JP5698781B2 - LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME - Google Patents

LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME Download PDF

Info

Publication number
JP5698781B2
JP5698781B2 JP2013055466A JP2013055466A JP5698781B2 JP 5698781 B2 JP5698781 B2 JP 5698781B2 JP 2013055466 A JP2013055466 A JP 2013055466A JP 2013055466 A JP2013055466 A JP 2013055466A JP 5698781 B2 JP5698781 B2 JP 5698781B2
Authority
JP
Japan
Prior art keywords
light
wavelength
region
phosphor
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013055466A
Other languages
Japanese (ja)
Other versions
JP2013135933A (en
Inventor
伊藤 毅
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013055466A priority Critical patent/JP5698781B2/en
Publication of JP2013135933A publication Critical patent/JP2013135933A/en
Application granted granted Critical
Publication of JP5698781B2 publication Critical patent/JP5698781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本発明は、光源装置に関する。   The present invention relates to a light source device.

現在、内視鏡装置では、白色光による通常観察に加えて、特定の波長の光を用いて病変部などの視認性を向上させた観察手法いわゆる特殊光観察が行われている。このような機能を有する内視鏡装置は、具体的には通常観察のための白色光と特殊光観察のための特殊光とを切り替えて内視鏡先端部から射出するように構成されている。   At present, in addition to normal observation with white light, an endoscopic apparatus performs observation method so-called special light observation in which visibility of a lesioned part or the like is improved using light of a specific wavelength. Specifically, the endoscope apparatus having such a function is configured to switch between white light for normal observation and special light for special light observation and emit from the distal end portion of the endoscope. .

特開2006−026128号公報は、このような内視鏡装置用の光源装置のひとつを開示している。この光源装置では、光偏向素子を含むユニットをスライドさせて、光偏向素子を光路上に適宜配置することによって、観察光と特殊光との切り替え、言い換えれば射出光の色の切り替えを実施している。   Japanese Patent Laying-Open No. 2006-026128 discloses one such light source device for an endoscope apparatus. In this light source device, the unit including the light deflecting element is slid and the light deflecting element is appropriately disposed on the optical path to switch between the observation light and the special light, in other words, the color of the emitted light. Yes.

特開2006−026128号公報Japanese Patent Laid-Open No. 2006-026128

前述の光源装置では、観察光と特殊光との切り替えをユニットのスライドによって実施するため、ユニットをスライドさせる機械的な機構が必要であり、これが装置の大型化・複雑化を招いている。   In the above-described light source device, switching between observation light and special light is performed by sliding the unit, so a mechanical mechanism for sliding the unit is necessary, which leads to an increase in size and complexity of the device.

本発明は、このような実状を考慮してなされたものであり、その目的は、射出光の色を切り替え可能な小型の光源装置を提供することである。   The present invention has been made in consideration of such a situation, and an object thereof is to provide a small light source device capable of switching the color of emitted light.

本発明による光源装置は、第1の波長領域の光を発する第1の半導体光源と、前記第1の波長領域と異なる第2の波長領域の光を発する第2の半導体光源と、所定の吸収領域の光を吸収し、前記所定の吸収領域とは異なる第3の波長領域の光を発する波長変換とを有し、前記第1の波長領域の光、および前記第2の波長領域の光をそれぞれ前記波長変換に照射したときに前記波長変換から射出される、第1および第2の照明光の少なくともいずれかを観察対象物に照射して観察を行うための光源装置において、前記波長変換を透過した前記第1の波長領域の光と、前記波長変換に吸収され波長変換された前記第3の波長領域の光との混合光である前記第1の照明光が略白色光となるように、かつ、前記波長変換を透過した前記第2の波長領域の光と、前記波長変換に吸収され波長変換された前記第3の波長領域の光との混合光である前記第2の照明光が、第2の波長領域の光とほぼ等しい光となるように、前記波長変換部の前記第1の波長領域の光に対する吸収率と比べて、前記第2の波長領域の光に対する吸収率は小さく、前記波長変換部の発光スペクトルと前記第1の波長領域の光との混合光は、青色光と緑色光と赤色光のすべてを含む混合光、または青色光と黄色光とを含む混合光であり、前記第1の波長領域の光が照射されたときと比べて、前記第2の波長領域の光が照射されたときに前記波長変換部から射出される前記第3の波長領域の光の光量が小さいことを特徴とする。 A light source device according to the present invention includes a first semiconductor light source that emits light in a first wavelength region, a second semiconductor light source that emits light in a second wavelength region different from the first wavelength region, and a predetermined absorption absorb light in the region, and a wavelength conversion section that emits light of a different third wavelength region from the predetermined absorption region, the light of the first wavelength region, and the light of the second wavelength region In the light source device for performing observation by irradiating the observation object with at least one of the first and second illumination lights emitted from the wavelength conversion unit when each of the wavelength conversion unit is irradiated with the light of the first wavelength region transmitted through the wavelength converting portion, the is absorbed by the wavelength converting portion is a mixed light of the light wavelength converting said third wavelength regions wherein the first illumination light substantially white as the light, and the second has passed through the wavelength converter Approximately equal to the light in the wavelength region, the second illumination light is a mixed light of the light of the absorbed in the wavelength converting portion has been wavelength-converted the third wavelength region, the light of the second wavelength region In order to be light, the absorptance with respect to the light in the second wavelength region is smaller than the absorptance with respect to the light in the first wavelength region of the wavelength converter, and the emission spectrum of the wavelength converter and the first The mixed light with the light in the first wavelength region is a mixed light including all of the blue light, the green light, and the red light, or a mixed light including the blue light and the yellow light, and the light in the first wavelength region is The amount of light in the third wavelength region emitted from the wavelength converter when the light in the second wavelength region is irradiated is smaller than that in the irradiation .

本発明によれば、射出光の色を切り替え可能な小型の光源装置が提供される。   According to the present invention, a small light source device capable of switching the color of emitted light is provided.

本発明の第1実施形態による光源装置を示している。1 shows a light source device according to a first embodiment of the present invention. YAG:Ceのスペクトル特性を示している。The spectral characteristics of YAG: Ce are shown. Ce賦活のCaScSi12のスペクトル特性を示している。The spectral characteristics of Ce activated Ca 3 Sc 2 Si 3 O 12 are shown. 本発明の第2実施形態による光源装置を示している。3 shows a light source device according to a second embodiment of the present invention. 図4に示したマルチ蛍光体ユニットを示している。5 shows the multi-phosphor unit shown in FIG. 図5に示したマルチ蛍光体ユニットに代替可能な別のタイプのマルチ蛍光体ユニットを示している。6 shows another type of multi-phosphor unit that can be substituted for the multi-phosphor unit shown in FIG. Eu賦活のLaSの発光スペクトルを示している。The emission spectrum of Eu activated La 2 O 2 S is shown. Eu,Mn共賦活のBaMgAl1017の発光スペクトルを示している。The emission spectrum of Eu, Mn co-activated BaMgAl 10 O 17 is shown. Eu賦活のBaMgAl1017の発光スペクトルを示している。The emission spectrum of Eu-activated BaMgAl 10 O 17 is shown. 本発明の第3実施形態による光源装置を示している。7 shows a light source device according to a third embodiment of the present invention. SrAlO:Euのスペクトル特性を示している。The spectral characteristic of SrAlO: Eu is shown. 本発明の第4実施形態による光源装置の蛍光体ユニットから射出される光のスペクトルを示している。The spectrum of the light inject | emitted from the fluorescent substance unit of the light source device by 4th Embodiment of this invention is shown. 一般的な内視鏡装置を概略的に示している。1 schematically shows a general endoscope apparatus. 図13に示した内視鏡先端部の構成を示している。The structure of the endoscope front-end | tip part shown in FIG. 13 is shown.

以下、図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1は本発明の第1実施形態による光源装置を示している。図1に示すように、光源装置10は、第1の光源部20Aと、第2の光源部20Bと、第1の光源部20Aから射出される光を導波する光ファイバー30Aと、第2の光源部20Bから射出される光を導波する光ファイバー30Bと、光ファイバー30Aおよび光ファイバー30Bと接続された光カプラー40と、光カプラー40から出力される光を導波する光ファイバー50と、光ファイバー50により導波された光に応じた照明光を発する波長変換部60とを有している。
<First Embodiment>
FIG. 1 shows a light source device according to a first embodiment of the present invention. As shown in FIG. 1, the light source device 10 includes a first light source unit 20A, a second light source unit 20B, an optical fiber 30A that guides light emitted from the first light source unit 20A, and a second light source unit 20A. The optical fiber 30B that guides the light emitted from the light source unit 20B, the optical coupler 30A and the optical coupler 40 connected to the optical fiber 30B, the optical fiber 50 that guides the light output from the optical coupler 40, and the optical fiber 50 guide the light. And a wavelength converter 60 that emits illumination light corresponding to the waved light.

第1の光源部20Aは、第1の半導体レーザー22Aと、第1の半導体レーザー22Aから発せられる発散性の光を収束させるレンズ24と、レンズ24により収束された光を光ファイバー30Aに光学的に結合する結合素子26とを有している。同様に、第2の光源部20Bは、第2の半導体レーザー22Bと、第2の半導体レーザー22Bから発せられる発散性の光を収束させるレンズ24と、レンズ24により収束された光を光ファイバー30Aに光学的に結合する結合素子26とを有している。   The first light source unit 20A includes a first semiconductor laser 22A, a lens 24 that converges divergent light emitted from the first semiconductor laser 22A, and optically the light converged by the lens 24 onto the optical fiber 30A. And a coupling element 26 to be coupled. Similarly, the second light source unit 20B includes a second semiconductor laser 22B, a lens 24 for converging divergent light emitted from the second semiconductor laser 22B, and light converged by the lens 24 to the optical fiber 30A. And a coupling element 26 for optical coupling.

光源装置10は、第1の半導体レーザー22Aの発光・消灯すなわちオン・オフを独立に切り替える駆動回路82Aと、第2の半導体レーザー22Bの発光・消灯すなわちオン・オフを独立に切り替える駆動回路82Bとをさらに有している。   The light source device 10 includes a drive circuit 82A for independently switching on / off of the first semiconductor laser 22A, that is, on / off, and a drive circuit 82B for independently switching on / off of the second semiconductor laser 22B, that is, on / off. It has further.

光カプラー40は、2つの入射端と1つの射出端とを有する2入力1出力タイプの光ファイバーカプラー42で構成されている。光ファイバーカプラー42の一方の入射端は光ファイバー30Aを介して第1の光源部20Aと光学的に結合されている。光ファイバーカプラー42のもう一方の入射端は光ファイバー30Bを介して第2の光源部20Bと光学的に結合されている。光ファイバーカプラー42の射出端は光ファイバー50を介して波長変換部60と光学的に結合されている。   The optical coupler 40 includes a two-input one-output type optical fiber coupler 42 having two incident ends and one exit end. One incident end of the optical fiber coupler 42 is optically coupled to the first light source unit 20A via the optical fiber 30A. The other incident end of the optical fiber coupler 42 is optically coupled to the second light source unit 20B via the optical fiber 30B. The exit end of the optical fiber coupler 42 is optically coupled to the wavelength converter 60 via the optical fiber 50.

なお、ここで言う光カプラーとは、複数の入射端からの光を、少なくとも一つの出射端へ光学的に接続するものであり、機械的な接続形態について何ら限定するものではない。例えば、2本以上の光ファイバーの被覆の一部を各々除去し、これらを接触させた状態で加熱、押圧することにより、光ファイバーのコア部を結合したものでもよいし、平行に配置した複数の光ファイバーの端部に、対向して配置した別の光ファイバーの端部を接触させ、加熱により結合したものでもよい。これら二つの例では、結合部を光カプラーの一部と言うこともできるし、結合部そのものを光カプラーと言うこともできる。いずれの場合も、入射光を結合部に導光する入射側の光ファイバーを、光カプラーの入射端に接続された入射側光ファイバーと呼び、また、結合部から出射する光を出射端に導光する出射側の光ファイバーを、光カプラーの出射端に接続する射出側光ファイバーと呼ぶことができる。   The optical coupler here is for optically connecting light from a plurality of incident ends to at least one outgoing end, and is not intended to limit the mechanical connection form. For example, a part of the coating of two or more optical fibers may be removed, and the core portions of the optical fibers may be combined by heating and pressing in a state where they are in contact with each other, or a plurality of optical fibers arranged in parallel The end portion of the other optical fiber disposed opposite to the end portion may be brought into contact with the other end portion and coupled by heating. In these two examples, the coupling part can be called a part of the optical coupler, or the coupling part itself can be called the optical coupler. In any case, the incident-side optical fiber that guides incident light to the coupling portion is called an incident-side optical fiber connected to the incident end of the optical coupler, and the light emitted from the coupling portion is guided to the emitting end. The outgoing optical fiber can be called an outgoing optical fiber connected to the outgoing end of the optical coupler.

第1の半導体レーザー22Aは、波長460nmの青色のレーザー光を発し、第2半導体レーザー22Bは、波長415nmの青紫色のレーザー光を発する。波長変換部60は、Ce(セリウム)賦活のYAG(イットリウム・アルミニウム・ガーネット)(以下、YAG:Ceと記す)の蛍光体を含む蛍光体ユニット62で構成されている。YAG:Ceのスペクトル特性を図2に示す。図2において、破線はYAG:Ceの吸収スペクトルを示し、実線は発光スペクトルを示している。図2に示す通り、YAG:Ceの吸収スペクトルは、460nm付近にピークを有している。ここで、吸収スペクトルの吸収領域は、蛍光体の吸収スペクトルの吸収強度が、ピーク値の半分以上である波長領域であると定義する。YAG:Ceの吸収スペクトルの吸収領域は、おおよそ430nm〜480nmである。蛍光体ユニット62は、第1の半導体レーザー22Aの発する波長460nmの青色光を吸収して波長530nm程度の光を発するが、第2半導体レーザー22Bの発する波長415nmの青紫色光はほとんど透過する。   The first semiconductor laser 22A emits blue laser light having a wavelength of 460 nm, and the second semiconductor laser 22B emits blue-violet laser light having a wavelength of 415 nm. The wavelength conversion unit 60 includes a phosphor unit 62 including a Ce (cerium) activated YAG (yttrium, aluminum, garnet) (hereinafter referred to as YAG: Ce) phosphor. The spectral characteristics of YAG: Ce are shown in FIG. In FIG. 2, the broken line indicates the absorption spectrum of YAG: Ce, and the solid line indicates the emission spectrum. As shown in FIG. 2, the absorption spectrum of YAG: Ce has a peak near 460 nm. Here, the absorption region of the absorption spectrum is defined as a wavelength region in which the absorption intensity of the absorption spectrum of the phosphor is half or more of the peak value. The absorption region of the absorption spectrum of YAG: Ce is approximately 430 nm to 480 nm. The phosphor unit 62 absorbs blue light having a wavelength of 460 nm emitted from the first semiconductor laser 22A and emits light having a wavelength of about 530 nm, but almost transmits blue-violet light having a wavelength of 415 nm emitted from the second semiconductor laser 22B.

次に、本実施形態による光源装置の動作について説明する。   Next, the operation of the light source device according to the present embodiment will be described.

始めに第1の半導体レーザー22Aをオンにしたときの動作について説明する。第1の半導体レーザー22Aをオンにすると、第1の半導体レーザー22Aは波長460nmの青色のレーザー光を発する。第1の半導体レーザー22Aから発せられたレーザー光はレンズ24によって収束されて光ファイバー30Aに入射する。光ファイバー30Aに入射したレーザー光は、光ファイバー30Aを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62に入射する。図2から分かるように、波長460nmの青色レーザー光はYAG:Ceの吸収領域の光であるので、蛍光体ユニット62に入射した青色レーザー光の一部は、蛍光体ユニット62内のYAG:Ceによって、波長530nm付近にピークを有するブロードなスペクトルの黄色光に波長変換され、波長変換された黄色光が蛍光体ユニット62の射出端から射出される。また蛍光体ユニット62に入射した青色レーザー光の残りの一部は、波長変換されることなく蛍光体ユニット62を通過し、蛍光体ユニット62の射出端から射出される。この結果、蛍光体ユニット62の射出端からは、蛍光体ユニット62によって波長変換された黄色光と、半導体レーザー22Aから発せられた青色光とが射出される。本実施形態では、これら黄色光と青色光とが混合されたときに白色光となるように調整されている。その結果、蛍光体ユニット62の射出端からは白色光が射出される。すなわち、第1の半導体レーザー22Aをオンにしたとき、蛍光体ユニット62の射出端からは、通常観察用の観察光である白色光が射出される。   First, an operation when the first semiconductor laser 22A is turned on will be described. When the first semiconductor laser 22A is turned on, the first semiconductor laser 22A emits blue laser light having a wavelength of 460 nm. The laser light emitted from the first semiconductor laser 22A is converged by the lens 24 and enters the optical fiber 30A. The laser light incident on the optical fiber 30A is guided through the optical fiber 30A, passes through the optical fiber coupler 42, is guided through the optical fiber 50, and enters the phosphor unit 62. As can be seen from FIG. 2, since the blue laser light having a wavelength of 460 nm is light in the YAG: Ce absorption region, part of the blue laser light incident on the phosphor unit 62 is YAG: Ce in the phosphor unit 62. Thus, the wavelength conversion is performed to yellow light having a broad spectrum having a peak near the wavelength of 530 nm, and the wavelength-converted yellow light is emitted from the emission end of the phosphor unit 62. The remaining part of the blue laser light incident on the phosphor unit 62 passes through the phosphor unit 62 without being wavelength-converted, and is emitted from the emission end of the phosphor unit 62. As a result, yellow light whose wavelength has been converted by the phosphor unit 62 and blue light emitted from the semiconductor laser 22A are emitted from the emission end of the phosphor unit 62. In this embodiment, the yellow light and the blue light are adjusted so as to become white light when mixed. As a result, white light is emitted from the emission end of the phosphor unit 62. That is, when the first semiconductor laser 22A is turned on, white light that is observation light for normal observation is emitted from the emission end of the phosphor unit 62.

次に、第2の半導体レーザー22Bをオンにしたときの動作について説明する。第2の半導体レーザー22Bをオンにすると、第2の半導体レーザー22Bは波長415nmの青紫色のレーザー光を発する。第2の半導体レーザー22Bから発せられたレーザー光はレンズ24によって収束されて光ファイバー30Bに入射する。光ファイバー30Bに入射したレーザー光は、光ファイバー30Bを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62に入射する。図2から分かるように、波長415nmの青紫色レーザー光はYAG:Ceの吸収領域に含まれないため、蛍光体ユニット62のYAG:Ceにはほとんど吸収されないので、蛍光体ユニット62に入射した青紫色レーザー光は、ほとんどが蛍光体ユニット62を通過し、蛍光体ユニット62の射出端から射出される。すなわち、第2の半導体レーザー22Bをオンにしたとき、蛍光体ユニット62の射出端からは、特殊光観察用の特殊光である波長415nmの青紫光が射出される。   Next, an operation when the second semiconductor laser 22B is turned on will be described. When the second semiconductor laser 22B is turned on, the second semiconductor laser 22B emits blue-violet laser light having a wavelength of 415 nm. The laser light emitted from the second semiconductor laser 22B is converged by the lens 24 and enters the optical fiber 30B. The laser light incident on the optical fiber 30B is guided through the optical fiber 30B, passes through the optical fiber coupler 42, is guided through the optical fiber 50, and enters the phosphor unit 62. As can be seen from FIG. 2, the blue-violet laser light having a wavelength of 415 nm is not included in the YAG: Ce absorption region, and thus is hardly absorbed by YAG: Ce of the phosphor unit 62. Most of the violet laser light passes through the phosphor unit 62 and is emitted from the emission end of the phosphor unit 62. That is, when the second semiconductor laser 22B is turned on, blue-violet light having a wavelength of 415 nm, which is special light for special light observation, is emitted from the emission end of the phosphor unit 62.

このように、第1の半導体レーザー22Aだけがオンにされているときに蛍光体ユニット62から射出される光と、第2の半導体レーザー22Bだけがオンにされているときに蛍光体ユニット62から射出される光は、色が互いに異なる。   Thus, the light emitted from the phosphor unit 62 when only the first semiconductor laser 22A is turned on, and the phosphor unit 62 when only the second semiconductor laser 22B is turned on. The emitted light has different colors.

本実施形態の光源装置10では、第1の半導体レーザー22Aと第2の半導体レーザー22Bとの一方を選択的にオンにすることによって、観察光である白色光と特殊光である波長415nmの青紫光とがスライドユニットなどの機械的な可動機構を使用することなく切り替えられて蛍光体ユニット62の同一の射出端から射出される。   In the light source device 10 of this embodiment, by selectively turning on one of the first semiconductor laser 22A and the second semiconductor laser 22B, white light that is observation light and blue light having a wavelength of 415 nm that is special light are used. The purple light is switched without using a mechanical movable mechanism such as a slide unit, and emitted from the same emission end of the phosphor unit 62.

このような2つの半導体レーザー22A,22Bと光カプラー40と波長変換部60との組み合わせにより、白色光と青紫光を容易に切替可能な光源装置が得られる。また、この光源装置は、機械的な可動機構を持たないシンプルな構造のため、小型化にも適している。   By combining the two semiconductor lasers 22A and 22B, the optical coupler 40, and the wavelength conversion unit 60, a light source device capable of easily switching between white light and blue-violet light is obtained. In addition, this light source device is suitable for miniaturization because of its simple structure having no mechanical movable mechanism.

なお、波長415nmの青紫光は、血液中のヘモグロビンによる吸収が大きく、血管を観察しやすくする効果があるため、本実施形態ではこの波長の光を選択したが、この波長の光に限らず、観察目的に応じた波長の光を選択してよい。すなわち、YAG:Ceに対しては、430nm以下の波長の光や480nm以上の波長の光を使用してよい。   Note that blue-violet light having a wavelength of 415 nm is highly absorbed by hemoglobin in blood and has an effect of facilitating observation of blood vessels. Therefore, in this embodiment, light having this wavelength is selected, but not limited to light having this wavelength. You may select the light of the wavelength according to the observation objective. That is, for YAG: Ce, light having a wavelength of 430 nm or less or light having a wavelength of 480 nm or more may be used.

また、蛍光体はYAG:Ceに限定されるものではなく、ほかの適当な蛍光体、例えばCe賦活のCaScSi12などの蛍光体を使用してもよい。図3にCe賦活のCaScSi12のスペクトル特性を示す。図中、破線が吸収スペクトルで示し、実線が発光スペクトルを示している。図3に示す通り、このCe賦活のCaScSi12の吸収領域はおおよそ460nm〜530nmとなっている。従って、この蛍光体を用いるときは、これに応じて、第1の半導体レーザー22Aの励起光の波長を例えば500nm程度にすることによって、より効率的に励起光が波長変換されて明るい照明光が得られる。 The phosphor is not limited to YAG: Ce, and other suitable phosphors, for example, phosphors such as Ce-activated Ca 3 Sc 2 Si 3 O 12 may be used. FIG. 3 shows the spectral characteristics of Ce-activated Ca 3 Sc 2 Si 3 O 12 . In the figure, a broken line indicates an absorption spectrum, and a solid line indicates an emission spectrum. As shown in FIG. 3, the absorption region of the Ce activated Ca 3 Sc 2 Si 3 O 12 is approximately 460 nm to 530 nm. Therefore, when this phosphor is used, the wavelength of the excitation light of the first semiconductor laser 22A is set to about 500 nm, for example, so that the excitation light is more efficiently wavelength-converted and bright illumination light is emitted. can get.

<第2実施形態>
次に、第2実施形態による光源装置について図4ないし図9を参照して説明する。第2実施形態では、第1実施形態と共通の部分については説明を省略し、主に異なる部分について説明する。
Second Embodiment
Next, a light source device according to a second embodiment will be described with reference to FIGS. In the second embodiment, description of parts common to the first embodiment is omitted, and different parts are mainly described.

図4は、第2実施形態による光源装置を示している。図4に示すように、本実施形態による光源装置10Aは、第1実施形態による光源装置10との比較において、第1の光源部20Aの代わりに第3の光源部20Cを有し、光ファイバー30Aの代わりに光ファイバー30Cを有し、蛍光体ユニット62の代わりに蛍光体ユニット62Aを有している。第3の光源部20Cは、第3の半導体レーザー22Cと、第3の半導体レーザー22Cから発せられる発散性の光を収束させるレンズ24と、レンズ24により収束された光を光ファイバー30Cに光学的に結合する結合素子26とを有している。光源装置10Aはまた、駆動回路82Aの代わりに、第3の半導体レーザー22Cの発光・消灯すなわちオン・オフを独立に切り替える駆動回路82Cを有している。それ以外の構成は、第1実施形態と同様である。   FIG. 4 shows a light source device according to the second embodiment. As shown in FIG. 4, the light source device 10A according to the present embodiment includes a third light source unit 20C instead of the first light source unit 20A in comparison with the light source device 10 according to the first embodiment, and an optical fiber 30A. An optical fiber 30C is provided instead of the phosphor unit 62, and a phosphor unit 62A is provided instead of the phosphor unit 62. The third light source unit 20C includes a third semiconductor laser 22C, a lens 24 that converges the divergent light emitted from the third semiconductor laser 22C, and optically the light converged by the lens 24 on the optical fiber 30C. And a coupling element 26 to be coupled. The light source device 10A also has a drive circuit 82C that switches the light emission / extinction of the third semiconductor laser 22C, that is, on / off independently, instead of the drive circuit 82A. Other configurations are the same as those in the first embodiment.

第3の半導体レーザー22Cは、波長375nmの近紫外光を発する。蛍光体ユニット62Aは、組成の異なる複数種類の蛍光体を含むマルチ蛍光体ユニットで構成されている。図5は、図4に示した蛍光体ユニット62Aを示している。図5に示すように、蛍光体ユニット62Aは、赤色光を発するR蛍光体64Aを含む領域66Aと、緑色光を発するG蛍光体64Bを含む領域66Bと、青色光を発するB蛍光体64Cを含む領域66Cとを入射端側から射出端側に順に積層して構成されたマルチ蛍光体ユニットで構成されている。これらの蛍光体64A,64B,64Cは、いずれも近紫外光である375nmの光により励起されて、それぞれ赤色光と緑色光と青色光を発するものが選択されている。このような蛍光体64A,64B,64Cは、たとえば、それぞれ、Eu賦活のLaS(赤色)、Eu,Mn共賦活のBaMgAl1017(緑色)、Eu賦活のBaMgAl1017(青色)であってよい。Eu賦活のLaS(赤色)の発光スペクトルを図7に、Eu,Mn共賦活のBaMgAl1017(緑色)の発光スペクトルを図8に、Eu賦活のBaMgAl1017(青色)の発光スペクトルを図9に示す。図7ないし図9に示す通り、これらの蛍光体の吸収領域は、それぞれ、270nm〜400nm、230nm〜400nm、270nm〜410nmである。これらの蛍光体を含むマルチ蛍光体ユニットの吸収領域は、すべての蛍光体の吸収領域の重なり領域とみなせ、270nm〜400nmである。 The third semiconductor laser 22C emits near ultraviolet light having a wavelength of 375 nm. The phosphor unit 62A is composed of a multi-phosphor unit including a plurality of types of phosphors having different compositions. FIG. 5 shows the phosphor unit 62A shown in FIG. As shown in FIG. 5, the phosphor unit 62A includes a region 66A including an R phosphor 64A that emits red light, a region 66B including a G phosphor 64B that emits green light, and a B phosphor 64C that emits blue light. The region 66C including the multi-phosphor unit is configured by stacking the including region 66C in order from the incident end side to the emission end side. These phosphors 64A, 64B, and 64C are selected to emit red light, green light, and blue light by being excited by 375 nm light, which is near ultraviolet light. Such phosphors 64A, 64B, and 64C include, for example, Eu-activated La 2 O 2 S (red), Eu and Mn co-activated BaMgAl 10 O 17 (green), and Eu-activated BaMgAl 10 O 17 ( Blue). FIG. 7 shows the emission spectrum of Eu-activated La 2 O 2 S (red), FIG. 8 shows the emission spectrum of Eu and Mn co-activated BaMgAl 10 O 17 (green), and FIG. 8 shows the Eu-activated BaMgAl 10 O 17 (blue). The emission spectrum of is shown in FIG. As shown in FIGS. 7 to 9, the absorption regions of these phosphors are 270 nm to 400 nm, 230 nm to 400 nm, and 270 nm to 410 nm, respectively. The absorption region of the multi-phosphor unit including these phosphors can be regarded as an overlapping region of the absorption regions of all the phosphors, and is 270 nm to 400 nm.

次に、第2実施形態による光源装置の動作について説明する。   Next, the operation of the light source device according to the second embodiment will be described.

第3の半導体レーザー22Cをオンにすると、第3の半導体レーザー22Cは波長375nmの近紫外のレーザー光を発する。第3の半導体レーザー22Cから発せられた近紫外レーザー光はレンズ24によって収束されて光ファイバー30Cに入射する。光ファイバー30Cに入射したレーザー光は光ファイバー30Cを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62Aに入射する。蛍光体ユニット62Aは、図5に示すように、光ファイバー50と接続されている入射端側から順に、赤色光を発するR蛍光体64Aを含む領域66Aと、緑色光を発するG蛍光体64Bを含む領域66Bと、青色光を発するB蛍光体64Cを含む領域66Cとが配列されている。また、第3の半導体レーザー22Cの発する波長375nmの光は、蛍光体ユニット62Aを構成するマルチ蛍光体ユニットの吸収領域の光である。このため、領域66Aに入射した近紫外光の一部はR蛍光体64Aによって赤色光に波長変換されて領域66Bに入射し、領域66Aに入射した近紫外光の残りの一部はそのまま領域66Aを通過して領域66Bに入射する。領域66Bに入射した近紫外光の一部はG蛍光体64Bによって緑色光に波長変換されて領域66Cに入射する。また、G蛍光体64Bは赤色光を吸収しないので、領域66Bに入射した赤色光はそのまま領域66Bを通過する。従って、赤色光と緑色光と近紫外光とがB蛍光体64Cを含む領域66Cに入射する。領域66Cに入射した近紫外光のほとんどはB蛍光体64Cによって青色光に波長変換される。また、B蛍光体64Cは赤色光と緑色光を吸収しないので、領域66Cに入射した赤色光と緑色光はそのまま領域66Cを通過する。その結果、蛍光体ユニット62Aの射出端からは赤色光と緑色光と青色光とが混合された白色光が射出される。   When the third semiconductor laser 22C is turned on, the third semiconductor laser 22C emits near-ultraviolet laser light having a wavelength of 375 nm. Near-ultraviolet laser light emitted from the third semiconductor laser 22C is converged by the lens 24 and enters the optical fiber 30C. The laser light incident on the optical fiber 30C is guided through the optical fiber 30C, is guided through the optical fiber coupler 42, is guided through the optical fiber 50, and enters the phosphor unit 62A. As shown in FIG. 5, the phosphor unit 62A includes a region 66A including an R phosphor 64A that emits red light and a G phosphor 64B that emits green light in order from the incident end connected to the optical fiber 50. The region 66B and the region 66C including the B phosphor 64C that emits blue light are arranged. The light with a wavelength of 375 nm emitted from the third semiconductor laser 22C is light in the absorption region of the multi-phosphor unit that constitutes the phosphor unit 62A. For this reason, a part of the near ultraviolet light incident on the region 66A is wavelength-converted into red light by the R phosphor 64A and incident on the region 66B, and the remaining part of the near ultraviolet light incident on the region 66A remains as it is in the region 66A. And enters the region 66B. A part of the near ultraviolet light incident on the region 66B is wavelength-converted to green light by the G phosphor 64B and enters the region 66C. Further, since the G phosphor 64B does not absorb red light, the red light incident on the region 66B passes through the region 66B as it is. Accordingly, red light, green light, and near-ultraviolet light are incident on the region 66C including the B phosphor 64C. Most of the near ultraviolet light incident on the region 66C is wavelength-converted into blue light by the B phosphor 64C. Further, since the B phosphor 64C does not absorb red light and green light, the red light and green light incident on the region 66C pass through the region 66C as they are. As a result, white light in which red light, green light, and blue light are mixed is emitted from the emission end of the phosphor unit 62A.

また、第2の半導体レーザー22Bをオンにすると、半導体レーザー22Bは波長415nmの青紫色のレーザー光を発する。第2の半導体レーザー22Bから発せられたレーザー光は、第1実施形態で説明したように、レンズ24によって収束されて光ファイバー30Bに入射し、光ファイバー30Bを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62に入射する。波長415nmの青紫色光はマルチ蛍光体ユニットの吸収領域の光ではないので、蛍光体ユニット62Aに入射した青紫色光は、R蛍光体64AとG蛍光体64BとB蛍光体64Cのいずれにもほとんど吸収されず、蛍光体ユニット62Aをそのまま通過して射出端から射出される。   When the second semiconductor laser 22B is turned on, the semiconductor laser 22B emits blue-violet laser light having a wavelength of 415 nm. As described in the first embodiment, the laser light emitted from the second semiconductor laser 22B is converged by the lens 24 and incident on the optical fiber 30B, guided through the optical fiber 30B, via the optical fiber coupler 42, The light is guided through the optical fiber 50 and enters the phosphor unit 62. Since blue-violet light having a wavelength of 415 nm is not light in the absorption region of the multi-phosphor unit, blue-violet light incident on the phosphor unit 62A is incident on any of the R phosphor 64A, the G phosphor 64B, and the B phosphor 64C. It is hardly absorbed and passes through the phosphor unit 62A as it is and is emitted from the emission end.

この結果、光源装置10Aは、第3の半導体レーザー22Cが選択的にオンにされたときは白色光を射出し、第2の半導体レーザー22Bがオンにされたときは波長415nmの青紫光を射出する。光源装置10Aから射出される白色光は、赤色光と緑色光と青色光の成分を有するため、第1実施形態と比較して演色性の高い照明光となる。すなわち、本実施形態によれば、第1実施形態と同じ利点を有し、さらに演色性が向上した光源装置が得られる。   As a result, the light source device 10A emits white light when the third semiconductor laser 22C is selectively turned on, and emits blue-violet light with a wavelength of 415 nm when the second semiconductor laser 22B is turned on. To do. Since the white light emitted from the light source device 10A has components of red light, green light, and blue light, it becomes illumination light having higher color rendering properties as compared with the first embodiment. That is, according to the present embodiment, a light source device having the same advantages as the first embodiment and having improved color rendering can be obtained.

なお、本実施形態では、蛍光体ユニット62Aは、図5に示すように、R蛍光体64Aを含む領域66AとG蛍光体64Bを含む領域66BとB蛍光体64Cを含む領域66Cとが積層されたマルチ蛍光体ユニットで構成されているが、図6に示すように、それらの蛍光体64A,64B,64Cのすべてが混合された別のタイプのマルチ蛍光体ユニットで構成されてもよい。これにより、蛍光体ユニット62Aがシンプルに構成される。   In the present embodiment, as shown in FIG. 5, the phosphor unit 62A includes a region 66A including the R phosphor 64A, a region 66B including the G phosphor 64B, and a region 66C including the B phosphor 64C. However, as shown in FIG. 6, it may be composed of another type of multi-phosphor unit in which all of the phosphors 64A, 64B and 64C are mixed. Thereby, the phosphor unit 62A is simply configured.

<第3実施形態>
次に、第3実施形態による光源装置について図10を参照して説明する。第3実施形態では、第1実施形態と共通の部分については説明を省略し、主に異なる部分について説明する。
<Third Embodiment>
Next, a light source device according to a third embodiment will be described with reference to FIG. In the third embodiment, description of parts common to the first embodiment is omitted, and different parts are mainly described.

図10は、第3実施形態による光源装置を示している。図10に示すように、本実施形態による光源装置10Bは、光カプラー40が2つの入射端と2つの射出端を有する2入力2出力タイプの光ファイバーカプラー42Aで構成されており、光ファイバーカプラー42Aの2つの射出端にそれぞれ2本の光ファイバー50と2つの蛍光体ユニット62とが接続されている点が第1実施形態と異なっている。   FIG. 10 shows a light source device according to the third embodiment. As shown in FIG. 10, in the light source device 10B according to the present embodiment, the optical coupler 40 includes a two-input two-output type optical fiber coupler 42A having two incident ends and two exit ends. The difference from the first embodiment is that two optical fibers 50 and two phosphor units 62 are connected to two exit ends, respectively.

光ファイバーカプラー42Aは、2つの入射端と、2つの射出端とを有し、一方の入射端に入射した光を2つの射出端にほぼ等しい光強度割合で分配し、もう一方の入射端に入射した光を2つの射出端にほぼ等しい光強度割合で分配する。波長変換部60は、2つの蛍光体ユニット62を有している。2つの蛍光体ユニット62は、それぞれ、2本の光ファイバー50を介して光ファイバーカプラー42Aの2つの射出端と光学的に接続されている。2つの蛍光体ユニット62はほぼ等しい波長変換特性を有している。   The optical fiber coupler 42A has two entrance ends and two exit ends, distributes light incident on one entrance end at a light intensity ratio substantially equal to the two exit ends, and enters the other entrance end. The emitted light is distributed to the two exit ends at an approximately equal light intensity ratio. The wavelength conversion unit 60 has two phosphor units 62. The two phosphor units 62 are optically connected to the two exit ends of the optical fiber coupler 42A via the two optical fibers 50, respectively. The two phosphor units 62 have substantially the same wavelength conversion characteristics.

第1の半導体レーザー22Aが発する波長460nmの青色光は光ファイバー30Aを導波して光ファイバーカプラー42Aに入射する。光ファイバーカプラー42Aに入射した青色光は、光ファイバーカプラー42Aによってほぼ等しい強度で2本の光ファイバー50に分配される。2本の光ファイバー50に分配された青色光は、それぞれ、2本の光ファイバー50を導波して2つの蛍光体ユニットに入射する。各蛍光体ユニットに入射した青色光は、第1実施形態で説明したように、青色光と波長変換された黄色光とが混合された白色光となり、各蛍光体ユニットから射出される。   The blue light having a wavelength of 460 nm emitted from the first semiconductor laser 22A is guided through the optical fiber 30A and enters the optical fiber coupler 42A. The blue light incident on the optical fiber coupler 42A is distributed to the two optical fibers 50 with substantially equal intensity by the optical fiber coupler 42A. The blue light distributed to the two optical fibers 50 is guided through the two optical fibers 50 and enters the two phosphor units. As described in the first embodiment, the blue light incident on each phosphor unit becomes white light in which blue light and wavelength-converted yellow light are mixed, and is emitted from each phosphor unit.

また、第2の半導体レーザー22Bが発する波長415nmの青紫色光は光ファイバー30Bを導波して光ファイバーカプラー42Aに入射する。光ファイバーカプラー42Aに入射した青紫色光は、光ファイバーカプラー42Aによってほぼ等しい強度で2本の光ファイバー50に分配される。2本の光ファイバー50に分配された青紫色光は、それぞれ、2本の光ファイバー50を導波して2つの蛍光体ユニットに入射する。各蛍光体ユニットに入射した青紫色光は、第1実施形態で説明したように、そのまま各蛍光体ユニットから射出される。   Further, blue-violet light having a wavelength of 415 nm emitted from the second semiconductor laser 22B is guided through the optical fiber 30B and enters the optical fiber coupler 42A. The blue-violet light incident on the optical fiber coupler 42A is distributed to the two optical fibers 50 with substantially equal intensity by the optical fiber coupler 42A. The blue-violet light distributed to the two optical fibers 50 is guided through the two optical fibers 50 and enters the two phosphor units. The blue-violet light incident on each phosphor unit is emitted from each phosphor unit as it is, as described in the first embodiment.

本実施形態によれば、第1実施形態の利点を有し、さらに観察対象を2方向から照明可能な光源装置が得られる。たとえば、内視鏡装置のように、観察対象から光源までが非常に近接しているとき、一方向だけからの照明は、影を生じさせるなど、観察対象物を見づらくすることがあるが、観察対象を2方向から照明するように2つの蛍光体ユニットの射出端を配置することによって、影を生じさせ難くすることが可能となる。この結果、大型化を伴うことなく、観察により適した光源装置が得られる。   According to this embodiment, the light source device that has the advantages of the first embodiment and can illuminate the observation target from two directions is obtained. For example, when the observation target and the light source are very close to each other as in an endoscopic device, illumination from only one direction may cause shadows, making it difficult to see the observation target. By arranging the emission ends of the two phosphor units so as to illuminate the object from two directions, it is possible to make it difficult to cause a shadow. As a result, a light source device more suitable for observation can be obtained without increasing the size.

本実施形態では、波長変換部60の各蛍光体ユニットが、第1実施形態で説明した蛍光体ユニット62で構成されているが、第2実施形態で説明したマルチ蛍光体ユニット62Aで構成されてもよい。さらに、光カプラー40を、3以上の出力端を有する光ファイバーカプラーに変更するとともに、光ファイバーカプラーの3以上の出力端に、それぞれ、光ファイバーカプラーの出力端と同数の光ファイバーと複数の蛍光体ユニットとを接続した構成としてもよい。   In this embodiment, each phosphor unit of the wavelength conversion unit 60 is configured by the phosphor unit 62 described in the first embodiment, but is configured by the multi-phosphor unit 62A described in the second embodiment. Also good. Further, the optical coupler 40 is changed to an optical fiber coupler having three or more output ends, and the same number of optical fibers and a plurality of phosphor units as the output ends of the optical fiber coupler are respectively connected to the three or more output ends of the optical fiber coupler. A connected configuration may be used.

<第4実施形態>
次に、第4実施形態による光源装置について説明する。本実施形態による光源装置は、基本的に第1実施形態と同様の構成を有しているが、波長変換部60が、励起波長特性の異なる2種類の蛍光体を含む蛍光体ユニットで構成されている点が第1実施形態と異なっている。
<Fourth embodiment>
Next, a light source device according to a fourth embodiment will be described. The light source device according to the present embodiment basically has the same configuration as that of the first embodiment, but the wavelength conversion unit 60 is configured by a phosphor unit including two types of phosphors having different excitation wavelength characteristics. This is different from the first embodiment.

本実施形態における蛍光体ユニット62は、第1の半導体レーザー22Aから発せられる青色レーザー光は波長変換するが、第2の半導体レーザー22Bから発せられる青紫色レーザー光はほとんど波長変換しない第1の蛍光体と、第1の半導体レーザーから発せられる青色レーザー光は波長変換しないが、第2の半導体レーザー22Bから発せられる青紫色レーザー光は波長変換する第2の蛍光体とを含む蛍光体ユニットで構成されている。   The phosphor unit 62 in the present embodiment converts the wavelength of the blue laser light emitted from the first semiconductor laser 22A, but does not convert the wavelength of the blue-violet laser light emitted from the second semiconductor laser 22B. And a blue phosphor light emitted from the first semiconductor laser is not wavelength-converted, but a blue-violet laser light emitted from the second semiconductor laser 22B is composed of a phosphor unit including a second phosphor that converts the wavelength Has been.

本実施形態においては、たとえば、第1の蛍光体はYAG:Ceで構成され、第2の蛍光体は、Eu賦活のSrAl(以下、SrAlO:Euと記す)で構成されている。図2はYAG:Ceのスペクトル特性を示し、図11はSrAlO:Euのスペクトル特性を示している。第1の蛍光体であるYAG:Ceの吸収領域は430nm〜480nmであり、第2の蛍光体であるSrAlO:Euの吸収領域は270nm〜430nmである。 In the present embodiment, for example, the first phosphor is composed of YAG: Ce, and the second phosphor is composed of Eu-activated SrAl 2 O 4 (hereinafter referred to as SrAlO: Eu). FIG. 2 shows the spectral characteristics of YAG: Ce, and FIG. 11 shows the spectral characteristics of SrAlO: Eu. The absorption region of YAG: Ce that is the first phosphor is 430 nm to 480 nm, and the absorption region of SrAlO: Eu that is the second phosphor is 270 nm to 430 nm.

この第4実施形態の動作について説明する。   The operation of the fourth embodiment will be described.

始めに第1の半導体レーザー22Aをオンにしたときの動作について説明する。第1の半導体レーザー22Aは、第1実施形態で説明したように、460nmの波長の青色レーザー光を発する。第1の半導体レーザー22Aから発せられたレーザー光は、光ファイバー30Aを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62に入射する。蛍光体ユニット62は、図2に示した特性を有するYAG:Ceと、図11に示した特性を有するSrAlO:Euとを含んでおり、また、波長460nmの青色光は、YAG:Ceの吸収領域内にあり、かつ、SrAlO:Euの吸収領域外にある光であるため、蛍光体ユニット62に入射した青色光は、YAG:Ceによって効率的に波長530nm程度の黄色光に波長変換されるが、SrAlO:Euによってはほとんど波長変換されない。その結果、蛍光体ユニット62の射出端からは、青色光とYAG:Ceにより波長変換された黄色光とが混合された白色光が射出される。   First, an operation when the first semiconductor laser 22A is turned on will be described. As described in the first embodiment, the first semiconductor laser 22A emits blue laser light having a wavelength of 460 nm. The laser light emitted from the first semiconductor laser 22A is guided through the optical fiber 30A, is guided through the optical fiber coupler 42, is guided through the optical fiber 50, and enters the phosphor unit 62. The phosphor unit 62 includes YAG: Ce having the characteristics shown in FIG. 2 and SrAlO: Eu having the characteristics shown in FIG. 11, and blue light having a wavelength of 460 nm is absorbed by YAG: Ce. Since the light is within the region and outside the SrAlO: Eu absorption region, the blue light incident on the phosphor unit 62 is efficiently wavelength-converted into yellow light having a wavelength of about 530 nm by YAG: Ce. However, wavelength conversion is hardly performed by SrAlO: Eu. As a result, white light in which blue light and yellow light wavelength-converted by YAG: Ce are mixed is emitted from the emission end of the phosphor unit 62.

次に、第2の半導体レーザー22Bをオンにしたときの動作について説明する。第2の半導体レーザー22Bは、第1実施形態で説明したように、波長415nmの青紫色レーザー光を発する。第2の半導体レーザー22Bから発せられたレーザー光は、光ファイバー30Bを導波し、光ファイバーカプラー42を経由し、光ファイバー50を導波して蛍光体ユニット62に入射する。波長415nmの青紫色光は、SrAlO:Euの吸収領域内にあり、かつ、YAG:Ceの吸収領域外にある光であるため、蛍光体ユニット62に入射した青紫色光は、YAG:Ceによってはほとんど波長変換されないが、SrAlO:Euによって波長540nm程度の緑色光に効率的に波長変換される。その結果、蛍光体ユニット62の射出端からは、図12に示すように、波長415nmの青紫色光と波長540nmの緑色光とが混合された光が射出される。この2つの波長の光は、ヘモグロビンの吸収波長とほぼ一致しており、血管をよりコントラスト良く観察することに好適である。   Next, an operation when the second semiconductor laser 22B is turned on will be described. As described in the first embodiment, the second semiconductor laser 22B emits blue-violet laser light having a wavelength of 415 nm. The laser light emitted from the second semiconductor laser 22B is guided through the optical fiber 30B, is guided through the optical fiber coupler 42, is guided through the optical fiber 50, and enters the phosphor unit 62. Since the blue-violet light with a wavelength of 415 nm is light that is in the SrAlO: Eu absorption region and outside the YAG: Ce absorption region, the blue-violet light incident on the phosphor unit 62 is generated by YAG: Ce. Is not wavelength-converted, but is efficiently wavelength-converted to green light having a wavelength of about 540 nm by SrAlO: Eu. As a result, as shown in FIG. 12, the phosphor unit 62 emits light in which blue-violet light having a wavelength of 415 nm and green light having a wavelength of 540 nm are mixed. The light of these two wavelengths is almost the same as the absorption wavelength of hemoglobin, and is suitable for observing blood vessels with higher contrast.

本実施形態によれば、第1実施形態の利点を有し、さらに血管などをよりコントラスト良く観察することに適した光源装置が得られる。この光源装置は、蛍光体ユニット62に含まれる蛍光体の種類が増えるだけであり、他に大きな変更を必要としないため、装置の大型化を伴わない。   According to the present embodiment, a light source device that has the advantages of the first embodiment and is suitable for observing blood vessels and the like with higher contrast can be obtained. In this light source device, only the types of phosphors included in the phosphor unit 62 are increased, and no other major changes are required, so that the size of the device is not increased.

<付記>
上述したすべての実施形態では、光源が半導体レーザーで構成されているが、光源は、これに限定されるものではなく、発光ダイオードなどの他の半導体光源で構成されてもよい。発光ダイオードを使用すると、半導体レーザーを使用したときと比較して、より安価な光源装置が得られる。
<Appendix>
In all the embodiments described above, the light source is configured by a semiconductor laser, but the light source is not limited to this, and may be configured by another semiconductor light source such as a light emitting diode. When a light emitting diode is used, a cheaper light source device can be obtained as compared with the case where a semiconductor laser is used.

また、上述した実施形態の光源装置は特に内視鏡装置への搭載に適している。   In addition, the light source device of the above-described embodiment is particularly suitable for mounting on an endoscope apparatus.

一般的な内視鏡装置を図13に概略的に示す。図13に示すように、内視鏡装置100は、操作部110と、操作部110から延びている挿入部120と、挿入部120の先端に位置する内視鏡先端部130とを有している。このような内視鏡装置100を用いた観察では、観察対象が内視鏡先端部130に近接するため、通常観察光と特殊光の射出位置がずれていると、色分離を起こすなどの不具合が生じる。これに対して上述した実施形態の光源装置では、通常観察光と特殊光の射出位置が一致しているので、色分離を起こすことがなく、特に内視鏡装置への搭載に適している。   A general endoscope apparatus is schematically shown in FIG. As shown in FIG. 13, the endoscope apparatus 100 includes an operation unit 110, an insertion unit 120 extending from the operation unit 110, and an endoscope distal end unit 130 positioned at the distal end of the insertion unit 120. Yes. In observation using such an endoscope apparatus 100, since the observation target is close to the endoscope distal end portion 130, if the emission positions of the normal observation light and the special light are deviated, color separation occurs. Occurs. On the other hand, in the light source device of the above-described embodiment, the emission positions of the normal observation light and the special light coincide with each other, so that color separation does not occur, and it is particularly suitable for mounting on an endoscope apparatus.

また、一般的な内視鏡先端部130の構成を図14に示す。図14に示すように、内視鏡先端部130は、3つの先端金属部材132A,132B,132Cと、それらを覆うカバー144とを有している。2つの先端金属部材132A,132Cは断熱材134Aを介して結合され、2つの先端金属部材132B,132Cは断熱材134Bを介して結合されている。先端金属部材132Cには個体撮像装置136と送気送水ノズル138と吸引チャンネル140とが設けられている。また先端金属部材132A,132Bには照明用のライトガイドユニット142が1つずつ設けられている。   Further, FIG. 14 shows a configuration of a general endoscope distal end portion 130. As shown in FIG. 14, the endoscope distal end portion 130 includes three distal end metal members 132A, 132B, and 132C and a cover 144 that covers them. The two tip metal members 132A and 132C are coupled via a heat insulating material 134A, and the two tip metal members 132B and 132C are coupled via a heat insulating material 134B. A solid-state imaging device 136, an air / water supply nozzle 138, and a suction channel 140 are provided on the distal end metal member 132C. Further, one light guide unit 142 for illumination is provided on each of the front end metal members 132A and 132B.

このように内視鏡装置は一般に2つのライトガイドユニット142を有している。このため、上述した実施形態の光源装置を内視鏡装置に搭載する際は、図1や図4に示したように1つの光射出部を有する光源装置を2つ内視鏡装置に組み込んでもよく、また図10に示したように2つの光射出部を有する光源装置を1つだけ内視鏡装置に組み込んでもよい。   Thus, the endoscope apparatus generally has two light guide units 142. For this reason, when the light source device of the above-described embodiment is mounted on an endoscope device, even if two light source devices having one light emitting unit are incorporated in the endoscope device as shown in FIGS. In addition, as shown in FIG. 10, only one light source device having two light emitting portions may be incorporated in the endoscope apparatus.

さらに、上述した実施形態の光源装置を内視鏡装置に搭載する際、内視鏡先端部130の近傍に波長変換部60を配置してもよく、また、波長変換部60から射出される光を再び別の光ファイバーを介して内視鏡先端部130まで導いてもよい。前者の構成は、高い輝度の照明光を得るのに都合が良い。また後者の構成は、発熱する蛍光体ユニットが内視鏡先端部から離して配置されるため、内視鏡先端部の近傍の発熱を抑制するのに都合が良い。   Furthermore, when the light source device of the above-described embodiment is mounted on an endoscope apparatus, the wavelength conversion unit 60 may be disposed in the vicinity of the distal end portion 130 of the endoscope, and light emitted from the wavelength conversion unit 60 May be led to the endoscope distal end portion 130 again through another optical fiber. The former configuration is convenient for obtaining illumination light with high luminance. The latter configuration is convenient for suppressing heat generation in the vicinity of the endoscope distal end portion because the phosphor unit that generates heat is disposed away from the endoscope distal end portion.

これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. Also good.

10,10A,10B…光源装置、20A,20B,20C…光源部、22A,22B,22C…半導体レーザー、24…レンズ、26…結合素子、30A,30B,30C…光ファイバー、40…光ファイバーカプラー、42,42A…光ファイバーカプラー、50…光ファイバー、60…波長変換部、62,62A…蛍光体ユニット、64A…R蛍光体、64B…G蛍光体、64C…B蛍光体、66A,66B,66C…領域、82A,82B,82C…駆動回路、100…内視鏡装置、110…操作部、120…挿入部、130…内視鏡先端部、132A,132B,132C…先端金属部材、134A,134B…断熱材、136…個体撮像装置、138…送気送水ノズル、140…吸引チャンネル、142…ライトガイドユニット、144…カバー。 DESCRIPTION OF SYMBOLS 10, 10A, 10B ... Light source device, 20A, 20B, 20C ... Light source part, 22A, 22B, 22C ... Semiconductor laser, 24 ... Lens, 26 ... Coupling element, 30A, 30B, 30C ... Optical fiber, 40 ... Optical fiber coupler, 42 , 42A ... optical fiber coupler, 50 ... optical fiber, 60 ... wavelength converter, 62, 62A ... phosphor unit, 64A ... R phosphor, 64B ... G phosphor, 64C ... B phosphor, 66A, 66B, 66C ... region, 82A, 82B, 82C ... Driving circuit, 100 ... Endoscope device, 110 ... Operation part, 120 ... Insertion part, 130 ... End part of endoscope, 132A, 132B, 132C ... Metal end member, 134A, 134B ... Heat insulation material DESCRIPTION OF SYMBOLS 136 ... Solid-state imaging device, 138 ... Air / water supply nozzle, 140 ... Suction channel, 142 ... Light guide unit 144 ... cover.

Claims (19)

第1の波長領域の光を発する第1の半導体光源と、
前記第1の波長領域と異なる第2の波長領域の光を発する第2の半導体光源と、
所定の吸収領域の光を吸収し、前記所定の吸収領域とは異なる第3の波長領域の光を発する波長変換とを有し、
前記第1および前記第2の波長領域の光をそれぞれ前記波長変換に照射したときに前記波長変換から射出される第1および第2の照明光の少なくともいずれかを観察対象物に照射して観察を行うための光源装置において、
前記波長変換を透過した前記第1の波長領域の光と、前記波長変換に吸収され波長変換された前記第3の波長領域の光との混合光である前記第1の照明光が略白色光となるように、かつ、
前記波長変換を透過した前記第2の波長領域の光と、前記波長変換に吸収され波長変換された前記第3の波長領域の光との混合光である前記第2の照明光が、前記第2の波長領域の光とほぼ等しい光となるように、
前記波長変換部の前記第1の波長領域の光に対する吸収率と比べて、前記第2の波長領域の光に対する吸収率は小さく、前記波長変換部の発光スペクトルと前記第1の波長領域の光との混合光は、青色光と緑色光と赤色光のすべてを含む混合光、または青色光と黄色光とを含む混合光であり、前記第1の波長領域の光が照射されたときと比べて、前記第2の波長領域の光が照射されたときに前記波長変換部から射出される前記第3の波長領域の光の光量が小さいことを特徴とする光源装置。
A first semiconductor light source that emits light in a first wavelength region;
A second semiconductor light source that emits light in a second wavelength region different from the first wavelength region;
Absorbs light of a predetermined absorption region, and a wavelength conversion section that emits light of a different third wavelength region from the predetermined absorption region,
An object to be observed is irradiated with at least one of the first and second illumination lights emitted from the wavelength conversion unit when the wavelength conversion unit is irradiated with light in the first and second wavelength regions, respectively. In the light source device for performing observation,
The light of the transmitted through the wavelength converting portion first wavelength region, the first illumination light is a mixed light of the light of the absorbed in the wavelength converting portion has been wavelength-converted the third wavelength region is approximately White light, and
Wherein the light of the second wavelength region transmitted through the wavelength converting portion, the second illumination light is a mixed light of the light of the absorbed in the wavelength converting unit wavelength converting said third wavelength regions is, as will be substantially equal to light and light of the second wavelength region,
The absorptance with respect to the light in the second wavelength region is smaller than the absorptance with respect to the light in the first wavelength region of the wavelength converter, and the emission spectrum of the wavelength converter and the light in the first wavelength region Is mixed light containing all of blue light, green light and red light, or mixed light containing blue light and yellow light, and compared with when the light in the first wavelength region is irradiated. The light source device is characterized in that the amount of light in the third wavelength region emitted from the wavelength converter when the light in the second wavelength region is irradiated is small .
前記波長変換の吸収スペクトルの吸収強度がピーク値の半分以上である波長領域を第1の吸収領域と定義したときに、
前記第1の波長領域のピーク波長は、前記第1の吸収領域に含まれ、
前記第2の波長領域のピーク波長は、前記第1の吸収領域には含まれないことを特徴とする請求項1に記載の光源装置。
When the wavelength region where the absorption intensity of the absorption spectrum of the wavelength conversion unit is half or more of the peak value is defined as the first absorption region,
The peak wavelength of the first wavelength region is included in the first absorption region,
The light source device according to claim 1, wherein a peak wavelength of the second wavelength region is not included in the first absorption region.
前記第1および第2の半導体光源は共に半導体レーザであり、
前記第1の波長領域の光である第1のレーザ光は、前記第1の吸収領域に全て含まれ、
前記第2の波長領域の光である第2のレーザ光は、前記第1の吸収領域に全て含まれないことを特徴とする請求項2に記載の光源装置。
The first and second semiconductor light sources are both semiconductor lasers,
The first laser light, which is light in the first wavelength region, is all included in the first absorption region,
3. The light source device according to claim 2, wherein the second laser beam, which is light in the second wavelength region, is not included in the first absorption region.
前記波長変換部は第1の蛍光体を含んでおり、
前記第1の蛍光体は蛍光体ユニットに搭載されており、
前記第1の吸収領域は前記第1の蛍光体の吸収スペクトルに基づいて設定されることを特徴とする請求項2に記載の光源装置。
The wavelength conversion unit includes a first phosphor,
The first phosphor is mounted on a phosphor unit;
The light source device according to claim 2, wherein the first absorption region is set based on an absorption spectrum of the first phosphor.
前記波長変換は第2の蛍光体をさらに含んでおり、
前記第2の蛍光体は、前記第1の蛍光体と共通の蛍光体ユニットに搭載され、
前記第2の波長領域の光を吸収してそれよりも長波長の前記第3の波長領域の光とは異なる第4の波長領域の波長の光を発するように選択されており、
前記第2の蛍光体の吸収スペクトルの吸収強度がピーク値の半分以上である波長領域を第2の吸収領域と定義したときに、
前記第2の波長領域の光は前記第2の吸収領域に含まれていることを特徴とする請求項4に記載の光源装置。
The wavelength conversion unit further includes a second phosphor,
The second phosphor is mounted on a phosphor unit common to the first phosphor,
Is selected to absorb light in the second wavelength region and emit light having a wavelength in a fourth wavelength region different from the light in the third wavelength region having a longer wavelength than the light in the second wavelength region;
When the wavelength region where the absorption intensity of the absorption spectrum of the second phosphor is half or more of the peak value is defined as the second absorption region,
The light source device according to claim 4, wherein light in the second wavelength region is included in the second absorption region.
前記第1の波長領域の光は、前記第2の吸収領域に含まれていないことを特徴とする請求項5に記載の光源装置。   The light source device according to claim 5, wherein light in the first wavelength region is not included in the second absorption region. 前記第1の波長領域の光は、波長430nm〜480nmの間にピークを有する青色領域の光であり、
前記第3の波長領域の光は、ブロードなスペクトルを有する黄色領域の光であり、
前記第1の照明光は、前記第1の波長領域の光と前記第3の波長領域の光の混合光であることを特徴とする請求項1に記載の光源装置。
The light in the first wavelength region is light in a blue region having a peak between wavelengths 430 nm and 480 nm,
The light in the third wavelength region is light in a yellow region having a broad spectrum,
The light source device according to claim 1, wherein the first illumination light is a mixed light of light in the first wavelength region and light in the third wavelength region.
前記第1の波長領域の光は、紫外線領域の光であり、
前記第3の波長領域の光は、複数の蛍光体から射出された複数の蛍光の混合光であり、
前記第1の照明光は、前記第3の波長領域の光に比べ、前記第1の波長領域の光をほとんど含まないことを特徴とする請求項に記載の光源装置。
The light in the first wavelength region is light in the ultraviolet region,
The light in the third wavelength region is a mixed light of a plurality of fluorescence emitted from a plurality of phosphors,
Said first illuminating light source device according to claim 2, characterized in that the comparison with the third light in the wavelength region, contains almost no light in the first wavelength region.
前記波長変換は、赤色光を発するR蛍光体と、緑色光を発するG蛍光体と、青色光を発するB蛍光体とを含んでおり、
前記R蛍光体と前記G蛍光体と前記B蛍光体は共に共通の蛍光体ユニットに搭載されており、
前記R蛍光体の吸収スペクトルの吸収強度がピーク値の半分以上である波長領域を第3の吸収領域と定義し、
前記G蛍光体の吸収スペクトルの吸収強度がピーク値の半分以上である波長領域を第4の吸収領域と定義し、
前記B蛍光体の吸収スペクトルの吸収強度がピーク値の半分以上である波長領域を第5の吸収領域と定義したときに、
前記第1の吸収領域は、前記第3、第4および第5の吸収領域の重なり領域であることを特徴とする請求項8に記載の光源装置。
The wavelength conversion unit includes an R phosphor that emits red light, a G phosphor that emits green light, and a B phosphor that emits blue light.
The R phosphor, the G phosphor and the B phosphor are all mounted in a common phosphor unit.
A wavelength region in which the absorption intensity of the absorption spectrum of the R phosphor is half or more of the peak value is defined as a third absorption region,
A wavelength region in which the absorption intensity of the absorption spectrum of the G phosphor is half or more of the peak value is defined as a fourth absorption region,
When the wavelength region where the absorption intensity of the absorption spectrum of the phosphor B is half or more of the peak value is defined as the fifth absorption region,
The light source device according to claim 8, wherein the first absorption region is an overlapping region of the third, fourth, and fifth absorption regions.
前記R蛍光体、G蛍光体、B蛍光体は共にひとつの蛍光体ユニットに搭載されており、前記蛍光体ユニットは、前記R蛍光体、G蛍光体、B蛍光体が積層または混合されて搭載されたマルチ蛍光体ユニットであることを特徴とする請求項9に記載の光源装置。 Wherein R phosphor, G phosphor, B phosphors are mounted on both one phosphor unit, said phosphor unit is mounted the R phosphor, G phosphor, B phosphors are stacked or mixed The light source device according to claim 9, wherein the light source device is a multi-phosphor unit. 前記マルチ蛍光体ユニットは、前記第1およびまたは第2の波長領域の光が前記マルチ蛍光体ユニットに入射する側から順に、R蛍光体、G蛍光体、B蛍光体の順に積層されている積層構造であることを特徴とする請求項10に記載の光源装置。   The multi-phosphor unit is formed by sequentially laminating an R phosphor, a G phosphor, and a B phosphor in order from the side where the light in the first and / or second wavelength region enters the multi-phosphor unit. The light source device according to claim 10, wherein the light source device has a structure. 前記第2の波長領域の光は、前記第1の波長領域の光より短波長側の領域である、波長430nm以下の可視光領域の光であり、前記第4の波長領域の光は波長540nmを含む緑色領域の光であることを特徴とする請求項6に記載の光源装置。   The light in the second wavelength region is light in a visible light region having a wavelength of 430 nm or less, which is a region on a shorter wavelength side than the light in the first wavelength region, and the light in the fourth wavelength region is a wavelength of 540 nm. The light source device according to claim 6, wherein the light source device includes light in a green region including the light source. 請求項1ないし4または請求光7ないし11のいずれかひとつに記載の光源装置を備えたことを特徴とする内視鏡装置。   An endoscope apparatus comprising the light source device according to any one of claims 1 to 4 or claims light 7 to 11. 記観察対象物に照射される第1の照明光は、通常観察を行うための白色光であり、
記観察対象物に照射される第2の照明光は、特殊観察を行うための特殊観察光であることを特徴とする請求項13に記載の内視鏡装置。
First illumination light to be irradiated prior Symbol observed object is a white light for normal observation,
The second illumination light to be irradiated prior Symbol observed object, the endoscope apparatus according to claim 13, which is a special observation light for performing special observation.
前記第2の照明光は、前記第2の波長領域の光、または、第2の波長領域の光に対し、その色に影響を与えない程度に第3の波長域の光が含まれている前記第2の波長領域の光とほぼ同じ色の光であることを特徴とする請求項14に記載の内視鏡装置。   The second illumination light includes light in the third wavelength region to the extent that it does not affect the color of light in the second wavelength region or light in the second wavelength region. The endoscope apparatus according to claim 14, wherein the endoscope apparatus has substantially the same color as the light in the second wavelength region. 請求項5、6、12のいずれかひとつに記載の光源装置を備えたことを特徴とする内視鏡装置。   An endoscope apparatus comprising the light source device according to any one of claims 5, 6, and 12. 記観察対象物に照射される第1の照明光は、通常観察を行うための白色光であり、
記観察対象物に照射される第2の照明光は、特殊観察を行うための特殊観察光であることを特徴とする請求項16に記載の内視鏡装置。
First illumination light to be irradiated prior Symbol observed object is a white light for normal observation,
The second illumination light irradiated before Symbol observed object, the endoscope apparatus according to claim 16 which is a special observation light for performing special observation.
前記第2の照明光は、前記第2の波長領域の光と第4の波長領域の光との混合光、または、第2の波長領域の光と第4の波長領域の光に対し、その色に影響を与えない程度に第3の波長域の光が含まれている、前記第2の波長領域の光と第4の波長領域の光との混合光とほぼ同じ色の光であることを特徴とする請求項17に記載の内視鏡装置。   The second illumination light is a mixture of the light in the second wavelength region and the light in the fourth wavelength region, or the light in the second wavelength region and the light in the fourth wavelength region. Light of the same wavelength as the mixed light of the light of the second wavelength region and the light of the fourth wavelength region, which contains light of the third wavelength region to such an extent that the color is not affected. The endoscope apparatus according to claim 17. 前記波長変換は、前記内視鏡の先端に搭載されていることを特徴とする請求項13または16に記載の内視鏡装置。 The endoscope apparatus according to claim 13 or 16, wherein the wavelength conversion unit is mounted on a distal end portion of the endoscope.
JP2013055466A 2013-03-18 2013-03-18 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME Active JP5698781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055466A JP5698781B2 (en) 2013-03-18 2013-03-18 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055466A JP5698781B2 (en) 2013-03-18 2013-03-18 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007335321A Division JP2009153712A (en) 2007-12-26 2007-12-26 Light source device and endoscope apparatus comprising the same

Publications (2)

Publication Number Publication Date
JP2013135933A JP2013135933A (en) 2013-07-11
JP5698781B2 true JP5698781B2 (en) 2015-04-08

Family

ID=48912164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055466A Active JP5698781B2 (en) 2013-03-18 2013-03-18 LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME

Country Status (1)

Country Link
JP (1) JP5698781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153712A (en) 2007-12-26 2009-07-16 Olympus Corp Light source device and endoscope apparatus comprising the same
JP2016067373A (en) * 2014-09-26 2016-05-09 富士フイルム株式会社 Light source device for endoscope and endoscope system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921920B2 (en) * 2001-08-31 2005-07-26 Smith & Nephew, Inc. Solid-state light source
DE50312038D1 (en) * 2003-11-19 2009-11-26 Wolf Gmbh Richard DEVICE FOR IMAGING DIAGNOSIS OF TISSUE
JP4554944B2 (en) * 2004-01-15 2010-09-29 Hoya株式会社 Endoscope device
JP4317478B2 (en) * 2004-03-31 2009-08-19 三菱化学株式会社 Phosphor-type light emitting device and endoscope device using the same as an illumination source
US7433115B2 (en) * 2004-12-15 2008-10-07 Nichia Corporation Light emitting device
JP2006173324A (en) * 2004-12-15 2006-06-29 Nichia Chem Ind Ltd Light emitting device
JP4729918B2 (en) * 2004-12-17 2011-07-20 日亜化学工業株式会社 Light emitting device
JP4732783B2 (en) * 2005-04-19 2011-07-27 富士フイルム株式会社 Endoscope lighting system
JP4017015B2 (en) * 2007-02-13 2007-12-05 日亜化学工業株式会社 Light emitting device
JP2009153712A (en) * 2007-12-26 2009-07-16 Olympus Corp Light source device and endoscope apparatus comprising the same
JP5401205B2 (en) * 2009-08-10 2014-01-29 富士フイルム株式会社 Endoscope device

Also Published As

Publication number Publication date
JP2013135933A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP2009153712A (en) Light source device and endoscope apparatus comprising the same
JP4817632B2 (en) LED fiber light source device and endoscope using the same
US8790253B2 (en) Light source device, imaging apparatus and endoscope apparatus
JP5858752B2 (en) Endoscope light source device
JP2009039438A (en) Optical fiber lighting system
JP2009189463A (en) Endoscope light source device
JP6438062B2 (en) Endoscope system
JP6215981B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP2009277734A (en) Semiconductor light source device
JP5698781B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5698779B2 (en) Endoscope apparatus having light source device
JP5698780B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5890493B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5698782B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE EQUIPPED WITH THE SAME
JP5718398B2 (en) Endoscope device
JP2012075561A (en) Endoscope light source device and endoscope apparatus using the same
JP6515161B2 (en) Light source device and endoscope apparatus provided with the same
JP2015134230A (en) Light source device for endoscope
JP6596582B2 (en) Lighting device
JP5675911B2 (en) Fiber optic lighting equipment
JP2006034723A (en) Led light source equipment, and observation device and endoscope using the equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R151 Written notification of patent or utility model registration

Ref document number: 5698781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250