JP5699489B2 - Electric motor drive - Google Patents

Electric motor drive Download PDF

Info

Publication number
JP5699489B2
JP5699489B2 JP2010189491A JP2010189491A JP5699489B2 JP 5699489 B2 JP5699489 B2 JP 5699489B2 JP 2010189491 A JP2010189491 A JP 2010189491A JP 2010189491 A JP2010189491 A JP 2010189491A JP 5699489 B2 JP5699489 B2 JP 5699489B2
Authority
JP
Japan
Prior art keywords
value
axis current
magnetic flux
command value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010189491A
Other languages
Japanese (ja)
Other versions
JP2012050233A (en
Inventor
良和 市中
良和 市中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010189491A priority Critical patent/JP5699489B2/en
Publication of JP2012050233A publication Critical patent/JP2012050233A/en
Application granted granted Critical
Publication of JP5699489B2 publication Critical patent/JP5699489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、複数の一次巻線にて形成される多巻線電動機をベクトル制御により可変速駆動する電動機駆動装置に関する。   The present invention relates to a motor drive device that drives a multi-winding motor formed of a plurality of primary windings at a variable speed by vector control.

図3は、下記特許文献1の構成を含むこの種の電動機駆動装置の回路構成図である。   FIG. 3 is a circuit configuration diagram of this type of electric motor drive device including the configuration of Patent Document 1 below.

図3において、1は商用電源,自家発電設備などの交流電源、2は複数の一次巻線にて形成される多巻線電動機、3は多巻線電動機2の出力軸に連結されたパルスゼネレータ、4・・6は第1電動機駆動装置10,第2電動機駆動装置20・・第N電動機駆動装置30それぞれと前記パルスゼネレータ3との間の信号線,電源線を、必要に応じて、図示しない運転シーケンス回路からの指令により、閉路または開路するスイッチである。   In FIG. 3, reference numeral 1 denotes a commercial power supply, an AC power supply such as a private power generation facility, 2 a multi-winding motor formed by a plurality of primary windings, and 3 a pulse generator connected to the output shaft of the multi-winding motor 2. Reference numerals 4 and 6 denote signal lines and power lines between the first motor driving device 10, the second motor driving device 20, and the Nth motor driving device 30 and the pulse generator 3, if necessary. This is a switch that closes or opens according to a command from the operation sequence circuit.

この多巻線電動機2は、例えば特開2008−109769号公報に開示されている構成のものであり、その特長は一次巻線コイルが複数本の素線を同一経路に巻回して形成されることにより、多重数分のコイルを製作することなく、運転する電動機駆動装置の台数の制限を受けず、電動機駆動装置の減機運転が可能な多巻線電動機である。   This multi-winding motor 2 has a configuration disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-109769, and its feature is that a primary winding coil is formed by winding a plurality of strands on the same path. Thus, the multi-winding motor is capable of reducing the number of motor drive devices without producing multiple coils and without being limited by the number of motor drive devices to be operated.

さらに図3において、第1電動機駆動装置10,第2電動機駆動装置20・・第N電動機駆動装置30は全て同一構成の電動機駆動装置であり、それぞれ順変換器,平滑コンデンサ,逆変換器からなるインバータ回路11,21,31と、前記逆変換器が出力する電流を検出する電流検出器12,22,32と、この種の電動機駆動装置の従来例としての多巻線電動機2のベクトル制御を行うベクトル制御回路13,23,33、または、この発明の電動機駆動装置の実施例としてのベクトル制御回路13a,23a,33aとから構成されている。   Further, in FIG. 3, the first motor drive device 10, the second motor drive device 20, and the Nth motor drive device 30 are all motor drive devices having the same configuration, and each comprises a forward converter, a smoothing capacitor, and an inverse converter. Vector control of inverter circuits 11, 21 and 31, current detectors 12, 22, and 32 for detecting the current output from the inverter, and a multi-winding motor 2 as a conventional example of this type of motor drive device. It comprises vector control circuits 13, 23, 33 to be performed, or vector control circuits 13a, 23a, 33a as an embodiment of the motor drive device of the present invention.

図3に示した電動機駆動装置の従来例としての構成では、第1電動機駆動装置10がマスタ側となり、第2電動機駆動装置20・・第N電動機駆動装置30がスレーブ側となる場合を示したものであり、スイッチ4が閉路されるとともにスイッチ5,6が開路され、第1電動機駆動装置10のベクトル制御回路13はパルスゼネレータ3の出力信号を入力して多巻線電動機2の速度制御とベクトル制御にて電流制御とを行う機能を有し、第2電動機駆動装置20・・第N電動機駆動装置30のベクトル制御回路23,33は第1電動機駆動装置10に対するスレーブ動作として、ベクトル制御にて多巻線電動機2の電流制御のみを行う機能を有し、以下にその動作を説明する図4,5では、実際に使用する部分のみを抜き出して図示している。   In the configuration of the conventional motor driving device shown in FIG. 3, the first motor driving device 10 is on the master side, and the second motor driving device 20 and the Nth motor driving device 30 are on the slave side. The switch 4 is closed and the switches 5 and 6 are opened, and the vector control circuit 13 of the first motor driving device 10 inputs the output signal of the pulse generator 3 to control the speed of the multi-winding motor 2. The vector control circuits 23 and 33 of the second motor drive device 20... N motor drive device 30 have a function of performing current control by vector control. 4 and 5 for explaining only the current control of the multi-winding motor 2, and only the part actually used is shown in FIG.

すなわち、図4はマスタ側として、速度制御とベクトル制御にて多巻線電動機2の電流制御とを行うときのベクトル制御回路13の詳細回路構成を示し、図5はスレーブ側として、速度制御は行わずにベクトル制御にて多巻線電動機2の電流制御のみを行うときのベクトル制御回路23の詳細回路構成を示している。   That is, FIG. 4 shows a detailed circuit configuration of the vector control circuit 13 when performing speed control and current control of the multi-winding motor 2 by vector control as the master side, and FIG. A detailed circuit configuration of the vector control circuit 23 when only the current control of the multi-winding motor 2 is performed by the vector control without performing the control is shown.

図4において、速度指令演算回路71は、予め定めた加減速勾配により変化し、最終的には指令される速度設定値に一致する速度指令値ωr *を出力する。また、速度調節器73は前記速度指令値ωr *とパルスゼネレータ3の出力信号に速度検出回路72を介することにより得られる多巻線電動機2の速度検出値ωr との偏差を零にする調節演算を行い、この演算結果を多巻線電動機2のトルク指令値τ* として出力している。 In FIG. 4, the speed command calculation circuit 71 outputs a speed command value ω r * that changes according to a predetermined acceleration / deceleration gradient and finally matches the commanded speed setting value. Further, the speed controller 73 sets the deviation between the speed command value ω r * and the speed detection value ω r of the multi-winding motor 2 obtained by passing the output signal of the pulse generator 3 through the speed detection circuit 72 to zero. The adjustment calculation is performed, and the calculation result is output as the torque command value τ * of the multi-winding motor 2.

磁束指令演算回路74は、前記速度検出値ωr に対応しつつ、多巻線電動機2の二次磁束指令値Φ2 *を演算するものであり、該電動機の定格回転速度までは、一定値の二次磁束指令値Φ2 *を出力し、また、定格回転速度以上では、この回転速度に反比例して低下させる二次磁束指令値Φ2 *の演算を行っている。この磁束指令演算回路74が出力する二次磁束指令値Φ2 *は、除算演算器75,励磁電流演算回路76などの後段に伝達される。 The magnetic flux command calculation circuit 74 calculates the secondary magnetic flux command value Φ 2 * of the multi-winding motor 2 while corresponding to the speed detection value ω r , and is a constant value up to the rated rotational speed of the motor. output, the secondary flux command value [Phi 2 * in addition, at the rated speed or performs a calculation of the two reducing in inverse proportion to the rotational speed rotor flux command value [Phi 2 *. The secondary magnetic flux command value Φ 2 * output from the magnetic flux command calculation circuit 74 is transmitted to the subsequent stage such as the division calculator 75 and the excitation current calculation circuit 76.

上述のトルク指令値τ* および二次磁束指令値Φ2 *から、下記数1,2式に従って、多巻線電動機2の一次電流の該電動機の二次磁束に平行な電流指令値iM *(以下、M軸電流指令値iM *とも称する)と、該二次磁束に直交する電流指令値iT *(以下、T軸電流指令値iT *とも称する)とを導出している。
[数1]
M *=(1/Lm)×Φ2 *
ここで、Lmは多巻線電動機2の励磁インダクタンスである。
[数2]
T *=τ*/Φ2 *
すなわち、励磁電流演算回路76では上記数1式の演算を行い、除算演算器75では上記数2式の演算を行っている。
From the torque command value τ * and the secondary magnetic flux command value Φ 2 * , the current command value i M * parallel to the secondary magnetic flux of the motor of the primary current of the multi-winding motor 2 according to the following equations 1 and 2 . (Hereinafter also referred to as M-axis current command value i M * ) and current command value i T * (hereinafter also referred to as T-axis current command value i T * ) orthogonal to the secondary magnetic flux are derived.
[Equation 1]
i M * = (1 / Lm) × Φ 2 *
Here, Lm is the excitation inductance of the multi-winding motor 2.
[Equation 2]
i T * = τ * / Φ 2 *
That is, the excitation current calculation circuit 76 performs the calculation of the above formula 1, and the division calculator 75 performs the calculation of the above formula 2.

3相/2相変換器85は、電流検出器12で検出された多巻線電動機2の一次電流検出値としてのiu ,iw を、後述の角度値θ* に基づく周知の座標変換を行い、多巻線電動機2の一次電流の該電動機の二次磁束に平行な電流検出値iM (以下、M軸電流検出値iM とも称する)と該二次磁束に直交する電流検出値iT (以下、T軸電流検出値iT とも称する)とを導出している。 The three-phase / two-phase converter 85 converts i u and i w as primary current detection values detected by the current detector 12 into a known coordinate conversion based on an angle value θ * described later. Current detection value i M (hereinafter also referred to as M-axis current detection value i M ) parallel to the secondary magnetic flux of the primary current of the multi-winding motor 2 and current detection value i orthogonal to the secondary magnetic flux T (hereinafter also referred to as a T-axis current detection value i T ) is derived.

またT軸電流調節器78は、前記T軸電流指令値iT *とT軸電流検出値iT との偏差を零にする調節演算を行い、この演算結果を多巻線電動機2のT軸電圧指令値vT *として出力している。同様に、M軸電流調節器79は後述のM軸電流指令値iM *`と前記M軸電流検出値iM との偏差を零にする調節演算を行い、この演算結果を多巻線電動機2のM軸電圧指令値vM *として出力している。 Further, the T-axis current regulator 78 performs an adjustment calculation to make the deviation between the T-axis current command value i T * and the detected T-axis current value i T zero, and this calculation result is used as the T-axis of the multi-winding motor 2. Output as voltage command value v T * . Similarly, the M-axis current regulator 79 performs an adjustment calculation that makes a deviation between an M-axis current command value i M * `, which will be described later, and the detected M-axis current value i M zero, and uses the calculation result as a multi-winding motor. 2 as the M-axis voltage command value v M * .

2相/3相変換器80は、前記T軸電圧指令値vT *とM軸電圧指令値vM *とを、後述の角度値θ* に基づく周知の座標変換を行い、三相電圧指令値Vu *,Vv *,Vw *を導出している。 The two-phase / three-phase converter 80 performs a well-known coordinate transformation based on an angle value θ * described later to convert the T-axis voltage command value v T * and the M-axis voltage command value v M * into a three-phase voltage command. The values V u * , V v * , and V w * are derived.

これらの三相電圧指令値Vu *,Vv *,Vw *が入力されるインバータ回路11では、前記それぞれの電圧指令値に対応する振幅および周波数の三相交流電圧に変換して多巻線電動機2に供給している。 In the inverter circuit 11 to which these three-phase voltage command values V u * , V v * , and V w * are input, it is converted into a three-phase AC voltage having an amplitude and a frequency corresponding to each voltage command value. The wire motor 2 is supplied.

すべり周波数演算器81は、多巻線電動機2の二次抵抗値R2 と、入力される前記T軸電流指令値iT *,二次磁束指令値Φ2 *とから周知の演算式を用いて多巻線電動機2のすべり周波数ωslを求めている。また、このすべり周波数ωslと、多巻線電動機2の速度検出値ωr とを加算演算器82で加算することで得られる多巻線電動機2の一次周波数ω1 に対して、軸ずれ補償器88から得られた周波数補正値Δωを加算演算器83で加算し
た一次周波数指令値ω1 *に積分器84を介することにより、多巻線電動機2のU相巻線と二次磁束とのなす角度値θ* が導出される。
The slip frequency calculator 81 uses a well-known arithmetic expression from the secondary resistance value R 2 of the multi-winding motor 2 and the input T-axis current command value i T * and secondary magnetic flux command value Φ 2 *. Thus, the slip frequency ω sl of the multi-winding motor 2 is obtained. Further, with respect to the primary frequency ω 1 of the multi-winding motor 2 obtained by adding the slip frequency ω sl and the speed detection value ω r of the multi-winding motor 2 by the addition computing unit 82, the axis deviation is compensated. The primary frequency command value ω 1 * obtained by adding the frequency correction value Δω obtained from the generator 88 by the addition calculator 83 is passed through the integrator 84, so that the U-phase winding of the multi-winding motor 2 and the secondary magnetic flux are An angle value θ * to be formed is derived.

3相/2相変換器86は、多巻線電動機2の一次電圧vu ,vw を、前記角度値θ* に基づく周知の座標変換を行い、多巻線電動機2の一次電圧の該電動機の二次磁束に平行な電圧検出値vM (以下、M軸電圧検出値vM とも称する)と該二次磁束に直交する電圧検出値vT (以下、T軸電圧検出値vT とも称する)とを導出している。 The three-phase / two-phase converter 86 performs known coordinate conversion on the primary voltages v u and v w of the multi-winding motor 2 based on the angle value θ * , and the motor of the primary voltage of the multi-winding motor 2 is obtained. The detected voltage value v M parallel to the secondary magnetic flux (hereinafter also referred to as M-axis voltage detected value v M ) and the detected voltage value v T orthogonal to the secondary magnetic flux (hereinafter also referred to as T-axis voltage detected value v T). ) And are derived.

誘起電圧磁束演算器87では、上述のM軸電圧検出値vM ,T軸電圧検出値vT 、M軸電流検出値iM ,T軸電流検出値iT と前記一次周波数指令値ω1 *とに基づく下記数3,4式に従って、多巻線電動機2のM軸の誘起電圧値EmとT軸の誘起電圧値Etと、二次磁束推定値Φ2^とを導出している。
[数3]
Em=vM−R1・iM−L1(di/dt)iM
+jω1 *・L1・iT
[数4]
Et=vT−R1・iT−L1(di/dt)iT
−jω1 *・L1・iM
上記数3,4式において、R1 は多巻線電動機2の一次抵抗であり、L1 は多巻線電動機2の一次インダクタンスであり、jは虚数単位である。
In the induced voltage magnetic flux calculator 87, the above-described M-axis voltage detection value v M , T-axis voltage detection value v T , M-axis current detection value i M , T-axis current detection value i T and the primary frequency command value ω 1 *. In accordance with the following formulas 3 and 4 based on the above, the M-axis induced voltage value Em, the T-axis induced voltage value Et, and the secondary magnetic flux estimated value Φ 2 ^ of the multi-winding motor 2 are derived.
[Equation 3]
Em = v M −R 1 · i M −L 1 (di / dt) i M
+ Jω 1 * · L 1 · i T
[Equation 4]
Et = v T −R 1 · i T −L 1 (di / dt) i T
-Jω 1 *・ L 1・ i M
In the above formulas 3 and 4, R 1 is the primary resistance of the multi-winding motor 2, L 1 is the primary inductance of the multi-winding motor 2, and j is an imaginary unit.

なお、多巻線電動機2の二次磁束推定値Φ2^は、前記T軸の誘起電圧値Etを一次周波数指令値ω1 *で除算演算することにより導出している。 The secondary magnetic flux estimated value Φ 2 ^ of the multi-winding motor 2 is derived by dividing the T-axis induced voltage value Et by the primary frequency command value ω 1 * .

磁束調節器89は、前記二次磁束指令値Φ2 *と二次磁束推定値Φ2^との偏差を零にする調節演算値を多巻線電動機2のM軸電流補正値ΔiM *として出力している。また、
加算演算器77は、励磁電流演算回路76が出力するM軸電流指令値iM *と前記M軸電流補正値ΔiM *との加算値を新たなM軸電流指令値iM * ,として出力している。
The magnetic flux adjuster 89 sets the adjustment calculation value that makes the deviation between the secondary magnetic flux command value Φ 2 * and the secondary magnetic flux estimated value Φ 2 ^ to zero as the M-axis current correction value Δi M * of the multi-winding motor 2. Output. Also,
Adders 77, excitation current operation circuit 76 outputs a *, a new M-axis current command value i M the sum of the M-axis current command value i M * and the M-axis current correction value .DELTA.i M * to be output doing.

なお、図4に示したベクトル制御回路13におけるそれぞれの構成要素は、全て、周知の技術を用いたものである。   Note that all the components in the vector control circuit 13 shown in FIG. 4 use well-known techniques.

図5は、上述のベクトル制御にて多巻線電動機2の電流制御のみを行うときのベクトル制御回路23の詳細回路構成図であり、T軸電流調節器78,M軸電流調節器79,2相/3相変換器80,3相/2相変換器85それぞれは、上述の図4に示したものと同一の機能を有し、図4に示したベクトル制御回路13から伝送されるT軸電流指令値iT *,M軸電流指令値iM * ,,角度値θ* ,一次周波数指令値ω1 *などの制御信号に基づくベクトル制御にて電流制御を行う。 FIG. 5 is a detailed circuit configuration diagram of the vector control circuit 23 when only the current control of the multi-winding motor 2 is performed by the above-described vector control. The T-axis current regulator 78, the M-axis current regulators 79, 2 Each of phase / 3-phase converter 80 and 3-phase / 2-phase converter 85 has the same function as that shown in FIG. 4 and is transmitted from the vector control circuit 13 shown in FIG. Current control is performed by vector control based on control signals such as current command value i T * , M-axis current command value i M * ,, angle value θ * , and primary frequency command value ω 1 * .

また、インバータ回路21は、図3に示した如く順変換器,平滑コンデンサ,逆変換器からなり、その電気的出力定格は先述のインバータ回路11と同じであるが、前記逆変換器におけるPWM制御の際のキャリア信号はマスタの制御を行っている前記インバータ回路11から送出されるキャリア同期信号に同期させるようにしている。   Further, as shown in FIG. 3, the inverter circuit 21 includes a forward converter, a smoothing capacitor, and an inverse converter, and the electrical output rating is the same as that of the inverter circuit 11 described above, but the PWM control in the inverse converter is performed. In this case, the carrier signal is synchronized with the carrier synchronization signal sent from the inverter circuit 11 that controls the master.

なお、図3に示した第N電動機駆動装置30におけるベクトル制御回路33は、図5に示したベクトル制御回路23と同一の動作を行っている。   Note that the vector control circuit 33 in the Nth motor drive device 30 shown in FIG. 3 performs the same operation as the vector control circuit 23 shown in FIG.

図3に示すような複数台の電動機駆動装置により1台の多巻線電動機2を可変速制御する構成においては、例えば複数台の電動機駆動装置の内の1台が故障したときには、故障した電動機駆動装置を解列した減機運転の状態で多巻線電動機2の回転動作を継続させることが行われている。また、多巻線電動機2が定格出力を必要としないときにも、全体の運転効率の改善を計るために、複数台の電動機駆動装置の内から解列する台数を設定し、残りの電動機駆動装置による減機運転の状態で多巻線電動機2の回転動作をさせることが行われている。この場合には、解列した電動機駆動装置を他の電動機の可変速駆動に用いることも行われている。   In the configuration in which one multi-winding motor 2 is controlled at a variable speed by a plurality of motor drive devices as shown in FIG. 3, for example, when one of the plurality of motor drive devices fails, the failed motor The rotation operation of the multi-winding motor 2 is continued in the state of reduced gear operation with the drive device disconnected. Even when the multi-winding motor 2 does not require a rated output, in order to improve the overall operating efficiency, the number of motor drive units to be disconnected from the plurality of motor drive devices is set, and the remaining motor drive The rotating operation of the multi-winding motor 2 is performed in the state of reduction operation by the apparatus. In this case, the disconnected motor drive device is also used for variable speed drive of other motors.

特開2010−41890号公報JP 2010-41890 A

図3〜5に示したこの種の電動機駆動装置の従来例では、多巻線電動機2の巻線毎に第1電動機駆動装置10,第2電動機駆動装置20・・第N電動機駆動装置30が対応し、図示の如く、スイッチ4が閉路している第1電動機駆動装置10は多巻線電動機2の速度制御と電流制御とを行うマスタの制御を行い、また、スイッチ5・・6が開路している第2電動機駆動装置20・・第N電動機駆動装置30それぞれは第1電動機駆動装置10から伝送されるT軸電流指令値,M軸電流指令値などに基づく多巻線電動機2の電流制御すなわちスレーブの制御を行っている。   In the conventional example of this type of motor drive device shown in FIGS. 3 to 5, the first motor drive device 10, the second motor drive device 20, and the Nth motor drive device 30 are provided for each winding of the multi-winding motor 2. Correspondingly, as shown in the figure, the first motor drive device 10 in which the switch 4 is closed controls the master that performs speed control and current control of the multi-winding motor 2, and the switches 5 and 6 are opened. Each of the second motor drive device 20 and the Nth motor drive device 30 that are in operation is the current of the multi-winding motor 2 based on the T-axis current command value, M-axis current command value, etc. transmitted from the first motor drive device 10. Control, that is, slave control is performed.

しかしながら、一次巻線コイルが複数本の素線を同一経路に巻回して形成した多巻線電動機2などのように、各巻線間の磁気結合による干渉が強い多巻線電動機の場合、該巻線それぞれでの漏れインダクタンスや励磁インダクタンスの値などの内部定数が変動することにより、マスタの制御を行うベクトル制御回路13を形成する加算演算器77が出力するM軸電流指令値iM * ,に基づいて、スレーブの制御を行うベクトル制御回路23,33では、多巻線電動機2が発生する二次磁束を安定な状態で該電動機を動作させることが出来ず、その結果、多巻線電動機2の回転数が変動したり、一次電流が脈動するという問題点があった。 However, in the case of a multi-winding motor having a strong interference due to magnetic coupling between windings, such as a multi-winding motor 2 in which a primary winding coil is formed by winding a plurality of strands on the same path, the winding As the internal constants such as the leakage inductance and the excitation inductance of each line fluctuate, the M-axis current command value i M *, which is output from the addition calculator 77 that forms the vector control circuit 13 that controls the master , is obtained. Based on this, the vector control circuits 23 and 33 for controlling the slave cannot operate the motor with the secondary magnetic flux generated by the multi-winding motor 2 in a stable state. As a result, the multi-winding motor 2 There are problems that the rotational speed of the motor fluctuates and the primary current pulsates.

この発明の目的は、上記問題点を解消し、1台の多巻線電動機をベクトル制御により可変速駆動するのに好適な電動機駆動装置を提供することにある。   An object of the present invention is to solve the above problems and provide an electric motor drive apparatus suitable for driving a single multi-winding motor at a variable speed by vector control.

上記課題を解決するために、この発明は、速度検出器を有する多巻線電動機の各巻線毎に電動機駆動装置を設け、前記速度検出器の速度検出値に基づいた速度制御と、ベクトル制御にて前記多巻線電動機の電流制御とを行うマスタ側の電動機駆動装置と、ベクトル制御にて前記多巻線電動機の電流制御を行うスレーブ側の電動機駆動装置とにより前記多巻線電動機を可変速駆動する電動機駆動装置において、
前記マスタ側の電動機駆動装置からスレーブ側の電動機駆動装置に運転信号およびキャリア同期信号を送るとともに、このマスタ側の電動機駆動装置のベクトル制御回路で求められたT軸電流指令値iT *、M軸電流指令値iM *、磁束指令値φ2 *、一次周波数指令値ω1 *および角度値θ*を送り、これらの指令値に基づいてスレーブ側の電動機駆動装置のベクトル制御回路において、前記T軸電流指令値iT *とT軸電流検出値iTとの偏差を零にする調節演算を行うT軸電流調節演算、前記一次周波数指令値ω1 *、T軸電圧検出値VT、M軸電圧検出値VMT軸電流検出値i T 、M軸電流検出値i M から磁束推定値φ2 ^を演算する磁束演算、前記磁束指令値φ2 *と前記磁束推定値φ2 ^との偏差からM軸電流補正値ΔiM *を演算する磁束調節演算および前記M軸電流指令値iM *とM電流検出値iMとの偏差を零にする調節演算を行うM軸電流調節演算を行うようにしたことを特徴とする。
In order to solve the above problems, the present invention provides a motor drive device for each winding of a multi-winding motor having a speed detector, and performs speed control based on the speed detection value of the speed detector and vector control. The multi-winding motor is controlled at a variable speed by a master-side motor driving device that performs current control of the multi-winding motor and a slave-side motor driving device that performs current control of the multi-winding motor by vector control. In the motor drive device to drive,
An operation signal and a carrier synchronization signal are sent from the master-side motor drive device to the slave-side motor drive device, and T-axis current command values i T * and M determined by the vector control circuit of the master-side motor drive device The shaft current command value i M * , the magnetic flux command value φ 2 * , the primary frequency command value ω 1 *, and the angle value θ * are sent, and based on these command values, A T-axis current adjustment calculation for performing an adjustment calculation to make the deviation between the T-axis current command value i T * and the T-axis current detection value i T zero, the primary frequency command value ω 1 * , the T-axis voltage detection value V T , M-axis voltage detection value V M , T-axis current detection value i T , magnetic flux calculation for calculating magnetic flux estimated value φ 2 ^ from M-axis current detected value i M , magnetic flux command value φ 2 * and magnetic flux estimated value φ 2 Magnetic flux adjustment to calculate M-axis current correction value Δi M * from deviation from ^ It is characterized in that M-axis current adjustment calculation is performed to perform calculation and adjustment calculation to make the deviation between the M-axis current command value i M * and the detected M- axis current value i M zero.

この発明によれば、前記マスタ側の電動機駆動装置およびスレーブ側の電動機駆動装置それぞれに、前記多巻線電動機の二次磁束指令値と二次磁束推定値との偏差を零にする調節手段を備えたことにより、各巻線間の磁気結合による干渉が強い多巻線電動機の場合にも、該多巻線電動機が発生する二次磁束をより安定な状態にすることが出来る。   According to this invention, the adjusting means for making the deviation between the secondary magnetic flux command value and the secondary magnetic flux estimated value of the multi-winding motor zero in each of the master side motor driving device and the slave side motor driving device. As a result, the secondary magnetic flux generated by the multi-winding motor can be made more stable even in the case of a multi-winding motor having strong interference due to magnetic coupling between the windings.

この発明のこの実施例としての図3の部分詳細回路構成図FIG. 3 is a partial detailed circuit diagram of this embodiment of the present invention. この発明のこの実施例としての図3の部分詳細回路構成図FIG. 3 is a partial detailed circuit diagram of this embodiment of the present invention. 電動機駆動装置の回路構成図Circuit diagram of the motor drive device 従来例としての図3の部分詳細回路構成図3 is a partial detailed circuit configuration diagram of FIG. 3 as a conventional example. 従来例としての図3の部分詳細回路構成図3 is a partial detailed circuit configuration diagram of FIG. 3 as a conventional example.

図3に示した構成は、第1電動機駆動装置10がマスタ側となり、第2電動機駆動装置20・・第N電動機駆動装置30がスレーブ側となる場合を示したものであり、スイッチ4が閉路されるとともにスイッチ5,6が開路され、第1電動機駆動装置10のベクトル制御回路13aはパルスゼネレータ3の出力信号を入力して多巻線電動機2の速度制御とベクトル制御にて電流制御とを行い、第2電動機駆動装置20・・第N電動機駆動装置30のベクトル制御回路23a,33aは第1電動機駆動装置10に対するスレーブ動作として、ベクトル制御にて多巻線電動機2の電流制御を行う。   The configuration shown in FIG. 3 shows a case where the first motor driving device 10 is on the master side and the second motor driving device 20... The Nth motor driving device 30 is on the slave side, and the switch 4 is closed. At the same time, the switches 5 and 6 are opened, and the vector control circuit 13a of the first motor drive device 10 inputs the output signal of the pulse generator 3, and performs current control by speed control and vector control of the multi-winding motor 2. The vector control circuits 23a and 33a of the second motor drive device 20 and the Nth motor drive device 30 perform current control of the multi-winding motor 2 by vector control as a slave operation with respect to the first motor drive device 10.

図1,2では、この発明の実施例としての電動機駆動装置において、実際に使用する部分のみを抜き出して図示している。すなわち、図1はマスタ側として、速度制御とベクトル制御にて多巻線電動機2の電流制御とを行うときのベクトル制御回路13aの詳細回路構成図を示し、図2はスレーブ側として、速度制御は行わずにベクトル制御にて多巻線電動機2の電流制御のみを行うときのベクトル制御回路23aの詳細回路構成を示している。   1 and 2, in the electric motor drive device as an embodiment of the present invention, only the part actually used is extracted and shown. That is, FIG. 1 shows a detailed circuit configuration diagram of the vector control circuit 13a when performing speed control and current control of the multi-winding motor 2 by vector control as the master side, and FIG. 2 shows speed control as the slave side. The detailed circuit configuration of the vector control circuit 23a when only the current control of the multi-winding motor 2 is performed by vector control without performing is shown.

なお、図1に示したベクトル制御回路13aは、先述の図4に示したベクトル制御回路13と同様に、多巻線電動機2の二次磁束指令値Φ2 *と二次磁束推定値Φ2^との偏差を零にする磁束調節器89を備えつつ、基本的に同一の制御演算動作を行い、図2に示したベクトル制御回路23aに対して、従来のベクトル制御回路13と同様のT軸電流指令値iT *,角度値θ* ,一次周波数指令値ω1 *などの他に、加算演算器77が出力するM軸電流指令値iM * ,に代わる励磁電流演算回路76が出力するM軸電流指令値iM *と、磁束指令演算回路74が出力する二次磁束指令値Φ2 *とを新たに伝送している。 The vector control circuit 13a shown in FIG. 1 is similar to the vector control circuit 13 shown in FIG. 4, and the secondary magnetic flux command value Φ 2 * and the secondary magnetic flux estimated value Φ 2 of the multi-winding motor 2 are the same. While having the magnetic flux regulator 89 that makes the deviation from ^ zero, basically the same control calculation operation is performed, and the same T as the conventional vector control circuit 13 is applied to the vector control circuit 23a shown in FIG. In addition to the shaft current command value i T * , the angle value θ * , the primary frequency command value ω 1 *, etc., an excitation current calculation circuit 76 that outputs the M-axis current command value i M * output from the addition calculator 77 is output. The M-axis current command value i M * to be transmitted and the secondary magnetic flux command value Φ 2 * output from the magnetic flux command calculation circuit 74 are newly transmitted.

図2は、上述のベクトル制御にて多巻線電動機2の電流制御のみを行うときのベクトル制御回路23aの詳細回路構成図であり、T軸電流調節器78,M軸電流調節器79,2相/3相変換器80,3相/2相変換器85,86それぞれは、上述の図1,4に示したものと同一の機能を有し、図1に示したベクトル制御回路13aから伝送されるT軸電流指令値iT *,M軸電流指令値iM *,角度値θ* ,一次周波数指令値ω1 *,二次磁束指令値Φ2 *などの制御信号に基づくベクトル制御にて電流制御を行う。 FIG. 2 is a detailed circuit configuration diagram of the vector control circuit 23a when only the current control of the multi-winding motor 2 is performed by the above-described vector control. The T-axis current regulator 78, the M-axis current regulators 79, 2 Phase / three-phase converter 80 and three-phase / two-phase converters 85 and 86 have the same functions as those shown in FIGS. 1 and 4 described above, and are transmitted from vector control circuit 13a shown in FIG. For vector control based on control signals such as T-axis current command value i T * , M-axis current command value i M * , angle value θ * , primary frequency command value ω 1 * , secondary magnetic flux command value Φ 2 * To control the current.

さらにベクトル制御回路23aを形成する磁束演算器87aでは、前記数4式に従って導出されたT軸の誘起電圧値Etを前述の一次周波数指令値ω1 *で除算演算することにより二次磁束推定値Φ2^を得ている。 Further, in the magnetic flux calculator 87a forming the vector control circuit 23a, the secondary magnetic flux estimated value is obtained by dividing the T-axis induced voltage value Et derived according to the equation 4 by the primary frequency command value ω 1 * described above. Φ 2 ^ has been obtained.

また磁束調節器89は、前記二次磁束指令値Φ2 *と二次磁束推定値Φ2^との偏差を比例・積分演算あるいは比例・積分・微分演算等に基づいて零にする調節演算値を多巻線電動機2のM軸電流補正値ΔiM *として出力している。さらに加算演算器77は、励磁
電流演算回路75が出力するM軸電流指令値iM *と前記M軸電流補正値ΔiM *との加
算値を新たなM軸電流指令値iM * ,として出力している。
The magnetic flux adjuster 89 adjusts the deviation between the secondary magnetic flux command value Φ 2 * and the secondary magnetic flux estimated value Φ 2 ^ to zero based on proportional / integral computation or proportional / integral / differential computation. Is output as the M-axis current correction value Δi M * of the multi-winding motor 2. Further, the addition calculator 77 sets the addition value of the M-axis current command value i M * output from the excitation current calculation circuit 75 and the M-axis current correction value Δi M * as a new M-axis current command value i M * ,. Output.

すなわち、このベクトル制御回路23aには、図5に示した従来のベクトル制御回路23と同一の構成要素の他に、加算演算器77,3相/2相変換器86,誘起電圧磁束演算器87での演算機能の一部を省略した磁束演算器87a,磁束調節器89それぞれが追加機能として装備されている。   That is, the vector control circuit 23a includes an addition calculator 77, a three-phase / two-phase converter 86, an induced voltage magnetic flux calculator 87, in addition to the same components as those of the conventional vector control circuit 23 shown in FIG. Each of the magnetic flux calculator 87a and the magnetic flux adjuster 89 in which a part of the calculation function is omitted is provided as an additional function.

従って、磁束調節器89を備えたベクトル制御回路23aを用いることにより、一次巻線コイルが複数本の素線を同一経路に巻回して形成した多巻線電動機2などのような各巻線間の磁気結合による干渉が強い多巻線電動機においても、多巻線電動機2が発生する二次磁束をより安定な状態にすることができるので、多巻線電動機2の回転数が変動する現象や、一次電流が脈動する現象を抑制することが出来る。   Therefore, by using the vector control circuit 23a provided with the magnetic flux regulator 89, the primary winding coil is formed between a plurality of windings such as a multi-winding motor 2 formed by winding a plurality of strands on the same path. Even in a multi-winding motor having strong interference due to magnetic coupling, the secondary magnetic flux generated by the multi-winding motor 2 can be made more stable, so that the rotational speed of the multi-winding motor 2 fluctuates, The phenomenon that the primary current pulsates can be suppressed.

なお、図3に示した第N電動機駆動装置30におけるベクトル制御回路33aは、図2に示したベクトル制御回路23aと同一の動作を行っている。   Note that the vector control circuit 33a in the Nth motor drive device 30 shown in FIG. 3 performs the same operation as the vector control circuit 23a shown in FIG.

1…交流電源、2…多巻線電動機、3…パルスゼネレータ、4〜6…スイッチ、10…第1電動機駆動装置、20…第2電動機駆動装置、30…第N電動機駆動装置、11,21,31…インバータ回路、12,22,32…電流検出器、13,23,33…ベクトル制御回路、13a,23a,33a…ベクトル制御回路、71…速度指令演算回路、72…速度検出回路、73…速度調節器、74…磁束指令演算回路、75…除算演算器、76…励磁電流演算回路、77…加算演算器、78…T軸電流調節器、79…M軸電流調節器、80…2相/3相変換器、81…すべり周波数演算器、82,83…加算演算器、84…積分器、85,86…3相/2相変換器、87…誘起電圧磁束演算器、87a…磁束演算器,88…軸ずれ補償器、89…磁束調節器。   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Multi-winding motor, 3 ... Pulse generator, 4-6 ... Switch, 10 ... 1st motor drive device, 20 ... 2nd motor drive device, 30 ... Nth motor drive device, 11, 21 , 31 ... inverter circuit, 12, 22, 32 ... current detector, 13, 23, 33 ... vector control circuit, 13a, 23a, 33a ... vector control circuit, 71 ... speed command calculation circuit, 72 ... speed detection circuit, 73 ... speed controller, 74 ... magnetic flux command calculation circuit, 75 ... division calculator, 76 ... excitation current calculation circuit, 77 ... addition calculator, 78 ... T-axis current controller, 79 ... M-axis current controller, 80 ... 2 Phase / three-phase converter, 81 ... slip frequency calculator, 82, 83 ... addition calculator, 84 ... integrator, 85, 86 ... three-phase / two-phase converter, 87 ... induced voltage flux calculator, 87a ... flux Arithmetic unit, 88 ... Axis deviation compensator, 9 ... the flux regulator.

Claims (1)

速度検出器を有する多巻線電動機の各巻線毎に電動機駆動装置を設け、前記速度検出器の速度検出値に基づいた速度制御と、ベクトル制御にて前記多巻線電動機の電流制御とを行うマスタ側の電動機駆動装置と、ベクトル制御にて前記多巻線電動機の電流制御を行うスレーブ側の電動機駆動装置とにより前記多巻線電動機を可変速駆動する電動機駆動装置において、
前記マスタ側の電動機駆動装置からスレーブ側の電動機駆動装置に運転信号およびキャリア同期信号を送るとともに、このマスタ側の電動機駆動装置のベクトル制御回路で求められたT軸電流指令値iT *、M軸電流指令値iM *、磁束指令値φ2 *、一次周波数指令値ω1 *および角度値θ*を送り、これらの指令値に基づいてスレーブ側の電動機駆動装置のベクトル制御回路において、前記T軸電流指令値iT *とT軸電流検出値iTとの偏差を零にする調節演算を行うT軸電流調節演算、前記一次周波数指令値ω1 *、T軸電圧検出値VT、M軸電圧検出値VMT軸電流検出値i T 、M軸電流検出値i M から磁束推定値φ2 ^を演算する磁束演算、前記磁束指令値φ2 *と前記磁束推定値φ2 ^との偏差からM軸電流補正値ΔiM *を演算する磁束調節演算および前記M軸電流指令値iM *とM電流検出値iMとの偏差を零にする調節演算を行うM軸電流調節演算を行うようにしたことを特徴とする電動機駆動装置。
A motor drive device is provided for each winding of a multi-winding motor having a speed detector, and speed control based on the speed detection value of the speed detector and current control of the multi-winding motor by vector control are performed. In the motor driving device that drives the multi-winding motor at a variable speed by a master-side motor driving device and a slave-side motor driving device that performs current control of the multi-winding motor by vector control.
An operation signal and a carrier synchronization signal are sent from the master-side motor drive device to the slave-side motor drive device, and T-axis current command values i T * and M determined by the vector control circuit of the master-side motor drive device The shaft current command value i M * , the magnetic flux command value φ 2 * , the primary frequency command value ω 1 *, and the angle value θ * are sent, and based on these command values, A T-axis current adjustment calculation for performing an adjustment calculation to make the deviation between the T-axis current command value i T * and the T-axis current detection value i T zero, the primary frequency command value ω 1 * , the T-axis voltage detection value V T , M-axis voltage detection value V M , T-axis current detection value i T , magnetic flux calculation for calculating magnetic flux estimated value φ 2 ^ from M-axis current detected value i M , magnetic flux command value φ 2 * and magnetic flux estimated value φ 2 Magnetic flux adjustment to calculate M-axis current correction value Δi M * from deviation from ^ An electric motor driving apparatus, wherein an M-axis current adjustment calculation is performed to perform an calculation and an adjustment calculation to make a deviation between the M-axis current command value i M * and the detected M- axis current value i M zero.
JP2010189491A 2010-08-26 2010-08-26 Electric motor drive Active JP5699489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189491A JP5699489B2 (en) 2010-08-26 2010-08-26 Electric motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189491A JP5699489B2 (en) 2010-08-26 2010-08-26 Electric motor drive

Publications (2)

Publication Number Publication Date
JP2012050233A JP2012050233A (en) 2012-03-08
JP5699489B2 true JP5699489B2 (en) 2015-04-08

Family

ID=45904439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189491A Active JP5699489B2 (en) 2010-08-26 2010-08-26 Electric motor drive

Country Status (1)

Country Link
JP (1) JP5699489B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231700A (en) * 1994-02-21 1995-08-29 Meidensha Corp Variable-speed driver of induction motor
JPH1042589A (en) * 1996-07-25 1998-02-13 Sanyo Denki Co Ltd Controller for multiplex winding induction motor
JP3899648B2 (en) * 1998-03-13 2007-03-28 株式会社明電舎 Control method of multi-winding motor
JP5217760B2 (en) * 2008-08-08 2013-06-19 富士電機株式会社 Electric motor drive

Also Published As

Publication number Publication date
JP2012050233A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5357232B2 (en) Synchronous machine controller
Rubino et al. Model predictive direct flux vector control of multi-three-phase induction motor drives
JP2020014350A (en) Polyphase motor drive device
CN109690935B (en) Inverter control device and motor drive system
WO2012014526A1 (en) Control apparatus of ac rotating machine
US6731095B2 (en) Controller for multiplex winding motor
JPH11262293A (en) Control method of multiplex winding motor
JPWO2016121237A1 (en) Inverter control device and motor drive system
JP6023314B2 (en) Method and apparatus for controlling an electric machine comprising two or more multiphase stator windings
EP3258594B1 (en) Controlling a multiple-set electrical machine
Nguyen et al. Predictive Torque Control-A solution for mono inverter-dual parallel PMSM system
JP2017038442A (en) Control device for AC rotary electric machine
JP6226901B2 (en) Power generation system
CN112204869B (en) Power conversion device
JP6113651B2 (en) Multi-phase motor drive
KR101316945B1 (en) Doubly-fed wound machine with constant ac or dc source and control method thereof
JP5217760B2 (en) Electric motor drive
Ayaz et al. Direct torque control of dual stator winding induction machine based on PI-sliding mode control
JP5699489B2 (en) Electric motor drive
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP2013081343A (en) Drive unit of motor, inverter control method and program, air conditioner
JP6719162B2 (en) Multi-phase motor drive
Kadaba et al. Design and modeling of a reversible 3-phase to 6-phase induction motor for improved survivability
JP2016096688A (en) Induction motor control apparatus
JP4526628B2 (en) AC motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250