and embedded between the waterstop material and the first adsorption layer;
An adsorbing device that is disposed outside the embankment and through which permeated water that is guided to the horizontal drain and drained passes, and adsorbent that adsorbs contaminating components contained in the contaminated soil is exchangeably filled. The contamination component diffusion preventing structure according to claim 1, wherein the contamination component diffusion preventing structure is provided.
JP2010116159A 2010-05-20 2010-05-20 Contaminant diffusion prevention structure Active JP5704742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116159A JP5704742B2 (en) 2010-05-20 2010-05-20 Contaminant diffusion prevention structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116159A JP5704742B2 (en) 2010-05-20 2010-05-20 Contaminant diffusion prevention structure

Publications (2)

Publication Number Publication Date
JP2011240289A JP2011240289A (en) 2011-12-01
JP5704742B2 true JP5704742B2 (en) 2015-04-22

Family

ID=45407507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116159A Active JP5704742B2 (en) 2010-05-20 2010-05-20 Contaminant diffusion prevention structure

Country Status (1)

Country Link
JP (1) JP5704742B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854463B2 (en) * 2011-12-27 2016-02-09 日本バイリーン株式会社 Cesium absorber
JP5826678B2 (en) * 2012-03-07 2015-12-02 公益財団法人鉄道総合技術研究所 Banking using banking material containing harmful substances and banking construction method
CN104190700A (en) * 2014-08-31 2014-12-10 上海市政工程设计研究总院(集团)有限公司 Soil body repairing method based on soil gas-phase extraction and underground water gas injection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631882B2 (en) * 1987-01-19 1994-04-27 鹿島建設株式会社 Waste treatment facility
JPH11216441A (en) * 1998-02-02 1999-08-10 Hosuparu Kk Waste disposal method
JP4169619B2 (en) * 2003-03-27 2008-10-22 帝人ファイバー株式会社 Non-permeable civil engineering sheet and method for producing the same
JP4664091B2 (en) * 2005-02-23 2011-04-06 学校法人福岡大学 Covering structure of waste final disposal site
JP2009136795A (en) * 2007-12-07 2009-06-25 Sophia Co Ltd Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water
JP2009279550A (en) * 2008-05-26 2009-12-03 Kankyo Succeed Co Ltd Purifying device of contaminant in contaminated soil and cleaning method using purifying device

Also Published As

Publication number Publication date
JP2011240289A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP2007203251A (en) Material for soil improvement and method for soil improvement
US9022698B2 (en) Natural analog system for reducing permeability of ground
JPS63310689A (en) Structure for inhibiting toxic substance in dust deposit leachate containing toxic substance having sealing layer consisting of mineral material and manufacture of sealing layer
CN110372124A (en) The vertical multistage permeable reactive barrier system of one kind and its construction method
US11298680B2 (en) High permeability media mix (HPMM) for phosphorous and nitrogen removal from contaminated waters
US20100266343A1 (en) Mixture for preventing contaminant diffusion and method for preventing contaminant diffusion
JP2009279550A (en) Purifying device of contaminant in contaminated soil and cleaning method using purifying device
JP5704742B2 (en) Contaminant diffusion prevention structure
JP5273474B2 (en) Contaminated soil purification apparatus and contaminated soil purification method
KR100881977B1 (en) Shielding layer and method of multilayer soil addition restoring using the same
JP6839643B2 (en) How to treat pH adjustment materials, pH adjustment sheets, and soil generated from construction
JP5211427B2 (en) Groundwater purification method
JPWO2003103866A1 (en) Pollution diffusion prevention structure in contaminated area
JP3770526B2 (en) Waste burial structure and burial method
JP3708017B2 (en) Ground structure, its construction method and rainwater utilization system
US7381014B1 (en) Natural analog system for reducing permeability of ground
JP2013184103A (en) Embankment using banking material including harmful substance and embankment construction method
JP3863630B2 (en) Penetration structure
JPH0957247A (en) Method for purifying leaching contaminated water in original position
JP5571500B2 (en) Temporary placement of excavated soil
Harada et al. Decrease of non-point zinc runoff using porous concrete
JP2005246383A (en) Structure for burying waste
KR101099590B1 (en) Method for constructing volcanic stone purifying structure using landfill leachate prevention
JP5808308B2 (en) Method of adsorbing very low level radioactive material contained in permeated water on zeolite by construction of capillary barrier layer
JP6075001B2 (en) Final disposal facility for radioactive waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5704742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250