JP5700983B2 - Method for producing carbon nanotubes using palladium carboxylate - Google Patents

Method for producing carbon nanotubes using palladium carboxylate Download PDF

Info

Publication number
JP5700983B2
JP5700983B2 JP2010202598A JP2010202598A JP5700983B2 JP 5700983 B2 JP5700983 B2 JP 5700983B2 JP 2010202598 A JP2010202598 A JP 2010202598A JP 2010202598 A JP2010202598 A JP 2010202598A JP 5700983 B2 JP5700983 B2 JP 5700983B2
Authority
JP
Japan
Prior art keywords
palladium
reaction tube
cnt
quartz
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202598A
Other languages
Japanese (ja)
Other versions
JP2012056808A (en
Inventor
高橋 直行
直行 高橋
将人 松井
将人 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP2010202598A priority Critical patent/JP5700983B2/en
Publication of JP2012056808A publication Critical patent/JP2012056808A/en
Application granted granted Critical
Publication of JP5700983B2 publication Critical patent/JP5700983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カルボン酸パラジウムを触媒として使用したカーボンナノチューブの製造方法に関するものである。   The present invention relates to a method for producing carbon nanotubes using palladium carboxylate as a catalyst.

従来のカーボンナノチューブ(以下、CNTと略称する場合がある)の製造方法には、アーク放電法やレーザー蒸発法、化学気相成長法などがある。その中でも化学気相成長法(CVD法)はカーボンナノチューブの大量生産に有効な製造方法として知られている。   Conventional methods for producing carbon nanotubes (hereinafter sometimes abbreviated as CNT) include an arc discharge method, a laser evaporation method, and a chemical vapor deposition method. Among them, the chemical vapor deposition method (CVD method) is known as an effective manufacturing method for mass production of carbon nanotubes.

CVD法においては、触媒金属径を制御することで様々な径のカーボンナノチューブを合成できることが知られており、その触媒金属径の制御方法としては担体の構造を利用して均一に金属触媒を担持させる方法がある(例えば、特許文献1)。   In the CVD method, it is known that carbon nanotubes of various diameters can be synthesized by controlling the catalyst metal diameter, and the catalyst metal diameter is controlled uniformly by using the structure of the carrier. There is a method (for example, Patent Document 1).

CVD法において触媒前駆体となる酢酸鉄、酢酸コバルト、酢酸ニッケルなどの有機金属化合物を溶媒に溶かし、それを基板に塗布し、凍結乾燥し、還元処理することで触媒前駆体を触媒金属に還元させたものをカーボンナノチューブ合成用の触媒として用いる方法がある(例えば特許文献2)。   In the CVD method, an organic metal compound such as iron acetate, cobalt acetate, or nickel acetate, which is a catalyst precursor, is dissolved in a solvent, applied to a substrate, lyophilized, and reduced to reduce the catalyst precursor to a catalyst metal. There is a method of using the above as a catalyst for carbon nanotube synthesis (for example, Patent Document 2).

特開2005−272242号公報JP 2005-272242 A 特開2006−007213号公報JP 2006-007213 A

CVD法で合成したカーボンナノチューブは、アーク放電法など他の方法で合成したカーボンナノチューブと比べ、結晶性が劣るという欠点がある。   Carbon nanotubes synthesized by the CVD method have a defect that the crystallinity is inferior to carbon nanotubes synthesized by other methods such as an arc discharge method.

CVD法によるカーボンナノチューブの合成法は大量生産に有効であると前述したが、さらに効率的な生産が求められている。   As described above, the carbon nanotube synthesis method by the CVD method is effective for mass production, but more efficient production is required.

従来のCVD法に使用される触媒は、前記のような理由で金属触媒を担体に担持させる必要があったり、溶媒に溶かした有機金属化合物を基板に塗布して凍結乾燥後還元処理する必要があったため、触媒を作成する工程が煩雑であった。   The catalyst used in the conventional CVD method needs to support a metal catalyst on a carrier for the reasons described above, or it is necessary to apply a metalorganic compound dissolved in a solvent to a substrate and perform a reduction treatment after lyophilization. As a result, the process of preparing the catalyst was complicated.

メタンやアセチレンなどを炭素源としてカーボンナノチューブを合成する場合、比較的高温で触媒金属粒子と接触させる必要があった。   When carbon nanotubes were synthesized using methane or acetylene as a carbon source, it was necessary to contact the catalyst metal particles at a relatively high temperature.

CVD法においてメタンを炭素源として使用すると、ベンゼンやトルエンなどの有機物が析出し、カーボンナノチューブの成長量が悪くなるという欠点があった。   When methane is used as a carbon source in the CVD method, organic substances such as benzene and toluene are precipitated, and the growth amount of the carbon nanotube is deteriorated.

本発明は、触媒を作成する工程が煩雑な従来技術の欠点を解決し、結晶性の高いカーボンナノチューブを、効率的に製造することを課題とする。   An object of the present invention is to solve the drawbacks of the prior art in which the process of preparing a catalyst is complicated and to efficiently produce carbon nanotubes with high crystallinity.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、入手が簡単な酢酸パラジウム等のカルボン酸パラジウムを担体に担持することなくそのまま触媒として使用すれば良いことを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventors have found that palladium carboxylate such as palladium acetate, which is easily available, can be used as a catalyst as it is without being supported on a carrier. It came to complete.

上記課題を解決するための本発明は、下記の要点のとおりである。
) 気体の炭素含有化合物と気化した酢酸パラジウム触媒を500℃〜1200℃で接触させ多層カーボンナノチューブを成長させることを特徴とする多層カーボンナノチューブの製造方法。
) 粉体の酢酸パラジウム触媒に気体の炭素含有化合物を導入して酢酸パラジウム触媒を飛散させながら、気体の炭素含有化合物と酢酸パラジウム触媒を500℃〜1200℃で接触させ多層カーボンナノチューブを成長させることを特徴とする多層カーボンナノチューブの製造方法。
The present invention for solving the above-described problems is as follows.
(1) Multi-walled carbon nanotube production method of you and growing a multi-walled carbon nanotubes by contacting a palladium acetate catalyst vaporized carbon-containing compound gaseous at 500 ° C. to 1200 ° C..
( 2 ) While introducing a gaseous carbon-containing compound into a powdery palladium acetate catalyst and scattering the palladium acetate catalyst, the gaseous carbon-containing compound and the palladium acetate catalyst are brought into contact at 500 ° C. to 1200 ° C. to grow multi-walled carbon nanotubes. method for producing a multi-layer carbon nanotube you characterized thereby.

本発明のカーボンナノチューブの製造方法は、入手が比較的簡単な酢酸パラジウムなどのカルボン酸パラジウムを担体に担持することなくそのまま触媒として使用することができ、結晶性の高いカーボンナノチューブを、効率的に製造することができる。   The carbon nanotube production method of the present invention can be used as a catalyst without supporting palladium carboxylate such as palladium acetate, which is relatively easy to obtain, on a carrier, and carbon nanotubes with high crystallinity can be efficiently used. Can be manufactured.

固定床法によるカーボンナノチューブの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the carbon nanotube by a fixed bed method. 気相成長法によるカーボンナノチューブの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the carbon nanotube by a vapor phase growth method. 固相流動法によるカーボンナノチューブの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the carbon nanotube by a solid-phase flow method. 実施例1で使用したカーボンナノチューブの製造装置の模式図。1 is a schematic diagram of a carbon nanotube production apparatus used in Example 1. FIG. 実施例1で得られたカーボンナノチューブのSEM像。(a)は1000倍、(b)は10000倍の画像。3 is an SEM image of the carbon nanotube obtained in Example 1. FIG. (A) is 1000 times, and (b) is 10,000 times. 実施例2で使用したカーボンナノチューブの製造装置の模式図。FIG. 3 is a schematic diagram of a carbon nanotube production apparatus used in Example 2. 実施例1で得られたカーボンナノチューブのラマンスペクトル。The Raman spectrum of the carbon nanotube obtained in Example 1.

本発明は、酢酸パラジウム等の比較的入手が容易なカルボン酸パラジウムを担体に担持することなく触媒として用いることを特徴とする、多層のカーボンナノチューブの製造方法に関するものである。   The present invention relates to a method for producing multi-walled carbon nanotubes, characterized in that palladium carboxylate which is relatively easily available such as palladium acetate is used as a catalyst without being supported on a carrier.

本発明において、触媒として使用されるのはカルボン酸パラジウム、好ましくは炭素数1〜22、さらに好ましくは炭素数1〜8、最も好ましくは炭素数1〜6のカルボン酸パラジウムである。炭素数1〜22のカルボン酸パラジウムとしては、具体的には蟻酸パラジウム、酢酸パラジウム、プロピオン酸パラジウム、酪酸パラジウム、吉草酸パラジウム、カプロン酸パラジウム、エナント酸パラジウム、カプリル酸パラジウム、ペラルゴン酸パラジウム、カプリン酸パラジウム、ラウリン酸パラジウム、ミリスチン酸パラジウム、パルミチン酸パラジウム、マルガリン酸パラジウム、ステアリン酸パラジウム、オレイン酸パラジウム、リノール酸パラジウム、リノレン酸パラジウム、アラキドン酸パラジウム、ドコサヘキサン酸パラジウム、エイコサペンタエン酸パラジウム、シュウ酸パラジウム、マロン酸パラジウム、コハク酸パラジウム、安息香酸パラジウム、フタル酸パラジウム、イソフタル酸パラジウム、テレフタル酸パラジウム、サリチル酸パラジウム、没食子酸パラジウム、メリト酸パラジウム、ケイ皮酸パラジウム、ビルビン酸パラジウム、乳酸パラジウム、リンゴ酸パラジウム、クエン酸パラジウム、フマル酸パラジウム、マレイン酸パラジウム、アコニット酸パラジウム、グルタル酸パラジウム、アジピン酸パラジウム、アミノ酸パラジウム、ニトロカルボン酸パラジウム等を挙げることができる。なかでも入手が容易な点で酢酸パラジウムが好ましい。酢酸パラジウムは、通常市販されているもの(例えば、和光純薬工業(株)、関東化学(株)製など)を使用できる。また、使用済みの廃パラジウム触媒を酢酸に溶かし、乾燥させて酢酸パラジウムの粉体を作成してもよい。   In the present invention, palladium carboxylate, preferably 1 to 22 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 6 carbon atoms, is used as a catalyst. Specific examples of the palladium carboxylate having 1 to 22 carbon atoms include palladium formate, palladium acetate, palladium propionate, palladium butyrate, palladium valerate, palladium caproate, palladium enanthate, palladium caprylate, palladium pelargonate, and caprin. Palladium acid, palladium laurate, palladium myristate, palladium palmitate, palladium margarate, palladium stearate, palladium oleate, palladium linoleate, palladium linolenate, palladium arachidonic acid, palladium docosahexanoate, palladium eicosapentaenoate Palladium acid, palladium malonate, palladium succinate, palladium benzoate, palladium phthalate, palladium isophthalate, para terephthalate Um, palladium salicylate, palladium gallate, palladium melitrate, palladium cinnamate, palladium biruvate, palladium lactate, palladium malate, palladium citrate, palladium fumarate, palladium maleate, palladium aconitate, palladium glutarate, adipine Palladium acid, amino acid palladium, palladium nitrocarboxylate and the like can be mentioned. Of these, palladium acetate is preferred because it is easily available. As the palladium acetate, commercially available products (for example, manufactured by Wako Pure Chemical Industries, Ltd., Kanto Chemical Co., Ltd.) can be used. Alternatively, a used waste palladium catalyst may be dissolved in acetic acid and dried to prepare palladium acetate powder.

本発明は、従来のように触媒を調製する工程が不要であり、粉体のカルボン酸パラジウムをそのまま使用することができるので、効率的にカーボンナノチューブを製造することができる。   The present invention does not require a step of preparing a catalyst as in the prior art, and powdered palladium carboxylate can be used as it is, so that carbon nanotubes can be produced efficiently.

本発明においてカーボンナノチューブの炭素源となる炭素含有化合物としては、メタン、アセチレン、エチレンなどの炭化水素、エタノール、プロパノールなどのアルコール類などが挙げられる。しかし、炭素含有化合物はこれらに限定されるものではなく、カーボンナノチューブを成長させうる炭素含有化合物であればよい。   Examples of the carbon-containing compound that serves as the carbon source of the carbon nanotube in the present invention include hydrocarbons such as methane, acetylene and ethylene, and alcohols such as ethanol and propanol. However, the carbon-containing compound is not limited to these, and any carbon-containing compound that can grow carbon nanotubes may be used.

炭素含有化合物は、気体でカルボン酸パラジウム触媒と、所定の温度で接触させる。特にメタン、アセチレン、エチレンを炭素含有化合物として使用した場合、550〜650℃程度の温度でカーボンナノチューブを製造することもできるため好ましい。   The carbon-containing compound is brought into contact with the palladium carboxylate catalyst at a predetermined temperature as a gas. In particular, when methane, acetylene, or ethylene is used as the carbon-containing compound, it is preferable because carbon nanotubes can be produced at a temperature of about 550 to 650 ° C.

本発明で得られるカーボンナノチューブは、結晶性が高い。さらに本発明の製法はカーボンナノチューブの成長速度が速いため、他の製法よりも短時間で長いカーボンナノチューブができる。本発明で得られたカーボンナノチューブから作製された自立膜は導電性が高いという特徴を有している。   The carbon nanotube obtained by the present invention has high crystallinity. Furthermore, since the carbon nanotube growth rate is high in the production method of the present invention, long carbon nanotubes can be formed in a shorter time than other production methods. The self-supporting film produced from the carbon nanotube obtained by the present invention has a feature of high conductivity.

炭素含有化合物とカルボン酸パラジウムの接触は無酸素雰囲気で行なう必要があるので、反応炉内を予め、窒素、ヘリウムまたはアルゴンの不活性ガスで置換し、反応炉内を無酸素雰囲気下とする。   Since the contact between the carbon-containing compound and the palladium carboxylate needs to be performed in an oxygen-free atmosphere, the inside of the reaction furnace is previously replaced with an inert gas such as nitrogen, helium, or argon, and the inside of the reaction furnace is placed in an oxygen-free atmosphere.

本発明は、気体の炭素含有化合物とカルボン酸パラジウムを高温で接触させてカーボンナノチューブを製造することを特徴とするが、気体の炭素含有化合物とカルボン酸パラジウムを接触させる形態により、(1)固定床法、(2)気相成長法、(3)固相流動法が挙げられる。以下に、それぞれのカーボンナノチューブの製造方法を説明する。   The present invention is characterized in that a carbon nanotube is produced by contacting a gaseous carbon-containing compound and palladium carboxylate at a high temperature. According to an embodiment in which the gaseous carbon-containing compound and palladium carboxylate are brought into contact, (1) fixing Examples include a bed method, (2) a vapor phase growth method, and (3) a solid phase flow method. Below, the manufacturing method of each carbon nanotube is demonstrated.

(1)固定床法
高温の反応炉内に固体のカルボン酸パラジウムを触媒として置き、そこに気体の炭素含有化合物を供給することにより、触媒と炭素含有化合物を接触させ、触媒上にカーボンナノチューブを成長させる方法である。
(1) Fixed bed method By placing solid palladium carboxylate as a catalyst in a high-temperature reactor and supplying a gaseous carbon-containing compound there, the catalyst and the carbon-containing compound are brought into contact with each other, and carbon nanotubes are placed on the catalyst. It is a way to grow.

固定床法とは、固定化された(粉体等のまま静置、ボードの上から動かないという意味)触媒(カルボン酸パラジウム)と炭素含有化合物の気体(メタンガス等)の反応からCNTを合成する方法である。   The fixed bed method synthesizes CNT from the reaction of immobilized catalyst (palladium carboxylate) and carbon-containing compound gas (methane gas, etc.). It is a method to do.

一般に固定床法では、石英、SiC、アルミナなどの耐熱性反応管と電気炉からなる常圧CVD装置が用いられる。耐熱性反応管は縦型、横型いずれのものも使用できる。その模式図を図1に示す。   In general, in the fixed bed method, an atmospheric pressure CVD apparatus including a heat-resistant reaction tube such as quartz, SiC, or alumina and an electric furnace is used. The heat resistant reaction tube can be either vertical or horizontal. The schematic diagram is shown in FIG.

図1中、1は石英等の耐熱性反応官、2は耐熱性反応官を加熱する電気炉である。粉末状のカルボン酸パラジウム5は石英ボート3に置かれる。生成したCNTを4で示した。   In FIG. 1, 1 is a heat-resistant reaction agent such as quartz, and 2 is an electric furnace for heating the heat-resistant reaction agent. Powdered palladium carboxylate 5 is placed in a quartz boat 3. The produced CNTs are indicated by 4.

手順は次のとおりである。
(i)カルボン酸パラジウムを載せた石英ボートを耐熱性反応管後方7に挿入する。
(ii)窒素、ヘリウム等の不活性ガスを供給し、装置内を不活性ガスで置換し無酸素雰囲気にする。
(iii)その後、炭素含有化合物ガスを供給し装置内を炭素含有化合物ガスで置換する。
(iv)装置内を反応温度まで昇温する。
(v)反応温度に到達後、所定の時間反応させることで、カルボン酸パラジウム触媒上にCNTを成長させる。
(vi)CNT成長後、炭素含有化合物ガスの供給を停止し、再び不活性ガスを供給する。その後、室温まで冷却する。
(vii)冷却後、装置内の石英ボートを取り出し、成長したCNTを取り出す。
The procedure is as follows.
(I) A quartz boat carrying palladium carboxylate is inserted into the rear 7 of the heat-resistant reaction tube.
(Ii) An inert gas such as nitrogen or helium is supplied, and the inside of the apparatus is replaced with an inert gas to make an oxygen-free atmosphere.
(Iii) Thereafter, a carbon-containing compound gas is supplied to replace the inside of the apparatus with the carbon-containing compound gas.
(Iv) The temperature inside the apparatus is raised to the reaction temperature.
(V) After reaching the reaction temperature, the CNT is grown on the palladium carboxylate catalyst by reacting for a predetermined time.
(Vi) After the CNT growth, the supply of the carbon-containing compound gas is stopped and the inert gas is supplied again. Then, it cools to room temperature.
(Vii) After cooling, the quartz boat in the apparatus is taken out, and the grown CNTs are taken out.

固定床法で用いる固体のカルボン酸パラジウムの形状は、粉体のまま用いてもいいが、溶媒に溶かしたカルボン酸パラジウムを基板上に塗布し膜状にすることもできる。   The shape of the solid palladium carboxylate used in the fixed bed method may be used as it is, but it may be formed into a film by applying palladium carboxylate dissolved in a solvent on the substrate.

(2)気相成長法
高温の反応路内に、気化させたカルボン酸パラジウム触媒と気体の炭素含有化合物を導入し、触媒と炭素含有化合物を接触させ、カーボンナノチューブを成長させる方法である。
(2) Vapor phase growth method In this method, a vaporized palladium carboxylate catalyst and a gaseous carbon-containing compound are introduced into a high-temperature reaction path, the catalyst and the carbon-containing compound are brought into contact with each other, and carbon nanotubes are grown.

気相成長法とは、気化した触媒(カルボン酸パラジウム)と炭素源となる気体(メタンガス等)の反応からCNTを合成する方法である。一般に気相成長法では、石英、SiC、アルミナなどの耐熱性反応管と電気炉からなる常圧CVD装置が用いられる。耐熱性反応管は縦型、横型いずれのものも使用できる。   The vapor phase growth method is a method for synthesizing CNTs from the reaction between a vaporized catalyst (palladium carboxylate) and a gas (methane gas or the like) serving as a carbon source. In general, in the vapor phase growth method, an atmospheric pressure CVD apparatus including a heat-resistant reaction tube such as quartz, SiC, or alumina and an electric furnace is used. The heat resistant reaction tube can be either vertical or horizontal.

図2に気相成長法に用いられる反応装置の概略を示す。図1と、同一の要素には、同一の符号を付し、その説明を省略する。   FIG. 2 shows an outline of a reaction apparatus used in the vapor phase growth method. The same elements as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

耐熱性反応管はY字型(図2)や直管(図5)のものを用いることができる。Y字型反応管を用いた場合、前方の2つに枝分れした反応管の一方には、カルボン酸パラジウムを載せた石英ボートを挿入し、もう一方は炭素含有化合物ガスの供給部となる。   As the heat-resistant reaction tube, a Y-shaped tube (FIG. 2) or a straight tube (FIG. 5) can be used. When a Y-shaped reaction tube is used, a quartz boat loaded with palladium carboxylate is inserted into one of the two branched reaction tubes at the front, and the other serves as a carbon-containing compound gas supply unit. .

手順は以下のとおりである。
(i)装置内に不活性ガスを供給し、装置内を不活性ガスで置換し無酸素雰囲気にする。
(ii)反応管後方7を反応温度まで昇温する。
(iii)Y字型反応管を用いた場合、カルボン酸パラジウムを載せた石英ボートを設置した反応管前方8の一方の枝管をカルボン酸パラジウムが気化する温度に昇温する。その間、不活性ガスを供給し続ける。カルボン酸パラジウムは加熱により気化し、不活性ガス供給により反応温度に加熱された石英反応管後方7に供給される。もう一方の枝管からは炭素含有化合物ガスを供給する。反応温度に加熱された反応管後方でカルボン酸パラジムガスと炭素含有化合物ガスが気相反応を生じ、CNTが生成する。
The procedure is as follows.
(I) An inert gas is supplied into the apparatus, and the inside of the apparatus is replaced with an inert gas to create an oxygen-free atmosphere.
(Ii) The temperature in the rear 7 of the reaction tube is raised to the reaction temperature.
(Iii) When a Y-shaped reaction tube is used, the temperature of one branch pipe in the front 8 of the reaction tube provided with a quartz boat carrying palladium carboxylate is raised to a temperature at which palladium carboxylate is vaporized. Meanwhile, the inert gas is continuously supplied. The palladium carboxylate is vaporized by heating and is supplied to the rear 7 of the quartz reaction tube heated to the reaction temperature by supplying an inert gas. A carbon-containing compound gas is supplied from the other branch pipe. In the rear of the reaction tube heated to the reaction temperature, the paradium carboxylic acid gas and the carbon-containing compound gas undergo a gas phase reaction to produce CNTs.

直管の反応管を用いた場合、炭素含有化合物ガスを供給しながらカルボン酸パラジウムを載せた石英ボートを設置した反応管前方8をカルボン酸パラジウムが気化する温度に昇温する。気化したカルボン酸パラジウムは炭素含有化合物ガスと一緒に加熱された反応管後方7へ供給され、CNTが生成する。
(iv)CNT成長後、炭素含有化合物ガスの供給を停止し、再び不活性ガスを供給する。その後、室温まで冷却する。
(v)冷却後、装置内からCNTを取り出す。
When a straight reaction tube is used, the temperature in front of the reaction tube 8 on which a quartz boat on which palladium carboxylate is placed is set is raised to a temperature at which palladium carboxylate is vaporized while supplying a carbon-containing compound gas. The vaporized palladium carboxylate is supplied to the rear 7 of the reaction tube heated together with the carbon-containing compound gas, and CNTs are generated.
(Iv) After the CNT growth, the supply of the carbon-containing compound gas is stopped and the inert gas is supplied again. Then, it cools to room temperature.
(V) After cooling, CNTs are taken out from the apparatus.

(3)固相流動法
高温の反応路内に、炭素含有ガスと粉体のカルボン酸パラジウム触媒を飛散させながら導入し、触媒と炭素含有化合物を接触させ、カーボンナノチューブを成長させる方法である。
固相流動法とは、飛散している触媒(カルボン酸パラジウム)と炭素源となる気体(メタンガス等)の反応からCNTを合成する方法である。一般に固相流動法では、石英、SiC、アルミナなどの耐熱性反応管と電気炉からなる常圧CVD装置と固体原料供給器(サイクロン等)が用いられる。耐熱性反応管は縦型、横型いずれのものも使用できる。
図3に固相流動法に用いられる反応装置の概略を示す。図1、図2と異なるのは、カルボン酸パラジウム触媒を飛散させて供給するための固体原料供給器6が耐熱性反応管1の上流側に設けられている点である。
固体原料供給器はサイクロンなど、粉体を飛散させることのできる装置であればどのようなものでも使用できる。
(3) Solid-phase flow method In this method, a carbon-containing gas and a powdery palladium carboxylate catalyst are introduced into a high-temperature reaction path while being scattered, and the catalyst and the carbon-containing compound are brought into contact with each other to grow carbon nanotubes.
The solid-phase flow method is a method of synthesizing CNTs from the reaction of a scattered catalyst (palladium carboxylate) and a gas (methane gas or the like) serving as a carbon source. In general, in the solid phase flow method, an atmospheric pressure CVD apparatus including a heat-resistant reaction tube made of quartz, SiC, alumina or the like and an electric furnace and a solid material supply device (such as a cyclone) are used. The heat resistant reaction tube can be either vertical or horizontal.
FIG. 3 shows an outline of a reaction apparatus used in the solid phase flow method. A difference from FIGS. 1 and 2 is that a solid raw material supply device 6 for supplying the palladium carboxylate catalyst in a dispersed manner is provided on the upstream side of the heat resistant reaction tube 1.
As the solid material supply device, any device such as a cyclone capable of scattering powder can be used.

手順は以下のとおりである。
(i)カルボン酸パラジウムを固体原料供給器に設置する。
(ii)固体原料供給器に不活性ガスを供給し、装置内を不活性ガスで置換する。
(iii)耐熱性反応管を反応温度に昇温する。
(iv)炭素含有化合物ガスを固体原料供給器から供給することで、カルボン酸パラジウム粉体を耐熱性反応管内に飛散させ、CNTを成長させる。
(v)CNT成長後、炭素含有化合物ガスの供給を停止し、不活性ガスを供給する。その後、室温まで冷却する。
(vi)冷却後、装置内CNTを取り出す。
The procedure is as follows.
(I) Install palladium carboxylate in a solid material feeder.
(Ii) An inert gas is supplied to the solid material supplier, and the inside of the apparatus is replaced with the inert gas.
(Iii) The temperature of the heat-resistant reaction tube is raised to the reaction temperature.
(Iv) By supplying the carbon-containing compound gas from the solid material supply device, the palladium carboxylate powder is scattered in the heat-resistant reaction tube to grow CNTs.
(V) After the CNT growth, the supply of the carbon-containing compound gas is stopped and the inert gas is supplied. Then, it cools to room temperature.
(Vi) After cooling, the CNT in the apparatus is taken out.

反応温度について
反応温度は、いずれの方法を用いた場合(固定床法、気相流動法、固相流動法)においても、500〜1200℃、好ましくは550〜1000℃、さらに好ましくは、600℃〜900℃で行う。500℃未満だと炭素含有化合物ガスが分解しないためCNTが生成せず、1200℃を超えると炭素含有化合物ガスがベンゼンやトルエンに変化し、CNTが生成される効率が下がったり、触媒であるカルボン酸パラジウムのパラジウム金属がシンタリングを起こし粒径が大きくなりCNTが生成されにくくなるなどの不都合が生じる。
Reaction temperature The reaction temperature is 500 to 1200 ° C., preferably 550 to 1000 ° C., more preferably 600 ° C. in any method (fixed bed method, gas phase flow method, solid phase flow method). Perform at ~ 900 ° C. If the temperature is lower than 500 ° C., the carbon-containing compound gas is not decomposed, so that CNT is not generated. If the temperature exceeds 1200 ° C., the carbon-containing compound gas is changed to benzene or toluene, and the efficiency of generating CNT is reduced. Palladium metal of palladium acid acid causes sintering, resulting in a large particle size and difficulty in producing CNTs.

ガスの流通速度について
ガスの流速は早いほど成長量が増えるので、装置が耐えうる限り流速は早い方がいい。
Gas flow rate The faster the gas flow rate, the higher the growth rate, so the faster the flow rate the device can withstand.

反応時間について
いずれの方法を用いた場合(固定床法、気相流動法、固相流動法)においても、反応時間が長ければCNTの長さや量が増えるが、生成されたCNTによって反応管内の気流が阻まれる前に反応を止める必要がある。
About reaction time When using any method (fixed bed method, gas phase flow method, solid phase flow method), the length and amount of CNT increase if the reaction time is long. It is necessary to stop the reaction before the airflow is blocked.

固相流動法において触媒として用いるカルボン酸パラジウムは、飛散させて反応する必要があるため平均粒子径で0.001〜30μm、好ましくは0.01〜3μmの粉体がよい。   Palladium carboxylate used as a catalyst in the solid phase flow method needs to be dispersed and reacted, and therefore, a powder having an average particle size of 0.001 to 30 μm, preferably 0.01 to 3 μm is preferable.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

実施例1(固定床法)
CNTの合成には、図4に示すような常圧CVD(Chemical Vapor Deposition)装置を用いた。装置は、原料ガス供給系、石英反応管1、電気炉2、排気系から構成されている。石英反応管の直径:50mm、長さ:900mmである。電気炉は炉心部分が直径:50mm、長さ:600mmの抵抗加熱炉であり、2箇所で温度制御が可能である。石英ボート3中に粉末の酢酸パラジウム1gをのせ、石英反応管の後方(原料供給部側から450mmの位置)に設置した(あらかじめ、石英ボートの重量と石英ボートと酢酸パラジウム合計の重量をそれぞれ測定しておく。)。酢酸パラジウムを含む石英ボートを石英反応管中に設置後、窒素ガスを300sccm(Standard Cubic Centimeter per Minutes)で供給し、10分間置換(酸素フリーの状態)を行なった。引き続き、電気炉により石英反応管全体を800℃に昇温した。石英反応管が800℃に到達した後、メタンガスを流量2000sccmで供給し、酢酸パラジウム上に30分間成長を行なった。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。電気炉を開放し、室温まで冷却したした後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。酢酸パラジウムはCNT成長直前までに56%重量減、すなわち0.44gまで減少することがわかっている。この酢酸パラジウムの重量減を含めたCNTの成長量を算出すると、約25g/30分でCNTが成長していた。図5に成長したCNTのSEM像を示す。成長したCNTの径は100−300nm、長さは平均10μmであった。実施例1で得られたCNTのラマンスペクトルを測定し、図7に示した。図7から明らかなように、単層CNTに特有の200〜600cm−1にはピークがなかったので、得られたCNTは単層ではないと推定された。
Example 1 (fixed floor method)
For the synthesis of CNT, a normal pressure CVD (Chemical Vapor Deposition) apparatus as shown in FIG. 4 was used. The apparatus includes a source gas supply system, a quartz reaction tube 1, an electric furnace 2, and an exhaust system. The diameter of the quartz reaction tube is 50 mm and the length is 900 mm. The electric furnace is a resistance heating furnace having a core portion with a diameter of 50 mm and a length of 600 mm, and temperature control is possible at two locations. Place 1 g of powdered palladium acetate in the quartz boat 3 and install it at the back of the quartz reaction tube (450 mm from the raw material supply side) (measure the weight of the quartz boat and the total weight of the quartz boat and palladium acetate in advance) Keep it.) After installing a quartz boat containing palladium acetate in a quartz reaction tube, nitrogen gas was supplied at 300 sccm (Standard Cubic Centimeter per Minutes), and substitution (oxygen-free state) was performed for 10 minutes. Subsequently, the entire quartz reaction tube was heated to 800 ° C. by an electric furnace. After the quartz reaction tube reached 800 ° C., methane gas was supplied at a flow rate of 2000 sccm, and growth was performed on palladium acetate for 30 minutes. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After opening the electric furnace and cooling to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. It has been found that palladium acetate loses 56% by weight, just to 0.44 g, just before CNT growth. When the amount of CNT growth including the weight loss of palladium acetate was calculated, the CNT grew at about 25 g / 30 minutes. FIG. 5 shows an SEM image of the grown CNT. The grown CNTs had a diameter of 100-300 nm and an average length of 10 μm. The Raman spectrum of the CNT obtained in Example 1 was measured and shown in FIG. As is clear from FIG. 7, since there was no peak at 200 to 600 cm −1 peculiar to single-walled CNTs, it was estimated that the obtained CNTs were not single-walled.

実施例2(気相成長法)
CNTの合成には、実施例1と同様な装置を用いた。図6に装置の概略図を示す。石英ボート中に粉末の酢酸パラジウム1gをのせ、石英反応管の前方(原料供給部側から150mmの位置)に設置した。酢酸パラジウムを含む石英ボートを石英反応管中に設置後、窒素ガスを300sccmで供給し、10分間置換を行なった。その後、CNT原料となるメタンガスを供給した。石英反応管内にメタンガスを300sccmで10分間供給し置換を行なった。引き続き、電気炉を昇温した。まず、石英反応管後方を800℃まで昇温し、その後石英反応管前方を400℃まで昇温した(昇温速度25℃/1分。酢酸パラジウムは248℃で気化し始める。)。石英反応管前方が400℃に到達後、メタンガスの流量を2000sccmに増加させ、30分間成長を行なった。気化した酢酸パラジウムとメタンガスが石英反応管後部で反応し、CNTが成長した。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。CNTの成長量を算出すると、約1g以上/30分でCNTが成長していた。成長したCNTの径は50〜100nm、長さは100μm以上であった。
Example 2 (Vapor phase growth method)
For the synthesis of CNT, the same apparatus as in Example 1 was used. FIG. 6 shows a schematic diagram of the apparatus. 1 g of powdered palladium acetate was placed in a quartz boat and installed in front of the quartz reaction tube (position 150 mm from the raw material supply unit side). After installing a quartz boat containing palladium acetate in a quartz reaction tube, nitrogen gas was supplied at 300 sccm, and replacement was performed for 10 minutes. Thereafter, methane gas serving as a CNT raw material was supplied. Replacement was performed by supplying methane gas at 300 sccm for 10 minutes into the quartz reaction tube. Subsequently, the temperature of the electric furnace was raised. First, the temperature in the rear of the quartz reaction tube was raised to 800 ° C., and then the temperature in the front of the quartz reaction tube was raised to 400 ° C. (temperature increase rate: 25 ° C./1 minute. Palladium acetate begins to vaporize at 248 ° C.). After the temperature in front of the quartz reaction tube reached 400 ° C., the flow rate of methane gas was increased to 2000 sccm, and growth was performed for 30 minutes. Vaporized palladium acetate and methane gas reacted in the rear part of the quartz reaction tube, and CNT grew. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. When the amount of CNT growth was calculated, CNT grew at about 1 g or more / 30 minutes. The grown CNT had a diameter of 50 to 100 nm and a length of 100 μm or more.

実施例3(固相流動法)
固体原料供給器としてサイクロンを用いた。サイクロン容器内の酢酸パラジウム粉体にメタンガスを供給することで飛散させ、実施例1と同様の装置(固定床法)に供給することでCNT成長を行なった。まず、サイクロン容器内に酢酸パラジウム粉体(アルドリッチ社製 酢酸パラジウム(II)98%)3gを設置した。サイクロン容器および石英反応管中に窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。引き続き、電気炉により石英反応管全体を650℃に昇温した(昇温速度25℃/1分)。その後、メタンガス650sccmをサイクロン容器に供給した。飛散された酢酸パラジウム粉体を650℃に加熱された石英反応管に供給した。30分間成長を行ない、成長終了後石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英反応管内の触媒を含むCNTを回収した。CNTの成長量は5g、CNT径は10〜20nm、長さ5μm以上であった。
Example 3 (solid phase flow method)
A cyclone was used as a solid material feeder. Methane gas was supplied to the palladium acetate powder in the cyclone container to scatter, and CNT growth was performed by supplying it to the same apparatus (fixed bed method) as in Example 1. First, 3 g of palladium acetate powder (98% palladium acetate (II) made by Aldrich) was placed in a cyclone container. Nitrogen gas was supplied at 300 sccm into the cyclone container and the quartz reaction tube, and substitution (oxygen-free state) was performed for 10 minutes. Subsequently, the entire quartz reaction tube was heated to 650 ° C. by an electric furnace (temperature increase rate: 25 ° C./1 minute). Thereafter, 650 sccm of methane gas was supplied to the cyclone container. The scattered palladium acetate powder was supplied to a quartz reaction tube heated to 650 ° C. The growth was performed for 30 minutes. After the growth was completed, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the CNT containing the catalyst in the quartz reaction tube was recovered. The growth amount of CNT was 5 g, the CNT diameter was 10 to 20 nm, and the length was 5 μm or more.

比較例1
実施例1と同様の装置を用いて、酢酸コバルトを触媒とするCNT成長を行なった。まず、酢酸コバルト4水和物を120℃・1時間乾燥し脱水を行なった。脱水処理された酢酸コバルトを石英ボート中に1gをのせ、石英反応管の後方に設置した。酢酸コバルトを含む石英ボートを石英反応管中に設置後、窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。その後、CNT原料となるメタンガスを供給した。石英反応管内にメタンガスを500sccmで10分間供給し置換を行なった。引き続き、電気炉により石英反応管全体を650℃に昇温した(昇温速度25℃/1分)。石英反応管が650℃に到達した後、30分間成長を行なった。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。重量増加は確認されず、SEM観察においてもCNTは確認されなかった。酢酸コバルト4水和物上でもCNT成長は確認されなかった。以上の結果より、酢酸コバルト上でのCNT成長は不可能であることがわった(CNTが成長しないのは、酢酸コバルトが200〜300℃で分解し、コバルトの凝集が著しく促進されることによるものと思われる。)。
Comparative Example 1
Using the same apparatus as in Example 1, CNT growth using cobalt acetate as a catalyst was performed. First, cobalt acetate tetrahydrate was dried at 120 ° C. for 1 hour for dehydration. 1 g of dehydrated cobalt acetate was placed in a quartz boat and placed behind the quartz reaction tube. After installing a quartz boat containing cobalt acetate in a quartz reaction tube, nitrogen gas was supplied at 300 sccm, and substitution (oxygen-free state) was performed for 10 minutes. Thereafter, methane gas serving as a CNT raw material was supplied. Replacement was performed by supplying methane gas to the quartz reaction tube at 500 sccm for 10 minutes. Subsequently, the entire quartz reaction tube was heated to 650 ° C. by an electric furnace (temperature increase rate: 25 ° C./1 minute). After the quartz reaction tube reached 650 ° C., growth was performed for 30 minutes. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. No increase in weight was confirmed, and CNT was not confirmed even by SEM observation. CNT growth was not confirmed even on cobalt acetate tetrahydrate. From the above results, it was found that CNT growth on cobalt acetate was impossible (CNT growth did not occur because cobalt acetate was decomposed at 200 to 300 ° C., and aggregation of cobalt was remarkably promoted. It seems to be.).

比較例2
実施例1と同様の装置を用いて、酢酸鉄を触媒とするCNT成長を行なった。酢酸鉄を石英ボート中に1gをのせ、石英反応管の後方に設置した。酢酸鉄を含む石英ボートを石英反応管中に設置後、窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。その後、CNT原料となるメタンガスを供給した。石英反応管内にメタンガスを300sccmで10分間供給し置換を行なった。引き続き、電気炉により石英反応管全体を750℃に昇温した(昇温速度25℃/1分)。石英反応管が750℃に到達した後、30分間成長を行なった。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。重量増加は確認されず、SEM観察においてもCNTは確認されなかった。以上の結果より、酢酸鉄上でのCNT成長は不可能であることがわった(CNTが成長しないのは、酢酸鉄が200〜300℃で分解し、鉄の凝集が著しく促進されることによるものと思われる。)。
Comparative Example 2
Using the same apparatus as in Example 1, CNT growth using iron acetate as a catalyst was performed. 1 g of iron acetate was placed in a quartz boat and placed behind the quartz reaction tube. After installing a quartz boat containing iron acetate in a quartz reaction tube, nitrogen gas was supplied at 300 sccm, and substitution (oxygen-free state) was performed for 10 minutes. Thereafter, methane gas serving as a CNT raw material was supplied. Replacement was performed by supplying methane gas at 300 sccm for 10 minutes into the quartz reaction tube. Subsequently, the entire quartz reaction tube was heated to 750 ° C. with an electric furnace (temperature increase rate: 25 ° C./1 minute). After the quartz reaction tube reached 750 ° C., growth was performed for 30 minutes. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. No increase in weight was confirmed, and CNT was not confirmed even by SEM observation. The above results indicate that CNT growth on iron acetate is impossible (CNT growth does not occur because iron acetate is decomposed at 200 to 300 ° C., and iron aggregation is remarkably promoted. It seems to be.).

比較例3
実施例1と同様の装置を用いて、酢酸銅を触媒とするCNT成長を行なった。まず、酢酸銅1水和物を120℃・1時間乾燥し脱水を行なった。脱水処理された酢酸銅を石英ボート中に1gをのせ、石英反応管の後方に設置した。酢酸銅を含む石英ボートを石英反応管中に設置後、窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。その後、CNT原料となるメタンガスを供給した。石英反応管内にメタンガスを500sccmで10分間供給し置換を行なった。引き続き、電気炉により石英反応管全体を800℃に昇温した(昇温速度25℃/1分)。石英反応管が800℃に到達した後、30分間成長を行なった。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が550℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。重量増加は確認されず、SEM観察においてもCNTは観察されなかった(CNTが成長しないのは、酢酸銅が200〜300℃で分解し、銅の凝集が著しく促進されることによるものと思われる。)。
Comparative Example 3
Using the same apparatus as in Example 1, CNT growth using copper acetate as a catalyst was performed. First, copper acetate monohydrate was dried at 120 ° C. for 1 hour for dehydration. 1 g of dehydrated copper acetate was placed in a quartz boat and placed behind the quartz reaction tube. After installing a quartz boat containing copper acetate in a quartz reaction tube, nitrogen gas was supplied at 300 sccm, and substitution (oxygen-free state) was performed for 10 minutes. Thereafter, methane gas serving as a CNT raw material was supplied. Replacement was performed by supplying methane gas to the quartz reaction tube at 500 sccm for 10 minutes. Subsequently, the whole quartz reaction tube was heated to 800 ° C. by an electric furnace (temperature increase rate: 25 ° C./1 minute). After the quartz reaction tube reached 800 ° C., growth was performed for 30 minutes. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube dropped to 550 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. No increase in weight was confirmed, and CNT was not observed even in SEM observation. (The CNT does not grow, probably because copper acetate decomposes at 200 to 300 ° C. and the aggregation of copper is remarkably promoted. .)

比較例4
実施例1と同様の装置を用いて、塩基性酢酸アルミニウム粉体に酢酸パラジウムを担持させた触媒(Al/Pd=0.25/1)を用いてCNT成長を行なった。酢酸パラジウム/塩基性酢酸アルミニウムを石英ボート中に1gをのせ、石英反応管の後方に設置した。酢酸パラジウム/塩基性酢酸アルミニウムを含む石英ボートを石英反応管中に設置後、窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。その後、CNT原料となるメタンガスを供給した。石英反応管内にメタンガスを300sccmで10分間供給し置換を行なった。引き続き、電気炉により石英反応管全体を650℃に昇温した(昇温速度25℃/1分)。石英反応管が650℃に到達した後、30分間成長を行なった。30分後、石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が550℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英ボートを取り出し、触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。0.4gの重量増加が確認され、SEM観察においてCNTが観察された。観察されたCNTの径は70〜100nm、長さ3μmであった(これまでの実験より担持した場合、還元操作が必要であると思われる。しなしながら、還元すると酢酸パラジウム自身も分解が促進し、CNTは成長しないものと思われる。)。
Comparative Example 4
Using the same apparatus as in Example 1, CNT growth was performed using a catalyst (Al / Pd = 0.25 / 1) in which palladium acetate was supported on basic aluminum acetate powder. 1 g of palladium acetate / basic aluminum acetate was placed in a quartz boat and placed behind the quartz reaction tube. A quartz boat containing palladium acetate / basic aluminum acetate was placed in a quartz reaction tube, and then nitrogen gas was supplied at 300 sccm to perform replacement (oxygen-free state) for 10 minutes. Thereafter, methane gas serving as a CNT raw material was supplied. Replacement was performed by supplying methane gas at 300 sccm for 10 minutes into the quartz reaction tube. Subsequently, the entire quartz reaction tube was heated to 650 ° C. by an electric furnace (temperature increase rate: 25 ° C./1 minute). After the quartz reaction tube reached 650 ° C., growth was performed for 30 minutes. After 30 minutes, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube dropped to 550 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the quartz boat was taken out and CNTs containing the catalyst were collected. The weight of CNT collected by an electronic balance was measured. A weight increase of 0.4 g was confirmed, and CNT was observed in SEM observation. The observed CNT diameter was 70 to 100 nm and the length was 3 μm (reduction operation seems to be necessary when supported from previous experiments. However, when reduced, palladium acetate itself promotes decomposition. And CNT seems not to grow.)

比較例5
実施例1と同様の装置で、水素キャリアガスを用いてフェロセン(2.5wt%)/トルエン溶液をスプレーで供給しCNT成長を行なった。まず、スプレー気化器および石英反応管中に窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。引き続き、電気炉により石英反応管全体を650℃に昇温した(昇温速度25℃/1分)。その後、水素キャリアガス1000sccm(200〜1500sccm)をスプレー気化器に供給した。スプレー気化器により液滴化したフェロセン(2.5wt%)/トルエン溶液を800℃に加熱された反応管に供給した。30分間成長を行ない、成長終了後石英反応管へのフェロセン(2.5wt%)/トルエン溶液の供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却後、反応管内の触媒を含むCNTを回収した。電子天秤により回収したCNTの重量を測定した。石英反応管内外でのCNT成長は確認されなかった(この実験を1050℃〜1100℃で行なうとCNTが成長する。CNT原料となるトルエンをベンゼン等の他の溶媒に変更したり、生成促進剤であるチオフェンの添加等を試みたが成長温度の低温化は出来なかった。)。
Comparative Example 5
In the same apparatus as in Example 1, ferrocene (2.5 wt%) / toluene solution was supplied by spray using hydrogen carrier gas to perform CNT growth. First, nitrogen gas was supplied into a spray vaporizer and a quartz reaction tube at 300 sccm, and substitution (oxygen-free state) was performed for 10 minutes. Subsequently, the entire quartz reaction tube was heated to 650 ° C. by an electric furnace (temperature increase rate: 25 ° C./1 minute). Then, 1000 sccm (200-1500 sccm) of hydrogen carrier gas was supplied to the spray vaporizer. A ferrocene (2.5 wt%) / toluene solution dropletized by a spray vaporizer was supplied to a reaction tube heated to 800 ° C. The growth was performed for 30 minutes. After the growth was completed, the supply of the ferrocene (2.5 wt%) / toluene solution to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube was cooled to room temperature, CNT containing the catalyst in the reaction tube was recovered. The weight of CNT collected by an electronic balance was measured. CNT growth inside and outside the quartz reaction tube was not confirmed (CNTs grow when this experiment is performed at 1050 ° C. to 1100 ° C. The toluene used as the CNT raw material is changed to another solvent such as benzene, or a production accelerator. I tried to add thiophene, etc., but the growth temperature could not be lowered.)

比較例6
サイクロン容器内の酢酸ニッケル粉体にメタンガスを供給することで飛散させ、実施例1と同様の装置に供給することでCNT成長を行なった。まず、サイクロン容器内に酢酸ニッケル粉体(平均粒子径:3μm)を3g設置した。サイクロン容器および石英反応管中に窒素ガスを300sccmで供給し、10分間置換(酸素フリーの状態)を行なった。引き続き、電気炉により石英反応管全体を850℃(550℃〜800℃)に昇温した(昇温速度25℃/1分)。その後、メタンガス1000sccm(300〜2000sccm)をサイクロン容器に供給した。飛散された酢酸ニッケル粉体を850℃に加熱された石英反応管に供給した。30分間成長を行ない、成長終了後石英反応管へのメタンガスの供給を停止し、窒素ガスを300sccm供給した。石英反応管の温度が650℃まで降温した後、電気炉を開放し、室温まで冷却した。石英反応管が室温まで冷却した後、石英反応管内の触媒を含むCNTを回収した。石英反応管内外での黒色堆積物が確認された。SEM観察からこの黒色堆積物はCNTであることを確認した。CNTの成長量は0.5g、CNT径は20nm、長さ3μm以下であった(酢酸パラジウムを用いた実施例3の固相流動法に比較して、CNT生成量は少なく、CNT長も短い。)。
Comparative Example 6
The methane was grown by supplying methane gas to the nickel acetate powder in the cyclone container and supplying it to the same apparatus as in Example 1 to perform CNT growth. First, 3 g of nickel acetate powder (average particle size: 3 μm) was placed in a cyclone container. Nitrogen gas was supplied at 300 sccm into the cyclone container and the quartz reaction tube, and substitution (oxygen-free state) was performed for 10 minutes. Subsequently, the entire quartz reaction tube was heated to 850 ° C. (550 ° C. to 800 ° C.) with an electric furnace (temperature increase rate: 25 ° C./1 minute). Thereafter, 1000 sccm (300 to 2000 sccm) of methane gas was supplied to the cyclone container. The scattered nickel acetate powder was supplied to a quartz reaction tube heated to 850 ° C. The growth was performed for 30 minutes. After the growth was completed, the supply of methane gas to the quartz reaction tube was stopped, and 300 sccm of nitrogen gas was supplied. After the temperature of the quartz reaction tube was lowered to 650 ° C., the electric furnace was opened and cooled to room temperature. After the quartz reaction tube cooled to room temperature, the CNT containing the catalyst in the quartz reaction tube was recovered. Black deposits inside and outside the quartz reaction tube were confirmed. SEM observation confirmed that this black deposit was CNT. The growth amount of CNT was 0.5 g, the CNT diameter was 20 nm, and the length was 3 μm or less (compared to the solid-phase flow method of Example 3 using palladium acetate, the CNT production amount was small and the CNT length was also short. .)

本発明は、比較的入手が容易な酢酸パラジウム等のカルボン酸パラジウムをそのまま触媒として使用することができ、結晶性の高いカーボンナノチューブを効率的に製造することができるので、産業上極めて有用である。   INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it can use palladium carboxylate such as palladium acetate, which is relatively easily available, as a catalyst, and can efficiently produce carbon nanotubes with high crystallinity. .

1 耐熱性反応管
2 電気炉
3 石英ボート
4 CNT
5 カルボン酸パラジウム
6 固体原料供給器
7 反応管後方
8 反応管前方
1 Heat-resistant reaction tube 2 Electric furnace 3 Quartz boat 4 CNT
5 Palladium carboxylate 6 Solid material feeder 7 Rear of reaction tube 8 Front of reaction tube

Claims (2)

気体の炭素含有化合物と気化した酢酸パラジウム触媒を500℃〜1200℃で接触させ多層カーボンナノチューブを成長させることを特徴とする多層カーボンナノチューブの製造方法。 Multi-walled carbon nanotube production method you characterized by causing a palladium acetate catalyst vaporized carbon-containing compound gaseous growing multi-walled carbon nanotubes are contacted at 500 ° C. to 1200 ° C.. 粉体の酢酸パラジウム触媒に気体の炭素含有化合物を導入して酢酸パラジウム触媒を飛散させながら、気体の炭素含有化合物と酢酸パラジウム触媒を500℃〜1200℃で接触させ多層カーボンナノチューブを成長させることを特徴とする多層カーボンナノチューブの製造方法。 Introducing a gaseous carbon-containing compound to a powdery palladium acetate catalyst to disperse the palladium acetate catalyst, contacting the gaseous carbon-containing compound and the palladium acetate catalyst at 500 ° C. to 1200 ° C. to grow multi-walled carbon nanotubes method for producing a multi-layer carbon nanotube you characterized.
JP2010202598A 2010-09-10 2010-09-10 Method for producing carbon nanotubes using palladium carboxylate Active JP5700983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202598A JP5700983B2 (en) 2010-09-10 2010-09-10 Method for producing carbon nanotubes using palladium carboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202598A JP5700983B2 (en) 2010-09-10 2010-09-10 Method for producing carbon nanotubes using palladium carboxylate

Publications (2)

Publication Number Publication Date
JP2012056808A JP2012056808A (en) 2012-03-22
JP5700983B2 true JP5700983B2 (en) 2015-04-15

Family

ID=46054349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202598A Active JP5700983B2 (en) 2010-09-10 2010-09-10 Method for producing carbon nanotubes using palladium carboxylate

Country Status (1)

Country Link
JP (1) JP5700983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587220B (en) 2017-11-15 2023-05-12 住友电气工业株式会社 Method for producing carbon nanostructure, and device for producing carbon nanostructure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1706690A1 (en) * 1988-04-19 1992-01-23 Всесоюзный Научно-Исследовательский Институт Технического Углерода Porous carbon material
KR970702758A (en) * 1994-04-29 1997-06-10 마이클 제이. 켈리 COMBINATION ROLL AND DIE COATING METHOD AND APPARATUS WITH IMPROVED DIE LIP
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
JP5475457B2 (en) * 2006-11-24 2014-04-16 本田技研工業株式会社 Mass aerosol powder injection device for carbon nanotube synthesis

Also Published As

Publication number Publication date
JP2012056808A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP6538115B2 (en) Synthesis of high quality carbon single-walled nanotubes
JP5550833B2 (en) Method and apparatus for high quality single-walled carbon nanotube growth
Ionescu et al. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies
Abbaslou et al. The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method
JP2001512087A (en) Single nanotube production using unsupported metal catalyst and single nanotube
Yah et al. Synthesis of large carbon nanotubes from ferrocene: the chemical vapour deposition technique
JP4443423B2 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
Qian et al. Surface growth of single-walled carbon nanotubes from ruthenium nanoparticles
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
Sivamaran et al. Combined synthesis of carbon nanospheres and carbon nanotubes using thermal chemical vapor deposition process
Zhang et al. Layered growth of aligned carbon nanotube arrays by pyrolysis
JP5700983B2 (en) Method for producing carbon nanotubes using palladium carboxylate
Donato et al. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes
Shukrullah et al. Synthesis of MWCNT Forests with Alumina-Supported Fe 2 O 3 Catalyst by Using a Floating Catalyst Chemical Vapor Deposition Technique
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
Liu et al. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
Zhao et al. Carbon nanotube formation over plasma reduced Pd/HZSM-5
KR20120092344A (en) Fabrication method of carbon nanotube or carbon nanofiber using metal-organic frameworks, and the carbon nanotube or carbon nanofiber thereby
JP2015229706A (en) Jet-black pigment using carbon nanotubes
US10421061B2 (en) Preparation method of alumina-carbon nano tube composite powder material
JP2003313018A (en) Method for producing carbon nanotube
KR20040082949A (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5700983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250