JP5697519B2 - Method for producing metal-supported carbon - Google Patents

Method for producing metal-supported carbon Download PDF

Info

Publication number
JP5697519B2
JP5697519B2 JP2011084547A JP2011084547A JP5697519B2 JP 5697519 B2 JP5697519 B2 JP 5697519B2 JP 2011084547 A JP2011084547 A JP 2011084547A JP 2011084547 A JP2011084547 A JP 2011084547A JP 5697519 B2 JP5697519 B2 JP 5697519B2
Authority
JP
Japan
Prior art keywords
container
carbon
metal
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011084547A
Other languages
Japanese (ja)
Other versions
JP2012218959A (en
Inventor
基弘 水野
基弘 水野
真樹 寺田
真樹 寺田
勝 堀
勝 堀
加納 浩之
浩之 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyota Motor Corp
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Toyota Motor Corp
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyota Motor Corp, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2011084547A priority Critical patent/JP5697519B2/en
Publication of JP2012218959A publication Critical patent/JP2012218959A/en
Application granted granted Critical
Publication of JP5697519B2 publication Critical patent/JP5697519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

本発明は、垂直配向カーボンナノチューブやカーボンナノウォールなどのカーボン材料に金属を担持させて、金属担持カーボンを製造する方法に関する。   The present invention relates to a method for producing metal-supported carbon by supporting a metal on a carbon material such as vertically aligned carbon nanotubes or carbon nanowalls.

非常に大きな比表面積を有するカーボン材料として、多数のカーボンナノチューブが垂直方向に配向して並んだ構造を有する垂直配向カーボンナノチューブ(垂直配向CNTとも称される)や、グラフェンシートからなる壁が一定方向に立ち並んだ構造を有するカーボンナノウォールが知られている。これらのカーボン材料は、燃料電池などの電池の電極材料などへの応用が研究されている。   As a carbon material having a very large specific surface area, vertically aligned carbon nanotubes (also referred to as vertically aligned CNTs) having a structure in which a large number of carbon nanotubes are aligned in the vertical direction and walls made of graphene sheets are in a certain direction Carbon nanowalls having a structure lined up in a well-known manner are known. Application of these carbon materials to electrode materials of batteries such as fuel cells has been studied.

上述のようなカーボン材料を電池の電極に利用しようとする場合、白金などの金属触媒を担持させることが必要になる場合が多い。しかしながら、金属触媒の分散液を塗布するなどしても、垂直配向CNTやカーボンナノウォールに十分な金属触媒の担持を行うことは難しかった。そこで、本発明者らの一部は、特許文献1に記載されているような金属触媒の担持方法を開発した。   When a carbon material as described above is to be used for a battery electrode, it is often necessary to support a metal catalyst such as platinum. However, even when a metal catalyst dispersion is applied, it is difficult to carry a sufficient metal catalyst on the vertically aligned CNTs and carbon nanowalls. Therefore, some of the present inventors have developed a method for supporting a metal catalyst as described in Patent Document 1.

特許文献1に記載の方法では、予め担持させようとする金属の化合物を二酸化炭素などの超臨界流体に溶解させ、それを基板上に形成されたカーボンナノウォールと接触させた後にカーボンナノウォールを加熱し、金属をカーボンナノウォール上に析出させることにより、金属の担持を行う。この方法は、下部の容器(反応槽100)にカーボンナノウォールを形成した基板を入れて超臨界二酸化炭素で満たす一方、バルブ210により下部の容器と接続された上部の容器(攪拌槽200)にも金属化合物を溶解させた超臨界二酸化炭素を満たし、上部の容器内の圧力が下部の容器内の圧力よりも大きくなるようにした後、バルブ210を開き、上部の容器内の金属化合物を含む超臨界二酸化炭素を一気に下部の容器に送り込む、という手順により行われる。   In the method described in Patent Document 1, a metal compound to be supported in advance is dissolved in a supercritical fluid such as carbon dioxide, and is brought into contact with the carbon nanowall formed on the substrate. The metal is supported by heating and precipitating the metal on the carbon nanowall. In this method, a substrate formed with carbon nanowalls is placed in a lower vessel (reaction vessel 100) and filled with supercritical carbon dioxide, while an upper vessel (stirring vessel 200) connected to the lower vessel by a valve 210 is used. After filling the supercritical carbon dioxide in which the metal compound is dissolved and making the pressure in the upper container larger than the pressure in the lower container, the valve 210 is opened and the metal compound in the upper container is contained. Supercritical carbon dioxide is sent to the lower container at once.

特開2006−273613号JP 2006-273613 A

特許文献1の超臨界流体を利用する方法によれば、カーボンナノウォールなどのカーボン材料への金属の担持を容易に行うことができる。しかしながら、特許文献1の手順では、ある程度の面積を有するカーボン材料に均一に金属を担持させるのが難しい。その上、余分な金属が付着してしまうことがあり、コスト高の原因ともなり得る。金属担持カーボン材料を大量生産するためには、カーボン材料に均一に金属を担持させることができる方法が必要となる。   According to the method using the supercritical fluid of Patent Document 1, it is possible to easily carry a metal on a carbon material such as carbon nanowall. However, in the procedure of Patent Document 1, it is difficult to uniformly carry a metal on a carbon material having a certain area. In addition, extra metal may adhere, which can be costly. In order to mass-produce the metal-carrying carbon material, a method capable of uniformly carrying the metal on the carbon material is required.

本発明者らは上述したような問題を検討した結果、カーボン材料に金属を担持させるための、より優れた方法を見出した。本発明の要旨は以下のとおりである。
[1]第一の容器と、第一の容器とバルブを介して連通可能に接続された第二の容器を有する装置を利用する、超臨界流体を用いた金属担持カーボンの製造方法であって、
(a)第一の容器に金属化合物と超臨界流体前駆体ガスを、第二の容器にカーボンと超臨界流体前駆体ガスをそれぞれ封入する工程、
(b)第一の容器内の圧力が第二の容器内の圧力よりも低くなるよう第一の容器および第二の容器のそれぞれを加圧し、超臨界流体前駆体ガスを超臨界状態とする工程、
(c)バルブを開いて第一の容器と第二の容器とを連通させる工程
を含む、前記方法。
As a result of examining the problems as described above, the present inventors have found a better method for supporting a metal on a carbon material. The gist of the present invention is as follows.
[1] A method for producing metal-supported carbon using a supercritical fluid, using an apparatus having a first container and a second container that is connected to the first container via a valve. ,
(A) a step of enclosing a metal compound and a supercritical fluid precursor gas in a first container, and carbon and a supercritical fluid precursor gas in a second container,
(B) Pressurize each of the first container and the second container so that the pressure in the first container is lower than the pressure in the second container, thereby bringing the supercritical fluid precursor gas into a supercritical state. Process,
(C) The method comprising the step of opening the valve to allow communication between the first container and the second container.

[2][1]に記載の金属担持カーボンの製造方法であって、工程(c)の後に
(d)バルブを閉じた後に第二の容器を減圧し、第一の容器内の圧力が第二の容器内の圧力よりも高くなるようにする工程、
(e)再度バルブを開いて第一の容器と第二の容器とを連通させる工程
をさらに含む、前記方法。
[3](d)および(e)の工程を2回以上繰り返す、[2]に記載の金属担持カーボンの製造方法。
[4]カーボンを150〜450℃の範囲の温度で加熱することを含む、[1]〜[3]のいずれかに記載の金属担持カーボンの製造方法。
[2] The method for producing metal-supported carbon according to [1], wherein after the step (c), (d) the valve is closed and then the second container is depressurized so that the pressure in the first container is A step of making the pressure higher than the pressure in the second container;
(E) The method further comprising the step of opening the valve again to allow the first container and the second container to communicate with each other.
[3] The method for producing metal-supported carbon according to [2], wherein the steps (d) and (e) are repeated twice or more.
[4] The method for producing metal-supported carbon according to any one of [1] to [3], comprising heating the carbon at a temperature in the range of 150 to 450 ° C.

[5]金属化合物が、トリメチル(メチルシクロペンタジエニル)白金およびアセチルアセトナート白金から選択される、[1]〜[4]のいずれかに記載の金属担持カーボンの製造方法。
[6]超臨界流体前駆体ガスが、二酸化炭素および三フッ化メタンから選択される、[1]〜[5]のいずれかに記載の金属担持カーボンの製造方法。
[7][1]〜[6]のいずれかに記載の方法により製造された金属担持カーボン。
[5] The method for producing metal-supported carbon according to any one of [1] to [4], wherein the metal compound is selected from trimethyl (methylcyclopentadienyl) platinum and acetylacetonate platinum.
[6] The method for producing metal-supported carbon according to any one of [1] to [5], wherein the supercritical fluid precursor gas is selected from carbon dioxide and trifluoromethane.
[7] Metal-supported carbon produced by the method according to any one of [1] to [6].

本発明の方法によれば、均一に金属触媒を担持させたカーボン材料を製造することが可能となる。金属触媒を担持させたカーボン材料、特に垂直配向CNTやカーボンナノウォールは、燃料電池などの電池の電極材料として有用である。   According to the method of the present invention, it is possible to produce a carbon material on which a metal catalyst is uniformly supported. Carbon materials carrying a metal catalyst, particularly vertically aligned CNTs and carbon nanowalls, are useful as electrode materials for batteries such as fuel cells.

本発明の方法で用いる装置の一例を示した概略図である。It is the schematic which showed an example of the apparatus used with the method of this invention. 実施例におけるヒーター5上のCNT基板6の配置を示す図である。It is a figure which shows arrangement | positioning of the CNT board | substrate 6 on the heater 5 in an Example. CNT基板6の配置と白金担持量との関係を示すグラフである。It is a graph which shows the relationship between arrangement | positioning of the CNT board | substrate 6, and platinum carrying amount.

図1は、本発明の方法で用いる装置の一例を示した概略図である。便宜上、本発明の方法を図1の装置に沿って説明するが、本発明の方法で用いる装置はこれに限定されるものではない。装置は、第一の容器1と第二の容器3とを有する。図1において、第一の容器1と第二の容器3は上下に配置されているが、必要に応じて左右に、あるいは上下逆転して配置してもよい。第一の容器1内には攪拌プロペラ2が設けられている。ただし、攪拌プロペラ2は必須の構成要件ではなく、必要に応じて設ければよい。第一の容器1には超臨界流体前駆体ガスおよび金属化合物溶液の注入口が、第二の容器3には超臨界流体前駆体ガスの注入口が、それぞれ設けられている。   FIG. 1 is a schematic view showing an example of an apparatus used in the method of the present invention. For convenience, the method of the present invention will be described along the apparatus of FIG. 1, but the apparatus used in the method of the present invention is not limited to this. The apparatus has a first container 1 and a second container 3. In FIG. 1, the first container 1 and the second container 3 are arranged up and down, but may be arranged left and right or upside down as necessary. A stirring propeller 2 is provided in the first container 1. However, the stirring propeller 2 is not an essential constituent element, and may be provided as necessary. The first container 1 is provided with an inlet for the supercritical fluid precursor gas and the metal compound solution, and the second container 3 is provided with an inlet for the supercritical fluid precursor gas.

第一の容器1と第二の容器3は、バルブ4を介して連通可能に接続されている。第一の容器1と第二の容器3はバルブ4を閉じた状態であればそれぞれ異なる圧力に加圧することが可能であるが、バルブ4を開いた状態では第一の容器1と第二の容器3は同じ圧力となる。   The first container 1 and the second container 3 are connected via a valve 4 so as to communicate with each other. The first container 1 and the second container 3 can be pressurized to different pressures when the valve 4 is closed, but the first container 1 and the second container 3 are open when the valve 4 is opened. The container 3 has the same pressure.

第二の容器3の内部にはヒーター5が設けられ、その上にカーボン材料6が載置される。カーボン材料6の例としては、カーボンナノチューブ、特に垂直配向カーボンナノチューブ、またはカーボンナノウォールが挙げられる。カーボン材料6は、好ましくはシリコン、石英、SUS、アルミなどからなる基板上に形成されたカーボン材料層の形態である。なお、カーボン材料6はカーボンナノチューブやカーボンナノウォールに限定されず、筒状または壁状の構造を有しないその他のカーボンブラックでもよい。   A heater 5 is provided inside the second container 3, and a carbon material 6 is placed thereon. Examples of the carbon material 6 include carbon nanotubes, particularly vertically aligned carbon nanotubes, or carbon nanowalls. The carbon material 6 is preferably in the form of a carbon material layer formed on a substrate made of silicon, quartz, SUS, aluminum or the like. The carbon material 6 is not limited to carbon nanotubes or carbon nanowalls, and may be other carbon blacks that do not have a cylindrical or wall-like structure.

第一の容器1に注入される金属化合物溶液は、カーボンに担持しようとする金属の化合物を適切な溶媒に溶解させたものである。カーボンに担持する金属としては、触媒活性を有するものであれば特に制限されないが、例えば白金、パラジウム、金などの貴金属、鉄、ルテニウム、コバルト、ニッケル、マンガン、クロム、バナジウム、チタン、ニオブ、モリブテン、鉛、ロジウム、タングステンおよびイリジウムなどの卑金属が挙げられる。金属触媒としては、特に白金が優れている。   The metal compound solution poured into the first container 1 is obtained by dissolving a metal compound to be supported on carbon in an appropriate solvent. The metal supported on carbon is not particularly limited as long as it has catalytic activity. For example, noble metals such as platinum, palladium and gold, iron, ruthenium, cobalt, nickel, manganese, chromium, vanadium, titanium, niobium and molybdenum Base metals such as lead, rhodium, tungsten and iridium. As a metal catalyst, platinum is particularly excellent.

金属化合物は、カーボン上に付着した後、加熱などにより金属を析出可能なものであれば特に限定されない。金属化合物には、金属錯体および金属化合物が含まれる。金属錯体の具体例としては、シクロペンタジエニル系金属錯体、例えば、シクロペンタジエニル配位子、メチルシクロペンタジエニル配位子、エチルシクロペンタジエニル配位子、n−ブチルシクロペンタジエニル配位子、(トリメチル)メチルシクロペンタジエニル配位子、などのシクロペンタジエニル環を有する配位子が配位した金属錯体、およびアセチルアセトナート配位子が配位したアセチルアセトナート金属錯体が挙げられる。金属化合物の具体例としては、金属の塩化物、酸化物、および硝酸や硫酸などの無機酸もしくは酢酸などの有機酸との塩が挙げられる。   The metal compound is not particularly limited as long as it can be deposited on the carbon and then deposited by heating or the like. The metal compound includes a metal complex and a metal compound. Specific examples of the metal complex include cyclopentadienyl metal complexes such as cyclopentadienyl ligand, methylcyclopentadienyl ligand, ethylcyclopentadienyl ligand, n-butylcyclopentadiene. Metal complexes in which a ligand having a cyclopentadienyl ring such as an aryl ligand, (trimethyl) methylcyclopentadienyl ligand, and the like, and acetylacetonate in which an acetylacetonate ligand is coordinated A metal complex is mentioned. Specific examples of the metal compound include metal chlorides, oxides, and salts with inorganic acids such as nitric acid and sulfuric acid or organic acids such as acetic acid.

金属化合物を溶解させる溶媒は、特に限定させるものではなく、当業者であれば例えばヘキサン、シクロヘキサン、ベンゼン、トルエンなどの炭化水素系溶媒あるいはその他の溶媒から適宜選択することができる。   The solvent in which the metal compound is dissolved is not particularly limited, and those skilled in the art can appropriately select from hydrocarbon solvents such as hexane, cyclohexane, benzene, toluene, and other solvents.

超臨界流体前駆体ガスとしては、超臨界状態に比較的容易に導くことができ、かつ金属触媒やカーボン材料にダメージを与えないものであれば特に限定されない。取り扱いおよび特性上から二酸化炭素または三フッ化メタンを用いることが好ましい。   The supercritical fluid precursor gas is not particularly limited as long as it can be led to the supercritical state relatively easily and does not damage the metal catalyst or the carbon material. In view of handling and characteristics, it is preferable to use carbon dioxide or trifluoromethane.

以下、図1の装置を用いて行う本発明の金属担持カーボンの製造方法を説明する。まず、バルブ4を閉めた状態で第一の容器1に金属化合物の溶液と超臨界流体前駆体ガスとを封入する。一方、第二の容器3にはカーボン材料6をヒーター5上に設置し、超臨界流体前駆体ガスを封入する[工程a]。ここで、第一の容器1への封入操作と第二の容器3への封入操作は、いずれを先に行ってもよく、あるいは両方を同時に行ってもよい。また、第一の容器1への金属化合物の溶液と超臨界流体前駆体ガスの封入は、いずれを先に該容器内に入れても構わないが、通常は金属化合物の溶液を先に入れる。   Hereinafter, the method for producing metal-supported carbon of the present invention performed using the apparatus of FIG. 1 will be described. First, a metal compound solution and a supercritical fluid precursor gas are sealed in the first container 1 with the valve 4 closed. On the other hand, a carbon material 6 is placed on the heater 5 in the second container 3 and a supercritical fluid precursor gas is sealed [step a]. Here, either the enclosure operation in the first container 1 or the enclosure operation in the second container 3 may be performed first, or both may be performed simultaneously. Further, the metal compound solution and the supercritical fluid precursor gas may be sealed in the first container 1 either first, but usually the metal compound solution is first charged.

次に、第一の容器1と第二の容器3を加圧するが、その際、第一の容器1内の圧力が第二の容器3内の圧力よりも低くなるようにする[工程b]。次いでバルブ4を開くと、相対的に圧力が高い第二の容器3から第一の容器1へ、超臨界流体が流入する[工程c]。第二の容器3からの超臨界流体の流入により、バルブ4付近の配管などに滞留していることが多い金属化合物の溶液は第一の容器1内に逆流し、超臨界流体と十分に混合し拡散(分散)される。これにより、濃度の高い金属化合物溶液が直接カーボン材料6に吹き付けられるのを防ぐことができる。バルブ4の開放により、第一の容器1内の圧力と第二の容器3内の圧力は平衡圧となる。ここでのバルブ4の開放は比較的短時間、例えば5分未満、特に2分未満、とりわけ約1分とすることが好ましい。   Next, the first container 1 and the second container 3 are pressurized, and at that time, the pressure in the first container 1 is made lower than the pressure in the second container 3 [step b]. . Next, when the valve 4 is opened, the supercritical fluid flows from the second container 3 having a relatively high pressure into the first container 1 [step c]. Due to the inflow of the supercritical fluid from the second container 3, the metal compound solution that often stays in the piping near the valve 4 flows back into the first container 1 and is sufficiently mixed with the supercritical fluid. And diffused (dispersed). Thereby, it is possible to prevent the metal compound solution having a high concentration from being directly sprayed onto the carbon material 6. By opening the valve 4, the pressure in the first container 1 and the pressure in the second container 3 become equilibrium pressures. The opening of the valve 4 here is preferably relatively short, for example less than 5 minutes, in particular less than 2 minutes, in particular about 1 minute.

次に、所定時間経過後バルブ4を閉め、第二の容器3を減圧し、第一の容器1内の圧力が第二の容器3内の圧力よりも高くなるようにする[工程d]。減圧は、例えば容器から超臨界流体前駆体ガスを一部抜去することにより行うことができる。ガスを一部抜去することにより、第二の容器3内の超臨界流体の拡散を促すという効果も期待できる。第二の容器3を減圧した後の第一の容器1と第二の容器3との圧力差は、0.1MPa〜1MPaの範囲内、特に0.1MPa〜0.5MPaの範囲内とすることが好ましい。ただし、第二の容器3内の圧力が超臨界流体の臨界圧を下回らないようにする必要がある。   Next, after a predetermined time has elapsed, the valve 4 is closed and the second container 3 is depressurized so that the pressure in the first container 1 becomes higher than the pressure in the second container 3 [step d]. The depressurization can be performed, for example, by extracting a part of the supercritical fluid precursor gas from the container. By extracting part of the gas, an effect of promoting the diffusion of the supercritical fluid in the second container 3 can be expected. The pressure difference between the first container 1 and the second container 3 after depressurizing the second container 3 is within the range of 0.1 MPa to 1 MPa, particularly within the range of 0.1 MPa to 0.5 MPa. Is preferred. However, it is necessary to prevent the pressure in the second container 3 from falling below the critical pressure of the supercritical fluid.

次いでバルブ4を再度開放すると[工程e]、第一の容器1内に滞留していた金属化合物の溶液を含む超臨界流体が、第二の容器3内に流入する。この手順により、平衡圧になり第一の容器1内に残留していた金属化合物の溶液を第二の溶液3内に引き込むことができ、材料歩留まりを向上させることが可能となる。上記の工程dと工程eは2回以上、好ましくは3回以上、より好ましくは4回以上繰り返すことが好ましい。これらの工程を繰り返すことにより、さらに材料歩留まりが向上する。工程eにおけるバルブ4の開放は、第一の容器1と第二の容器3とが平衡圧となるのに十分な時間であれば特に制限されないが、例えば10分未満、特に8分未満、とりわけ約5分とすることが好ましい。   Next, when the valve 4 is opened again [step e], the supercritical fluid containing the solution of the metal compound staying in the first container 1 flows into the second container 3. By this procedure, the solution of the metal compound that has reached the equilibrium pressure and remains in the first container 1 can be drawn into the second solution 3, and the material yield can be improved. The above steps d and e are preferably repeated twice or more, preferably 3 times or more, more preferably 4 times or more. By repeating these steps, the material yield is further improved. The opening of the valve 4 in step e is not particularly limited as long as it is a time sufficient for the first container 1 and the second container 3 to reach an equilibrium pressure, but for example, less than 10 minutes, particularly less than 8 minutes, Preferably it is about 5 minutes.

ここで、超臨界流体を用いて金属化合物を付着させたカーボン材料6は、必要に応じてヒーター5により加熱してもよい。加熱することにより、カーボン材料6に付着した金属化合物からの金属の析出がより効率よく進行する。加熱は、150〜450℃の範囲の温度、特に300〜400の範囲の温度で行うことが好ましい。   Here, the carbon material 6 to which the metal compound is attached using the supercritical fluid may be heated by the heater 5 as necessary. By heating, the precipitation of the metal from the metal compound adhering to the carbon material 6 proceeds more efficiently. The heating is preferably performed at a temperature in the range of 150 to 450 ° C., particularly in the range of 300 to 400.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

図1に示した装置を用いて、基板上に形成された垂直配向カーボンナノチューブに白金を担持させた。ヒーター5上の垂直配向カーボンナノチューブが形成された基板(以下、CNT基板と称する)6の配置を図2に示す。ヒーター5上の100mm×100mmの領域に20mm×20mmの大きさのCNT基板6を9枚均等に並べた。各基板には図2に示したように番号を付し、下記のそれぞれの手順で白金担持を行った後、各番号の基板ごとに白金担持量を調べた。なお、下記のいずれの手順においても白金担持に要した時間は30分間であり、その間CNT基板6を360℃に設定したヒーター5により加熱した。   Using the apparatus shown in FIG. 1, platinum was supported on vertically aligned carbon nanotubes formed on a substrate. An arrangement of a substrate 6 (hereinafter referred to as a CNT substrate) 6 on which a vertically aligned carbon nanotube is formed on the heater 5 is shown in FIG. Nine CNT substrates 6 each having a size of 20 mm × 20 mm were arranged in a 100 mm × 100 mm region on the heater 5. Each substrate was numbered as shown in FIG. 2, and after carrying platinum by the following procedures, the amount of platinum carried was examined for each numbered substrate. In any of the following procedures, the time required for carrying platinum was 30 minutes, and the CNT substrate 6 was heated by the heater 5 set at 360 ° C. during that time.

1.本発明の方法による白金担持
第一の容器1に金属化合物溶液((トリメチル)メチルシクロペンタジエニル白金の3重量%ヘキサン溶液10ml)とCOガスを導入し、10.2MPaまで加圧してCOを超臨界状態にした。一方、第二の容器3にもCOガスを導入し、10.6MPaまで加圧してCOを超臨界状態にした(第一の容器内の圧力<第二の容器内の圧力)。次に、バルブ4を開いて第一の容器1と第二の容器3とを連通させ、1分間保持した後にバルブ4を閉じた[連通1回目]。さらに、バルブ4を閉じた状態で第二の容器3からガスを一部放出させ、第一の容器内の圧力(10.5MPa)>第二の容器内の圧力(10.2MPa)としてから、再度バルブ4を開いて第一の容器1と第二の容器3とを連通させ、5分間保持した[連通2回目]。その後、バルブ4を閉じて第二の容器3からガスを一部放出させた後に第一の容器1と第二の容器3とを連通させる操作を7回目まで繰り返した。連通操作と第一の容器1および第二の容器3の圧力の変化の推移を表1にまとめた。
1. A metal compound solution (10 ml of a 3 wt% hexane solution of (trimethyl) methylcyclopentadienylplatinum) and CO 2 gas are introduced into a platinum-supported first container 1 according to the method of the present invention, and pressurized to 10.2 MPa to produce CO 2. 2 was in a supercritical state. On the other hand, CO 2 gas was also introduced into the second container 3 and pressurized to 10.6 MPa to bring CO 2 into a supercritical state (pressure in the first container <pressure in the second container). Next, valve | bulb 4 was opened, the 1st container 1 and the 2nd container 3 were connected, and after hold | maintaining for 1 minute, the valve | bulb 4 was closed [the 1st communication]. Further, a part of gas is released from the second container 3 with the valve 4 closed, and the pressure in the first container (10.5 MPa)> the pressure in the second container (10.2 MPa), The valve 4 was opened again to allow the first container 1 and the second container 3 to communicate with each other and held for 5 minutes [second communication]. Then, after closing valve | bulb 4 and releasing some gas from the 2nd container 3, operation which connected the 1st container 1 and the 2nd container 3 was repeated to the 7th time. Table 1 summarizes changes in the communication operation and changes in pressure in the first container 1 and the second container 3.

Figure 0005697519
Figure 0005697519

2.従来法による白金担持
第一の容器1に金属化合物溶液((トリメチル)メチルシクロペンタジエニル白金の3重量%ヘキサン溶液10ml)とCOガスを導入し、10.6MPaまで加圧してCOを超臨界状態にした。一方、第二の容器3にもCOガスを導入し、10.2MPaまで加圧してCOを超臨界状態にした(第一の容器内の圧力>第二の容器内の圧力)。次に、バルブ4を開いて第一の容器1と第二の容器3とを連通させ、30分間保持した。
2. A metal compound solution (10 ml of a 3 wt% hexane solution of (trimethyl) methylcyclopentadienylplatinum) and CO 2 gas are introduced into a platinum-supported first container 1 according to a conventional method , and pressurized to 10.6 MPa for CO 2 It became a supercritical state. On the other hand, CO 2 gas was also introduced into the second container 3 and pressurized to 10.2 MPa to bring CO 2 into a supercritical state (pressure in the first container> pressure in the second container). Next, the valve | bulb 4 was opened and the 1st container 1 and the 2nd container 3 were connected, and it hold | maintained for 30 minutes.

3.白金担持量の評価
9枚のCNT基板6のそれぞれの重量を測定することにより各基板の白金担持量を求めた。基板の位置と白金担持量の関係を図3のグラフにまとめた。従来法では、第一の容器1からの出口部分にあたる5番のCNT基板の白金担持量が極端に多く、またその他の基板同士を比較しても白金担持量のバラつきが多かった。これは、バルブ4部分の配管に滞留していた金属化合物溶液が直接吹き付けられたこと、また第二の容器3内での流体の拡散性が悪いためと推察される。一方、本発明の方法では、従来法によるものと比較して各基板間の白金担持量のバラつきは少なかった。これは本発明の方法により、金属化合物溶液が直接吹き付けられることが避けられたこと、第二の容器3内での流体の拡散性が改善されたことなどによるものと推察される。
3. Evaluation of platinum carrying amount The platinum carrying amount of each substrate was determined by measuring the weight of each of the nine CNT substrates 6. The relationship between the position of the substrate and the amount of platinum supported is summarized in the graph of FIG. In the conventional method, the platinum carrying amount of the No. 5 CNT substrate corresponding to the exit portion from the first container 1 is extremely large, and even when other substrates are compared with each other, the platinum carrying amount varies greatly. This is presumably because the metal compound solution staying in the piping of the valve 4 portion was directly sprayed and the fluid diffusibility in the second container 3 was poor. On the other hand, in the method of the present invention, there was little variation in the amount of platinum supported between the substrates as compared with the conventional method. This is presumably due to the fact that the metal compound solution was prevented from being directly sprayed by the method of the present invention, the fluid diffusibility in the second container 3 was improved, and the like.

1:第一の容器
2:攪拌プロペラ
3:第二の容器
4:バルブ
5:ヒーター
6:カーボン材料(CNT基板)
1: First container 2: Stirring propeller 3: Second container 4: Valve 5: Heater 6: Carbon material (CNT substrate)

Claims (6)

第一の容器と、第一の容器とバルブを介して連通可能に接続された第二の容器を有する装置を利用する、超臨界流体を用いた金属担持カーボンの製造方法であって、
(a)第一の容器に金属化合物と超臨界流体前駆体ガスを、第二の容器にカーボンと超臨界流体前駆体ガスをそれぞれ封入する工程、
(b)第一の容器内の圧力が第二の容器内の圧力よりも低くなるよう第一の容器および第二の容器のそれぞれを加圧し、超臨界流体前駆体ガスを超臨界状態とする工程、
(c)バルブを開いて第一の容器と第二の容器とを連通させる工程
を含む、前記方法。
A method for producing metal-supported carbon using a supercritical fluid, using a device having a first container and a second container that is connected to the first container via a valve,
(A) a step of enclosing a metal compound and a supercritical fluid precursor gas in a first container, and carbon and a supercritical fluid precursor gas in a second container,
(B) Pressurize each of the first container and the second container so that the pressure in the first container is lower than the pressure in the second container, thereby bringing the supercritical fluid precursor gas into a supercritical state. Process,
(C) The method comprising the step of opening the valve to allow communication between the first container and the second container.
請求項1に記載の金属担持カーボンの製造方法であって、工程(c)の後に
(d)バルブを閉じた後に第二の容器を減圧し、第一の容器内の圧力が第二の容器内の圧力よりも高くなるようにする工程、
(e)再度バルブを開いて第一の容器と第二の容器とを連通させる工程
をさらに含む、前記方法。
The method for producing metal-supported carbon according to claim 1, wherein after the step (c), (d) the second container is depressurized after the valve is closed, and the pressure in the first container is set to the second container. The process of making it higher than the pressure inside,
(E) The method further comprising the step of opening the valve again to allow the first container and the second container to communicate with each other.
(d)および(e)の工程を2回以上繰り返す、請求項2に記載の金属担持カーボンの製造方法。   The method for producing metal-supported carbon according to claim 2, wherein the steps (d) and (e) are repeated twice or more. カーボンを150〜450℃の範囲の温度で加熱することを含む、請求項1〜3のいずれか1項に記載の金属担持カーボンの製造方法。   The manufacturing method of the metal carrying | support carbon of any one of Claims 1-3 including heating carbon at the temperature of the range of 150-450 degreeC. 金属化合物が、トリメチル(メチルシクロペンタジエニル)白金およびアセチルアセトナート白金から選択される、請求項1〜4のいずれか1項に記載の金属担持カーボンの製造方法。   The method for producing metal-supported carbon according to any one of claims 1 to 4, wherein the metal compound is selected from trimethyl (methylcyclopentadienyl) platinum and acetylacetonate platinum. 超臨界流体前駆体ガスが、二酸化炭素および三フッ化メタンから選択される、請求項1〜5のいずれか1項に記載の金属担持カーボンの製造方法。   The method for producing metal-supported carbon according to any one of claims 1 to 5, wherein the supercritical fluid precursor gas is selected from carbon dioxide and trifluoromethane.
JP2011084547A 2011-04-06 2011-04-06 Method for producing metal-supported carbon Active JP5697519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084547A JP5697519B2 (en) 2011-04-06 2011-04-06 Method for producing metal-supported carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084547A JP5697519B2 (en) 2011-04-06 2011-04-06 Method for producing metal-supported carbon

Publications (2)

Publication Number Publication Date
JP2012218959A JP2012218959A (en) 2012-11-12
JP5697519B2 true JP5697519B2 (en) 2015-04-08

Family

ID=47270875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084547A Active JP5697519B2 (en) 2011-04-06 2011-04-06 Method for producing metal-supported carbon

Country Status (1)

Country Link
JP (1) JP5697519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724834B2 (en) 2011-11-07 2015-05-27 トヨタ自動車株式会社 Method for producing catalyst-supported carbon nanotubes coated with ionomer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165701A (en) * 2001-11-27 2003-06-10 Toyota Central Res & Dev Lab Inc Hydrogen storage material and method of manufacturing it
JP5135599B2 (en) * 2005-03-28 2013-02-06 国立大学法人名古屋大学 Method for producing carbon nanowall carrying metal
JP2010160973A (en) * 2009-01-08 2010-07-22 Toyota Motor Corp Method of manufacturing supported catalyst for fuel cell
JP5464015B2 (en) * 2009-05-21 2014-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst layer, method for manufacturing membrane electrode assembly, and method for manufacturing fuel cell
JP2011044299A (en) * 2009-08-20 2011-03-03 Toyota Motor Corp Method of manufacturing electrode material for fuel cell

Also Published As

Publication number Publication date
JP2012218959A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Yuan et al. Ultrathin Pd–Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction
Weng et al. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis
Losch et al. Colloidal nanocrystals for heterogeneous catalysis
Yan et al. In situ synthesis strategy for hierarchically porous Ni2P polyhedrons from MOFs templates with enhanced electrochemical properties for hydrogen evolution
Liu et al. Upraising the O 2p orbital by integrating Ni with MoO2 for accelerating hydrogen evolution kinetics
Watt et al. Ultrafast growth of highly branched palladium nanostructures for catalysis
Wang et al. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction
Gao et al. ZIF-67-derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction
Sarkar et al. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material
Munoz-Flores et al. Recent advances in the synthesis and main applications of metallic nanoalloys
Thanh et al. In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing
Guerra et al. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C–C coupling chemistry
Pachon et al. Transition‐metal nanoparticles: synthesis, stability and the leaching issue
JP6392214B2 (en) Method for producing catalyst structure
Bang et al. Applications of ultrasound to the synthesis of nanostructured materials
Crespo-Quesada et al. UV–ozone cleaning of supported poly (vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior
Sahoo et al. A porous trimetallic Au@ Pd@ Ru nanoparticle system: synthesis, characterisation and efficient dye degradation and removal
Park et al. Catalytic hydrogen transfer of ketones over Ni@ SiO2 yolk− shell nanocatalysts with tiny metal cores
Huang et al. Nickel–ceria nanowires embedded in microporous silica: controllable synthesis, formation mechanism, and catalytic applications
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
CN103801705A (en) Method for loading nanocrystalline metal oxide or nanocrystalline metal materials by porous carbon
Fu et al. PtAuCo trimetallic nanoalloys as highly efficient catalysts toward dehydrogenation of ammonia borane
LaGrow et al. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide
US20210229169A1 (en) Method of producing stable cu-based core-shell nanoparticles
Qu et al. Fullerene derivative supported Ni for hydrogenation of nitrobenzene: Effect of functional group of fullerene derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R151 Written notification of patent or utility model registration

Ref document number: 5697519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250