JP4535204B1 - Forged steel pipe with excellent flare workability - Google Patents

Forged steel pipe with excellent flare workability Download PDF

Info

Publication number
JP4535204B1
JP4535204B1 JP2009231336A JP2009231336A JP4535204B1 JP 4535204 B1 JP4535204 B1 JP 4535204B1 JP 2009231336 A JP2009231336 A JP 2009231336A JP 2009231336 A JP2009231336 A JP 2009231336A JP 4535204 B1 JP4535204 B1 JP 4535204B1
Authority
JP
Japan
Prior art keywords
steel pipe
joint
cone
thickness
forged steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009231336A
Other languages
Japanese (ja)
Other versions
JP2011078996A (en
Inventor
幸弘 池田
謙一 岩崎
勝栄 高橋
宗義 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009231336A priority Critical patent/JP4535204B1/en
Application granted granted Critical
Publication of JP4535204B1 publication Critical patent/JP4535204B1/en
Publication of JP2011078996A publication Critical patent/JP2011078996A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】フレア加工性に優れた鍛接鋼管を提供する。
【解決手段】外径21.7mmφ〜114.3mmφ、肉厚1.8mm〜6.1mm、引張強度(TS)290N/mm〜500N/mm、伸び率23%〜90%であって、コーン拡管し接合部に割れが生じた際の拡管比率(A)が下記<1>式を満足する鍛接鋼管に限定した。A={H×tan(θ/2)+(DR/2)}/(DR/2)≧−0.0004×DR+1.3=B…<1>、ただし、A:コーン拡管比率、H:コーン押し込み量(拡管開始高さと拡管後に割れが発生した直後の高さの差)、θ:コーン全角、DR:鍛接鋼管外径、B:鋼管外径から決まる規定値
【選択図】図2
A forged steel pipe having excellent flare workability is provided.
SOLUTION: The outer diameter is 21.7 mmφ to 114.3 mmφ, the wall thickness is 1.8 mm to 6.1 mm, the tensile strength (TS) is 290 N / mm 2 to 500 N / mm 2 , and the elongation is 23% to 90%. The pipe expansion ratio (A) when cracking occurred in the part was limited to forged steel pipes satisfying the following formula <1>. A = {H × tan (θ / 2) + (DR / 2)} / (DR / 2) ≧ −0.0004 × DR + 1.3 = B ... <1>, where A: cone expansion ratio, H: cone push-in Amount (difference between the pipe expansion start height and the height immediately after cracking after expansion), θ: full cone angle, DR: forged steel pipe outer diameter, B: specified value determined from steel pipe outer diameter [selection figure] Fig. 2

Description

本発明は、フレア加工のような強加工に供されても接合部に割れが発生しにくい、フレア加工性に優れた鍛接鋼管に関するものである。   The present invention relates to a forged steel pipe excellent in flare workability in which cracks are hardly generated in a joint even when subjected to strong work such as flare work.

水道管やガス管等の敷設にあたって、鋼管同士をつなぐ場合、従来は、鋼管端部の外径にねじ切りを行って、鋼管外径とほぼ同じ内径を有してその内径にねじ切りした短尺鋼管でつないでいたが、鋼管の外径にねじ切りするとともに、その鋼管を短尺鋼管でつなぐ手間が掛かり、短尺鋼管を別途準備して内径にねじ切りする必要があるなど、敷設の能率が低く、また、著しくコストが掛かっていた。   When connecting steel pipes when laying water pipes or gas pipes, it is conventional to use a short steel pipe that has an inner diameter that is approximately the same as the outer diameter of the steel pipe. However, it took time and effort to connect the steel pipe with a short steel pipe, and it was necessary to prepare a short steel pipe separately and screw it to the internal diameter. It was costly.

そこで、近年、鋼管の端部を拡げる、いわゆるフレア加工を行なって、フレア部分を鋼管と一体のフランジとすることにより、簡便で能率よく鋼管をつなぐ方法が採用され始めている。
このフレア加工は、鋼管端部をつば出しする強加工であるため、この強加工に耐える性能を有するものとして電縫鋼管が適用されているが、電縫鋼管は高価なため、廉価な鍛接鋼管の適用が図られている。
Therefore, in recent years, a method of connecting steel pipes simply and efficiently has been started by performing so-called flare processing that expands the end of the steel pipe and making the flare part an integral flange with the steel pipe.
Since this flaring is a strong process that pulls out the end of the steel pipe, the ERW steel pipe is applied as having the ability to withstand this strong process, but since the ERW steel pipe is expensive, it is an inexpensive forged steel pipe. Is being applied.

従来の鍛接管は、接合部の強度が低くて、強加工すると接合部を起点として割れが発生しやすいため、フレア加工用素材のような用途に適用するには不十分な性能と言われてきた。
鍛接鋼管の製造は、図1に一例を示すとおり、スリットした鋼帯2をエッジ成形機4で成形し、加熱炉5にて加熱し、その鋼帯を成形鍛接機6で管状に連続成形しつつ、衝合端部(鋼帯幅端部)にノズル7で酸素および/または空気を吹き付けて酸化熱により昇温させ、鍛接して接合し、あるいはさらに絞り圧延を行って、鍛鋼接管8に仕上げている。なお、図示していないが、スリットした鋼帯のエッジ(幅端部)を切削してからエッジ成形する場合もある。
Conventional forged welded pipes have low joint strength, and cracking is likely to occur at the joint when starting strong, so it has been said to have insufficient performance for applications such as flaring materials. It was.
As shown in FIG. 1, forged steel pipes are manufactured by forming a slit steel strip 2 with an edge forming machine 4, heating it with a heating furnace 5, and continuously forming the steel strip into a tubular shape with a forming forging machine 6. On the other hand, oxygen and / or air is blown to the abutting end (steel band width end) with a nozzle 7 and heated by oxidation heat, joined by forging, or further drawn and rolled into the forged steel joint 8. Finished. In addition, although not shown in figure, edge shaping | molding may be carried out after cutting the edge (width end part) of the slit steel strip.

製造した鍛接鋼管は、接合部に酸化物などが残留しやすくて、また、接合部の外面および内面に筋状の疵が発生し、フレア加工のような強加工において接合部に割れが発生していた。接合部の外面側の筋は、加熱前のスリットした鋼帯のエッジに発生したダレが鍛接時に残留したものである。また、内面側の筋は鍛接時に衝合端部近傍が盛り上がってビード部を形成し、この谷間が筋になったものである。   The manufactured forged steel pipes are prone to oxides remaining in the joints, and streaks are generated on the outer and inner surfaces of the joints, causing cracks in the joints during strong processing such as flaring. It was. The streaks on the outer surface side of the joint are the ones that occurred at the edge of the slit steel strip before heating and remained during forging. Further, the inner surface side muscles are raised near the abutting end portion at the time of forging to form a bead portion, and this valley is a muscle.

そこで、従来は、特許文献1〜3に示されるように、接合部における、外面側の筋深さ、内面側のビード高さ、内面側の筋深さ、接合部の介在物などを特定の範囲に規制することによって、接合部の強度向上を図った鍛接鋼管を提供していた。   Therefore, conventionally, as shown in Patent Literatures 1 to 3, the outer surface side muscle depth, the inner surface side bead height, the inner surface side muscle depth, the inclusions in the joint portion, and the like are specified in the joint portion. By restricting to the range, a forged steel pipe that has improved the strength of the joint has been provided.

特開2007-152430号公報JP 2007-152430 A 特開平10-263846号公報Japanese Patent Laid-Open No. 10-263846 特開平4-270009号公報JP-A-4-270009

本発明は、前記課題を解決し、フレア加工のような強加工を行なっても、接合部から割れることのほとんど無い鍛接鋼管を提供するものであり、その要旨構成は以下のとおりである。   This invention solves the said subject, and provides the forge-welded steel pipe which hardly breaks from a junction part, even if it performs strong processing like flare processing, The summary structure is as follows.

(1) 外径21.7mmφ〜114.3mmφ、肉厚1.8mm〜6.1mm、引張強度(TS)290N/mm〜500N/mm、伸び率23%〜90%であって、コーン拡管し接合部に割れが生じた際の拡管比率(A)が下記<1>式を満足し、接合部肉厚の鋼管肉厚に対する比が1.00以上であり、ビード部最大肉厚の鋼管肉厚に対する比が1.010以上であり、且つ、前記ビード部最大肉厚が前記接合部肉厚よりも大きいことを特徴とするフレア加工鍛接鋼管。
A={H×tan(θ/2)+(DR/2)}/(DR/2)≧−0.0004×DR+1.3=B …<1>
ただし、A:コーン拡管比率
H:コーン押し込み量(拡管開始高さと拡管後に割れが発生した直後の高さの差)
θ:コーン全角
DR:鍛接鋼管外径
B:鋼管外径から決まる規定値
(1) Outer diameter 21.7mmφ-114.3mmφ, Wall thickness 1.8mm-6.1mm, Tensile strength (TS) 290N / mm 2 -500N / mm 2 , Elongation 23% -90% The pipe expansion ratio (A) when cracking occurs satisfies the following formula <1>, the ratio of the joint thickness to the steel pipe thickness is 1.00 or more, and the ratio of the maximum bead thickness to the steel pipe thickness is A wrought forged steel pipe for flaring characterized by being 1.010 or more and the bead portion maximum wall thickness being larger than the joint wall thickness .
A = {H × tan (θ / 2) + (DR / 2)} / (DR / 2) ≧ −0.0004 × DR + 1.3 = B... <1>
However, A: Cone expansion ratio H: Cone push-in amount (difference between the expansion start height and the height immediately after cracking after expansion)
θ: full-width cone
DR: Forged steel pipe outer diameter B: Specified value determined from steel pipe outer diameter

本発明の鍛接鋼管は、フレア加工のような強加工を受けても、接合部に割れをほとんど発生させないから、フレア加工のような強加工の製品歩留まりを大幅に向上させる効果を奏する。   The forged welded steel pipe of the present invention has the effect of greatly improving the product yield of strong processing such as flaring because it hardly generates cracks even when subjected to strong processing such as flaring.

鍛接鋼管の製造工程の一例を示す概略図Schematic showing an example of manufacturing process of forged steel pipe コーン拡管試験の一例を示す概略図Schematic showing an example of cone expansion test 鍛接鋼管の接合部周辺の断面形状の一例(その1)を示す概略図Schematic showing an example (part 1) of the cross-sectional shape around the joint of a forged steel pipe 鍛接鋼管の接合部周辺の断面形状の一例(その2)を示す概略図Schematic showing an example (part 2) of the cross-sectional shape around the joint of a forged steel pipe

鍛接鋼管は、そのサイズは、外径21.7mmφ〜114.3mmφ、肉厚1.8mm〜6.1mmであって、材質は、引張強度(TS)が290N/mm〜500N/mm、伸び率が23%〜90%である。なお、材質である引張強度(TS)および伸び率は、JIS 11号試験、JIS 12号試験、JIS 5号試験、JIS 1号試験等のいずれで測定してもよい。
鍛接鋼管をフレア加工のような強加工に供する場合、従来から接合部に割れが発生して問題であったため、鍛接鋼管製造段階において、接合部が良好であるか否かを見極めて確実に品質を確保しておく必要がある。
The forged steel pipe has an outer diameter of 21.7 mmφ to 114.3 mmφ and a wall thickness of 1.8 mm to 6.1 mm. The material is a tensile strength (TS) of 290 N / mm 2 to 500 N / mm 2 and an elongation of 23. % To 90%. In addition, the tensile strength (TS) and elongation rate which are materials may be measured by any of JIS No. 11 test, JIS No. 12 test, JIS No. 5 test, JIS No. 1 test and the like.
When a forged steel pipe is subjected to strong processing such as flaring, it has been a problem because cracks have conventionally occurred in the joint. Therefore, it is extremely reliable to check whether the joint is good at the forged steel pipe manufacturing stage. It is necessary to secure.

そこで、この接合部の強度を評価する方法として、コーン拡管試験を採用した。すなわち、フレア加工は接合部を含めて鋼管端部を広げる加工であることから、評価試験においても鋼管の接合部に張力を付与する評価方法が必要である。そこで、コーン拡管により接合部に張力を加える試験で評価を行った。コーン拡管試験では、図2に示すように、拡管治具であるコーン9を台に固定して、鍛接鋼管8を上部から押し込んで拡管するか、あるいは鍛接鋼管を固定して上部からコーンを押し込むことによって拡管し、接合部に張力が作用する。したがって、フレア加工で鍛接鋼管接合部に加わる張力をコーン拡管試験で代替することができて、割れ評価が可能なわけである。   Therefore, a cone tube expansion test was adopted as a method for evaluating the strength of the joint. That is, since the flare process is a process of expanding the end of the steel pipe including the joint, an evaluation method for applying tension to the joint of the steel pipe is also required in the evaluation test. Therefore, evaluation was performed by a test in which tension was applied to the joint by cone expansion. In the cone expansion test, as shown in FIG. 2, the cone 9 as a tube expansion jig is fixed to the base and the forged steel pipe 8 is pushed in from the top to expand, or the forged steel pipe is fixed and the cone is pushed in from the top. As a result, the pipe is expanded, and tension is applied to the joint. Therefore, the tension applied to the welded steel pipe joint by flaring can be replaced by the cone expansion test, and crack evaluation is possible.

そこで、まず、フレア加工に供して割れが発生しなかった鍛接鋼管について、フレア加工部に隣接する原管部分を採取し、その原管のコーン拡管試験を行って接合部の割れを観察した。その結果、コーン全角(θ)を変更すると、全角(θ)が小さい場合は、コーン押し込み量(H)を大きくすると接合部に割れが発生し、全角(θ)が大きい場合は、コーン押し込み量(H)が小さくても接合部に割れが発生した。   Therefore, first, forged welded steel pipes that were subjected to flare processing and cracks did not occur, a raw pipe part adjacent to the flare processed part was collected, and a cone expansion test of the raw pipe was performed to observe cracks in the joint part. As a result, if the cone full angle (θ) is changed, if the full angle (θ) is small, increasing the cone push-in amount (H) will cause cracks in the joint, and if the full angle (θ) is large, the cone push-in amount Even if (H) was small, cracks occurred in the joint.

本発明者らが調べた結果、コーン拡管による接合部の割れは、フレア加工と同様に、鍛接鋼管端部から発生するため、拡管した管と原管それぞれの円周方向長さの比が大きく影響することから、鍛接鋼管の肉厚、拡管のコーン形状によらずに管外径から決まる規定値Bを用いて、以下の<1>式で整理できることがわかった。
A={H×tan(θ/2)+(DR/2)}/(DR/2)≧−0.0004×DR+1.3=B …<1>
ただし、A:コーン拡管比率
H:コーン押し込み量(拡管開始高さと拡管後に割れが発生した直後の高さの差)
θ:コーン全角
DR:鍛接鋼管外径
B:鋼管外径から決まる規定値
したがって、製造した鍛接鋼管のコーン拡管試験における拡管比率(A)が、上記<1>式を満足する領域に入れば、フレア加工に供した際に割れが発生しないことがわかった。
As a result of investigation by the present inventors, the crack of the joint due to the cone expansion occurs from the end of the forged steel pipe as in the case of flare processing, so the ratio of the circumferential length of the expanded pipe and the original pipe is large. As a result, it was found that the following formula <1> can be arranged using the specified value B determined from the pipe outer diameter regardless of the wall thickness of the forged steel pipe and the cone shape of the expanded pipe.
A = {H × tan (θ / 2) + (DR / 2)} / (DR / 2) ≧ −0.0004 × DR + 1.3 = B... <1>
However, A: Cone expansion ratio H: Cone push-in amount (difference between the expansion start height and the height immediately after cracking after expansion)
θ: full-width cone
DR: Forged steel pipe outer diameter B: Specified value determined from steel pipe outer diameter Therefore, if the expansion ratio (A) in the cone expansion test of the manufactured forged steel pipe enters the region that satisfies the above formula <1>, it is used for flare processing. It was found that no cracks occurred when

一方、鍛接鋼管にフレア加工のような強加工を施す場合に接合部が割れやすい理由として、鍛接鋼管の製造時に、接合部に酸化物などが残留しやすくて、また、接合部の内外面に筋状の疵が発生するためと考えられていた。すなわち、接合部に残留した酸化物や接合部の内外面の筋状疵が割れ発生の起点となりやすいと考えられてきたわけである。したがって、これら接合部が割れる原因に基づいて、過去に、特許文献1〜3に記載されるように、接合部の介在物を低減させて、外面または内面の筋を低減させる鍛接鋼管の提供がなされてきた。しかし、これらを適切にするだけでは、十分な接合部の強度が得られず、問題となっていた。   On the other hand, the reason why joints are easily cracked when performing strong processing such as flaring on forged steel pipes is that oxides, etc. are likely to remain in the joints during the manufacture of forged steel pipes. This was thought to be due to the formation of streaks. That is, it has been considered that the oxide remaining in the joint and the streaks on the inner and outer surfaces of the joint are likely to be the starting point of cracking. Therefore, based on the cause of the breakage of these joints, as described in Patent Documents 1 to 3, in the past, there is provided a forged steel pipe that reduces the inclusions in the joints and reduces the streaks on the outer surface or the inner surface. Has been made. However, if these are only appropriate, sufficient joint strength cannot be obtained, which is a problem.

そこで、本発明者らは、図3に示す接合部13の肉厚すなわち接合部肉厚14に着目した。従来の接合部強度が低い鍛接鋼管を詳細に観察すると、接合部肉厚14がいずれも短いために、フレア加工のような強加工における鋼管円周方向に作用する強い張力に対して、接合部の強度が不足していることを見いだしたわけである。
接合部の強度についてさらに詳細に述べると、鋼管肉厚15に比べて、接合部肉厚14が短くなると接合部強度が低くなり、長くなると接合部強度が向上することを把握した。すなわち、フレア加工のような強加工においては、鋼管端部およびその周辺が拡管されつつ鋼管円周方向に拡がっていく。その際、鋼管端部および周辺では、鋼管円周方向に過大な張力が作用する。この張力は、鋼管の肉厚が薄い部分に集中しやすい。そのため、接合部の肉厚が薄い場合、すなわち、接合部肉厚が鋼管肉厚より短い場合、接合部に応力集中して割れやすくなるわけである。
Therefore, the inventors paid attention to the thickness of the joint portion 13 shown in FIG. When the conventional welded steel pipes with low joint strength are observed in detail, the joint thickness 14 is short, so the joints are resistant to strong tension acting in the circumferential direction of the steel pipe in strong processing such as flaring. It was found that the strength of the was insufficient.
When the strength of the joint portion is described in more detail, it is understood that the joint strength is lowered when the joint thickness 14 is shorter than the steel pipe thickness 15, and the joint strength is improved when the joint thickness 14 is longer. That is, in strong processing such as flaring, the steel pipe end and its periphery are expanded in the circumferential direction of the steel pipe while being expanded. At that time, excessive tension acts in the circumferential direction of the steel pipe at and around the end of the steel pipe. This tension tends to concentrate on the portion where the thickness of the steel pipe is thin. For this reason, when the thickness of the joint is thin, that is, when the thickness of the joint is shorter than the thickness of the steel pipe, stress is concentrated on the joint and it is easy to break.

本発明では、図4に示す接合部13の肉厚すなわち接合部肉厚14を鋼管肉厚15より長くして、すなわち、接合部肉厚14の管肉厚15に対する比を1.00以上とすることにより、フレア加工のような強加工における過大な張力による応力集中を緩和できて、<1>式で示されるAがBに近い場合でもフレア加工時の割れ発生を防止することができる。
In this onset bright, and longer than the thickness i.e. the joint thickness 14 steel pipe wall thickness 15 of the joint 13 shown in FIG. 4, i.e., 1.00 or more the ratio pipe wall thickness 15 of the joint thickness 14 and more and child, and can relax the stress concentration due to excessive tension in the large deformation such as flaring, is possible to prevent the cracking during flaring even when close to the a and B represented by formula <1> it can.

また、接合部の割れにつながる応力集中は、接合部の界面だけでなく、その周辺にも作用している。そこで、図3および図4に示す接合部肉厚14だけでなく、その周辺に生成するビード部16にも着目した。ビード部16とは、接合時に衝合端部が盛り上がった部分であり、鍛接鋼管の場合、主に内面側に盛り上がりやすいが、外面側にもわずかに盛り上がる場合がある。このビード部16の盛り上がりが大きいと、接合部肉厚14も増大しやすくて、断面の単位面積あたりの張力が小さくなって、応力集中が緩和され、接合部への過大張力の集中を緩和することができる。したがって、接合部だけでなく、その周辺のビード部も肉厚を増加させることによって、フレア加工などの強加工における接合部周辺の応力集中をさらに緩和できて、割れを防止できるわけである。本発明者らが定量的に検討したところ、図4に示すビード部の最大肉厚17と鋼管肉厚15との比を1.010以上とすることで、<1>式で示されるAがBに非常に近い場合でもフレア加工時の割れ発生を充分に防止できることを把握した。 Further, the stress concentration that leads to the cracking of the joint acts not only on the interface of the joint but also on the periphery thereof. Therefore, attention is paid not only to the joint thickness 14 shown in FIGS. 3 and 4, but also to the bead portion 16 generated in the periphery thereof. The bead portion 16 is a portion where the abutting end portion swells at the time of joining. In the case of a forged steel pipe, the bead portion 16 tends to swell mainly on the inner surface side, but may swell slightly on the outer surface side. If the bulge of the bead part 16 is large, the joint thickness 14 is also likely to increase, the tension per unit area of the cross section is reduced, the stress concentration is relaxed, and the concentration of excessive tension at the joint part is mitigated. be able to. Therefore, by increasing the thickness of not only the joint portion but also the bead portion around the joint portion, stress concentration around the joint portion in strong processing such as flare processing can be further relaxed and cracking can be prevented. The present inventors have been quantitatively studied, the ratio of the maximum thickness 17 and the steel pipe wall thickness 15 of the bead portion shown in FIG. 4 at 1.010 or higher and the child, is A represented by formula <1> B It was understood that the occurrence of cracks during flare processing can be sufficiently prevented even when very close to.

なお、鋼管肉厚15とは、鍛接鋼管の円周方向の平均肉厚でもよく、接合部の反対側の部位の肉厚でもよく、接合部周辺で肉厚がほぼ同等となる特定位置、例えば接合部肉厚相当の距離分だけ接合部から離した部位の肉厚、接合部を挟んで鋼管円周方向1/4の範囲で平均した肉厚など、としてもよい。
なお、<1>式で示される規定値Bを用いて、フレア加工に供される鍛接鋼管の品質検査に活用できて、不良品を排除して、良好な製品を提供できる。
Note that the steel pipe wall thickness 15 may be the average wall thickness in the circumferential direction of the forged steel pipe, may be the wall thickness on the opposite side of the joint, or a specific position where the wall thickness is substantially equal around the joint, for example, The thickness of a part separated from the joint by a distance corresponding to the thickness of the joint, or the thickness averaged in the range of 1/4 in the circumferential direction of the steel pipe across the joint may be used.
The specified value B expressed by the formula <1> can be used for quality inspection of forged steel pipes subjected to flare processing, and defective products can be eliminated to provide good products.

また、上記のフレア加工性に優れた鍛接鋼管を製造するには、図1における鍛接鋼管製造工程のノズル7で吹き付ける空気中の酸素濃度を22体積%以上とすると良い。これにより、接合部肉厚が増加して鋼管肉厚に対する比が1.00以上となりやすく、また、ビード部最大肉厚も増加して鋼管肉厚との比が1.010以上になりやすく、接合部の割れ防止に著しく有効である。   Moreover, in order to manufacture the forged welded steel pipe having excellent flare workability, the oxygen concentration in the air blown by the nozzle 7 in the forged welded pipe manufacturing process in FIG. 1 is preferably 22% by volume or more. As a result, the joint wall thickness increases and the ratio to the steel pipe wall thickness tends to be 1.00 or more, and the maximum bead thickness increases to the ratio of the steel pipe wall thickness to 1.010 or more. It is extremely effective for prevention.

図1に一例を示す製造工程で、鍛接鋼管を製造した。すなわち、鋼帯2をエッジ成形機4で成形して、加熱炉5で融点以下の温度まで加熱し、成形鍛接機6でロール成形しつつ、衝合端部にノズル7で空気および/または酸素を吹き付け、その直後に衝合端部を鍛接して接合し、次いで絞り圧延を行って鍛接鋼管を製造した。該製造した鍛接鋼管について、コーン拡管の条件を種々変更してコーン拡管試験を行い、コーン拡管比率(A)を求めると共に、フレア加工(押し拡げ率1.3)における接合部の割れ発生状態を観察した。その結果を表1に示す。   A forged steel pipe was manufactured in the manufacturing process shown in FIG. That is, the steel strip 2 is formed by the edge forming machine 4, heated to a temperature below the melting point by the heating furnace 5, and roll-formed by the forming forge machine 6, and air and / or oxygen at the abutting end by the nozzle 7. Immediately after that, the abutting ends were forged and joined, and then drawn and rolled to produce a forged steel pipe. The manufactured forged steel pipe was subjected to a cone expansion test with various cone expansion conditions changed to obtain a cone expansion ratio (A), and observed the occurrence of cracks in the joint in flare processing (push expansion ratio 1.3). . The results are shown in Table 1.

表1には、製造した鍛接鋼管のサイズや材質も併記した。これら鍛接鋼管のサイズは、外径21.7mmφ〜114.3mmφ、肉厚1.8mm〜6.1mmであって、その材質は、引張強度(TS)が290N/mm〜500N/mm、伸び率が23%〜90%の範囲である。また、本実施例ではコーンへの鋼管押し込み速度は5mm/分とした。なお、これに拘るものではなく、一連の試験範囲で、0.001mm/分〜1000mm/分の押し込み速度の範囲内からいずれの値を選択してもよい。 Table 1 also shows the size and material of the manufactured forged steel pipe. These forged steel pipes have an outer diameter of 21.7 mmφ to 114.3 mmφ, a wall thickness of 1.8 mm to 6.1 mm, and the material has a tensile strength (TS) of 290 N / mm 2 to 500 N / mm 2 and an elongation of 23. % To 90%. In this example, the steel pipe pushing speed into the cone was 5 mm / min. Note that the present invention is not limited to this, and any value may be selected from the range of the pushing speed of 0.001 mm / min to 1000 mm / min in a series of test ranges.

表1において、本発明例No.1〜13は、いずれも<1>式を満足する(コーン拡管比率(A)が管径から決まる規定値(B)以上である)ものにおいて、さらに、接合部肉厚14の鋼管肉厚15に対する比が1.00以上で、かつ、ビード部最大肉厚17の鋼管肉厚15に対する比が1.010以上であるという最良の形態であり、フレア加工において接合部に割れが発生せずに良好であった。   In Table 1, Invention Examples Nos. 1 to 13 satisfy the formula <1> (the cone expansion ratio (A) is equal to or greater than a specified value (B) determined from the tube diameter). This is the best mode in which the ratio of the wall thickness 14 to the steel pipe wall thickness 15 is 1.00 or more, and the ratio of the bead portion maximum wall thickness 17 to the steel pipe wall thickness 15 is 1.010 or more. It was good without generating.

これらに対し、比較例No.14〜17は、いずれも<1>式を満足せず、フレア加工において接合部に割れが発生した。   On the other hand, Comparative Examples No. 14 to 17 did not satisfy the <1> formula, and cracks occurred in the joints during flare processing.

Figure 0004535204
Figure 0004535204

本発明の鍛接鋼管は、接合部強度が良好であり、フレア加工のような強加工に供しても接合部が割れることが無く、著しく良好な性能を有しており、廉価な鍛接鋼管への厳しい要求にも充分耐えるものであって、その効果は極めて大きいものである。   The forged welded steel pipe of the present invention has a good joint strength, and even when subjected to strong processing such as flare processing, the joint does not crack, has a remarkably good performance, and is an inexpensive forged steel pipe. It can withstand severe demands, and its effects are extremely great.

1 コイラー
2 スリットした鋼帯
3 ルーパー
4 エッジ成形機
5 加熱炉
6 成形鍛接機
7 ノズル
8 鍛接鋼管
9 コーン
13 接合部
14 接合部肉厚
15 鋼管肉厚
16 ビード部
17 ビード部の最大肉厚
DR 鍛接鋼管外径
H コーン押し込み量
θ コーン全角
DESCRIPTION OF SYMBOLS 1 Coiler 2 Slit steel strip 3 Looper 4 Edge forming machine 5 Heating furnace 6 Forming and forging machine 7 Nozzle 8 Forged steel pipe 9 Cone
13 Joint
14 Joint thickness
15 Steel pipe wall thickness
16 Bead section
17 Maximum wall thickness of bead
DR Forged steel pipe outer diameter H Cone push amount θ Cone full angle

Claims (1)

外径21.7mmφ〜114.3mmφ、肉厚1.8mm〜6.1mm、引張強度(TS)290N/mm〜500N/mm、伸び率23%〜90%であって、コーン拡管し接合部に割れが生じた際の拡管比率(A)が下記<1>式を満足し、接合部肉厚の鋼管肉厚に対する比が1.00以上であり、ビード部最大肉厚の鋼管肉厚に対する比が1.010以上であり、且つ、前記ビード部最大肉厚が前記接合部肉厚よりも大きいことを特徴とするフレア加工鍛接鋼管。
A={H×tan(θ/2)+(DR/2)}/(DR/2)≧−0.0004×DR+1.3=B …<1>
ただし、A:コーン拡管比率
H:コーン押し込み量(拡管開始高さと拡管後に割れが発生した直後の高さの差)
θ:コーン全角
DR:鍛接鋼管外径
B:鋼管外径から決まる規定値
Outer diameter 21.7mmφ ~ 114.3mmφ, wall thickness 1.8mm ~ 6.1mm, tensile strength (TS) 290N / mm 2 ~ 500N / mm 2 , elongation 23% ~ 90% When the pipe expansion ratio (A) occurs, the following formula <1> is satisfied , the ratio of the joint wall thickness to the steel pipe wall thickness is 1.00 or more, and the ratio of the maximum bead thickness to the steel pipe wall thickness is 1.010 or more. A wrought forged steel pipe for flaring , wherein the maximum thickness of the bead portion is larger than the thickness of the joint portion .
A = {H × tan (θ / 2) + (DR / 2)} / (DR / 2) ≧ −0.0004 × DR + 1.3 = B... <1>
However, A: Cone expansion ratio H: Cone push-in amount (difference between the expansion start height and the height immediately after cracking after expansion)
θ: full-width cone
DR: Forged steel pipe outer diameter B: Specified value determined from steel pipe outer diameter
JP2009231336A 2009-10-05 2009-10-05 Forged steel pipe with excellent flare workability Active JP4535204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231336A JP4535204B1 (en) 2009-10-05 2009-10-05 Forged steel pipe with excellent flare workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231336A JP4535204B1 (en) 2009-10-05 2009-10-05 Forged steel pipe with excellent flare workability

Publications (2)

Publication Number Publication Date
JP4535204B1 true JP4535204B1 (en) 2010-09-01
JP2011078996A JP2011078996A (en) 2011-04-21

Family

ID=42824714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231336A Active JP4535204B1 (en) 2009-10-05 2009-10-05 Forged steel pipe with excellent flare workability

Country Status (1)

Country Link
JP (1) JP4535204B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251518B2 (en) * 2020-05-18 2023-04-04 Jfeスチール株式会社 Butt-welded steel pipe with excellent flaring workability and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080718A (en) * 1996-09-06 1998-03-31 Kawasaki Steel Corp Manufacture of steel tube
JPH10277639A (en) * 1997-04-09 1998-10-20 Kawasaki Steel Corp Manufacture of steel tube
JPH10305312A (en) * 1997-05-08 1998-11-17 Kawasaki Steel Corp Manufacturing method for steel pipe
JPH10328730A (en) * 1997-06-03 1998-12-15 Kawasaki Steel Corp Production of steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080718A (en) * 1996-09-06 1998-03-31 Kawasaki Steel Corp Manufacture of steel tube
JPH10277639A (en) * 1997-04-09 1998-10-20 Kawasaki Steel Corp Manufacture of steel tube
JPH10305312A (en) * 1997-05-08 1998-11-17 Kawasaki Steel Corp Manufacturing method for steel pipe
JPH10328730A (en) * 1997-06-03 1998-12-15 Kawasaki Steel Corp Production of steel pipe

Also Published As

Publication number Publication date
JP2011078996A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP2008161940A (en) Forge-welded steel pipe excellent in workability, method of manufacturing it and manufacturing equipment train
JP4535204B1 (en) Forged steel pipe with excellent flare workability
JP4359783B2 (en) Seamless steel pipe manufacturing method
US11679428B2 (en) Connection tube and its method of manufacturing
JP5152376B2 (en) Manufacturing method of small diameter ERW steel pipe
JP5544726B2 (en) Manufacturing method of forged pipe with excellent workability
AU2006349207B8 (en) Manufacturing equipment of electric resistance welding pipes having excellent characterization of welded seam
JP4577451B1 (en) Forged steel pipe with good surface after flaring
JP5298646B2 (en) A method for manufacturing ERW line pipes with excellent buckling resistance
JP4410787B2 (en) Manufacturing method of high strength welded steel pipe
JP4077859B2 (en) Forged steel pipe excellent in workability, manufacturing method thereof, and manufacturing equipment line
JP5644883B2 (en) Evaluation method of flaring workability of forged pipes
JP5195479B2 (en) Forged pipe with excellent workability and manufacturing method thereof
JP5573976B2 (en) Evaluation method of flaring workability of forged pipes
JP2010137231A (en) Butt-welded pipe having good workability
JP3854476B2 (en) Manufacturing method of high strength steel pipe with excellent burst characteristics
JP4400685B1 (en) Manufacturing method of forged steel pipe with excellent workability
JP2008184686A (en) Method for manufacturing low yr square steel tube for building
JP5463863B2 (en) UOE steel pipe manufacturing method
JP7251518B2 (en) Butt-welded steel pipe with excellent flaring workability and method for manufacturing the same
JP6119691B2 (en) Forged steel pipe excellent in widening workability, its manufacturing method and manufacturing equipment
JP5298645B2 (en) A method for manufacturing ERW line pipes with excellent buckling resistance
JP2023073551A (en) Steel pipe and method for manufacturing the same
JP4975354B2 (en) Manufacturing method of high strength welded steel pipe
JP4826751B2 (en) Manufacturing method of small diameter ERW steel pipe

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4535204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250