JP5704183B2 - Forged pipe with excellent workability - Google Patents

Forged pipe with excellent workability Download PDF

Info

Publication number
JP5704183B2
JP5704183B2 JP2013047766A JP2013047766A JP5704183B2 JP 5704183 B2 JP5704183 B2 JP 5704183B2 JP 2013047766 A JP2013047766 A JP 2013047766A JP 2013047766 A JP2013047766 A JP 2013047766A JP 5704183 B2 JP5704183 B2 JP 5704183B2
Authority
JP
Japan
Prior art keywords
eddy current
joint
edge
thickness
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013047766A
Other languages
Japanese (ja)
Other versions
JP2013154401A (en
Inventor
幸弘 池田
幸弘 池田
謙一 岩崎
謙一 岩崎
勝栄 高橋
勝栄 高橋
村上 宗義
宗義 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013047766A priority Critical patent/JP5704183B2/en
Publication of JP2013154401A publication Critical patent/JP2013154401A/en
Application granted granted Critical
Publication of JP5704183B2 publication Critical patent/JP5704183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、フレア加工などの強加工に供されても、接合部に割れが発生しにくい、加工性に優れた鍛接管に関する。   The present invention relates to a forged pipe having excellent workability, in which cracks are unlikely to occur in a joint even when subjected to strong processing such as flare processing.

近年、配管は、その継手部分を兼ね備えるものとして、フレア加工のような管端部への強加工を施されたものが増えている。この強加工に耐える性能を有するものとして電縫管が適用されているが、電縫管は高価なため、廉価な鍛接管の適用が図られている。
従来の鍛接管は、接合部の強度が低くて、強加工すると接合部を起点として割れが発生しやすいため、フレア加工のような用途に適用するには不十分な性能と言われてきた。
In recent years, pipes that have been subjected to strong processing such as flare processing on the pipe end have been increasing as having joint portions. Although an electric resistance welded tube is applied as having the ability to withstand this strong work, the electric resistance welded tube is expensive, and therefore, an inexpensive forged welded tube is applied.
Conventional forged pipes have been said to have insufficient performance for applications such as flaring because the strength of the joints is low and cracking is likely to occur from the joints when intensively processed.

鍛接管の製造においては、図1に一例を示すとおり、スリットした鋼帯2を、エッジ成形機4でエッジ部(幅端部)を成形(エッジ成形)し、加熱炉5にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機6で管状に連続成形しつつ、エッジ部にノズル7で酸素または空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、エッジ衝合・鍛接して接合し、場合によっては絞り圧延を行って、管8に仕上げている。なお、図示していないが、スリットした鋼帯のエッジ部を切削してからエッジ成形する場合もある。また、酸素または空気を吹き付ける代わりに、加熱炉5の出側で鋼帯端部を高周波加熱する場合もある。   In the production of forged pipes, as shown in FIG. 1, the slit steel strip 2 is formed with the edge forming machine 4 at the edge (width end) (edge forming), and the entire width is heated in the heating furnace 5. Then, the steel strip after the heating is continuously formed into a tubular shape with the forming and forging machine 6, while oxygen or air is blown to the edge portion with the nozzle 7 and the temperature is raised to a temperature just below the melting point by oxidation heat. The pipe 8 is finished by forging and joining, and in some cases, drawing and rolling. Although not shown, edge forming may be performed after cutting the edge of the slit steel strip. Further, instead of blowing oxygen or air, the steel strip end may be heated at high frequency on the exit side of the heating furnace 5.

製造した鍛接管は、接合部に酸化物などが残留しやすく、また、接合部の外面側および内面側に筋が発生し、これらに起因して、フレア加工のような強加工において接合部に割れが発生していた。接合部の外面側の筋は、鋼帯をスリットしてエッジ部に発生したダレが鍛接時に残留したものである。また、内面側の筋は、接合時にエッジ衝合部が盛り上がってビード部を形成し、この谷間が筋となったものである。   In the manufactured welded pipe, oxides and the like are likely to remain in the joint, and streaks are generated on the outer surface side and inner surface side of the joint, resulting in strong joints such as flare processing. Cracks occurred. The streaks on the outer surface side of the joint portion are formed by slitting the steel strip and the sagging generated at the edge portion remaining during forging. Further, the inner surface side streaks are formed by forming the bead portion by rising the edge abutting portion at the time of joining, and this valley is a streak.

そこで、従来は、特許文献1〜3に示されるように、管の一部を切り出して、外面側の筋深さ、内面側のビード高さ、内面側の筋深さ、接合部の介在物などを特定の範囲に規制することによって、接合部の強度向上を図った鍛接管を提供していた。   Therefore, conventionally, as shown in Patent Documents 1 to 3, a part of the tube is cut out, the outer surface side muscle depth, the inner surface side bead height, the inner surface side muscle depth, the inclusions in the joint portion Forging pipes that improve the strength of the joints by regulating the above to a specific range.

特開2007−152430号公報JP 2007-152430 A 特開平10−263846号公報Japanese Patent Laid-Open No. 10-263846 特開平4−270009号公報JP-A-4-270009

しかし、本発明者らの検討により把握されたことに、前記従来の技術に則って外面側の筋深さ、内面側のビード高さ、内面側の筋深さを特定範囲にしても、鍛接管の接合部の強度を充分に向上できず、フレア加工で接合部が割れてしまう場合が多い。また、接合部の介在物を規制することも行われているが、鍛接管の断面を切り出して調査するものであるため、調査する鍛接管の一部しかわからず、長手方向の広範囲にわたって、介在物を特定の範囲に規制することができず、製品として出荷する鍛接管の接合部品質を充分に保証できるものではなかった。   However, as a result of the study by the present inventors, in accordance with the prior art, the outer surface side muscle depth, the inner surface side bead height, and the inner surface side muscle depth are within a specific range, and In many cases, the strength of the joint portion of the tube connection cannot be sufficiently improved, and the joint portion is cracked by flare processing. In addition, the inclusions in the joints are regulated, but since the cross-section of the forged pipe is cut out and investigated, only a part of the forged pipe to be investigated is known, and there is a wide range in the longitudinal direction. The product could not be regulated to a specific range, and the joint quality of the forged pipe shipped as a product could not be sufficiently guaranteed.

本発明は、上述の課題を解決し、フレア加工のような強加工を行なっても、接合部から割れることのない鍛接管を提供することを目的としてなされたものであり、その要旨は次のとおりである。   The present invention has been made for the purpose of providing a forged pipe that solves the above-described problems and does not break from the joint even when performing strong processing such as flare processing. It is as follows.

[1] 鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱炉の出側で鋼帯のエッジ部を高周波加熱した後、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径3.2mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA(%)が、18.8%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<1>式で表される限界値A1以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A≦A1=12.5・R1+7.5‥‥<1>
[1] The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, the edge of the steel strip is heated at a high frequency on the exit side of the heating furnace, and then the heating is performed. It is a forged pipe that is manufactured by edge abutting and forging welding while continuously forming the latter steel strip into a tubular shape with a forming and forging machine,
The magnitude A (%) of the eddy current, expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 3.2 mm diameter drill hole penetrating the wall thickness as a standard defect, 18.8% or less, and that is equal to or less than the limit value A1 represented by the following <1> equation using the ratio of the thickness direction length of the joint relative to the tube wall thickness (R1) Forged welded tube with excellent processability.
A ≦ A1 = 12.5 · R1 + 7.5 (1)

[2] 鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ部に酸素又は空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径3.2mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA(%)が、18.8%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<1>式で表される限界値A1以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A≦A1=12.5・R1+7.5‥‥<1>
[2] The edge part (width end part) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, and the steel strip after the heating is continuously formed into a tubular shape with a forming and forging machine, It is a forged tube that is manufactured by blowing oxygen or air to the temperature just below the melting point by oxidation heat and manufacturing by edge abutting and forging welding,
The magnitude A (%) of the eddy current, expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 3.2 mm diameter drill hole penetrating the wall thickness as a standard defect, 18.8% or less, and that is equal to or less than the limit value A1 represented by the following <1> equation using the ratio of the thickness direction length of the joint relative to the tube wall thickness (R1) Forged welded tube with excellent processability.
A ≦ A1 = 12.5 · R1 + 7.5 (1)

[3] 前記渦電流の大きさA(%)が、管肉厚に対するビード部最大肉厚の比(R2)を用いた下記<2>式で表される限界値A2以下であると判定されたことを特徴とする[1]または[2]のいずれかに記載の加工性に優れた鍛接管。
A≦A2=25・R2−6.25‥‥<2>
[3] The magnitude A (%) of the eddy current is determined to be equal to or less than a limit value A2 represented by the following formula <2> using a ratio (R2) of the maximum bead thickness to the tube thickness. The forged pipe having excellent workability according to any one of [1] and [2], wherein
A ≦ A2 = 25 · R2−6.25 (2)

[4] 鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱炉の出側で鋼帯のエッジ部を高周波加熱した後、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径1.6mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA’(%)が、75.0%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<3>式で表される限界値A3以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A’≦A3=50・R1+30‥‥<3>
[4] The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, the edge of the steel strip is heated at a high frequency on the exit side of the heating furnace, and then the heating is performed. It is a forged pipe that is manufactured by edge abutting and forging welding while continuously forming the latter steel strip into a tubular shape with a forming and forging machine,
The magnitude of the eddy current A ′ (%), expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 1.6 mm diameter drill hole penetrating the wall thickness as a standard defect, is , 75.0% or less, and determined to be not more than the limit value A3 represented by the following <3> equation using the ratio (R1) of the thickness direction length of the joint to the tube thickness Forged welded tube with excellent workability.
A ′ ≦ A3 = 50 · R1 + 30... <3>

[5] 鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ部に酸素又は空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径1.6mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA’(%)が、75.0%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<3>式で表される限界値A3以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A’≦A3=50・R1+30‥‥<3>
[5] The edge portion (width end portion) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, and the heated steel strip is continuously formed into a tubular shape with a forming forge machine, while the edge portion It is a forged tube that is manufactured by blowing oxygen or air to the temperature just below the melting point by oxidation heat and manufacturing by edge abutting and forging welding,
The magnitude of the eddy current A ′ (%), expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 1.6 mm diameter drill hole penetrating the wall thickness as a standard defect, is , 75.0% or less, and determined to be not more than the limit value A3 represented by the following <3> equation using the ratio (R1) of the thickness direction length of the joint to the tube thickness Forged welded tube with excellent workability.
A ′ ≦ A3 = 50 · R1 + 30... <3>

[6] 前記渦電流の大きさA’(%)が、管肉厚に対するビード部最大肉厚の比(R2)を用いた下記<4>式で表される限界値A4以下であると判定されたことを特徴とする[4]または[5]のいずれかに記載の加工性に優れた鍛接管。
A’≦A4=100・R2−25‥‥<4>
[6] The magnitude A ′ (%) of the eddy current is determined to be equal to or less than a limit value A4 represented by the following formula <4> using a ratio (R2) of the maximum bead thickness to the tube thickness. The forged pipe having excellent workability according to any one of [4] and [5], wherein
A ′ ≦ A4 = 100 · R2-25... <4>

本発明によれば、フレア加工などの強加工に供されても、接合部に割れを発生させない鍛接管が得られる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses for strong processes, such as a flare process, the forge welded pipe which does not generate | occur | produce a crack in a junction part is obtained.

鍛接管の製造工程の一例を示す概略図Schematic showing an example of the manufacturing process of forged pipes 管肉厚に対する接合部の肉厚方向長さの比(R1)による、鍛接管接合部の割れ発生に伴う渦電流の限界値A1を示す線図(標準欠陥として肉厚貫通の直径3.2mmのドリル孔を用いた場合)Diagram showing limit value A1 of eddy current associated with cracking of forged welded joint by ratio (R1) of thickness direction of joined part to pipe thickness (thickness penetration diameter 3.2mm as standard defect) (When using a drill hole) 管肉厚に対するビード部最大肉厚の比(R2)による、鍛接管接合部の割れ発生に伴う渦電流の限界値A2を示す線図(標準欠陥として肉厚貫通の直径3.2mmのドリル孔を用いた場合)Diagram showing limit value A2 of eddy current associated with cracking of welded pipe joint by ratio (R2) of maximum thickness of bead part to pipe thickness (drill hole with a diameter of 3.2mm as a standard defect) ) 管肉厚に対する接合部の肉厚方向長さの比(R1)による、鍛接管接合部の割れ発生に伴う渦電流の限界値A3を示す線図(標準欠陥として肉厚貫通の直径1.6mmのドリル孔を用いた場合)Diagram showing limit value A3 of eddy current associated with cracking of welded pipe joint by ratio (R1) of thickness direction of joint to pipe thickness (Rickness through diameter 1.6mm as standard defect) (When using a drill hole) 管肉厚に対するビード部最大肉厚の比(R2)による、鍛接管接合部の割れ発生に伴う渦電流の限界値A4を示す線図(標準欠陥として肉厚貫通の直径1.6mmのドリル孔を用いた場合)Diagram showing limit value A4 of eddy current associated with cracking of welded pipe joint by ratio (R2) of maximum thickness of bead part to pipe thickness (drill hole with a diameter of 1.6mm as a standard defect) )

鍛接管をフレア加工のような強加工に供する場合、従来から接合部に割れが発生して問題であるため、鍛接管製造段階において、接合部が良好であるか確認して品質を確保しておく必要がある。
この接合部の強度を低下させる原因として、介在物が接合部に残留し、これが破壊の起点となって割れやすいことが言われている。
When the forged pipe is subjected to strong processing such as flaring, cracks have conventionally occurred in the joints, so it is a problem in the forged pipe manufacturing stage to ensure that the joints are good and to ensure quality. It is necessary to keep.
As a cause of reducing the strength of the joint portion, inclusions remain in the joint portion, which is said to be a starting point of breakage and easily break.

本来であれば、その介在物を直接測定すべきであるが、従来の鍛接管においては管の一部を切り出して、管の一部のみの接合部の介在物を調査することしかできなかった。
そこで、本発明者らは、ほぼ管全長にわたり接合部を直接調査する方法を検討し、比較的簡便な方法として渦流探傷を用いることとした。渦流探傷は、管に渦電流を与えて、介在物等の欠陥が存在した場合、その部分で渦電流が変化するため、この渦電流の変化を測定して介在物を検出するものである。
Originally, the inclusions should be measured directly, but in conventional forged pipes, only a part of the pipe was cut out and the inclusions at the joint of only a part of the pipe could be investigated. .
Therefore, the present inventors examined a method of directly investigating the joint portion over almost the entire length of the pipe, and decided to use eddy current flaw detection as a relatively simple method. In the eddy current flaw detection, when an eddy current is applied to a tube and a defect such as an inclusion is present, the eddy current changes in that portion. Therefore, the change in the eddy current is measured to detect the inclusion.

鍛接管の渦流探傷における最適条件を調査したところ、管肉厚を貫通する直径3.2mmのドリル孔を穿孔し、これを標準欠陥として、この標準欠陥に対する渦電流の大きさを100%として鍛接管接合部の渦電流の大きさ(%)を測定するとよく、接合部の介在物の量を百分率で表すことができて、簡便に割れ評価が可能なわけである。
接合部の渦電流の大きさ(%)は、値が大きいほど介在物が多くて接合部が割れやすいことを示し、値が小さいほど介在物が少なくて接合部が割れにくいことを示す。
We investigated the optimum conditions for eddy current testing of forged pipes. Drilling a 3.2mm diameter drill hole that penetrates the pipe wall thickness, and using this as a standard defect, forging the eddy current with respect to this standard defect as 100%. The magnitude (%) of the eddy current in the tube connection portion may be measured, and the amount of inclusions in the connection portion can be expressed as a percentage, so that the crack evaluation can be easily performed.
The magnitude (%) of the eddy current at the joint indicates that the larger the value is, the more inclusions are present and the joint is more likely to be cracked.

一方、本発明者らは、接合部の肉厚方向長さに着目した。従来の接合部強度が低い鍛接管を詳細に観察すると、接合部の肉厚方向長さが短い場合、フレア加工のような強加工における管円周方向に作用する強い張力に対して、接合部の強度が不足していることを見出したわけである。
接合部の強度についてさらに詳細に述べると、管肉厚に対する接合部の肉厚方向長さの比が小さくなると接合部強度が低くなり、大きくなると接合部強度が向上するわけである。すなわち、フレア加工のような強加工においては、管端部およびその周辺が拡管されつつ円周方向に拡がっていく。その際、管端部およびその周辺では、円周方向に過大な張力が作用する。この張力は、管の肉厚が薄い部分に集中しやすいため、接合部の肉厚が薄い場合、すなわち、管肉厚に対する接合部の肉厚方向長さの比が小さい場合、接合部に応力集中して割れやすくなるわけである。
On the other hand, the present inventors paid attention to the length in the thickness direction of the joint. When observing in detail a conventional welded pipe with low joint strength, when the length of the joint in the thickness direction is short, the joint is against strong tension acting in the pipe circumferential direction in strong processing such as flare processing. It was found that the strength of is insufficient.
The strength of the joint will be described in more detail. When the ratio of the length in the thickness direction of the joint to the tube thickness decreases, the strength of the joint decreases, and when the ratio increases, the strength of the joint increases. That is, in strong processing such as flare processing, the tube end portion and the periphery thereof are expanded in the circumferential direction while being expanded. At that time, excessive tension acts in the circumferential direction at the pipe end and its periphery. This tension tends to concentrate on the thin part of the tube, so if the thickness of the joint is thin, that is, if the ratio of the length of the joint in the thickness direction to the pipe thickness is small, stress will be applied to the joint. It is easy to concentrate and break.

本発明者らは、介在物による渦電流および接合部の肉厚方向長さの双方を用いて、より充分な接合部強度を得ることが可能であることを把握して、本発明をなすに至った。
本発明に至るまでの検討過程において、製造した鍛接管の接合部分(鍛接管接合部)を渦流探傷し、測定した渦電流の大きさを、標準欠陥とした肉厚貫通の直径3.2mmのドリル孔に対する渦電流の大きさに対する百分率で表した値A(%)として求め、かつ、接合部の肉厚方向長さを測定し、かつ、該測定箇所に隣接した鍛接管部分をフレア加工して接合部の割れ発生有無を調査した。この調査結果を整理し、図2に示すとおり、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いて下記<1>式で表される限界値A1以下の範囲のAであれば、その鍛接管は加工性に優れたものと、精度良く判定できることを把握した。
A≦A1=12.5・R1+7.5‥‥<1>
The present inventors have grasped that it is possible to obtain more sufficient joint strength by using both the eddy current due to inclusions and the thickness direction length of the joint, and make the present invention. It came.
In the examination process up to the present invention, the joint portion of the manufactured welded tube (forged welded tube joint portion) was subjected to eddy current flaw detection, and the measured eddy current was used as a standard defect with a diameter of 3.2 mm. Obtained as a value (%) expressed as a percentage of the magnitude of the eddy current with respect to the drill hole, and measured the length in the thickness direction of the joint, and flaring the forged pipe portion adjacent to the measurement location The presence or absence of cracks in the joint was investigated. As shown in FIG. 2, the results of the investigation are arranged, and as shown in FIG. 2, the ratio A (R1) of the thickness in the thickness direction of the joint to the tube thickness is A in the range below the limit value A1 expressed by the following formula Then, it was grasped that the forged pipe was excellent in workability and could be determined with high accuracy.
A ≦ A1 = 12.5 · R1 + 7.5 (1)

また、上記検討過程において、標準欠陥として肉厚貫通の直径1.6mmのドリル孔を用いると、さらに精度良く欠陥を検出できることも分った。すなわち、直径1.6mm孔を標準欠陥としてこれに対する鍛接管接合部の渦電流の比A’(%)を用いて、前記A(%)を用いた場合と同様に整理し、図4に示すとおり、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いて下記<3>式で表される限界値A3以下の範囲のA’であれば、その鍛接管は加工性に優れたものと、さらに精度良く判定できることを把握した。
A’≦A3=50・R1+30‥‥<3>
In the above examination process, it was also found that the use of a through hole with a diameter of 1.6 mm as a standard defect can detect the defect with higher accuracy. That is, using a 1.6 mm diameter hole as a standard defect, the ratio A ′ (%) of the eddy current of the welded pipe joint to this is arranged in the same manner as in the case of using the above A (%), and shown in FIG. As described above, if the ratio of the length in the thickness direction of the joint to the tube thickness (R1) is A ′ within the range of the limit value A3 represented by the following formula <3>, the forged welded tube is workable. It was understood that it can be judged with higher accuracy and more accurate.
A ′ ≦ A3 = 50 · R1 + 30... <3>

さらに、接合部の割れにつながる応力集中は、接合部の界面だけでなく、その周辺にも作用している。鍛接時には衝合端部に酸素または空気を吹き付けるため、鍛接後にビード部となる衝合端部周辺の温度が上昇して金属元素の一部が拡散しやすいなどから組織が管の他の部分と異なり、製造後の変形抵抗が変化して、場合によってはいくらか低くなる。その結果、フレア加工のような強加工の過大張力の影響を受けやすくなる。   Furthermore, the stress concentration that leads to cracking of the joint acts not only on the interface of the joint but also on the periphery thereof. Oxygen or air is blown to the abutting end during forging, so the temperature around the abutting end, which becomes the bead after the forging, rises, and some of the metal elements tend to diffuse. In contrast, the deformation resistance after manufacture changes and in some cases is somewhat lower. As a result, it becomes susceptible to the excessive tension of strong processing such as flare processing.

そこで、接合部の肉厚方向長さだけでなく、接合部界面周辺に生成するビード部にも着目した。ビード部とは、接合時に衝合端部が盛り上がった部分であり、鍛接管の場合、主に内面側に盛り上がりやすいが、外面側にもわずかに盛り上がる。
このビード部の盛り上がりが大きいと、接合部の肉厚方向長さも増大しやすくて、断面の単位面積あたりの張力が小さくなって、応力集中が緩和され、接合部への過大張力の集中を緩和することができる。したがって、接合部だけでなく、その周辺のビード部においても肉厚を増加させることによって、フレア加工などの強加工における接合部周辺の応力集中を緩和できて、割れを充分防止できるわけである。
Therefore, attention was paid not only to the thickness direction length of the joint portion but also to the bead portion generated around the joint interface. The bead portion is a portion where the abutting end portion is raised at the time of joining. In the case of a forged welded tube, the bead portion tends to rise mainly on the inner surface side, but slightly rises on the outer surface side.
If this bead bulge is large, the thickness of the joint in the thickness direction is likely to increase, reducing the tension per unit area of the cross section, reducing stress concentration, and reducing the concentration of excessive tension at the joint. can do. Therefore, by increasing the thickness not only at the joint portion but also at the peripheral bead portion, stress concentration around the joint portion in strong processing such as flare processing can be alleviated and cracking can be sufficiently prevented.

本発明者らが、前記A(%)と、管肉厚に対するビード部最大肉厚の比(R2)の測定値と、該測定箇所に隣接した鍛接管部分をフレア加工して割れ発生有無を調査した結果とを整理すると、図3に示すとおり、管肉厚に対するビード部最大肉厚の比(R2)を用いて下記<2>式で表される限界値A2以下の範囲のAであれば、<1>式による判定精度がさらに向上することが分った。
A≦A2=25・R2−6.25‥‥<2>
The present inventors flared the above-mentioned A (%), the measured value of the ratio of the maximum thickness of the bead portion to the tube thickness (R2), and the presence or absence of cracks by flaring the forged pipe portion adjacent to the measurement location. When the results of the investigation are arranged, as shown in FIG. 3, using the ratio (R2) of the maximum thickness of the bead portion to the tube thickness, it should be A within the range of the limit value A2 or less expressed by the following formula (2). In other words, it has been found that the determination accuracy according to the expression <1> further improves.
A ≦ A2 = 25 · R2−6.25 (2)

また、前記A(%)に代えて前記A’(%)を用いて同様に整理すると、図5に示すとおり、管肉厚に対するビード部最大肉厚の比(R2)を用いて下記<4>式で表される限界値A4以下の範囲のA’であれば、<3>式による判定精度がさらに向上することが分った。
A’≦A4=100・R2−25‥‥<4>
Further, when rearranging similarly using A ′ (%) instead of A (%), as shown in FIG. 5, the ratio (R2) of the maximum thickness of the bead portion to the tube thickness is <4 It was found that the determination accuracy according to the expression <3> is further improved if A ′ is in the range of the limit value A4 or less expressed by the expression.
A ′ ≦ A4 = 100 · R2-25... <4>

また、肉厚貫通の直径3.2mmのドリル孔を標準欠陥とする<1>式で、あるいはさらに<2>式で、鍛接管接合部の健全性を評価した後に、肉厚貫通の直径1.6mmのドリル孔を標準欠陥とする<3>式で、あるいはさらに<4>式で、さらに厳密に鍛接管接合部の健全性を評価することとしてもよい。   In addition, after evaluating the soundness of the welded joint joint by the <1> formula using a 3.2 mm diameter drill hole as a standard defect, or further by the <2> formula, It is also possible to evaluate the soundness of the welded joint joint portion more strictly by the formula <3> or the formula <4> with a 6 mm drill hole as a standard defect.

なお、管肉厚とは、鍛接管の円周方向の平均肉厚でもよく、管の接合部と反対側に位置する部分の肉厚でもよく、接合部周辺で肉厚がほぼ同等となる特定位置、例えば接合部肉厚方向長さ相当のn倍の距離分だけ接合部から離した位置の肉厚、接合部を挟んで管円周方向1/nの範囲で平均した肉厚など、としてもよい。
さらに、サンプル本数を増やして<1>式、<2>式の信頼性を追跡調査し、次の結果を得ている。
・<1>式を満たさない場合、<2>式を満たすか否かによらず、フレア加工での割れ発生本数率は、約95%である。
・<1>式を満たし、<2>式を満たさない場合、フレア加工での割れ発生本数率は、約5%である。
・<1>式および<2>式を満たす場合、フレア加工での割れ発生本数率は、約0.6%である。
In addition, the pipe wall thickness may be the average wall thickness in the circumferential direction of the welded pipe, or may be the wall thickness of the portion located on the opposite side of the pipe joint, and the thickness is almost equal around the joint. As the position, for example, the thickness of the position separated from the joint by a distance corresponding to n times the length in the thickness direction of the joint, the thickness averaged in the range of the tube circumferential direction 1 / n across the joint, etc. Also good.
Furthermore, the number of samples was increased and the reliability of the formulas <1> and <2> was tracked and the following results were obtained.
-When the formula <1> is not satisfied, the crack generation rate in the flare processing is about 95% regardless of whether the formula <2> is satisfied.
-If the <1> equation is satisfied and the <2> equation is not satisfied, the crack generation rate in flare processing is about 5%.
-When <1> and <2> are satisfied, the crack generation rate in flare processing is about 0.6%.

また、<3>式、<4>式について同様に信頼性を追跡調査し、次の結果を得ている。
・<3>式を満たさない場合、<4>式を満たすか否かによらず、フレア加工での割れ発生本数率は、約98%である。
・<3>式を満たし、<4>式を満たさない場合、フレア加工での割れ発生本数率は、約3%である。
・<3>式および<4>式を満たす場合、フレア加工での割れ発生本数率は、約0.3%である。
Similarly, the reliability of the <3> expression and the <4> expression is tracked and the following results are obtained.
-When <3> formula is not satisfied, the crack generation rate in the flare processing is about 98% regardless of whether <4> formula is satisfied.
-When satisfying <3> Formula and not satisfying <4> Formula, the crack generation rate in flare processing is about 3%.
-When satisfy | filling <3> Formula and <4> Formula, the crack generation number rate by a flare process is about 0.3%.

図1に一例を示した製造工程で鍛接管を製造した。すなわち、スリットした鋼帯2を、エッジ成形機4でエッジ部(幅端部)を成形(エッジ成形)し、加熱炉5にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機6で管状に連続成形しつつ、エッジ部にノズル7で酸素または空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、成形鍛接機6でエッジ衝合・鍛接して接合し、絞り圧延を行って鍛接管を製造した。   A forged pipe was manufactured in the manufacturing process shown in FIG. That is, the slit steel strip 2 is formed at the edge portion (width end portion) by the edge forming machine 4 (edge forming), the entire width is heated in the heating furnace 5, and the steel strip after the heating is formed into the forging machine 6. While forming into a tube continuously, oxygen or air is blown to the edge portion with a nozzle 7 and the temperature is raised to a temperature just below the melting point by oxidation heat. To produce a forged tube.

上記製造工程で製造した鍛接管について、管肉厚に対する接合部の肉厚方向長さの比(R1)を測定し、そのR1を用いて<1>式から鍛接管接合部の渦電流の限界値A1(%)を計算した。また、管肉厚に対するビード部最大肉厚の比(R2)を測定し、そのR2を用いて<2>式から鍛接管接合部の渦電流の限界値A2(%)を計算した。また、接合部を渦流探傷して渦電流の大きさA(%)を測定し、かつ、フレア加工を行なって接合部の割れ発生の有無を調べた。それらの結果を表1に示す。   For the forged pipe manufactured in the above manufacturing process, the ratio (R1) of the thickness direction length of the joint to the pipe thickness is measured, and the limit of eddy current in the forged pipe joint is calculated from the formula <1> using the R1. The value A1 (%) was calculated. Further, the ratio (R2) of the maximum bead thickness to the tube thickness was measured, and the limit value A2 (%) of the eddy current at the forged pipe joint was calculated from the formula <2> using R2. Further, the eddy current flaw detection was performed on the joint, the magnitude A (%) of the eddy current was measured, and flare processing was performed to examine whether the joint was cracked. The results are shown in Table 1.

表1より、本発明例No.1〜6では、いずれの鍛接管もA≦A1かつA≦A2であり、フレア加工において接合部に割れが発生せずに良好であった。これに対し、比較例(従来例)No.7〜10では、いずれの鍛接管もA>A1であり、フレア加工において接合部に割れが発生し、接合部強度は低くて満足できる結果ではなかった。   From Table 1, Example No. of the present invention. In Nos. 1 to 6, all of the welded pipes were A ≦ A1 and A ≦ A2, and the flare processing was satisfactory without cracking at the joint. In contrast, the comparative example (conventional example) No. In 7 to 10, all of the welded pipes were A> A1, cracks occurred at the joint in the flare processing, and the joint strength was low, which was not satisfactory.

Figure 0005704183
Figure 0005704183

図1に一例を示した製造工程で鍛接管を製造した。すなわち、スリットした鋼帯2を、エッジ成形機4でエッジ部(幅端部)を成形(エッジ成形)し、加熱炉5にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機6で管状に連続成形しつつ、エッジ部にノズル7で酸素または空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、成形鍛接機6でエッジ衝合・鍛接して接合し、絞り圧延を行って鍛接管を製造した。   A forged pipe was manufactured in the manufacturing process shown in FIG. That is, the slit steel strip 2 is formed at the edge portion (width end portion) by the edge forming machine 4 (edge forming), the entire width is heated in the heating furnace 5, and the steel strip after the heating is formed into the forging machine 6. While forming into a tube continuously, oxygen or air is blown to the edge portion with a nozzle 7 and the temperature is raised to a temperature just below the melting point by oxidation heat. To produce a forged tube.

上記製造工程で製造した鍛接管について、管肉厚に対する接合部の肉厚方向長さの比(R1)を測定し、そのR1を用いて<3>式から鍛接管接合部の渦電流の限界値A3(%)を計算した。また、管肉厚に対するビード部最大肉厚の比(R2)を測定し、そのR2を用いて<4>式から鍛接管接合部の渦電流の限界値A4(%)を計算した。また、接合部を渦流探傷して渦電流の大きさA’(%)を測定し、かつ、フレア加工を行なって接合部の割れ発生の有無を調べた。それらの結果を表2に示す。   For the welded pipe manufactured in the above manufacturing process, the ratio (R1) of the thickness direction length of the joint to the pipe thickness is measured, and the limit of the eddy current of the welded pipe joint is calculated from the formula <3> using the R1. The value A3 (%) was calculated. Further, the ratio (R2) of the maximum bead thickness to the tube thickness was measured, and the R2 was used to calculate the limit value A4 (%) of the eddy current of the forged welded joint from Equation <4>. Further, the eddy current flaw detection was performed on the joint, and the magnitude A '(%) of the eddy current was measured, and flare processing was performed to check whether the joint was cracked. The results are shown in Table 2.

表2より、本発明例No.11〜16では、いずれの鍛接管もA’≦A3かつA’≦A4であり、フレア加工において接合部に割れが発生せずに良好であった。これに対し、比較例(従来例)No.17〜20では、いずれの鍛接管もA’>A3であり、フレア加工において接合部に割れが発生し、接合部強度は低くて満足できる結果ではなかった。   From Table 2, Example No. of the present invention. In Nos. 11 to 16, all of the welded pipes were A ′ ≦ A3 and A ′ ≦ A4, and the flare processing was good without cracking at the joint. In contrast, the comparative example (conventional example) No. In 17-20, all of the welded pipes were A '> A3, cracks occurred at the joints in the flare processing, and the joint strength was low, which was not a satisfactory result.

Figure 0005704183
Figure 0005704183

本発明に係る鍛接管は、接合部強度が良好であり、フレア加工のような強加工に供しても接合部が割れることがなく、著しく良好な性能を有しており、廉価な鍛接管への厳しい性能要求にも充分耐えるものであって、その産業上の利用可能性は極めて大きいものである。   The forged welded pipe according to the present invention has good joint strength, and the joint does not crack even when subjected to strong processing such as flare processing, has remarkably good performance, and is an inexpensive forged welded pipe. It can withstand the severe performance requirements of the industry and its industrial applicability is extremely large.

1 コイラー
2 スリットした鋼帯
3 ルーパー
4 エッジ成形機
5 加熱炉
6 成形鍛接機
7 ノズル
8 鍛接管(管)
DESCRIPTION OF SYMBOLS 1 Coiler 2 Slit steel strip 3 Looper 4 Edge forming machine 5 Heating furnace 6 Forming and forging machine 7 Nozzle 8 Forging and welding pipe (pipe)

Claims (6)

鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱炉の出側で鋼帯のエッジ部を高周波加熱した後、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径3.2mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA(%)が、18.8%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<1>式で表される限界値A1以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A≦A1=12.5・R1+7.5‥‥<1>
The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, the edge of the steel strip is heated at a high frequency on the exit side of the heating furnace, and the steel after the heating It is a forged pipe that is manufactured by edge abutting and forging welding while continuously forming the band into a tubular shape with a molding forging machine,
The magnitude A (%) of the eddy current, expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 3.2 mm diameter drill hole penetrating the wall thickness as a standard defect, 18.8% or less, and that is equal to or less than the limit value A1 represented by the following <1> equation using the ratio of the thickness direction length of the joint relative to the tube wall thickness (R1) Forged welded tube with excellent processability.
A ≦ A1 = 12.5 · R1 + 7.5 (1)
鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ部に酸素又は空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径3.2mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA(%)が、18.8%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<1>式で表される限界値A1以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A≦A1=12.5・R1+7.5‥‥<1>
The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, and the heated steel strip is continuously formed into a tubular shape with a forming and forging machine, while oxygen or It is a forged pipe that is manufactured by blowing air and raising the temperature to near the melting point by oxidation heat, and edge colliding and forging,
The magnitude A (%) of the eddy current, expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 3.2 mm diameter drill hole penetrating the wall thickness as a standard defect, 18.8% or less, and that is equal to or less than the limit value A1 represented by the following <1> equation using the ratio of the thickness direction length of the joint relative to the tube wall thickness (R1) Forged welded tube with excellent processability.
A ≦ A1 = 12.5 · R1 + 7.5 (1)
前記渦電流の大きさA(%)が、管肉厚に対するビード部最大肉厚の比(R2)を用いた下記<2>式で表される限界値A2以下であると判定されたことを特徴とする請求項1または2のいずれかに記載の加工性に優れた鍛接管。
A≦A2=25・R2−6.25‥‥<2>
The magnitude A (%) of the eddy current is determined to be not more than the limit value A2 represented by the following formula <2> using the ratio (R2) of the maximum bead thickness to the tube thickness. The forged pipe excellent in workability according to claim 1 or 2.
A ≦ A2 = 25 · R2−6.25 (2)
鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱炉の出側で鋼帯のエッジ部を高周波加熱した後、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径1.6mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA’(%)が、75.0%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<3>式で表される限界値A3以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A’≦A3=50・R1+30‥‥<3>
The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, the edge of the steel strip is heated at a high frequency on the exit side of the heating furnace, and the steel after the heating It is a forged pipe that is manufactured by edge abutting and forging welding while continuously forming the band into a tubular shape with a molding forging machine,
The magnitude of the eddy current A ′ (%), expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 1.6 mm diameter drill hole penetrating the wall thickness as a standard defect, is , 75.0% or less, and determined to be not more than the limit value A3 represented by the following <3> equation using the ratio (R1) of the thickness direction length of the joint to the tube thickness Forged welded tube with excellent workability.
A ′ ≦ A3 = 50 · R1 + 30... <3>
鋼帯のエッジ部(幅端部)を成形(エッジ成形)し、加熱炉にて全幅を加熱し、該加熱後の鋼帯を成形鍛接機で管状に連続成形しつつ、エッジ部に酸素又は空気を吹き付けて酸化熱により融点直下近傍の温度まで昇温させ、エッジ衝合・鍛接して製造する鍛接管であって、
鍛接管接合部の渦流探傷で検出した渦電流を、肉厚を貫通した直径1.6mmのドリル孔を標準欠陥として検出した渦電流に対する百分率で表した渦電流の大きさA’(%)が、75.0%以下で、かつ、管肉厚に対する接合部の肉厚方向長さの比(R1)を用いた下記<3>式で表される限界値A3以下であると判定されたことを特徴とする加工性に優れた鍛接管。
A’≦A3=50・R1+30‥‥<3>
The edge (width end) of the steel strip is formed (edge forming), the entire width is heated in a heating furnace, and the heated steel strip is continuously formed into a tubular shape with a forming and forging machine, while oxygen or It is a forged pipe that is manufactured by blowing air and raising the temperature to near the melting point by oxidation heat, and edge colliding and forging,
The magnitude of the eddy current A ′ (%), expressed as a percentage of the eddy current detected by eddy current flaw detection at the welded pipe joint, with a 1.6 mm diameter drill hole penetrating the wall thickness as a standard defect, is , 75.0% or less, and determined to be not more than the limit value A3 represented by the following <3> equation using the ratio (R1) of the thickness direction length of the joint to the tube thickness Forged welded tube with excellent workability.
A ′ ≦ A3 = 50 · R1 + 30... <3>
前記渦電流の大きさA’(%)が、管肉厚に対するビード部最大肉厚の比(R2)を用いた下記<4>式で表される限界値A4以下であると判定されたことを特徴とする請求項4または5のいずれかに記載の加工性に優れた鍛接管。
A’≦A4=100・R2−25‥‥<4>
The magnitude A ′ (%) of the eddy current was determined to be equal to or less than the limit value A4 represented by the following <4> equation using the ratio (R2) of the maximum bead thickness to the tube thickness. A forged welded tube excellent in workability according to any one of claims 4 and 5.
A ′ ≦ A4 = 100 · R2-25... <4>
JP2013047766A 2013-03-11 2013-03-11 Forged pipe with excellent workability Active JP5704183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047766A JP5704183B2 (en) 2013-03-11 2013-03-11 Forged pipe with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047766A JP5704183B2 (en) 2013-03-11 2013-03-11 Forged pipe with excellent workability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009163337A Division JP5463766B2 (en) 2009-07-10 2009-07-10 Method for evaluating the workability of forged pipes

Publications (2)

Publication Number Publication Date
JP2013154401A JP2013154401A (en) 2013-08-15
JP5704183B2 true JP5704183B2 (en) 2015-04-22

Family

ID=49050117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047766A Active JP5704183B2 (en) 2013-03-11 2013-03-11 Forged pipe with excellent workability

Country Status (1)

Country Link
JP (1) JP5704183B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463766B2 (en) * 2009-07-10 2014-04-09 Jfeスチール株式会社 Method for evaluating the workability of forged pipes

Also Published As

Publication number Publication date
JP2013154401A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
RU2493943C2 (en) Method of hidden arc welding of steel strip
JP4403145B2 (en) High strength welded steel pipe with excellent resistance to hydrogen embrittlement cracking of weld metal and its manufacturing method
Ramulu et al. Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth
Krishna et al. Optimization of process parameters for friction Stir welding of dissimilar Aluminum alloys (AA2024-T6 and AA6351-T6) by using Taguchi method
WO2018011862A1 (en) Electric-resistance-welded steel pipe for boiler having excellent stress corrosion cracking resistance, and method for manufacturing same
CN101403450A (en) Method of manufacturing lined tubing
JP5463766B2 (en) Method for evaluating the workability of forged pipes
JP5704183B2 (en) Forged pipe with excellent workability
JP5573977B2 (en) Evaluation method of flaring workability of forged pipes
JP2008161940A (en) Forge-welded steel pipe excellent in workability, method of manufacturing it and manufacturing equipment train
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP5544726B2 (en) Manufacturing method of forged pipe with excellent workability
JP5732807B2 (en) Manufacturing method of high carbon ERW steel pipe
JP5573976B2 (en) Evaluation method of flaring workability of forged pipes
JP5644883B2 (en) Evaluation method of flaring workability of forged pipes
JP2012012697A (en) Electric resistance welded steel pipe for oil well excellent in pipe expandability and method of producing the same
JP6378141B2 (en) Copper or copper alloy tube for flaring
JP4535204B1 (en) Forged steel pipe with excellent flare workability
JP5195479B2 (en) Forged pipe with excellent workability and manufacturing method thereof
JP4983201B2 (en) ERW pipe manufacturing method for oil well line pipes or oil well casing pipes with excellent weld properties
JP4998086B2 (en) Billet for clad tube and method for producing clad tube
JP4682780B2 (en) ERW pipe manufacturing method with good weld characteristics
JP4577451B1 (en) Forged steel pipe with good surface after flaring
JP4077859B2 (en) Forged steel pipe excellent in workability, manufacturing method thereof, and manufacturing equipment line
JP7251518B2 (en) Butt-welded steel pipe with excellent flaring workability and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5704183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250