JP2009136795A - Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water - Google Patents

Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water Download PDF

Info

Publication number
JP2009136795A
JP2009136795A JP2007316591A JP2007316591A JP2009136795A JP 2009136795 A JP2009136795 A JP 2009136795A JP 2007316591 A JP2007316591 A JP 2007316591A JP 2007316591 A JP2007316591 A JP 2007316591A JP 2009136795 A JP2009136795 A JP 2009136795A
Authority
JP
Japan
Prior art keywords
composite material
water
adsorbent
contaminated water
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007316591A
Other languages
Japanese (ja)
Inventor
Hodaka Ikeda
穂高 池田
Kenichi Ito
健一 伊藤
Tsutomu Sato
努 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia Co Ltd
Original Assignee
Sophia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia Co Ltd filed Critical Sophia Co Ltd
Priority to JP2007316591A priority Critical patent/JP2009136795A/en
Publication of JP2009136795A publication Critical patent/JP2009136795A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material composed of shwertmannite, which has no risk of runoff and further has water permeability, and can stably adsorb heavy metal anions such as arsenic in such a manner that it is stably contacted with contaminated water. <P>SOLUTION: A composite material is disclosed by being composed of: a fibrous stock; shwertmannite carried on the fibrous stock or a shwertmannite compound in which at least a part of sulfate ions of shwertmannite carried on the fibrous stock is substituted with anions such as arsenic acid ions, phosphoric acid ions or silicic acid ions, and has water permeability. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉱物の一種でありヒ素、セレン、六価クロム等の重金属陰イオンを吸着する機能を有するシュベルトマナイトに基づき構成される複合材及びその製造方法、吸着材、浄化設備及び汚染水の浄化方法に関する。   The present invention relates to a composite material based on Schwbertmannite, which is a kind of mineral and has a function of adsorbing heavy metal anions such as arsenic, selenium, hexavalent chromium and the like, a manufacturing method thereof, an adsorbent, a purification facility, and contaminated water It is related with the purification method.

シュベルトマナイト(schwertmannite)は組成式:Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)の低結晶性鉄(III)酸化水酸化硫酸塩鉱物であり、シュベルトマナイトはヒ素を吸着して安定し、ヒ素を保持し続ける。また、シュベルトマナイトは、ヒ素以外にも、セレン、六価クロム、アンチモン、リン酸、ケイ酸等の陰イオンを吸着することが知られている。 Schwertmannite is a low crystalline iron (III) oxyhydroxide sulfate mineral having the composition formula: Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75), Manite adsorbs and stabilizes arsenic and continues to hold arsenic. In addition to arsenic, Schbertmanite is known to adsorb anions such as selenium, hexavalent chromium, antimony, phosphoric acid, and silicic acid.

ところで、シュベルトマナイトは粘土鉱物の一種で微細な粒子状となっているため、汚染土や汚染水に加えて混合することで浄化することは容易であるものの、例えばイオン交換樹脂の通水型浄化処理のように、所定の容器に充填し汚染水を通過させて汚染水の重金属類を吸着させる構成とすることは、微粒子の目詰まりが生じるため難しい。   By the way, Schwertmannite is a kind of clay mineral and is in the form of fine particles, so although it is easy to purify by mixing in addition to contaminated soil and contaminated water, for example, a water-permeable type of ion exchange resin As in the purification process, it is difficult to fill a predetermined container and allow the contaminated water to pass through to adsorb heavy metals in the contaminated water because fine particles are clogged.

また、汚染土壌の下層地盤及びその周囲に重金属類の吸着層を配置し、汚染土壌からの浸出水に含まれる重金属類を捕集して地下水汚染を防止する方法も考えられる。前記方法とする場合、吸着効果を有する浄化材料の活用が必須であるが、液状の浄化材料ではそれ自体の流亡があり、又、粉体の浄化材料では土壌間隙の目詰まりを生じて部分的に透水性を低下し、汚染土壌の浸出水が浄化材料の無い土壌間隙を伝ってしまうことがあるため、重金属類を吸着する効果が得られない。そのため、材料の流亡の虞が無いと共に透水性を有し、汚染水に安定接触して重金属類を効果的に吸着できる浄化用の材料が求められている。   Another possible method is to arrange an adsorption layer of heavy metals on the lower ground of the contaminated soil and its surroundings to collect the heavy metals contained in the leachate from the contaminated soil and prevent groundwater contamination. In the case of the above method, it is essential to use a purification material having an adsorption effect. However, in the case of a liquid purification material, there is a runoff of itself, and in the case of a powder purification material, clogging of soil gaps occurs, resulting in partial clogging. Therefore, the effect of adsorbing heavy metals cannot be obtained because the permeability of the contaminated soil may be reduced and the leachate of the contaminated soil may travel through the soil gap without the purification material. Therefore, there is a need for a purification material that has no risk of material loss and has water permeability and can stably adsorb heavy metals by stably contacting contaminated water.

本発明は上記課題に鑑み提案するものであり、シュベルトマナイトに基づき構成される複合材に於いて、流亡の虞がないと共に透水性を有し、汚染水に安定接触してヒ素等の重金属陰イオンを安定的に吸着できる複合材及びその製造方法、吸着材、浄化設備及び汚染水の浄化方法を提供することを目的とする。   The present invention is proposed in view of the above problems, and in a composite material based on Schwertmannite, there is no risk of runoff, water permeability, stable contact with contaminated water, and heavy metals such as arsenic It aims at providing the composite material which can adsorb | suck anion stably, its manufacturing method, an adsorbent, purification equipment, and the purification method of contaminated water.

本発明の複合材は、繊維状素材と、前記繊維状素材に坦持されるシュベルトマナイト、又は前記繊維状素材に坦持されるシュベルトマナイトの硫酸イオンの少なくとも一部をヒ酸イオン、リン酸イオン若しくはケイ酸イオン等の陰イオンで置換したシュベルトマナイト化合物とで構成され、透水性若しくは浸透性を有することを特徴とする。前記繊維状素材は、例えばCaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の繊維状素材とする。又、例えば長さが10mm以上、太さが1,000μm未満、直毛状および巻き毛状の形状とする。又はその双方の構成を備えるものとすると好適であるが、本発明の趣旨の範囲内で適宜である。また、複合材の透水性若しくは浸透性の程度は、透水係数が10-5cm/s以上の高い透水性を有するものとすることが好ましい。 The composite material of the present invention is a fibrous material, schulbert manite supported on the fibrous material, or at least a part of sulfate ions of Schwertmannite supported on the fibrous material, arsenate ions, It is composed of a Schbertmannite compound substituted with anions such as phosphate ions or silicate ions, and has water permeability or permeability. The fibrous material is composed of, for example, component ratios of CaO: 0 to 50% (w / w), SiO 2 : 0 to 100% (w / w), Al 2 O 3 : 0 to 100% (w / w) A fibrous material with a diameter of less than 1,000 μm. Further, for example, the length is 10 mm or more, the thickness is less than 1,000 μm, and the shape is straight hair or curly hair. Alternatively, it is preferable to have both configurations, but it is appropriate within the scope of the present invention. Further, the degree of water permeability or permeability of the composite material is preferably such that the water permeability has a high water permeability of 10 −5 cm / s or more.

また、本発明の複合材は、前記繊維状素材以外の坦持材を前記繊維状素材に代えて用いることも可能であり、斯様な坦持材としては、例えば活性炭、ゼオライト、珪藻土、パーライト、バーミキュライト、チタン、アルミナ、SUS、セラミックおよびシリカの多孔質無機材料、ポリスチレン、オレフィン、ポリエチレン、ポリプロピレン、ポリカーボネート、PMMA、四フッ化エチレン、メラミン、フェノール、ポリイミド、ポリスルフォンおよびホルムアルデヒドで構成される多孔質樹脂材料等を用いることが可能である。これらの坦持材によっても前記繊維状素材と同等の効果を奏する。   Further, the composite material of the present invention can be used in place of the fibrous material instead of the fibrous material, such as activated carbon, zeolite, diatomaceous earth, pearlite. Porous material composed of, vermiculite, titanium, alumina, SUS, ceramic and silica porous inorganic materials, polystyrene, olefin, polyethylene, polypropylene, polycarbonate, PMMA, ethylene tetrafluoride, melamine, phenol, polyimide, polysulfone and formaldehyde It is possible to use a quality resin material or the like. These supporting materials also have the same effect as the fibrous material.

また、本発明の複合材の製造方法は、組成式:Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトの1〜50%(w/w)懸濁液を、CaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の前記繊維状素材に対して、1:0.1〜10の重量比で混合して製造することを特徴とする。 Moreover, the manufacturing method of the composite material of the present invention is 1 to 50% (w / w) of Schwermannite having the composition formula: Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75). the) suspension, CaO: 0~50% (w / w), SiO 2: consisting of component ratio of 0~100% (w / w): 0~100% (w / w), Al 2 O 3 It is characterized by being manufactured by mixing the fibrous material having a diameter of less than 1,000 μm at a weight ratio of 1: 0.1 to 10.

また、本発明の吸着材は、本発明の複合材が砂質土壌に5kg/m3以上の割合で略均一に混合されていることを特徴とする。 In addition, the adsorbent of the present invention is characterized in that the composite material of the present invention is mixed substantially uniformly in sandy soil at a rate of 5 kg / m 3 or more.

また、本発明の浄化設備は、不透水性で上面開放の箱状容器若しくは上下面開放の筒状容器と、前記箱状容器若しくは前記筒状容器に収容されて、上側に汚染土壌が配置される本発明の複合材又は本発明の吸着材を備えることを特徴とする。前記浄化設備は、箱状容器の下面若しくは側壁の一部、又は筒状容器の下側の流水部から、流れる水を集水する集水路を設ける構成としてもよい。   Further, the purification equipment of the present invention is stored in a water-impermeable box-shaped container with an open top surface or a cylindrical container with an open top and bottom surface, and the box-shaped container or the cylindrical container, and contaminated soil is arranged on the upper side. The composite material of the present invention or the adsorbent material of the present invention is provided. The said purification equipment is good also as a structure which provides the water collecting channel which collects the flowing water from the lower surface or part of side wall of a box-shaped container, or the flowing water part below a cylindrical container.

また、本発明の汚染水の浄化方法は、汚染水の流路上に本発明の複合材又は本発明の吸着材を配置し、前記複合材又は前記吸着材で重金属陰イオンを吸着することを特徴とする。例えば汚染物の周辺の地盤や土木構造物等に本発明の複合材又は吸着材を配置して、汚染物からの浸出水である汚染水が複合材又は吸着材を通過するようにし、ヒ素等の陰イオン重金属陰イオンを組成式Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトに吸着させ、重金属類の汚染が地下水へ拡散することを防止できる。また、例えば複合材を浄化容器若しくは浄化槽に充填若しくは敷設して、前記浄化容器若しくは浄化槽内の複合材にヒ素等の重金属陰イオンを含む汚染水を通過および接触させ、前記重金属陰イオンを組成式Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトに吸着させ、その濃度を低減させて水質浄化を図ることができる。 Further, the contaminated water purification method of the present invention is characterized in that the composite material of the present invention or the adsorbent material of the present invention is disposed on the contaminated water flow path and adsorbs heavy metal anions with the composite material or the adsorbent material. And For example, the composite material or adsorbent of the present invention is arranged on the ground or civil engineering structure around the pollutant so that the contaminated water, which is leached from the pollutant, passes through the composite material or adsorbent. Anion heavy metal anions are adsorbed on Schwertmannite of the composition formula Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75), and the contamination of heavy metals diffuses into the groundwater Can be prevented. Further, for example, a composite material is filled or laid in a purification container or a septic tank, and contaminated water containing heavy metal anions such as arsenic is passed through and contacted with the composite material in the septic container or septic tank, and the heavy metal anion is represented by a composition formula Water quality purification can be achieved by adsorbing to Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75) Schwbertmannite and reducing its concentration.

尚、本明細書開示の発明には、各発明や各実施形態の構成の他に、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものも含まれる。また、本発明の複合材又は吸着材は、ヒ素、セレン、六価クロム、リン酸、アンチモン、ケイ酸等など陰イオン重金属陰イオンの吸着する各所の用途等に使用可能である。   The invention disclosed in this specification includes, in addition to the configurations of each invention and each embodiment, those specified by changing these partial configurations to other configurations disclosed in this specification, or these configurations. To which other configurations disclosed in the present specification are added and specified, or those partial configurations deleted and specified to the extent that partial effects can be obtained are included. Moreover, the composite material or adsorbent of the present invention can be used in various applications where anion heavy metal anions such as arsenic, selenium, hexavalent chromium, phosphoric acid, antimony, silicic acid and the like are adsorbed.

本発明のシュベルトマナイトに基づき構成される複合材、吸着材等は、材料の流亡の虞がないと共に透水性を有し、汚染水に安定接触してヒ素等の重金属陰イオンを安定的に吸着できる。   The composite material, adsorbent, and the like configured based on the Schwertmannite of the present invention have no risk of material loss and water permeability, and stably contact heavy water anions such as arsenic with stable contact with contaminated water. Can be adsorbed.

また、複合材又は吸着材の繊維状素材の間に汚染水、若しくは汚染土壌の浸出水による汚染水を通過させる場合、持続的に通水しながら、シュベルトマナイトによるヒ素等の重金属陰イオンの吸着作用を繊維状素材上で生じさせることができ、通水的な条件下で非常に効率的にヒ素等の重金属類を吸着することができる。例えば汚染土壌の下層地盤に複合材を混合し、汚染土壌からの浸出水を地盤中で前記複合材の存在部分を水道として通過させ、浸出水に含むヒ素等の重金属類陰イオンを吸着して、汚染土壌からの重金属類の拡散防止による地下水保全を達成することとができる。   Also, when contaminated water or contaminated soil leachate is passed between the fibrous materials of the composite material or adsorbent material, while passing water continuously, heavy metal anions such as arsenic by Schwertmannite An adsorption action can be produced on the fibrous material, and heavy metals such as arsenic can be adsorbed very efficiently under water-permeable conditions. For example, the composite material is mixed in the lower ground of the contaminated soil, the leachate from the contaminated soil is passed through the existing portion of the composite material as water in the ground, and adsorbs heavy metal anions such as arsenic contained in the leachate. It is possible to achieve groundwater conservation by preventing the diffusion of heavy metals from contaminated soil.

本発明について、シュベルトマナイトを繊維状素材に担持させた透水性の高い複合材と、前記複合素材を用いる吸着材と、ヒ素等の重金属陰イオンを吸着する前記複合材を用いる通水型浄化設備の実施形態に基づき説明する。   About the present invention, a highly water-permeable composite material in which Schwbertmannite is supported on a fibrous material, an adsorbent using the composite material, and a water flow purification using the composite material that adsorbs heavy metal anions such as arsenic This will be described based on the embodiment of the facility.

本実施形態の複合材は、繊維状素材と、前記繊維状素材に坦持される組成式Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトとで構成されており、透水係数が10-5cm/s以上の透水性を有する。前記繊維状素材は、長さが約10mm以上、太さが約10μm未満、巻き毛状の形状である。前記複合材は、組成式:Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトの7.5wt%懸濁液を、成分としてCaO:約40%(w/w)、SiO2:約45%(w/w)、Al2O3:約15%(w/w)からなる直径10μm未満の無機質の繊維状素材に対して、シュベルトマナイト懸濁液:繊維状素材=1:1の重量比で混合して、作成されている。前記混合時に、シュベルトマナイト懸濁液は混合中に散水するように与えられた。シュベルトマナイトは表面に水酸基と硫酸基を持ち水和しているため、無機質の繊維状素材表面と電気的に引かれやすく、担持しやすくなっており、前記混合により、シュベルトマナイトは繊維状素材の表面に坦持される。 The composite material of the present embodiment includes a fibrous material and a Schwbert manite having a composition formula Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75) supported on the fibrous material. It has a water permeability of 10 -5 cm / s or more. The fibrous material has a length of about 10 mm or more, a thickness of less than about 10 μm, and a curly shape. The composite material comprises a 7.5 wt% suspension of Schwermannite having a composition formula: Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75), and CaO as a component: about 40% (w / w), SiO 2 : about 45% (w / w), Al 2 O 3 : about 15% (w / w), an inorganic fibrous material with a diameter of less than 10 μm It is prepared by mixing in a weight ratio of turbid liquid: fibrous material = 1: 1. During the mixing, the Schwertmannite suspension was provided to sprinkle during mixing. Since Schwertmannite has hydroxyl and sulfate groups on the surface and is hydrated, it is easy to be electrically pulled and supported by the surface of the inorganic fibrous material, and by the above mixing, Schwertmannite is fibrous. It is carried on the surface of the material.

更に、本実施形態の吸着材(吸着層)は、前記作成した複合材を砂質土壌に40kg/m3の割合で均一に混合し、厚さ0.2mに敷設したものとした。前記吸着層は、図1に示すように、不透水性で上面開放の箱状容器に収容し、浄化設備としている。前記浄化設備は、箱状容器の一つの側壁に設けられている流水部(側壁の上端に設けた複数箇所の流水切欠、側壁に穿設した流水孔、他の側壁より高さが低い側壁の上端面等)から流れる水を集水する集水溝を箱状容器に隣接する外側位置(吸着層に隣接する外側位置)に有し、前記集水溝が集水路を構成している。 Furthermore, the adsorbent (adsorption layer) of the present embodiment was prepared by uniformly mixing the prepared composite material in sandy soil at a rate of 40 kg / m 3 and laying it to a thickness of 0.2 m. As shown in FIG. 1, the adsorbing layer is housed in a water-impermeable, box-shaped container with an open top surface to form a purification facility. The purifying equipment includes a flowing water portion provided on one side wall of the box-shaped container (a plurality of flowing water notches provided at the upper end of the side wall, a flowing hole formed in the side wall, a side wall having a lower height than the other side walls. A water collecting groove for collecting water flowing from an upper end surface or the like is provided at an outer position adjacent to the box-shaped container (an outer position adjacent to the adsorption layer), and the water collecting groove constitutes a water collecting channel.

前記箱状容器に収容された吸着材の上側には汚染土壌が配置され、本実施形態では、自然的原因によりセレンを含んだ汚染土壌を0.7mの高さにまで盛土した。前記汚染土壌の浸出水は下側の吸着層に流れ、前記浸出水のセレンは、前記吸着層を通過することにより前記複合材で吸着される。前記吸着で浄化された浸出水は前記流水部を介して集水溝に導かれ、集水溝を流れることにより回収される。   Contaminated soil is disposed above the adsorbent housed in the box-like container. In this embodiment, the contaminated soil containing selenium was embanked to a height of 0.7 m due to natural causes. The leachate of the contaminated soil flows to the lower adsorption layer, and the selenium of the leachate passes through the adsorption layer and is adsorbed by the composite material. The leachate purified by the adsorption is guided to the water collecting groove through the water flow portion, and is recovered by flowing through the water collecting groove.

ここで、図1の前記吸着材(吸着層)で浄化された水について、水素化物ICP発光分析装置によりセレン濃度を分析した。また、比較対照として砂質土壌に前記複合材を加えずに敷設して汚染土壌を盛ったものを作成して比較した。分析の結果を図2に示す。汚染土壌の盛土の分析結果から、セレンは環境基準値の6.5倍から徐々に低下し、前記複合材を混合した吸着層を通過した水質は地下水の環境基準値0.01mg/L以下で推移し、重金属であるセレンの浄化、拡散防止の効果が確認された。   Here, the selenium concentration of the water purified by the adsorbent (adsorption layer) in FIG. 1 was analyzed by a hydride ICP emission spectrometer. In addition, as a comparative control, a construction in which the soil was laid without adding the composite material to sandy soil was prepared and compared. The result of the analysis is shown in FIG. From the analysis result of the embankment of the contaminated soil, selenium gradually decreases from 6.5 times the environmental standard value, the water quality that passed through the adsorption layer mixed with the composite material transitions below the environmental standard value of groundwater 0.01 mg / L, The effect of purifying and preventing diffusion of selenium, a heavy metal, was confirmed.

上記実施形態では複合材とその使用方法として、自然的原因でセレンを含む汚染土壌の下層に砂質土壌と混合して吸着層として敷設し、例えば汚染物質の地下水への拡散を防止する例について説明したが、本発明はこれに限定されるものではない。   In the above embodiment, as a composite material and a method of using the composite material, for example, an adsorbed layer mixed with sandy soil in a lower layer of contaminated soil containing selenium is laid as an adsorption layer, for example, to prevent diffusion of contaminants into groundwater Although described, the present invention is not limited to this.

例えば複合材又は吸着材が吸着する対象物質として、六価クロム、ヒ素、アンチモン、リン酸等適宜であり、これらの物質についても上記と同様の方法で浄化することが可能である。また、複合材を吸着材(吸着層)とする場合の混合対象は砂質土壌だけではなく、その他の地盤や土木材料としてもよい。また、本発明の複合材は、土壌や土木材料への混合する場合以外にも、容器やピットに充填し、その中に汚染水を通過させることにより、排水や重金属を含む湧水等の汚染水に対して適用することができる。   For example, hexavalent chromium, arsenic, antimony, phosphoric acid, or the like is appropriately used as a target substance that is adsorbed by the composite material or the adsorbent, and these substances can also be purified by the same method as described above. In addition, when the composite material is an adsorbent (adsorption layer), the mixing target is not limited to sandy soil, but may be other ground or civil engineering materials. In addition to mixing with soil and civil engineering materials, the composite material of the present invention fills containers and pits and allows polluted water to pass through the pollutant such as spring water containing drainage and heavy metals. Can be applied against water.

また、上記実施形態では、組成式:Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトを用いて複合材を構成したが、その硫酸イオンの少なくとも一部をヒ酸イオン、リン酸イオン若しくはケイ酸イオン等の陰イオンで置換したシュベルトマナイト化合物を用いて複合材を構成してもよい。 In the above embodiment, the composition formula: Fe 8 O 8 (OH) 8-2x (SO 4) x (1 ≦ x ≦ 1.75) with the schwertmannite of was the composite material, the sulfate ion You may comprise a composite material using the Schwermannite compound which substituted at least one part with anions, such as an arsenate ion, a phosphate ion, or a silicate ion.

また、本発明では繊維状素材に代えて透水性のある多孔質体の素材等を用いることが可能である。本発明の素材は、例えば無機質の素材(活性炭、ゼオライト、珪藻土、パーライト、バーミキュライト、チタン、アルミナ、SUS、セラミック及びシリカ等)とすることが可能であり、更に無機質の素材以外に、有機質の繊維状若しくは多孔質の素材(ポリスチレン、オレフィン、ポリエチレン、ポリプロピレン、ポリカーボネート、PMMA、四フッ化エチレン、メラミン、フェノール、ポリイミド、ポリスルフォンおよびホルムアルデヒド等)等としてもよい。また、加水だけでシュベルトマナイト又はシュベルトマナイト化合物を坦持できない場合には、シュベルトマナイト又はシュベルトマナイト化合物を繊維状素材に坦持するための適宜の有機質のバインダー(でんぷん、あが、セルロース、ポリビニルアルコール、ポリビニルピロリドン、酢酸ビニル、アクリル、エチレンビニルアルコール、ウレタン樹脂、カルボキシメチルセルロース、塩ビ重合用懸濁剤、カルボン酸ビニル、酢酸ビニル、ポリビニルアルコールおよびこれらのエマルジョン等)若しくは無機質のバインダー(粘土、フェライト、珪藻土、炭酸カルシウム、カオリン、タルク、石膏、石灰、セメント等)を使用することが可能である。   In the present invention, a porous material having water permeability can be used instead of the fibrous material. The material of the present invention can be made of, for example, an inorganic material (activated carbon, zeolite, diatomaceous earth, pearlite, vermiculite, titanium, alumina, SUS, ceramic, silica, etc.), and in addition to inorganic materials, organic fibers Or a porous material (polystyrene, olefin, polyethylene, polypropylene, polycarbonate, PMMA, ethylene tetrafluoride, melamine, phenol, polyimide, polysulfone, formaldehyde, or the like). In addition, in the case where it is not possible to support Schwbertmannite or a Schwertmannite compound only by water addition, an appropriate organic binder (starch, agar, Cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, vinyl acetate, acrylic, ethylene vinyl alcohol, urethane resin, carboxymethyl cellulose, vinyl chloride polymerization suspension, vinyl carboxylate, vinyl acetate, polyvinyl alcohol, and emulsions thereof) or inorganic binders ( Clay, ferrite, diatomaceous earth, calcium carbonate, kaolin, talc, gypsum, lime, cement, etc.) can be used.

本発明は、例えば汚染水や汚染土壌の浄化及び汚染物質の拡散防止に利用することができる。   The present invention can be used, for example, for purification of contaminated water and soil and prevention of diffusion of pollutants.

複合材を土壌に混合した吸着層を敷設してその上部に汚染土壌を盛った浄化設備の概要図。The schematic diagram of the purification equipment which laid the adsorption layer which mixed the composite material with the soil, and piled up the contaminated soil in the upper part. 吸着層を通過した浸出水と、吸着層を通過しない浸出水のセレン濃度を比較するグラフ。The graph which compares the selenium density | concentration of the leachate which passed the adsorption layer, and the leachate which does not pass the adsorption layer.

Claims (5)

繊維状素材と、
前記繊維状素材に坦持されるシュベルトマナイト、又は前記繊維状素材に坦持されるシュベルトマナイトの硫酸イオンの少なくとも一部をヒ酸イオン、リン酸イオン若しくはケイ酸イオン等の陰イオンで置換したシュベルトマナイト化合物とで構成され、
透水性を有することを特徴とする複合材。
Fibrous material,
At least a part of the sulphate manite supported on the fibrous material, or at least part of the sulphate ion supported on the fibrous material with anions such as arsenate ion, phosphate ion or silicate ion Consisting of a substituted schbertmannite compound,
A composite material having water permeability.
請求項1記載の複合材の製造方法であって、
組成式:Fe8O8(OH)8-2x(SO)x(1≦x≦1.75)のシュベルトマナイトの1〜50%(w/w)懸濁液を、CaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の前記繊維状素材に対して、1:0.1〜10の重量比で混合して製造することを特徴とする複合材の製造方法。
A method for producing a composite material according to claim 1,
Composition formula: Fe 8 O 8 (OH) 8-2x (SO 4 ) x (1 ≦ x ≦ 1.75) Schwertmannite 1-50% (w / w) suspension, CaO: 0-50% (w / w), SiO 2 : 0 to 100% (w / w), Al 2 O 3 : 0 to 100% (w / w), the fibrous material having a diameter of less than 1,000 μm 1: A method for producing a composite material, characterized by being produced by mixing at a weight ratio of 0.1 to 10.
請求項1記載の複合材が砂質土壌に5kg/m3以上の割合で略均一に混合されていることを特徴とする吸着材。 An adsorbent characterized in that the composite material according to claim 1 is mixed in sandy soil substantially uniformly at a rate of 5 kg / m 3 or more. 不透水性で上面開放の箱状容器若しくは上下面開放の筒状容器と、
前記箱状容器若しくは前記筒状容器に収容されて、上側に汚染土壌が配置される請求項1記載の複合材又は請求項3記載の吸着材を備えることを特徴とする浄化設備。
An impervious box-shaped container with an open top or a cylindrical container with an open top and bottom;
A purification equipment comprising the composite material according to claim 1 or the adsorbent according to claim 3, which is accommodated in the box-shaped container or the cylindrical container, and the contaminated soil is disposed on an upper side.
汚染水の流路上に請求項1記載の複合材又は請求項3記載の吸着材を配置し、前記複合材又は前記吸着材で重金属陰イオンを吸着することを特徴とする汚染水の浄化方法。   A method for purifying contaminated water, comprising disposing the composite material according to claim 1 or the adsorbent material according to claim 3 on a contaminated water flow path, and adsorbing heavy metal anions with the composite material or the adsorbent material.
JP2007316591A 2007-12-07 2007-12-07 Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water Withdrawn JP2009136795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316591A JP2009136795A (en) 2007-12-07 2007-12-07 Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316591A JP2009136795A (en) 2007-12-07 2007-12-07 Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water

Publications (1)

Publication Number Publication Date
JP2009136795A true JP2009136795A (en) 2009-06-25

Family

ID=40868007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316591A Withdrawn JP2009136795A (en) 2007-12-07 2007-12-07 Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water

Country Status (1)

Country Link
JP (1) JP2009136795A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046061A1 (en) * 2009-10-14 2011-04-21 株式会社ユタカ・トレンズ Method for purifying drinking water using nanofilter coated with nano-sized ferromagnetic ferrite, method for sterilizing harmful bacteria contained in drinking water using said nanofilter, and method for improving drinking water by sterilizing and removing harmful substances using said nanofilter
JP2011240289A (en) * 2010-05-20 2011-12-01 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Contaminated component diffusion preventive structure, and method of cleaning contaminated soil
JP2012254432A (en) * 2011-06-10 2012-12-27 Kajima Corp Contaminant adsorption material, contaminant adsorption sheet and method for processing residual dug-up soil
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013184103A (en) * 2012-03-07 2013-09-19 Railway Technical Research Institute Embankment using banking material including harmful substance and embankment construction method
JP2014028477A (en) * 2012-07-31 2014-02-13 Oji Holdings Corp Waterproof sheet
CN107159692A (en) * 2017-06-30 2017-09-15 中冶华天工程技术有限公司 Heavy metal pollution place disposal system and method
JP7424576B2 (en) 2019-10-24 2024-01-30 Dowaホールディングス株式会社 Fibrous adsorbent, method for producing the same, and method for immobilizing heavy metals using the fibrous adsorbent

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046061A1 (en) * 2009-10-14 2011-04-21 株式会社ユタカ・トレンズ Method for purifying drinking water using nanofilter coated with nano-sized ferromagnetic ferrite, method for sterilizing harmful bacteria contained in drinking water using said nanofilter, and method for improving drinking water by sterilizing and removing harmful substances using said nanofilter
JP2011083678A (en) * 2009-10-14 2011-04-28 Yutaka Trends Inc Method for purifying drinking water using nanofilter coated with ultra-fine ferromagnetic ferrite, method for sterilizing harmful bacteria contained in drinking water using the nano filter and method for improving drinking water through removal and sterilization of harmful matter by using the nano filter
CN102648161A (en) * 2009-10-14 2012-08-22 富风股份有限公司 Method for purifying drinking water using nanofilter coated with ultra-fine ferromagnetic ferrite, method for sterilizing harmful bacteria contained in drinking water using the nano filter and method for improving drinking water through removal and sterilization of harmful matter by using the nano filter
JP2011240289A (en) * 2010-05-20 2011-12-01 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Contaminated component diffusion preventive structure, and method of cleaning contaminated soil
JP2012254432A (en) * 2011-06-10 2012-12-27 Kajima Corp Contaminant adsorption material, contaminant adsorption sheet and method for processing residual dug-up soil
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013184103A (en) * 2012-03-07 2013-09-19 Railway Technical Research Institute Embankment using banking material including harmful substance and embankment construction method
JP2014028477A (en) * 2012-07-31 2014-02-13 Oji Holdings Corp Waterproof sheet
CN107159692A (en) * 2017-06-30 2017-09-15 中冶华天工程技术有限公司 Heavy metal pollution place disposal system and method
JP7424576B2 (en) 2019-10-24 2024-01-30 Dowaホールディングス株式会社 Fibrous adsorbent, method for producing the same, and method for immobilizing heavy metals using the fibrous adsorbent

Similar Documents

Publication Publication Date Title
JP2009136795A (en) Composite material, method for producing the same, adsorption material, purification equipment, and method for purifying contaminated water
US7341661B2 (en) Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US6767160B2 (en) Porous pavement for water quantity and quality management
JP2009137801A (en) New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
Kundu et al. Adsorption characteristics of As (III) from aqueous solution on iron oxide coated cement (IOCC)
AU2002237661A1 (en) An adsorptive-filtration media for the capture of waterborne or airborne constituents
CA3033516C (en) High permeability media mix (hpmm) for phosphorous and nitrogen removal from contaminated waters
Xuan et al. Laboratory-scale characterization of a green sorption medium for on-site sewage treatment and disposal to improve nutrient removal
JP6839643B2 (en) How to treat pH adjustment materials, pH adjustment sheets, and soil generated from construction
JP5211427B2 (en) Groundwater purification method
JP5292672B2 (en) Contaminated groundwater purification method and purification structure
KR20130087073A (en) A reactive barrier comprising a recycling aggregate and a purificating method of pollution materials using the same
Wanielista et al. Alternative stormwater sorption media for the control of nutrients
KR101672960B1 (en) Apparatus for removing heavy metals in acid mine drainage
Choong et al. Fabrication of seashell-incorporated polyurethane for sustainable remediation of Fe (II)-contaminated acidic wastewater
Shabalala Utilisation of Pervious Concrete for Removal of Heavy Metals in Contaminated Waters: Opportunities and Challenges
WO2006028441A1 (en) A sorptive-filtration system for the capture of waterborne and airborne constituents
Ouedraogo et al. The Removal of As (III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance
Korkealaakso et al. Urban needs and best practices for enhanced stormwater management and quality–State-of-the-Art
Ramísio et al. Heavy metal removal efficiency in a kaolinite–sand media filtration pilot-scale installation
JP2006015306A (en) Method and apparatus for sewage water purification
JP2020062614A (en) Method for producing anion sorbent
Blackwood Performance of Polypropylene Geosynthetic Filters Under Pressurized Hydraulic Flow Conditions: Headloss and Iron Oxide Coating Retention
Abia II In situ iron oxide emplacement for groundwater arsenic remediation
Yuan Zeolite and high carbon fly ash mixes as liner materials for lead/phenol sorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120418

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501