JP5704630B2 - Crystallization process control method and apparatus - Google Patents

Crystallization process control method and apparatus Download PDF

Info

Publication number
JP5704630B2
JP5704630B2 JP2010143847A JP2010143847A JP5704630B2 JP 5704630 B2 JP5704630 B2 JP 5704630B2 JP 2010143847 A JP2010143847 A JP 2010143847A JP 2010143847 A JP2010143847 A JP 2010143847A JP 5704630 B2 JP5704630 B2 JP 5704630B2
Authority
JP
Japan
Prior art keywords
sample solution
absorption
crystal structure
crystallization
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010143847A
Other languages
Japanese (ja)
Other versions
JP2012005953A (en
Inventor
克裕 味戸
克裕 味戸
祐子 上野
祐子 上野
久々津 直哉
直哉 久々津
恒之 芳賀
恒之 芳賀
斉藤 真司
真司 斉藤
享司 炭竈
享司 炭竈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
Nippon Telegraph and Telephone Corp
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Inter University Research Institute Corp National Institute of Natural Sciences filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010143847A priority Critical patent/JP5704630B2/en
Publication of JP2012005953A publication Critical patent/JP2012005953A/en
Application granted granted Critical
Publication of JP5704630B2 publication Critical patent/JP5704630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、結晶の分離や精製を行う晶析法に用いる晶析過程制御方法および装置に関する。   The present invention relates to a crystallization process control method and apparatus used for a crystallization method for separating and purifying crystals.

結晶の分離や精製を行う手法としては、溶液からの沈殿精製を行う晶析法が挙げられる。これは、溶解度の温度依存性、溶媒蒸発、化学平衡、化学反応、物質添加などを利用して、過飽和溶液から核を発生させ、結晶成長により再結晶を行う操作である。得られる結晶の性質(融点、溶解度、純度、外形)は、結晶形が異なる結晶多形や結晶の大きさによって異なるため、晶析操作においては、目的とする結晶形とそのサイズをコントロールすることが非常に重要である(例えば非特許文献1、2)。   As a method for performing separation and purification of crystals, a crystallization method for performing precipitation purification from a solution can be mentioned. This is an operation in which nuclei are generated from a supersaturated solution and recrystallization is performed by crystal growth using temperature dependence of solubility, solvent evaporation, chemical equilibrium, chemical reaction, substance addition, and the like. Since the properties (melting point, solubility, purity, external shape) of the resulting crystals vary depending on the crystal polymorphs and crystal sizes of the different crystal forms, the target crystal form and its size must be controlled in the crystallization operation. Is very important (for example, Non-Patent Documents 1 and 2).

また、目的とする結晶形とそのサイズをコントロールするための晶析過程制御方法としては、FBRM(収束ビーム反射測定法)を用いた手法が挙げられる。これは粒子径と粒子数をリアルタイムに測定し、粒度分布の時間変化を観察・測定することにより、晶析・重合・乳化・分散・凝集などの進行、変化、安定性などの研究や工程制御を行うものである(例えば非特許文献2)。 Moreover, as a crystallization process control method for controlling the target crystal form and its size, a method using FBRM (convergent beam reflection measurement method) can be mentioned. It measures particle size and number of particles in real time, and observes and measures changes in the particle size distribution over time, so that research and process control of the progress, change, and stability of crystallization, polymerization, emulsification, dispersion, aggregation, etc. (For example, Non-Patent Document 2).

土岐 規仁、小川 薫、佐々木 茂子、横田 政晶、清水 健司「結晶化によるラセミ体の光学分割」、日本結晶成長学会誌 35(1) p31−36 2008Norihito Toki, Satoshi Ogawa, Shigeko Sasaki, Masaaki Yokota, Kenji Shimizu, “Optical resolution of racemic bodies by crystallization”, Journal of Japanese Society for Crystal Growth 35 (1) p31-36 2008 滝山 博志、山崎 康夫、西田 貴裕「特集 様々な領域における晶析技術」、化学工学 71(3) p130−134 2008Hiroshi Takiyama, Yasuo Yamazaki, Takahiro Nishida “Special Issue: Crystallization Technology in Various Areas”, Chemical Engineering 71 (3) p130-134 2008

しかしながら、従来の方法は結晶構造を直接分析することが困難であるため、過飽和や準安定状態という晶析過程の各段階における結晶構造の変化を細かく把握しながら結晶を目的の多形やサイズに成長・析出させることが難しかった。特に、結晶構造を構成するユニット数が数十〜数百と非常に少ない超微結晶の場合は、多形やサイズの僅かな違いによって物性がより敏感に変化するという問題が生じるため、晶析条件の精密制御が必要となる。また、結晶を得た後にX線散乱や熱分析などを行って結晶構造や純度を確認することは可能だが、そのような数種類の分析を行うためには、同一構造の試料を大量に得る必要があった。さらに、同一構造の試料を大量に作成するためのスケールアップに伴って、生成される結晶構造の均一性が低下しやすいという問題があった。   However, since it is difficult to directly analyze the crystal structure of the conventional method, the crystal is converted into the desired polymorph and size while grasping the crystal structure change in each stage of the crystallization process such as supersaturation and metastable state. It was difficult to grow and precipitate. In particular, in the case of ultra-fine crystals with a few tens to hundreds of units constituting the crystal structure, the problem arises that the physical properties change more sensitively due to slight differences in polymorphs and sizes. Precision control of conditions is required. Although it is possible to confirm the crystal structure and purity by performing X-ray scattering and thermal analysis after obtaining the crystal, it is necessary to obtain a large number of samples with the same structure in order to perform such several types of analysis. was there. Furthermore, there has been a problem that the uniformity of the generated crystal structure tends to be lowered with the scale-up for producing a large number of samples having the same structure.

本発明は、上記事情に鑑みてなされたもので、試料を晶析させる際の晶析条件の細かい制御ができ、結晶構造とサイズを制御でき、試料を目的の多形やサイズに成長・析出させることができる晶析過程制御方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, can control the crystallization conditions when crystallizing the sample, can control the crystal structure and size, and grow and precipitate the sample to the desired polymorph and size It is an object of the present invention to provide a method and apparatus for controlling a crystallization process that can be performed.

第1の本発明に係る晶析過程制御方法は、含まれる晶析対象の成分量を一定とした晶析過程の試料溶液0.1〜10THzの電磁波を照射するステップと、前記試料溶液を透過または反射した前記電磁波を検出するステップと、前記検出された電磁波により前記試料溶液の吸収特性スペクトルを得るステップと、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに基づいて前記試料溶液の結晶構造を得るステップと、前記得られた結晶構造に基づいて前記試料溶液の晶析条件を制御するステップとを有することを特徴とする。 The method the crystallization析過according to a first aspect of the present invention includes the steps of emitting an electromagnetic wave of 0.1~10THz the sample solution the component amount of crystallization target the crystallization析過was constant included, the sample solution detecting the transmitted or reflected electromagnetic wave, comprising the steps of: by the detected electromagnetic wave to obtain the absorption spectrum of properties of the sample solution, based on the difference in the absorption intensity of a plurality of absorption bands in the obtained absorption spectrum of properties characterized by a step of controlling the crystallization conditions of the sample solution on the basis of obtaining a crystal structure of the sample solution, the resulting crystal structure.

第1の本発明によれば、含まれる晶析対象の成分量を一定とした晶析過程の試料溶液0.1〜10THzの電磁波を照射し、前記試料溶液を透過または反射した前記電磁波を検出し、前記検出された電磁波により前記試料溶液の吸収特性スペクトルを得て、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに基づいて前記試料溶液の結晶構造を得て、前記得られた結晶構造に基づいて前記試料溶液の晶析条件を制御することにより、試料を目的の多形やサイズに成長・析出させることができる。 According to a first aspect of the present invention, the electromagnetic wave components of crystallization target sample solution as the crystallization析過constant irradiated with electromagnetic waves 0.1~10THz, transmitted through or reflected by the sample solution contained Detecting, obtaining an absorption characteristic spectrum of the sample solution from the detected electromagnetic wave, obtaining a crystal structure of the sample solution based on a difference in absorption intensity of a plurality of absorption bands in the obtained absorption characteristic spectrum, By controlling the crystallization conditions of the sample solution based on the obtained crystal structure, the sample can be grown and precipitated into the desired polymorph or size.

例えば、吸収特性スペクトルに基づいて、結晶構造が過飽和や準安定状態であることが分かったら、過飽和や準安定状態が生じたい場合の晶析条件になるように晶析条件を制御し、これにより試料を目的の多形やサイズに成長・析出させることができる。   For example, if it is found that the crystal structure is supersaturated or metastable based on the absorption characteristic spectrum, the crystallization conditions are controlled so that the supercrystallization or metastable state is obtained. The sample can be grown and deposited to the desired polymorph and size.

吸収特性スペクトルに基づいて結晶の結晶構造を得るための分子軌道計算または分子動力学計算による理論計算は、例えば、晶析過程中に実行することができる。   Theoretical calculation by molecular orbital calculation or molecular dynamics calculation for obtaining the crystal structure of the crystal based on the absorption characteristic spectrum can be performed, for example, during the crystallization process.

または、晶析に先立って、分子軌道計算または分子動力学計算による理論計算を行い、予め吸収特性スペクトルまたはその変化の様子と結晶構造またはその変化の様子とを対応づけて(帰属を行って)記憶しておき、晶析のときに、吸収特性スペクトルや変化の様子が所見されたら、対応づけて記憶されている結晶構造やその変化の様子などを得るようにしてもよい。   Or, prior to crystallization, theoretical calculation by molecular orbital calculation or molecular dynamics calculation is performed, and the absorption characteristic spectrum or its change state is associated with the crystal structure or its change state (assignment). If the absorption characteristic spectrum and the state of change are found during crystallization, the crystal structure stored and the state of change may be obtained in association with each other.

例えば、前記結晶構造を得るステップは、前記複数の吸収帯の吸収強度の違いに基づいて前記試料溶液に含まれる晶析対象の成分の分子間またはイオン間の配列構造を得るものである。 For example, in the step of obtaining the crystal structure, an arrangement structure between molecules or ions of a component to be crystallized contained in the sample solution is obtained based on a difference in absorption intensity of the plurality of absorption bands .

第2の本発明に係る晶析過程制御装置は、含まれる晶析対象の成分量を一定とした試料溶液を載置する載置部と、晶析過程の前記試料溶液0.1〜10THzの電磁波を照射する照射部と、前記試料溶液を透過または反射した前記電磁波を検出する検出部と、含まれる晶析対象の成分量を一定とした前記試料溶液について、予め試料溶液の吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いと該吸収強度の違いが得られたときの前記試料溶液の結晶構造とを互いに対応づけて記憶し、前記検出部で検出された電磁波により前記試料溶液の吸収特性スペクトルを得て、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに対応づけて記憶されている前記試料溶液の結晶構造を得て、当該結晶構造に基づいて前記試料溶液の晶析条件を制御する計算制御部とを備えることを特徴とする。 The crystallizing process control device according to the second aspect of the present invention includes a placing part for placing a sample solution with a constant amount of components to be crystallized, and 0.1 to 10 THz in the sample solution in the crystallization process. absorption characteristics of an irradiation unit for irradiating an electromagnetic wave, and a detector for detecting the electromagnetic wave transmitted through or reflected by the sample solution, for the sample solution with constant component of crystallization object included in advance the sample solution wherein the crystal structure of the sample solution in association with storing each other, the sample solution by detected electromagnetic wave by the detector when the difference between the differences and the absorption intensity of the absorption intensities of a plurality of absorption bands in the spectrum was obtained to obtain the absorption spectrum of properties, with the crystal structure of the sample solution stored in association with the difference in the absorption intensity of a plurality of absorption bands in the obtained absorption spectrum of properties, before on the basis of the crystal structure Characterized in that it comprises a calculation control unit for controlling the crystallization conditions of the sample solution.

例えば、晶析過程制御装置は、前記試料溶液の温度を調整する温度調整部と、前記試料溶液の雰囲気の圧力を調整する圧力調整部とを備え、前記計算制御部は、前記結晶構造に基づいて前記温度調整部と前記圧力調整部の少なくとも一方を制御する。 For example, crystallization析過as control device includes a temperature adjustment unit for adjusting the temperature of the sample solution, and a pressure adjustment unit for adjusting the pressure of the atmosphere of the sample solution, the calculation control unit, based on the crystal structure And controlling at least one of the temperature adjusting unit and the pressure adjusting unit.

本発明によれば、含まれる晶析対象の成分量を一定とした晶析過程の試料溶液0.1〜10THzの電磁波を照射し、前記試料溶液を透過または反射した前記電磁波を検出し、前記検出された電磁波により前記試料溶液の吸収特性スペクトルを得て、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに基づいて前記試料溶液の結晶構造を得て、前記得られた結晶構造に基づいて前記試料溶液の晶析条件を制御することにより、試料を目的の多形やサイズに成長・析出させることができる。 According to the present invention, the components of the crystallization object included irradiated with electromagnetic waves 0.1~10THz the sample solution as the crystallization析過constant, and detecting the electromagnetic wave transmitted through or reflected by the sample solution, to obtain the absorption spectrum of properties of the sample solution by the detected electromagnetic wave, with the crystal structure of the sample solution based on differences in absorption intensities of a plurality of absorption bands definitive in the obtained absorption spectrum of properties, the resulting By controlling the crystallization conditions of the sample solution based on the obtained crystal structure, the sample can be grown and precipitated to the desired polymorph or size.

本発明の晶析過程制御装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the crystallization process control apparatus of this invention. 本発明の実施例1を説明するための、晶析過程の各段階における結晶構造の変化を追跡した吸収特性スペクトルを示す図である。It is a figure which shows the absorption characteristic spectrum which tracked the change of the crystal structure in each step of a crystallization process for demonstrating Example 1 of this invention.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の晶析過程制御方法および装置の一例を、図1を参照しつつ説明する。   An example of the crystallization process control method and apparatus of the present invention will be described with reference to FIG.

図1は、本発明の一実施形態にかかる晶析過程制御装置10(以下、単に装置10という)を示す構成図である。   FIG. 1 is a configuration diagram showing a crystallization process control device 10 (hereinafter simply referred to as device 10) according to an embodiment of the present invention.

装置10は、試料溶液1を収容するチャンバ11を載置する載置部2と、試料溶液1に電磁波を照射する照射部3と、試料溶液1を透過した電磁波を検出する検出部4と、検出部4で検出された電磁波に基づいて試料溶液1の吸収特性スペクトルに基づいて構造の帰属を行う計算制御部5と、前記試料溶液雰囲気の圧力を制御するための圧力調整部6と前記試料溶液の温度を制御するための温度調整部7とを備えている。なお、検出部4は、思料溶液1で反射した電磁波を検出するものであってもよい。   The apparatus 10 includes a mounting unit 2 that mounts a chamber 11 that stores the sample solution 1, an irradiation unit 3 that irradiates the sample solution 1 with electromagnetic waves, a detection unit 4 that detects the electromagnetic waves transmitted through the sample solution 1, A calculation control unit 5 for assigning a structure based on the absorption characteristic spectrum of the sample solution 1 based on the electromagnetic wave detected by the detection unit 4, a pressure adjusting unit 6 for controlling the pressure of the sample solution atmosphere, and the sample And a temperature adjusting unit 7 for controlling the temperature of the solution. In addition, the detection part 4 may detect the electromagnetic waves reflected by the thought solution 1.

載置部2は、ほぼ水平配置されたステージであり、載置部2は、チャンバ11を載置可能な大きさを有する。   The placement unit 2 is a stage arranged substantially horizontally, and the placement unit 2 has a size that allows the chamber 11 to be placed.

照射部3は、光源8とパルス発生器9とを有する。光源8は、0.1〜10THzの電磁波(以下、適宜、テラヘルツ波と言い換える)を励起させられればよく、光源8は、例えばフェムト秒モードロックチタンサファイアレーザやフェムト秒ファイバーレーザー等である。   The irradiation unit 3 includes a light source 8 and a pulse generator 9. The light source 8 is only required to excite an electromagnetic wave of 0.1 to 10 THz (hereinafter, appropriately referred to as a terahertz wave), and the light source 8 is, for example, a femtosecond mode-locked titanium sapphire laser or a femtosecond fiber laser.

パルス発生器9は、光源8からの励起光を受け、テラヘルツ波を発生できればよく、パルス発生器9は、例えば非線形光学結晶、光伝導アンテナ、半導体、量子井戸、高温伝導薄膜等である。   The pulse generator 9 only needs to receive excitation light from the light source 8 and generate a terahertz wave. The pulse generator 9 is, for example, a nonlinear optical crystal, a photoconductive antenna, a semiconductor, a quantum well, a high-temperature conductive thin film, or the like.

検出部4は、試料溶液1を透過したテラヘルツ波を検出できればよく、検出部4は、例えば光伝導アンテナ等である。   The detection unit 4 only needs to detect the terahertz wave that has passed through the sample solution 1, and the detection unit 4 is, for example, a photoconductive antenna.

圧力調整部6は、乾燥窒素または乾燥空気を送り込むガス圧制御弁14と真空ポンプ15と真空ゲージ16とを有し、チャンバ11の内部の圧力を、真空ポンプ15に通じる経路15aを通じて減圧できるようになっている。ガス導入管14aを通じて乾燥窒素または乾燥空気を送り込むことにより、チャンバ11の内部の雰囲気は所望のガスに置換される。   The pressure adjustment unit 6 includes a gas pressure control valve 14 for feeding dry nitrogen or dry air, a vacuum pump 15, and a vacuum gauge 16 so that the pressure inside the chamber 11 can be reduced through a path 15 a that leads to the vacuum pump 15. It has become. By sending dry nitrogen or dry air through the gas introduction pipe 14a, the atmosphere inside the chamber 11 is replaced with a desired gas.

圧力調整部6は、チャンバ11の内部の圧力を、0.1Pa〜大気圧に調整する性能を有することが好ましい。またその圧力制御の精度は±0.1〜1Paの安定性を有することが好ましい。   The pressure adjustment unit 6 preferably has a performance of adjusting the pressure inside the chamber 11 to 0.1 Pa to atmospheric pressure. Further, the accuracy of the pressure control preferably has a stability of ± 0.1 to 1 Pa.

温度調整部7は、液体窒素などの冷媒タンク17とヒーター18と温度センサ19とを有し、液体窒素などの冷媒を経路17aからチャンバ11内に送り込むことおよびチャンバ11内に導入されたヒーター18aに導通することによりチャンバ11内を冷却または加熱し、試料溶液1の晶析過程条件を制御できるように構成される。   The temperature adjusting unit 7 includes a refrigerant tank 17 such as liquid nitrogen, a heater 18, and a temperature sensor 19, and sends a refrigerant such as liquid nitrogen into the chamber 11 from the path 17 a and the heater 18 a introduced into the chamber 11. , The chamber 11 is cooled or heated to control the crystallization process conditions of the sample solution 1.

温度調整部7は、チャンバ11の温度を−200〜100℃とすることができる加熱冷却性能を有することが好ましい。またその温調精度は±0.1〜1.0℃の安定性を有することが好ましい。   It is preferable that the temperature adjusting unit 7 has a heating / cooling performance capable of setting the temperature of the chamber 11 to −200 to 100 ° C. The temperature control accuracy preferably has a stability of ± 0.1 to 1.0 ° C.

チャンバ11は、照射部3に面する上部、および検出部4に面する下部が、テラヘルツ波が透過可能な光学窓11aとされている。   In the chamber 11, an upper part facing the irradiation unit 3 and a lower part facing the detection unit 4 are optical windows 11 a through which the terahertz wave can be transmitted.

また、装置10には、放物面鏡12、14が設けられている。   The apparatus 10 is provided with parabolic mirrors 12 and 14.

次に、試料溶液1に対して装置10が行う晶析過程制御方法の一例を説明する。   Next, an example of a crystallization process control method performed by the apparatus 10 for the sample solution 1 will be described.

試料溶液1は、例えば、飽和NaCl溶液または飽和KCl溶液である。試料溶液1は、電磁波照射方向(図1における上下方向)の厚みが0.1〜15mm(望ましくは0.5〜2mm)であることが好ましい。   The sample solution 1 is, for example, a saturated NaCl solution or a saturated KCl solution. The sample solution 1 preferably has a thickness in the electromagnetic wave irradiation direction (vertical direction in FIG. 1) of 0.1 to 15 mm (desirably 0.5 to 2 mm).

試料溶液1は、薄すぎれば対象成分量が少なくなるため検出精度が低下し、厚すぎればテラヘルツ波が透過しにくくなる。これに対し、厚みを上記範囲とすることで、検出精度を高めるとともにテラヘルツ波を確実に透過させることができる。また多重反射、干渉も起こりにくくなる。よって、精度の高い分析が可能となる。   If the sample solution 1 is too thin, the amount of the target component is reduced, so that the detection accuracy is lowered. If the sample solution 1 is too thick, the terahertz wave is hardly transmitted. On the other hand, by setting the thickness within the above range, the detection accuracy can be improved and the terahertz wave can be transmitted with certainty. In addition, multiple reflection and interference are less likely to occur. Therefore, highly accurate analysis is possible.

試料溶液1は、電磁波照射方向に交差する面内(上記面内方向)の最大寸法が3〜15mmであることが好ましい。この最大寸法が大きすぎれば、温度や圧力のむらにより、晶析条件の精密制御が困難となる。これに対し、最大寸法を上記範囲とすることで、晶析条件制御の精度を高めることができる。   The sample solution 1 preferably has a maximum dimension in a plane (the above-described in-plane direction) intersecting with the electromagnetic wave irradiation direction of 3 to 15 mm. If this maximum dimension is too large, precise control of the crystallization conditions becomes difficult due to uneven temperature and pressure. On the other hand, the precision of crystallization condition control can be improved by making a maximum dimension into the said range.

計算制御部5は、温度センサ19により検出したチャンバ11内の温度に応じて温度調整部7を駆動し、チャンバ11内を所定の温度に加熱または冷却する。   The calculation control unit 5 drives the temperature adjustment unit 7 in accordance with the temperature in the chamber 11 detected by the temperature sensor 19 to heat or cool the chamber 11 to a predetermined temperature.

試料溶液1を凍結する場合は、その冷却速度は−0.1〜−5℃/秒(望ましくは−1〜−1.5℃/秒)とするのが好ましい。また、冷却によって内部の水蒸気が結露することを防ぐため、冷却開始前に、圧力調整部6を用いて圧力を10Pa程度に減圧することが好ましい。温度が−20℃程度に到達した後に、真空雰囲気もしくは乾燥窒素または乾燥空気で置換する。冷却速度をこの範囲とすることで、試料溶液1中の物質が外に析出することなく、試料溶液1中に晶析過程の構造が反映され、試料溶液1内の晶析させたい成分が、試料溶液1中の溶媒分子(水など)との間で分子間相互作用を示すようになる。 When the sample solution 1 is frozen, the cooling rate is preferably −0.1 to −5 ° C./second (desirably −1 to −1.5 ° C./second). In order to prevent condensation of water vapor inside due to cooling, it is preferable to reduce the pressure to about 10 4 Pa using the pressure adjusting unit 6 before the start of cooling. After the temperature reaches about −20 ° C., it is replaced with a vacuum atmosphere or dry nitrogen or dry air. By setting the cooling rate within this range, the structure of the crystallization process is reflected in the sample solution 1 without the substances in the sample solution 1 being deposited outside, and the components to be crystallized in the sample solution 1 are Intermolecular interaction is exhibited with solvent molecules (such as water) in the sample solution 1.

試料溶液1を凍結する場合は、到達冷却温度は、まず−100〜−20℃(望ましくは−80〜−70℃)において10〜360分(望ましくは60−180分)放置し、この状態で構造変化の測定を行う。冷却温度をこの範囲とすることで、マクロな領域での分子移動や構造変化は起こりにくいが、結晶構造を構成するユニット数が1〜数十と非常に少ない超微結晶を形成するために必要なミクロな分子の動きだけが可能となる。そののち、−200〜−150℃(望ましくは−200〜−180℃)に再冷却するのが好適である。冷却温度をこの範囲とすることで、形成した超微結晶の構造においても、分子移動や構造変化を停止させ、所望の結晶多形やサイズを取り出すことが可能となる。   When the sample solution 1 is to be frozen, the ultimate cooling temperature is first left at −100 to −20 ° C. (preferably −80 to −70 ° C.) for 10 to 360 minutes (preferably 60 to 180 minutes). Measure structural changes. By setting the cooling temperature within this range, molecular movement and structural changes are unlikely to occur in a macro region, but it is necessary to form ultrafine crystals with a very small number of units constituting the crystal structure. Only simple microscopic molecular movements are possible. After that, it is preferable to re-cool to -200 to -150 ° C (desirably -200 to -180 ° C). By setting the cooling temperature within this range, it is possible to stop molecular movement and structural change even in the formed ultrafine crystal structure, and to take out a desired crystal polymorph and size.

この過程において、適時、光源8から励起光をパルス発生器9に照射する。パルス発生器9はテラヘルツ波W1を発生し、放物面鏡12により集束されて被検体1に照射される。   In this process, the pulse generator 9 is irradiated with excitation light from the light source 8 at appropriate times. The pulse generator 9 generates a terahertz wave W1, is focused by a parabolic mirror 12, and is irradiated onto the subject 1.

テラヘルツ波W1は、試料溶液1に照射されると、水素結合、ファンデルワールス結合、π電子相互作用、静電相互作用等の弱い相互作用のエネルギーと共鳴する。   When the sample solution 1 is irradiated with the terahertz wave W1, it resonates with energy of weak interaction such as hydrogen bond, van der Waals bond, π electron interaction, electrostatic interaction and the like.

試料溶液1を透過したテラヘルツ波W2は、放物面鏡13により平行光となり、検出部4に至る。   The terahertz wave W <b> 2 that has passed through the sample solution 1 becomes parallel light by the parabolic mirror 13 and reaches the detection unit 4.

検出器4は、テラヘルツ波W2を検出し、その検出値は計算制御部5に送られる。   The detector 4 detects the terahertz wave W <b> 2 and the detected value is sent to the calculation control unit 5.

計算制御部5は、検出値をフーリエ変換により0.1〜10THzの周波数の関数に変換する。   The calculation control unit 5 converts the detected value into a function of a frequency of 0.1 to 10 THz by Fourier transform.

計算制御部5は、これに基づいて、試料溶液1の単位厚さおよび対象成分の単位濃度に対応するように正規化した吸収特性スペクトルやその変化を得る。   Based on this, the calculation control unit 5 obtains the absorption characteristic spectrum normalized so as to correspond to the unit thickness of the sample solution 1 and the unit concentration of the target component and its change.

計算制御部5は、例えば、得た吸収特性スペクトルや変化に基づいて、結晶構造が過飽和や準安定状態であることが分かったら、過飽和や準安定状態に適した晶析条件を設定し、これにより試料を目的の多形やサイズに成長・析出させる。   For example, if it is found that the crystal structure is supersaturated or metastable based on the obtained absorption characteristic spectrum or change, the calculation control unit 5 sets crystallization conditions suitable for the supersaturation or metastable state. To grow and deposit the sample to the desired polymorph and size.

計算制御部5は、例えば、吸収特性スペクトルに基づいて結晶構造を得るため、分子軌道計算または分子動力学計算による計算を晶析過程中に実行する。結晶構造とは、例えば、試料の分子間の配列構造または試料のイオン間の配列構造である。   For example, in order to obtain a crystal structure based on the absorption characteristic spectrum, the calculation control unit 5 performs calculation by molecular orbital calculation or molecular dynamics calculation during the crystallization process. The crystal structure is, for example, an array structure between sample molecules or an array structure between sample ions.

または、晶析に先立って、分子軌道計算または分子動力学計算による理論計算を行い、晶析過程の各段階における溶液中の結晶構造やその変化の様子と、吸収特性スペクトルまたはその変化の様子とを対応づけて(帰属を行って)記憶しておき、晶析のときに、吸収特性スペクトルや変化が得られたら、計算制御部5が、対応づけて記憶されている結晶構造の変化などを得て、これに基づいて、晶析条件を調整してもよい。   Or, prior to crystallization, perform theoretical calculations by molecular orbital calculation or molecular dynamics calculation, and the crystal structure in solution at each stage of the crystallization process and its change, absorption characteristic spectrum or its change Are stored in association with each other, and if an absorption characteristic spectrum or a change is obtained during crystallization, the calculation control unit 5 can change the stored crystal structure in association with each other. The crystallization conditions may be adjusted based on this.

つまり、上記相互作用のエネルギーの共鳴周波数や吸収強度は、試料溶液1中の晶析過程の構造に応じたものとなるため、この吸収特性スペクトルを結晶多形やサイズの指標とすることができるのである。   That is, since the resonance frequency and absorption intensity of the energy of the interaction are in accordance with the structure of the crystallization process in the sample solution 1, this absorption characteristic spectrum can be used as an index of crystal polymorphism or size. It is.

本実施の形態に係る装置10によれば、すなわち、その晶析過程制御方法によれば、晶析過程の試料溶液1に電磁波を照射し、試料溶液1を透過したテラヘルツ波W2を検出し、テラヘルツ波W2により試料溶液1の吸収特性スペクトルを得て、吸収特性スペクトルに基づいて試料溶液1の結晶構造を得て、結晶構造に基づいて試料溶液1の晶析条件を制御するので、従来の、粒子径と粒子数をリアルタイムに測定し、粒度分布の時間変化を観察・測定することにより晶析・重合・乳化・分散・凝集などの進行、変化、安定性などの研究や工程制御を行う方法に比べ、晶析条件の細かい制御が容易となり、結晶を目的の多形やサイズに成長・析出させることが容易となる。また、多形やサイズの僅かな違いによって物性がより敏感に変化しやすい、結晶構造を構成するユニット数が数十〜数百と非常に少ない超微結晶においても、目的の多形やサイズに成長・析出させることが可能となる。   According to the apparatus 10 according to the present embodiment, that is, according to the crystallization process control method, the sample solution 1 in the crystallization process is irradiated with electromagnetic waves, and the terahertz wave W2 transmitted through the sample solution 1 is detected. Since the absorption characteristic spectrum of the sample solution 1 is obtained by the terahertz wave W2, the crystal structure of the sample solution 1 is obtained based on the absorption characteristic spectrum, and the crystallization conditions of the sample solution 1 are controlled based on the crystal structure. Measure particle size and number of particles in real time and observe and measure changes in particle size distribution over time to conduct research and process control of crystallization, polymerization, emulsification, dispersion, aggregation, etc. Compared to the method, fine control of the crystallization conditions is facilitated, and it becomes easy to grow and precipitate the crystal to the desired polymorph and size. In addition, even for ultra-fine crystals with a few tens to hundreds of units that make up the crystal structure, the physical properties of which tend to change more sensitively due to slight differences in polymorphs and sizes. It is possible to grow and precipitate.

また、結晶構造を構成するユニット数(格子数)が1〜数十と非常に少ない超微結晶においても、目的の多形やサイズに成長・析出させることができる。   Even in the case of an ultrafine crystal having a very small number of units (the number of lattices) constituting the crystal structure, such as 1 to several tens, it can be grown and precipitated into the desired polymorph or size.

また、結晶構造を得た後にX線散乱や熱分析などを行って結晶構造や純度を確認する手順(従来の手順)が不要なので、同一構造の試料を大量に得る必要がなくなり、スケールアップに伴って、生成される結晶構造の均一性の低下を防ぐことが容易となる。   In addition, there is no need to obtain a crystal structure or purity by performing X-ray scattering or thermal analysis after obtaining the crystal structure (conventional procedure), so there is no need to obtain a large number of samples with the same structure, which can be scaled up. Along with this, it becomes easy to prevent a decrease in the uniformity of the crystal structure to be generated.

以下、本発明の実施例について、図1および図2を用いて具体的に説明する。なお、この実施例は一例であり、本発明を限定するものではない。   Examples of the present invention will be specifically described below with reference to FIGS. In addition, this Example is an example and does not limit this invention.

図1に示す装置10を用いて分析試験を行った。装置10は、パルス発生器9(先端赤外社製、光伝導アンテナ)、検出部4(先端赤外社製、光伝導アンテナ)を備えた分光装置(先端赤外社製、THz−TDS2004)を用いて作製した。光源8にはTi−sapphire laserであるVitesse(100フェムト秒型、コヒレント社製)を用いた。   An analytical test was performed using the apparatus 10 shown in FIG. The apparatus 10 includes a pulse generator 9 (manufactured by Infrared Inc., photoconductive antenna), and a spectroscopic device (manufactured by Advanced Infrared Inc., THz-TDS2004) provided with a detection unit 4 (manufactured by Infrared IR, photoconductive antenna) It was produced using. The light source 8 used was Ti-sapphire laser Vitesse (100 femtosecond type, manufactured by Coherent).

試料溶液1としては、1 mol/L NaCl溶液を深さ1.5mmとなるように導入した。   As the sample solution 1, a 1 mol / L NaCl solution was introduced to a depth of 1.5 mm.

試料溶液1に、照射部3を用いてテラヘルツ波W1を照射し、テラヘルツ波W2を検出部4で検出した。試料溶液1は、薄すぎれば対象成分量が少なくなるため検出精度が低下し、厚すぎればテラヘルツ波が透過しにくくなるが、本実施例ではこのような検出精度の低下は起こらなかったため、試料溶液1の厚さは妥当であると判断された。   The sample solution 1 was irradiated with the terahertz wave W1 using the irradiation unit 3, and the terahertz wave W2 was detected by the detection unit 4. If the sample solution 1 is too thin, the amount of the target component is reduced, so that the detection accuracy is reduced. If the sample solution 1 is too thick, the terahertz wave is not easily transmitted. However, in this example, such a decrease in the detection accuracy did not occur. The thickness of Solution 1 was judged reasonable.

電磁波照射方向に交差する面内(上記面内方向)の寸法は10mmとした。この最大寸法が大きすぎれば、温度や圧力のむらにより、晶析条件の精密制御が困難となるが、本実施例ではそのようなむらによる試料の不均一性は起こらなかったため、試料溶液1の面内の寸法は妥当であると判断された。   The in-plane dimension (the in-plane direction) intersecting the electromagnetic wave irradiation direction was 10 mm. If this maximum dimension is too large, it becomes difficult to precisely control the crystallization conditions due to uneven temperature and pressure. However, in this example, the unevenness of the sample due to such unevenness did not occur. The inside dimensions were judged to be reasonable.

試料溶液1を、冷却速度−1.5℃/秒において、−70℃に急速冷却して凍結し、試料中の分子やイオン間の配列構造を測定するため、吸収特性スペクトルの測定を行った。このとき、約1.6THz付近にブロードな吸収帯が観測された(図2(a))。この吸収帯は、氷中のナトリウムイオン、塩化物イオンが、塩化ナトリウム型(立方体)の単ユニットを構成するモデルを用いた分子軌道計算により、ナトリウムイオンが立方体の結晶構造よりも乱れた構造をとった時に水分子と相互作用に由来するピークであると帰属された。   The sample solution 1 was rapidly cooled to -70 ° C. and frozen at a cooling rate of −1.5 ° C./second, and an absorption characteristic spectrum was measured in order to measure the arrangement structure between molecules and ions in the sample. . At this time, a broad absorption band was observed in the vicinity of about 1.6 THz (FIG. 2 (a)). This absorption band shows a structure in which sodium ions and chloride ions in ice are more disordered than the cubic crystal structure by molecular orbital calculation using a model in which a single unit of sodium chloride type (cube) is formed. When taken, it was assigned to be a peak derived from an interaction with water molecules.

温度を−70℃に保持したまま、一定時間ごとに吸収特性スペクトルの測定を行った。数時間経過後、約2.4THz付近の吸収帯が現れはじめ、徐々に鋭いピークとなって観測された(図2(b))。この吸収帯は、氷中のナトリウムイオン、塩化物イオンが、塩化ナトリウム型(立方体)の単ユニットを構成するモデルを用いた分子軌道計算により、単ユニットを構成するナトリウムイオンや塩化物イオンが、氷中で立方体の結晶構造よりも僅かに乱れた構造をとった時に、それらが水分子と相互作用に由来するピークであると帰属された。約1.6THz付近のピークと比較して、観測されはじめるタイミングが異なるのは、−70℃に保持した状態において、結晶構造の秩序形成過程が徐々に進行し、新たな構造として観測されるようになったためと考えられる。   While maintaining the temperature at −70 ° C., the absorption characteristic spectrum was measured at regular intervals. After several hours, an absorption band near about 2.4 THz began to appear and was gradually observed as a sharp peak (FIG. 2 (b)). This absorption band is based on molecular orbital calculation using a model in which sodium ions and chloride ions in ice constitute a single unit of sodium chloride type (cube). When they took a slightly more disturbed structure than the cubic crystal structure in ice, they were assigned as peaks derived from interactions with water molecules. Compared with the peak at about 1.6 THz, the timing at which observation begins is different because the order formation process of the crystal structure gradually proceeds in the state of being kept at −70 ° C., and is observed as a new structure. It is thought that it became.

この後、−196℃まで冷却速度−1.5℃/秒で急速冷却して、吸収特性スペクトルの測定を行った。温度を−70℃に保持した状態と同様に、約1.6THz付近と約2.4THz付近の吸収帯が観測されたが、これは、バックグラウンドの吸収強度が低くなり、単ユニットを構成するナトリウムイオン、塩化物イオンとの相互作用が少ない水分子が、より安定で秩序の高い氷構造へと変化したためである。   Thereafter, the sample was rapidly cooled to −196 ° C. at a cooling rate of −1.5 ° C./second, and an absorption characteristic spectrum was measured. Absorption bands around 1.6 THz and around 2.4 THz were observed in the same manner as when the temperature was kept at -70 ° C., but this resulted in low background absorption intensity and constituted a single unit. This is because water molecules with little interaction with sodium ions and chloride ions have changed to more stable and ordered ice structures.

この後、加熱速度1℃/分で緩やかに加熱し、−110℃〜20℃までの範囲において、10℃ステップで吸収特性スペクトルの測定を行った。温度が−20℃までは、−196℃で得られた吸収特性スペクトルとほぼ同じスペクトルが得られ、結晶構造が保持されていることが示されたが、温度が−10℃に到達したとき、約1.6THz付近と約2.5THz付近の吸収帯のみが観測され、バックグラウンドによる吸収強度が消滅した(図2(c))。これは、単ユニットを構成するナトリウムイオン、塩化物イオンとの相互作用が少ない水分子が、加熱により蒸発し、−196℃の氷中と同じ構造を有するNaCl結晶のみが残ったためと考えられる。   Thereafter, the sample was gently heated at a heating rate of 1 ° C./min, and the absorption characteristic spectrum was measured at a step of 10 ° C. in the range from −110 ° C. to 20 ° C. Up to a temperature of −20 ° C., an absorption spectrum almost identical to the absorption characteristic spectrum obtained at −196 ° C. was obtained, indicating that the crystal structure was retained, but when the temperature reached −10 ° C., Only absorption bands near about 1.6 THz and about 2.5 THz were observed, and the absorption intensity due to the background disappeared (FIG. 2 (c)). This is presumably because water molecules with little interaction with sodium ions and chloride ions constituting a single unit were evaporated by heating, and only NaCl crystals having the same structure as in ice at −196 ° C. remained.

この手法を用いて、粒径が約10〜100nm程度の微粒子としてNaCl結晶が得られ、これは結晶構造を構成するユニット数が数十〜数百と非常に少ない超微結晶であることが分かった。この微粒子は、機械的に粉砕した通常のNaCl結晶と比較して、水への溶解性に優れていることが分かった。   Using this technique, NaCl crystals are obtained as fine particles having a particle size of about 10 to 100 nm, and it is found that these are ultrafine crystals with a few tens to hundreds of units constituting the crystal structure. It was. These fine particles were found to have superior solubility in water as compared with normal NaCl crystals mechanically pulverized.

ここで、−70℃に保持する過程を行わずに、−196℃まで急速冷却した場合は、約1.6THz付近にブロードな吸収帯が観測されるが、約2.5THz付近の吸収帯は観測されなかった。これは、−70℃に一定時間保持した状態において起こる、結晶構造の秩序形成過程が徐々に進行して新たな構造へと変化する過程を経なかったため、目的とする多形が得られなかったためである。この場合は、加熱により周囲の水分子を蒸発させて得られた結晶は、粒径が1−100um程度と大きく、かつ水への溶解性は通常のNaCl結晶と同程度の結晶しか得られなかった。   Here, when performing rapid cooling to -196 ° C without performing the process of maintaining at -70 ° C, a broad absorption band is observed around 1.6 THz, but the absorption band around 2.5 THz is Not observed. This is because the order formation process of the crystal structure, which occurs in a state of being held at -70 ° C. for a certain period of time, did not go through a process of gradually changing to a new structure, and thus the desired polymorph was not obtained. It is. In this case, the crystal obtained by evaporating the surrounding water molecules by heating has a large particle size of about 1-100 μm, and the solubility in water is only the same level as that of a normal NaCl crystal. It was.

したがって、本実施例によれば、試料溶液1を透過したテラヘルツ波を検出することにより得られる吸収特性スペクトルに基づいて晶析過程の各段階における溶液中の結晶構造を得て、フィードバックすることができることが明らかになった。本実施例では、温度を−70℃に保持した状態で、約2.4THz付近の吸収帯の発現を観測することにより、目的の結晶構造への変化を確認することが可能となった。すなわち、約2.4THz付近の吸収帯の発現がされない場合は、温調を高温域へ加熱させ、再度低温域へ冷却させる制御を再度繰り返して、結晶構造の秩序形成過程が進行するようにさせる。また、それらの過程における圧力を適宜増減させる制御、冷却速度の制御を行ってもよい。このように、晶析条件の細かい制御が容易となり、結晶を目的の多形やサイズに成長・析出させることが容易となる。また、多形やサイズの僅かな違いによって、水への溶解性などの物性がより敏感に変化しやすい、結晶構造を構成するユニット数が数十〜数百と非常に少ない超微結晶においても、目的の多形やサイズに成長・析出させることが可能となることが明らかになった。   Therefore, according to the present embodiment, it is possible to obtain and feed back the crystal structure in the solution at each stage of the crystallization process based on the absorption characteristic spectrum obtained by detecting the terahertz wave transmitted through the sample solution 1. It became clear that we could do it. In this example, it was possible to confirm the change to the target crystal structure by observing the occurrence of an absorption band near about 2.4 THz while maintaining the temperature at -70 ° C. That is, when an absorption band near about 2.4 THz is not developed, the control of heating the temperature control to the high temperature region and cooling to the low temperature region is repeated again so that the order formation process of the crystal structure proceeds. . Moreover, you may perform control which increases / decreases the pressure in those processes suitably, and control of a cooling rate. In this way, fine control of the crystallization conditions is facilitated, and it becomes easy to grow and precipitate crystals to the desired polymorph and size. In addition, ultrafine crystals with very few tens to hundreds of units that make up the crystal structure, where the physical properties such as solubility in water are more sensitive to changes due to slight differences in polymorphs and sizes. It has become clear that it is possible to grow and precipitate to the desired polymorph and size.

1…試料溶液
2…載置部
3…照射部
4…検出部
5…計算制御部
6…圧力調整部
7…温度調整部
8…光源
9…パルス発生器
10…晶析過程制御装置
11…チャンバ
11a…光学窓
12、13…放物面鏡
14…ガス圧制御弁
14a…ガス導入管
15…真空ポンプ
15a…経路
16…真空ゲージ
17…冷媒タンク
17a…経路
18、18a…ヒーター
19…温度センサ
DESCRIPTION OF SYMBOLS 1 ... Sample solution 2 ... Placement part 3 ... Irradiation part 4 ... Detection part 5 ... Calculation control part 6 ... Pressure adjustment part 7 ... Temperature adjustment part 8 ... Light source 9 ... Pulse generator 10 ... Crystallization process control apparatus 11 ... Chamber DESCRIPTION OF SYMBOLS 11a ... Optical window 12, 13 ... Parabolic mirror 14 ... Gas pressure control valve 14a ... Gas introduction pipe 15 ... Vacuum pump 15a ... Path | route 16 ... Vacuum gauge 17 ... Refrigerant tank 17a ... Path | route 18, 18a ... Heater 19 ... Temperature sensor

Claims (5)

含まれる晶析対象の成分量を一定とした晶析過程の試料溶液0.1〜10THzの電磁波を照射するステップと、
前記試料溶液を透過または反射した前記電磁波を検出するステップと、
前記検出された電磁波により前記試料溶液の吸収特性スペクトルを得るステップと、
前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに基づいて前記試料溶液の結晶構造を得るステップと、
前記得られた結晶構造に基づいて前記試料溶液の晶析条件を制御するステップと
を有することを特徴とする晶析過程制御方法。
Irradiating an electromagnetic wave of 0.1 to 10 THz to a sample solution in a crystallization process in which the amount of a component to be crystallized is constant ;
Detecting the electromagnetic wave transmitted through or reflected by the sample solution,
Obtaining an absorption characteristic spectrum of the sample solution from the detected electromagnetic wave;
Obtaining a crystal structure of the sample solution based on a difference in absorption intensity of a plurality of absorption bands in the obtained absorption characteristic spectrum;
Controlling the crystallization conditions of the sample solution based on the obtained crystal structure.
前記結晶構造を得るステップは、前記複数の吸収帯の吸収強度の違いに基づいて前記試料溶液に含まれる晶析対象の成分の分子間またはイオン間の配列構造を得るものである
ことを特徴とする請求項1記載の晶析過程制御方法。
The step of obtaining the crystal structure is to obtain an arrangement structure between molecules or ions of a component to be crystallized contained in the sample solution based on a difference in absorption intensity of the plurality of absorption bands. The crystallization process control method according to claim 1.
含まれる晶析対象の成分量を一定とした前記試料溶液について、予め試料溶液の吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いまたは該吸収強度の違いの変化の様子と該吸収強度の違いまたは該吸収強度の違いの変化の様子が所見されたときの前記試料溶液の結晶構造または結晶構造の変化の様子とが互いに対応づけて記憶されており、
前記結晶構造を得るステップは、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いまたは該吸収強度の違いの変化の様子に対応づけて記憶されている結晶構造または結晶構造の変化の様子を得るものである
ことを特徴とする請求項1または2記載の晶析過程制御方法。
For the sample solution the component amount of crystallization subject to a constant included, the manner and the absorption intensity change of the difference of differences or the absorption intensity of the absorption intensities of a plurality of absorption bands in the absorption spectrum of properties of the previously said sample solution A difference or a change in the absorption intensity is observed in association with the crystal structure of the sample solution or the change in the crystal structure when the change is observed.
In the step of obtaining the crystal structure, the difference in the absorption intensity of the plurality of absorption bands in the obtained absorption characteristic spectrum or the change in the crystal structure or the crystal structure stored corresponding to the change in the difference in the absorption intensity is stored. The method for controlling a crystallization process according to claim 1 or 2, wherein:
含まれる晶析対象の成分量を一定とした試料溶液を載置する載置部と、
晶析過程の前記試料溶液0.1〜10THzの電磁波を照射する照射部と、
前記試料溶液を透過または反射した前記電磁波を検出する検出部と、
含まれる晶析対象の成分量を一定とした前記試料溶液について、予め試料溶液の吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いと該吸収強度の違いが得られたときの前記試料溶液の結晶構造とを互いに対応づけて記憶し、前記検出部で検出された電磁波により前記試料溶液の吸収特性スペクトルを得て、前記得られた吸収特性スペクトルにおける複数の吸収帯の吸収強度の違いに対応づけて記憶されている前記試料溶液の結晶構造を得て、当該結晶構造に基づいて前記試料溶液の晶析条件を制御する計算制御部と
を備えることを特徴とする晶析過程制御装置。
A placement unit for placing a sample solution in which the amount of a component to be crystallized is constant ;
An irradiation unit for irradiating the sample solution in the crystallization process with an electromagnetic wave of 0.1 to 10 THz ;
A detector for detecting the electromagnetic wave transmitted through or reflected by the sample solution,
For the sample solution the component amount of crystallization subject to a constant included, the sample solution when the pre-difference between differences and the absorption intensity of the absorption intensities of a plurality of absorption bands in the absorption spectrum of properties of the sample solution was obtained Are stored in association with each other, the absorption characteristic spectrum of the sample solution is obtained from the electromagnetic wave detected by the detection unit, and the difference in absorption intensity of a plurality of absorption bands in the obtained absorption characteristic spectrum is obtained. A crystallization process control apparatus, comprising: a calculation control unit that obtains a crystal structure of the sample solution stored in association with each other and controls a crystallization condition of the sample solution based on the crystal structure.
前記試料溶液の温度を調整する温度調整部と、
前記試料溶液の雰囲気の圧力を調整する圧力調整部とを備え、
前記計算制御部は、
前記結晶構造に基づいて前記温度調整部と前記圧力調整部の少なくとも一方を制御する
ことを特徴とする請求項4記載の晶析過程制御装置。
A temperature adjusting unit for adjusting the temperature of the sample solution ;
A pressure adjustment unit for adjusting the pressure of the atmosphere of the sample solution ,
The calculation control unit
The crystallization process control device according to claim 4, wherein at least one of the temperature adjustment unit and the pressure adjustment unit is controlled based on the crystal structure.
JP2010143847A 2010-06-24 2010-06-24 Crystallization process control method and apparatus Expired - Fee Related JP5704630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143847A JP5704630B2 (en) 2010-06-24 2010-06-24 Crystallization process control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143847A JP5704630B2 (en) 2010-06-24 2010-06-24 Crystallization process control method and apparatus

Publications (2)

Publication Number Publication Date
JP2012005953A JP2012005953A (en) 2012-01-12
JP5704630B2 true JP5704630B2 (en) 2015-04-22

Family

ID=45537144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143847A Expired - Fee Related JP5704630B2 (en) 2010-06-24 2010-06-24 Crystallization process control method and apparatus

Country Status (1)

Country Link
JP (1) JP5704630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323411A (en) * 2013-05-30 2013-09-25 中国石油大学(北京) Method and device for detecting plasticizer
CN106166400B (en) * 2016-08-05 2018-05-08 大连理工大学 A kind of dilution crystallization device and method of film auxiliary control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240527A (en) * 1995-03-02 1996-09-17 Japan Tobacco Inc System for measuring concentration of component in salt-making process
JP3567988B2 (en) * 2002-07-11 2004-09-22 独立行政法人理化学研究所 Method and apparatus for searching for crystallization conditions of biopolymer
JP4101812B2 (en) * 2005-02-09 2008-06-18 株式会社リガク Molecular structure compound identification system
FI20050385A0 (en) * 2005-04-14 2005-04-14 Jukka Rantanen Method and apparatus for dissolving a solid in a liquid
JP2009063331A (en) * 2007-09-04 2009-03-26 Arkray Inc Solution analysis method and solution analyzer
JP4870636B2 (en) * 2007-09-18 2012-02-08 日本電信電話株式会社 Qualitative quantitative analysis method of inorganic salt and analyzer

Also Published As

Publication number Publication date
JP2012005953A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US11092523B2 (en) Gas phase sample preparation for cryo-electron microscopy
Buzi et al. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention
KR100582627B1 (en) Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
JP5899377B2 (en) Charged particle beam apparatus and sample preparation method using the apparatus
Dolmatov et al. Investigation of structure formation in thin films by means of optical pyrometry
Bulatov et al. Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object
Basso et al. An all-optical single-step process for production of nanometric-sized fluorescent diamonds
Żarów et al. Spectroscopic and X-ray diffraction study of structural disorder in cryomilled and amorphous griseofulvin
JP5704630B2 (en) Crystallization process control method and apparatus
Lu et al. Low-temperature Bessel beam trap for single submicrometer aerosol particle studies
Teschmit et al. Characterizing and optimizing a laser-desorption molecular beam source
Constantinescu et al. Thermal, morphological and optical investigations of Cu (DAB) 2 thin films produced by matrix-assisted pulsed laser evaporation and laser-induced forward transfer for sensor development
Cleaver et al. Detailed design and transport properties of a helium droplet nozzle from 5 to 50 K
Heimburger et al. Polycrystalline silicon films on glass grown by amorphous–liquid–crystalline transition at temperatures below 330 C
RU2466207C2 (en) Method for synthesis of nanostructure film on article and apparatus for realising said method
Li et al. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy
Polyakov et al. Formation of the structures from dusty clusters in neon dc discharge under cooling
McGrath et al. An apparatus for quantitative high-harmonic generation spectroscopy in molecular vapours
Stetsyura et al. Effect of parameters of narrow-gap inclusions on the type and intensity of secondary-ion photoeffect in heterophase photosensitive semiconductors
Kolasinski et al. Effects of low-fluence helium plasma exposure characterized by helium ion microscopy scanning probes and in-situ ellipsometry.
Zhao et al. In Situ Observation of NaCl Crystal Growth by the Vapor Diffusion Method with a Mach—Zehnder Interferometer
Takeuchi et al. The development of in-situ calibration method for divertor IR thermography in ITER
de Souza et al. Effect of the roughness on the photoinduced growth of crystalline tellurium on MoTe2 matrix
Гедгагова ABOUT THE USE OF THERMAL RADIATION FOR HIGH TEMPERATURE MEASUREMENTS OF SURFACE TENSION IN VACUUM
Vorontsov et al. Growth of the KDP filamentary crystals from solution with impurities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150219

R150 Certificate of patent or registration of utility model

Ref document number: 5704630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees