JP5697425B2 - Image processing apparatus and image processing method - Google Patents

Image processing apparatus and image processing method Download PDF

Info

Publication number
JP5697425B2
JP5697425B2 JP2010276178A JP2010276178A JP5697425B2 JP 5697425 B2 JP5697425 B2 JP 5697425B2 JP 2010276178 A JP2010276178 A JP 2010276178A JP 2010276178 A JP2010276178 A JP 2010276178A JP 5697425 B2 JP5697425 B2 JP 5697425B2
Authority
JP
Japan
Prior art keywords
color material
recording
ink
pixel
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010276178A
Other languages
Japanese (ja)
Other versions
JP2012124854A (en
JP2012124854A5 (en
Inventor
西川 浩光
浩光 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010276178A priority Critical patent/JP5697425B2/en
Publication of JP2012124854A publication Critical patent/JP2012124854A/en
Publication of JP2012124854A5 publication Critical patent/JP2012124854A5/ja
Application granted granted Critical
Publication of JP5697425B2 publication Critical patent/JP5697425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、画像データに対する有色色材および無色色材の色材データを求める処理に関する。   The present invention relates to processing for obtaining color material data of a colored color material and a colorless color material for image data.

インクジェット記録装置のインクとしては、染料を色材とする染料インクや、顔料を色材とする顔料インクが用いられている。   As ink for an ink jet recording apparatus, dye ink using a dye as a color material and pigment ink using a pigment as a color material are used.

記録媒体上に顔料インクを用いて画像を形成すると、形成された画像に反射した光である正反射光が色付くという現象が生じる。例えば、スポットライトなどの光源下に該記録装置で形成された画像を置くと、スポットライト自身は白色の光を放っているにも関わらず、その光が記録媒体上で反射した光である正反射光には色が付く。   When an image is formed on a recording medium using pigment ink, a phenomenon occurs in which regularly reflected light, which is light reflected on the formed image, is colored. For example, when an image formed by the recording device is placed under a light source such as a spotlight, the spotlight itself emits white light, but the light is a light reflected on the recording medium. The reflected light is colored.

正反射光は、特に、カラー画像においては、シアンインクが多く使われている領域においてマゼンタ色に色付き、モノクロ画像においては、全体的に黄色く色付く傾向がある。また、画像の領域によってはインク量の変化に応じて正反射光が虹色に変化する傾向がある。この正反射光の色付きは、正反射光が拡散光の色とは異なっているため、画質を低下させてしまう。   The specularly reflected light tends to be colored magenta particularly in an area where cyan ink is frequently used in a color image, and yellow as a whole in a monochrome image. Further, depending on the area of the image, the regular reflection light tends to change to a rainbow color according to the change in the ink amount. The coloring of the regular reflected light deteriorates the image quality because the regular reflected light is different from the color of the diffused light.

ここで、正反射光色付きの評価方法(特許文献1)について図1を用いて説明する。光源102によって所定の角度から測定試料101を照射し、測定試料101からの正反射光を受光器103によって検出する。受光器103では、CIE XYZ表色系における三刺激値XxYxZxが検出される。検出されたXxYxZxと、ブロンズの発生しない試料(例えば、屈折率の波長分散が小さい黒色研磨硝子板)の三刺激値XsYsZsとの差分から、CIE L*a*b*表色系におけるa*b*を算出する。このa*b*で表される彩度C*が正反射光の色付きの度合を示す。C*が小さいほど正反射光の色付きが少なく、正反射光の色付きが無い試料の場合には、C*の値が0になる(すなわち、a*b*平面上で原点に位置する)。   Here, an evaluation method (Patent Document 1) with specular reflection light color will be described with reference to FIG. The measurement sample 101 is irradiated from a predetermined angle by the light source 102, and regular reflection light from the measurement sample 101 is detected by the light receiver 103. The light receiver 103 detects tristimulus values XxYxZx in the CIE XYZ color system. From the difference between the detected XxYxZx and the tristimulus value XsYsZs of a sample in which bronze is not generated (for example, a black polished glass plate having a small refractive index wavelength dispersion), a * b in the CIE L * a * b * color system * Is calculated. The saturation C * represented by a * b * indicates the degree of coloring of the regular reflection light. The smaller the C * is, the less the color of the specular reflected light is, and in the case of a sample without the color of the specular reflected light, the value of C * is 0 (that is, the origin is located on the a * b * plane).

上述のように正反射光が色付く原因として、ブロンズと薄膜干渉が知られている。   As described above, bronze and thin film interference are known as a cause of the specularly reflected light being colored.

ブロンズは、形成された画像の界面における反射に波長依存性があるために生じる現象である。ブロンズは、インクによって固有の色になることが知られており、例えば、シアンインクによって形成された画像領域において正反射光がマゼンタ色に色付く。ブロンズは、空気層とインク層の界面における反射の波長依存性が大きく寄与している。そのため、画像形成後にイエローインクを再吐出することにより、波長依存性の比較的大きなシアンインクなどによって形成された画像領域を、波長依存性の比較的小さなイエローインクで覆うことでブロンズを低減する方法が知られている(特許文献2)。また、L*a*b*空間の色相角180°〜360°(シアンからマゼンタ色相の領域)においてはイエローの吐出量を比較的少なくすることが記載されている。   Bronze is a phenomenon that occurs because reflection at the interface of the formed image has wavelength dependence. Bronze is known to have a unique color depending on the ink. For example, specularly reflected light is colored magenta in an image area formed with cyan ink. Bronze greatly contributes to the wavelength dependence of reflection at the interface between the air layer and the ink layer. Therefore, by re-ejecting yellow ink after image formation, a method of reducing bronzing by covering an image area formed with a relatively large wavelength-dependent cyan ink or the like with a relatively small wavelength-dependent yellow ink Is known (Patent Document 2). Further, it is described that the discharge amount of yellow is relatively reduced at a hue angle of 180 ° to 360 ° (region from cyan to magenta hue) in the L * a * b * space.

特開2006−177797号公報JP 2006-177797 A 特開2004−181688号公報JP 2004-181688 A

しかしながら、特許文献2の方法において、シアン、マゼンタインクが多く使用されているL*a*b*空間のシアン→ブルー→マゼンタの領域についてイエローインクで画像を覆ってオーバーコートする場合、色域が減少してしまう。特に、ブルーに対してイエローは補色の関係にあるため、色域の減少が顕著となる。一方で、イエローインクの吐出量を少なくすると、色域の減少は抑えられるものの、ブロンズが目立ってしまう。   However, in the method of Patent Document 2, when an overcoat is formed by covering an image with yellow ink in a cyan-> blue-> magenta region in the L * a * b * space where cyan and magenta inks are often used, the color gamut is It will decrease. In particular, since yellow is complementary to blue, the color gamut is significantly reduced. On the other hand, if the discharge amount of yellow ink is reduced, the reduction of the color gamut can be suppressed, but the bronze becomes conspicuous.

そこで、画像をオーバーコートする記録剤として色材の入ってないインクである無色色材を用いる方法が考えられる。無色色材はブロンズを表す刺激値が非常に小さい。加えて、透明な無色色材は発色に影響を与えないので、色域を減少させること無く、より効果的に正反射光の色付きを低減することが期待される。   Therefore, a method of using a colorless color material, which is an ink containing no color material, as a recording agent for overcoating an image can be considered. The colorless color material has a very small stimulus value representing bronze. In addition, since the transparent colorless color material does not affect the color development, it is expected to more effectively reduce the coloring of the regular reflection light without reducing the color gamut.

ところが、無色色材を用いて画像をオーバーコートしてみると、無色色材層の上層と下層で反射する光の光路差によって薄膜干渉が起きるため、無色色材のインク量(無色色材量)に応じて正反射光の色付きは変化してしまう。図2に、シアンインクベタ地の上に無色色材量を変えてオーバーコートしたときの正反射光の色付きを特許文献1の方法でa*b*平面上にプロットする。図2のグラフ上の数字は無色色材量を示す。図2から、シアンベタ地の正反射光の色付きはブロンズの影響でマゼンタの色相にあり、無色色材量が増えるにつれ、色付きが時計回りに回転する様子がわかる。すなわち、無色色材で有色色材をオーバーコートしても正反射光の色付きは必ずしも低減せず、無色色材量に応じて変化する。   However, when an image is overcoated with a colorless color material, thin film interference occurs due to the optical path difference of the light reflected from the upper and lower layers of the colorless color material layer. ), The color of the specularly reflected light changes. FIG. 2 plots the coloring of specularly reflected light on the a * b * plane according to the method of Patent Document 1 when the amount of colorless color material is changed and overcoated on a cyan ink solid background. The numbers on the graph in FIG. 2 indicate the amount of colorless color material. From FIG. 2, it can be seen that the coloration of the specularly reflected light on the cyan solid surface is in the magenta hue due to the influence of bronze, and that the coloration rotates clockwise as the amount of colorless color material increases. That is, even if the colored color material is overcoated with the colorless color material, the coloring of the regular reflection light is not necessarily reduced, and changes according to the amount of the colorless color material.

さらに実験により、色付きの変化は下地となる有色色材の種類によっても異なることがわかった。例えば、シアンインクベタ地の上にクリアインクを所定の量オーバーコートした際に生じる色付きと、マゼンタインクベタ地の上に同量のクリアインクをオーバーコートした際に生じる色付きは異なる。つまり、所定の無色色材量で一律にオーバーコートしても正反射光の色付きは十分に低減しない。   Furthermore, it has been found through experiments that the change in color varies depending on the type of colored material used as a base. For example, the coloring that occurs when a predetermined amount of clear ink is overcoated on a cyan ink solid background is different from the coloring that occurs when the same amount of clear ink is overcoated on a magenta ink solid background. In other words, even when the overcoat is uniformly overcoated with a predetermined amount of colorless color material, the coloring of the regular reflection light is not sufficiently reduced.

そこで、本発明は、大局的に観察される正反射光の色付きを低減することを目的とする。   Therefore, an object of the present invention is to reduce coloring of specularly reflected light that is observed globally.

上記課題を解決するために、本発明に係る画像処理装置は、記録媒体上の同一領域を同一色材により複数回記録走査することにより画像を形成するための色材データを生成する画像処理装置であって、前記同一領域内の注目画素に対応する画像データを有色色材の色材量に対応する色材データに変換する変換手段と、前記注目画素における前記記録走査各々の記録比率を定めた第一の記録比率により、前記注目画素における無色色材の色材量に対応する色材データを生成し、前記注目画素の周辺画素における前記記録走査各々の記録比率を定めた、前記第一の記録比率とは異なる第二の記録比率により、前記周辺画素における無色色材の色材量に対応する色材データを生成する生成手段とを有する。 In order to solve the above-described problems, an image processing apparatus according to the present invention generates color material data for forming an image by recording and scanning the same area on a recording medium a plurality of times with the same color material. A conversion means for converting image data corresponding to the target pixel in the same region into color material data corresponding to the color material amount of the color material; and a recording ratio of each of the recording scans in the target pixel. The first recording ratio generates color material data corresponding to the color material amount of the colorless color material in the target pixel, and determines the recording ratio of each of the recording scans in the peripheral pixels of the target pixel. Generating means for generating color material data corresponding to the amount of the color material of the colorless color material in the peripheral pixels at a second recording ratio different from the recording ratio.

本発明により、大局的に観察される正反射光の色付きを低減することが可能になる。   According to the present invention, it is possible to reduce coloring of specularly reflected light observed globally.

正反射色付きの評価方法を説明するための図である。It is a figure for demonstrating the evaluation method with a regular reflection color. シアンベタ地の上に無色色材量を変えて正反射光色付きを評価した例を説明するための図である。It is a figure for demonstrating the example which changed the colorless color material amount on the cyan solid ground, and evaluated regular reflection light coloration. 本実施形態の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of this embodiment. 本実施形態の画像処理装置の構成を示す図である。It is a figure which shows the structure of the image processing apparatus of this embodiment. 本実施形態のコンピュータシステムの構成を示す図である。It is a figure which shows the structure of the computer system of this embodiment. 本実施形態の画像処理装置の機能ブロックを示すブロック図である。It is a block diagram which shows the functional block of the image processing apparatus of this embodiment. 本実施形態におけるマスク処理の一例を示す図である。It is a figure which shows an example of the mask process in this embodiment. 本実施形態におけるマスク処理の一例を示す図である。It is a figure which shows an example of the mask process in this embodiment. 本実施形態における各記録走査におけるインク量を模式的に示す図である。It is a figure which shows typically the ink amount in each recording scan in this embodiment. 本実施形態における有色インク層中の無色インク層の位置制御とマスクパターンとの関係の例を示す模式図である。It is a schematic diagram which shows the example of the relationship between the position control of the colorless ink layer in the colored ink layer in this embodiment, and a mask pattern.

以下、本発明の実施形態について図面を参照しながら説明する。また、同一な構成については、同じ符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same components are described with the same reference numerals.

なお、本実施形態においては、本発明をインクジェットプリンタに適用した例を示すため、無色色材としてクリアインクの例を示すが、これらの例に限られず、電子写真方式のプリンタにクリアトナーを適用してもよい。   In this embodiment, in order to show an example in which the present invention is applied to an ink jet printer, an example of clear ink is shown as a colorless color material. However, the present invention is not limited to these examples, and clear toner is applied to an electrophotographic printer. May be.

本実施形態では、記録材であるインクについて、シアン、マゼンタ、イエロー、ブラック、クリア(無色、またはほぼ無色)、レッド、グリーン、ブルーなど片仮名表記で表す。また、色もしくはそのデータ、または色相をC、M、Y、K、CL、R、G、Bなど英字で表すものとする。すなわち、Cはシアン色もしくはその色材データ、または色相を表す。同様に、Mはマゼンタ、Yはイエロー、Kはブラック、Rはレッド、Gはグリーン、Bはブルーを、それぞれ表すものとする。CLは無色(透明)またはその色材データを表す。   In the present embodiment, ink that is a recording material is represented by katakana notation such as cyan, magenta, yellow, black, clear (colorless or almost colorless), red, green, and blue. In addition, the color or its data, or the hue is represented by alphabetic characters such as C, M, Y, K, CL, R, G, and B. That is, C represents cyan or its color material data, or hue. Similarly, M represents magenta, Y represents yellow, K represents black, R represents red, G represents green, and B represents blue. CL represents colorless (transparent) or its color material data.

また、正反射光に色が付くとは、記録媒体上に形成された画像に照明光を写り込ませた際の反射する光が、照明光とは異なった色を示すことを指し、正反射光の色付きを単に「色付き」と表したり「色」と表したりする。CIE−L*a*b*表色系におけるa*b*値などのように、色付きを表す値を色付き情報と表す。   Also, the specularly reflected light is colored means that the reflected light when the illumination light is reflected in the image formed on the recording medium shows a different color from the illumination light. The coloring of light is simply expressed as “colored” or “color”. A value indicating coloring, such as an a * b * value in the CIE-L * a * b * color system, is expressed as colored information.

また、「エリア」は、ドットのオン・オフが定義される最少単位である。これに関連して、下記カラーマッチング、色分解、γ補正にいう「画像データ」は処理対象である画素データの集合を表しており、各画素データは、例えば8ビットの多値階調値を示す。   An “area” is a minimum unit in which dot on / off is defined. In this connection, “image data” in the following color matching, color separation, and γ correction represents a set of pixel data to be processed, and each pixel data has, for example, an 8-bit multi-value gradation value. Show.

また、ハーフトーニングにいう「画素データ」は、処理対象である画素データそのものを表す。ハーフトーニングにより、複数ビット(例えば8ビット)の階調値を内容とする画素データは、例えば4ビットの階調値を内容とする画素データ(インデックスデータ)に変換される。なお、以下の説明においては、特に断らない限り、クリアインクの打ち込み量を変えることが出来る最小の構成単位を画素と呼ぶ。   In addition, “pixel data” referred to as halftoning represents pixel data itself that is a processing target. By halftoning, pixel data having a gradation value of a plurality of bits (for example, 8 bits) is converted into pixel data (index data) having a gradation value of, for example, 4 bits. In the following description, unless otherwise specified, the smallest structural unit that can change the amount of clear ink applied is referred to as a pixel.

はじめに、本実施形態の原理について説明する。画素毎に異なる色付きを発生させることにより、観測する色付きを低減させることができる。例えば、ある任意の画素に所定量の無色色材をオーバーコートした際に発生する色付きが赤であったとする。そして、隣の画素に無色色材を別の所定量オーバーコートした際に発生する色付きが緑であり、同様にその隣の画素の色付きが青であったとする。この様な場合、図3に示す模式図のように、光の三原則(加法混色)により、正反射光の色は白になる。すなわち、局所的な正反射光の色付き(例えば、赤・緑・青などの組み合わせ)を大局的に見ると白になるため、観察者には正反射光に色付きが無いように見える。   First, the principle of this embodiment will be described. By generating different coloring for each pixel, the observed coloring can be reduced. For example, it is assumed that a color generated when an arbitrary pixel is overcoated with a predetermined amount of a colorless color material is red. Then, it is assumed that the coloring that occurs when another predetermined amount of a colorless color material is overcoated on the adjacent pixel is green, and that the coloring of the adjacent pixel is also blue. In such a case, as shown in the schematic diagram of FIG. 3, the color of the specularly reflected light is white by the three principles of light (additive color mixture). That is, since the color of the local specularly reflected light (for example, a combination of red, green, and blue) is viewed globally, the specularly reflected light appears to have no color to the observer.

ここで、正反射光の色付きを大局的と局所的で表現したのは、正反射光の色付きが観測のスケールによるからである。人間の目の解像度より細かい色付きの変化は平均化されたものとしては感知される。すなわち、大局的な正反射光の色付きとは、人が正反射光の色付きを解像できる範囲で平均化された色付きである。また、局所的な正反射光の色付きとは、人が正反射光の色付きを解像できない範囲である、例えば数10μmオーダーサイズで平均化された色付きである。   Here, the reason why the coloring of the specular reflected light is expressed globally and locally is because the coloring of the specular reflected light depends on the scale of observation. Colored changes that are finer than the resolution of the human eye are perceived as averaged. That is, the general coloring of regular reflection light is a color averaged within a range in which a person can resolve the coloring of regular reflection light. Further, the coloration of the local regular reflection light is a range in which a person cannot resolve the coloration of the regular reflection light, for example, a color averaged in the order of several tens of micrometers.

本発明者は、有色インクが記録媒体上で層状に重なった場合、有色インクによって形成される層(以下、インク層)中の無色インク層の位置によって色付きが変化することを実験的に突き止めた。例えば、シアンインクベタ地のシアンインク層における上層に無色インク層を載せた(重ねた)場合、中層に無色インク層を挟んだ場合、及び、下層に無色インク層を敷いた場合によって生じる色付きは異なる。すなわち、記録媒体上の所定領域において局所的に記録される色材層の順序によって大局的な色付きが異なる。   The present inventor has experimentally found that when colored ink is layered on a recording medium, the coloring changes depending on the position of the colorless ink layer in a layer formed by the colored ink (hereinafter, ink layer). . For example, when a colorless ink layer is placed (overlaid) on the upper layer of a cyan ink layer in a solid cyan ink layer, a colorless ink layer is sandwiched between an intermediate layer, and a colorless ink layer is laid on a lower layer, Different. That is, the general coloring differs depending on the order of the color material layers recorded locally in a predetermined area on the recording medium.

そこで、色材が記録される順序によって画像内の所定領域、例えば画素毎に異なる色付きを発生させることで観測される色付きを低減させることができる。例えば、ある任意の画素に無色色材を所定の量だけ載せた際にその画素で発生する色付きが赤であったとする。そして、隣の画素に無色色材を所定の量だけ有色色材の中層に挟んだ際に発生する色付きが緑であったとする。さらに隣の画素に無色色材を所定の量だけ有色色材の下層に敷いた場合の色付きを青であったとする。この様な場合、一般的に知られる光の三原則(加法混色)により注目画素およびその周辺画素の正反射色は大局的に白になる。すなわち、局所的な正反射光の色付き(赤・緑・青)を大局的に見ると白になるため、観察者には正反射光色付きが無いように見える。   Therefore, the observed coloring can be reduced by generating different coloring in a predetermined area in the image, for example, each pixel depending on the order in which the coloring materials are recorded. For example, it is assumed that when a predetermined amount of a colorless color material is placed on an arbitrary pixel, the coloring generated in the pixel is red. Then, it is assumed that the coloring generated when a predetermined amount of colorless color material is sandwiched between the middle layers of the colored color material between adjacent pixels is green. Further, it is assumed that the color is blue when a predetermined amount of a colorless color material is laid on an adjacent pixel below the colored color material. In such a case, the specular reflection color of the pixel of interest and its surrounding pixels generally becomes white by three generally known light principles (additive color mixture). That is, when the color (red, green, blue) of the local specular reflection light is viewed globally, it becomes white, so that it appears to the observer that there is no specular reflection color.

本実施形態の画像処理装置の構成を図4に示す。図4において、401はプリンタ、402はプリンタコントローラとクライアントコンピュータを兼ね備えたコンピュータシステム、403はネットワークケーブル、SCSIケーブルなどに代表されるコネクタケーブルである。   The configuration of the image processing apparatus of this embodiment is shown in FIG. In FIG. 4, 401 is a printer, 402 is a computer system having both a printer controller and a client computer, and 403 is a connector cable represented by a network cable, a SCSI cable, and the like.

<コンピュータシステム>
図5は、図4のコンピュータシステム402の構成を表すブロック図である。同図において、インターフェース(I/F)501は、ユーザーが各種マニュアル指示を入力するためのマウス及びキーボード511とコンピュータシステム402とをつなぐ。CPU502は、コンピュータシステム402内部の各ブロックの動作を制御し、ROM503またはRAM504に記憶されたプログラムを実行する。ROM503は、後述するフローチャートによって表される画像処理等に必要なプログラムを予め記憶しておく。RAM504は、CPU502にて各種処理を行うためのプログラムや処理対象の画像データ、CPU502による各種処理結果などをワークメモリとして一時的に格納する。ディスプレイ制御部505は、処理対象の画像や操作者へのメッセージを表示するディスプレイ512の制御を行う。インターフェース(I/F)506は、コンピュータシステム402とカラープリンタ401をつなぐ。CDドライブ507は、外部記憶媒体の一つであるCD(CD−R/CD−RW/DVD/DVD−R/DVD−RW)に、記憶されたデータを読み込み或いは書き出す。FDドライブ508は、外部記憶媒体の一つであるFDからの読み込み或いは書き出しを行う。なお、CD,FD,DVD等に画像処理用のプログラム、或いはプリンタ情報等が記憶されている場合には、これらのプログラムをHD509上にインストールし、必要に応じてRAM504に転送する。ハードディスク(HD)509は、外部記憶媒体の一つとして、RAM504等に転送されるプログラムや画像データを格納したり、各種処理後の画像データを保存したりする。インターフェース(I/F)510は、コンピュータシステム402の各所に保持する様々なデータを外部機器へ伝送し、また、外部機器からの様々なデータを受信したりするモデムやネットワークカード等の外部入力513とコンピュータシステム402をつなぐ。
<Computer system>
FIG. 5 is a block diagram showing the configuration of the computer system 402 of FIG. In the figure, an interface (I / F) 501 connects a mouse and keyboard 511 and a computer system 402 for a user to input various manual instructions. The CPU 502 controls the operation of each block inside the computer system 402 and executes a program stored in the ROM 503 or RAM 504. The ROM 503 stores in advance a program necessary for image processing and the like represented by a flowchart described later. The RAM 504 temporarily stores, as a work memory, a program for performing various processes by the CPU 502, image data to be processed, various processing results by the CPU 502, and the like. The display control unit 505 controls the display 512 that displays an image to be processed and a message to the operator. An interface (I / F) 506 connects the computer system 402 and the color printer 401. The CD drive 507 reads or writes data stored in a CD (CD-R / CD-RW / DVD / DVD-R / DVD-RW) which is one of external storage media. The FD drive 508 reads or writes from an FD that is one of external storage media. When a program for image processing, printer information, or the like is stored on a CD, FD, DVD, or the like, these programs are installed on the HD 509 and transferred to the RAM 504 as necessary. A hard disk (HD) 509 stores, as one of external storage media, programs and image data transferred to the RAM 504 and the like, and stores image data after various processes. An interface (I / F) 510 transmits various data held in various places of the computer system 402 to an external device and receives various data from the external device, such as an external input 513 such as a modem or a network card. And the computer system 402 are connected.

図6は、図4に示される画像処理装置の各機能ブロックを示すブロック図である。プリンタ401は、顔料インクによって印刷を行うものであり、インクを吐出する記録ヘッドが用いられる。図4及び図6に示すように、画像処理装置は、顔料インクを用いるプリンタ401とホスト装置又は画像処理装置としてのコンピュータシステム402を有して構成される。   FIG. 6 is a block diagram showing functional blocks of the image processing apparatus shown in FIG. The printer 401 performs printing with pigment ink, and a recording head that discharges ink is used. As shown in FIGS. 4 and 6, the image processing apparatus includes a printer 401 that uses pigment ink and a computer system 402 as a host apparatus or an image processing apparatus.

<ホスト>
以降、図6におけるホスト装置の構成を説明する。ホスト装置で動作するプログラムとしてアプリケーションや色変換(カラーマッチング)がある。アプリケーション601はプリンタ401で印刷する画像データを作成する処理を実行する。なお、この画像データもしくは作成の元となる画像データは、種々の媒体を介してコンピュータシステム402に取り込むことができる。例えば、ディジタルカメラで撮像したJPEG形式の画像データをフラッシュメモリなどの外部入力513からI/F510を介して取り込むことができる。また、例えばHD509に格納されている画像データやCDドライブ507のCD−ROMに格納された画像データも取り込むことができる。さらには、インターネットから外部入力513を介してウエブ上のデータを取り込むことができる。これらの取り込まれたデータは、ディスプレイ512に表示されてアプリケーション601を介した編集、加工等がなされ、例えばsRGB規格の画像データR、G、Bが作成される。そして、印刷の指示に応じてこの画像データがカラーマッチング602に渡される。
<Host>
Hereinafter, the configuration of the host device in FIG. 6 will be described. There are applications and color conversion (color matching) as programs operating on the host device. The application 601 executes processing for creating image data to be printed by the printer 401. Note that this image data or image data that is the basis of the creation can be taken into the computer system 402 via various media. For example, JPEG format image data captured by a digital camera can be captured from an external input 513 such as a flash memory via the I / F 510. Further, for example, image data stored in the HD 509 or image data stored in the CD-ROM of the CD drive 507 can be captured. Further, data on the web can be taken in via the external input 513 from the Internet. These captured data are displayed on the display 512, and are edited and processed via the application 601, for example, image data R, G, and B of the sRGB standard are created. Then, this image data is transferred to the color matching 602 in response to a printing instruction.

(カラーマッチング処理)
カラーマッチング602は、sRGB規格の画像データR、G、Bによって再現される色域を、プリンタによって再現される色域内に写像するための対応関係を規定した3次元LUTを保持する。この三次元LUTに補間演算を併用し、8ビットの画像データR、G、Bをプリンタの色域内の画像信号R、G、Bに変換するデータ変換を行う。また、カラーマッチング処理は、3次元LUTに限られず行列式を用いて行ってもよい。
(Color matching process)
The color matching 602 holds a three-dimensional LUT that defines a correspondence relationship for mapping the color gamut reproduced by the image data R, G, and B of the sRGB standard into the color gamut reproduced by the printer. Interpolation is used in combination with this three-dimensional LUT, and data conversion is performed to convert 8-bit image data R, G, B into image signals R, G, B in the printer color gamut. The color matching process is not limited to the three-dimensional LUT, and may be performed using a determinant.

なお、上述したアプリケーション601およびカラーマッチング602の処理は、これらの機能を実現するプログラムに従ってCPU502により行われる。   Note that the processing of the application 601 and the color matching 602 described above is performed by the CPU 502 in accordance with a program that realizes these functions.

<プリンタ>
以降、プリンタ401について説明する。本実施例では、色分解部603以降の処理をプリンタ401内部で行う。また、プリンタ401における色分解部603、γ補正部604、ハーフトーニング部605、ドット配置パターン化部606、有色インク走査記録量制御部607、無色インク走査記録量制御部608、乱数発生部609およびヘッド駆動回路610は、専用のハードウエア回路を用いて、プリンタ401の制御部を構成する図示しないCPUの制御の下に動作する。なお、本実施形態は前述の構成に限られず、色分解部603から画像形成部610の前までの処理はプリンタ401で行ってもよく、コンピュータシステム402の例えばプリンタドライバで行ってもよい。
<Printer>
Hereinafter, the printer 401 will be described. In this embodiment, the processing after the color separation unit 603 is performed inside the printer 401. In the printer 401, a color separation unit 603, a γ correction unit 604, a halftoning unit 605, a dot arrangement patterning unit 606, a colored ink scanning recording amount control unit 607, a colorless ink scanning recording amount control unit 608, a random number generation unit 609, and The head drive circuit 610 operates under the control of a CPU (not shown) that constitutes the control unit of the printer 401 using a dedicated hardware circuit. The present embodiment is not limited to the above-described configuration, and the processing from the color separation unit 603 to the image forming unit 610 may be performed by the printer 401 or may be performed by the printer driver of the computer system 402, for example.

(色分解処理)
色分解処理603は、上記色域のマッピングがなされた注目画素の画像信号R、G、Bに基づき、このデータが表す色を再現するインク量(色材量)の組み合わせに対応した、例えばCMYKなどの有色インクと無色インク(CL)の色分解データに変換する。本実施例では、この処理はカラーマッチング処理と同様、周知の手法を用い、3次元LUTに補間演算を併用して行う。なお、無色インクの色分解データも同3次元LUTに記載されているものとする。
(Color separation processing)
The color separation processing 603 is based on the image signals R, G, and B of the target pixel on which the above color gamut mapping is performed, and corresponds to a combination of ink amounts (color material amounts) for reproducing the color represented by this data, for example, CMYK To color separation data of colored ink and colorless ink (CL). In the present embodiment, this process is performed using a well-known method, similar to the color matching process, using a three-dimensional LUT together with an interpolation operation. Note that the color separation data of colorless ink is also described in the three-dimensional LUT.

なお、無色インクの色分解データ(インク量)は、一定量でもよく、その場合はLUTではなく、他の記憶媒体に該所定の量を記憶しておけばよい。   The color separation data (ink amount) of the colorless ink may be a fixed amount. In this case, the predetermined amount may be stored in another storage medium instead of the LUT.

(γ補正処理)
γ補正部604は、色分解部603によって求められた色分解データの各色材信号のデータごとに周知の階調値変換を行う。具体的には本実施例で用いるプリンタ401の各色インクの階調特性に応じた1次元LUTを用いることにより、上記色分解データがプリンタ401の階調特性に線形的に対応づけられるように変換する。なお、無色インクの色分解データについては、無色であるため階調値変換処理を行わなくともよい。
(Γ correction processing)
The γ correction unit 604 performs known gradation value conversion for each color material signal data of the color separation data obtained by the color separation unit 603. Specifically, by using a one-dimensional LUT corresponding to the gradation characteristics of each color ink of the printer 401 used in this embodiment, the color separation data is converted so as to be linearly associated with the gradation characteristics of the printer 401. To do. Note that the color separation data of the colorless ink is colorless, so the gradation value conversion process does not have to be performed.

(ハーフトーニング)
ハーフトーニング部605は、例えば8ビットの色分解データC,M,Y,K,CLそれぞれについて例えば4ビットのデータに変換する量子化を行う。本実施形態で行う量子化は、周知の誤差拡散法を用いて8ビットデータを4ビットデータに変換する。また、本実施形態においては有色インクをC,M,Y,Kの4色として説明を続けるが、これに限られない。つまり、C,M,Y,Kと淡いC(Lc)、淡いM(Lm)の6色構成でもよいし、R,G,B等のインクや淡いK等のインクを含んでもよい。量子化された4ビットデータは、ドット配置パターン化部606における配置パターンを示すためのインデックスとなるデータである。
(Halftoning)
The halftoning unit 605 performs quantization that converts, for example, 8-bit color separation data C, M, Y, K, and CL into 4-bit data, for example. The quantization performed in this embodiment converts 8-bit data into 4-bit data using a known error diffusion method. Further, in the present embodiment, the description will be continued assuming that the colored ink is four colors of C, M, Y, and K, but the present invention is not limited to this. That is, a six-color configuration of C, M, Y, and K and light C (Lc) and light M (Lm) may be used, or ink such as R, G, and B, and light K or the like may be included. The quantized 4-bit data is data serving as an index for indicating an arrangement pattern in the dot arrangement patterning unit 606.

(ドット配置パターン化処理)
ドット配置パターン化部606は、0〜8(4ビット)の多値レベルを、ドットの有無を決定する2値レベルまで低減する役割を果たす。すなわち、実際の印刷画像に対応する画素ごとに、印刷イメージデータである4ビットのインデックスデータ(階調値情報)に対応したドット配置パターンに従ってドット配置を行う。このように、4ビットデータで表現される各画素に対し、該画素の階調値に対応したドット配置パターンを割当てることで、画素内の複数のエリア各々にドットのオン・オフが定義され、そして1画素内のエリアごとに「1」または「0」の吐出データが配置される。
(Dot arrangement patterning process)
The dot arrangement patterning unit 606 plays a role of reducing the multi-value level of 0 to 8 (4 bits) to a binary level that determines the presence or absence of dots. That is, for each pixel corresponding to an actual print image, dot placement is performed according to a dot placement pattern corresponding to 4-bit index data (tone value information) that is print image data. Thus, by assigning a dot arrangement pattern corresponding to the gradation value of each pixel to each pixel represented by 4-bit data, dot on / off is defined in each of a plurality of areas in the pixel, Discharge data “1” or “0” is arranged for each area in one pixel.

(インク走査記録量制御)
本実施形態では、有色インクと無色インクの走査記録量の制御をそれぞれ別処理として行う。別処理にすることにより、有色インクと無色インクの記録走査回数を異ならせることができ、記録走査回数を個別に選択できる。
(Ink scanning recording amount control)
In the present embodiment, control of the scanning recording amounts of colored ink and colorless ink is performed as separate processing. By performing separate processing, the number of recording scans of colored ink and colorless ink can be made different, and the number of recording scans can be individually selected.

有色インク走査記録量制御部607は、上述のドット配置パターン化処理により得られた有色インクの1ビットの吐出データを図示しない記憶部に記憶したマスクパターンを用いてマスク処理する。すなわち、記録ヘッドによる所定幅の走査領域の記録を複数回の走査で完成するための各走査の吐出データを、それぞれの走査に対応したマスク処理によって生成する。マスク処理の詳細については後述する。   The colored ink scanning recording amount control unit 607 performs mask processing using a mask pattern stored in a storage unit (not shown) of 1-bit ejection data of colored ink obtained by the above-described dot arrangement patterning process. In other words, the ejection data for each scan for completing the printing of the scanning area of the predetermined width by the recording head by a plurality of scans is generated by the mask processing corresponding to each scanning. Details of the mask processing will be described later.

無色インク走査記録量制御部608は、無色インク(CL)のマスクパターンを複数記憶しておき、乱数発生部609の出力に応じて領域毎のマスクパターンを切り替えることにより、有色インク層中の無色インク層の位置を変化させる。   The colorless ink scanning recording amount control unit 608 stores a plurality of mask patterns of colorless ink (CL), and switches the mask pattern for each region in accordance with the output of the random number generation unit 609, whereby the colorless ink layer in the colored ink layer is switched. The position of the ink layer is changed.

(乱数発生処理)
乱数発生部609は、CPU等により算出される自然乱数(例えばC言語では、RAND()関数の出力値)を最大値で割った0以上、1.0以下の範囲内にある一様乱数を算出する。次に、例えば5パターンのマスクパターンを記憶している場合、一様乱数に対し、パターン数5を乗じることによりマスクパターンを示すインデックス0〜4が以下のように算出される。
Mask Pattern Index = (int)(RAND()/RAND_MAX*5.0) ・・・(処理1)
if(Mask Pattern Index == 5) Mask Pattern Index =4 ・・・(処理2)
ここで、Mask Pattern Index:無色インクのマスクパターンインデックス、RAND():自然乱数、RAND_MAX:乱数の最大値とする。
(Random number generation processing)
The random number generator 609 calculates a uniform random number within a range of 0 to 1.0 by dividing a natural random number calculated by the CPU or the like (for example, an output value of the RAND () function in C language) by the maximum value. calculate. Next, for example, when 5 mask patterns are stored, indices 0 to 4 indicating the mask patterns are calculated as follows by multiplying the uniform random number by the number of patterns 5.
Mask Pattern Index = (int) (RAND () /RAND_MAX*5.0) (Processing 1)
if (Mask Pattern Index == 5) Mask Pattern Index = 4 (Process 2)
Here, Mask Pattern Index: colorless ink mask pattern index, RAND (): natural random number, RAND_MAX: maximum random number.

なお、ここで算出される乱数は、一様乱数に限られるものでは無く、マスクパターンインデックスの中心値(パターン数が5であれば、中心値は2)を中心とした正規乱数などを用いてもよい。   Note that the random number calculated here is not limited to a uniform random number, and a normal random number centered on the central value of the mask pattern index (the central value is 2 if the number of patterns is 5) is used. Also good.

また、一般的に知られるBayer型マスク、ホワイトノイズマスク、ブルーノイズマスク、グリーンノイズマスク等の特定の周波数変調を行ったマスク処理を用いて出力値を生成してもよい。   Further, the output value may be generated using a mask process that performs a specific frequency modulation such as a commonly known Bayer type mask, white noise mask, blue noise mask, or green noise mask.

(ヘッド駆動回路)
ヘッド駆動回路610は、適切なタイミングで送られてきた記録走査ごとの吐出データY、M、C、K、CLを用いて記録ヘッド611を駆動し、それぞれのインクを吐出する。
(Head drive circuit)
The head drive circuit 610 drives the print head 611 using the discharge data Y, M, C, K, CL for each print scan sent at an appropriate timing, and discharges each ink.

なお、上記説明では、無色インク走査記録量制御部608が複数用意したマスクパターンを切り替える例について説明したが、有色インク走査記録量制御部607も乱数発生部609の出力に応じて、無色インク走査記録量制御部608と同様に複数用意したマスクパターンを切り替えるように構成してもよい。有色インクのマスクパターンを複数用意することで、有色インク層と無色インク層の存在位置のランダム性をより高めることができる。一方で、複数用意するマスクパターンを有色インクと無色インクとで同一とし、乱数発生部609が出力する乱数をそれぞれに異ならせることで、それぞれに対して異なるマスクパターンが選択されるようにしてもよい。   In the above description, an example of switching a plurality of mask patterns prepared by the colorless ink scanning recording amount control unit 608 has been described. However, the colored ink scanning recording amount control unit 607 also performs colorless ink scanning according to the output of the random number generation unit 609. Similar to the recording amount control unit 608, a plurality of prepared mask patterns may be switched. By preparing a plurality of colored ink mask patterns, the randomness of the positions of the colored ink layer and the colorless ink layer can be further improved. On the other hand, a plurality of mask patterns to be prepared are the same for colored ink and colorless ink, and different random numbers are output from the random number generator 609 so that different mask patterns can be selected for each. Good.

(マスク処理)
以下、有色インク走査記録量制御部607及び無色インク走査記録量制御部608のマスク処理について説明する。なお、両処理は同様なマスク処理を有色インクと無色インクに対して行うため、以下マスク処理として説明を行う。
(Mask processing)
Hereinafter, the mask processing of the colored ink scanning recording amount control unit 607 and the colorless ink scanning recording amount control unit 608 will be described. In addition, since both processes perform the same mask process with respect to a colored ink and a colorless ink, it demonstrates as a mask process below.

図7は、インクを用いたマルチパス記録方法を説明するために、記録ヘッドおよび記録パターンを模式的に示したものである。説明を簡単にするため、記録ヘッド1301は25個のノズルを有するものとする。ノズルは、第1〜第5の5つのノズル群に分割され、各ノズル群には5つずつのノズルが含まれている。各走査1303〜1307は、マスクパターン1302により、各ノズルが記録を行うエリアを黒塗りで示している。   FIG. 7 schematically shows a recording head and a recording pattern in order to explain a multi-pass recording method using ink. In order to simplify the explanation, it is assumed that the recording head 1301 has 25 nozzles. The nozzles are divided into first to fifth nozzle groups, and each nozzle group includes five nozzles. In each of the scans 1303 to 1307, the area where each nozzle performs recording is indicated by black by the mask pattern 1302.

各ノズル群が記録する記録パターンは互いに補完の関係にあり、これらを重ね合わせると5×5のエリアに対応した領域の記録が完成される構成となっている。各パターン1303〜1307は、記録走査を重ねていくことによって画像が完成されていく様子を示したものであり、各記録パターンのインク量は等しい。つまり、各記録走査により記録されるインク量(記録比率)は同一である。各記録走査が終了するたびに、記録媒体は図の矢印の方向にノズル群の幅分ずつ搬送される。よって、記録媒体の同一領域(各ノズル群の幅に対応する領域)は全5回の記録走査によって初めて画像が完成される構成となっている。   The recording patterns recorded by each nozzle group are complementary to each other, and when these are superimposed, recording of a region corresponding to a 5 × 5 area is completed. Each of the patterns 1303 to 1307 shows a state in which an image is completed by overlapping recording scans, and the ink amount of each recording pattern is equal. That is, the ink amount (recording ratio) recorded by each recording scan is the same. When each recording scan is completed, the recording medium is conveyed by the width of the nozzle group in the direction of the arrow in the figure. Therefore, the same area of the recording medium (area corresponding to the width of each nozzle group) is configured such that an image is completed only by a total of five recording scans.

以上のように、本実施例におけるインクの記録においては、記録媒体の同一領域が複数回の記録走査で複数のノズル群によるインクの吐出によって形成される。   As described above, in the ink recording in this embodiment, the same area of the recording medium is formed by ejecting ink from a plurality of nozzle groups in a plurality of recording scans.

また、図8に示される記録パターンの例は、マスクパターン1302と異なったマスクパターンを用いた例である。記録ヘッド1401は、記録ヘッド1301と同様の構成を有する。マスクパターン1402は、各記録走査における記録パターンと記録比率が異なる。各パターン1403〜1407は、マスクパターン1402による記録走査を重ねて画像が完成されていく様子を示したものであり、記録媒体の同一領域(各ノズル群の幅に対応する領域)が全5回の記録走査によって完成される。しかしながら、記録パターンと記録比率とがパターン1303〜1307とは異なり、全記録走査における始めと終わりの記録走査による記録比率が低く、途中の記録走査による記録比率が高い。   The example of the recording pattern shown in FIG. 8 is an example using a mask pattern different from the mask pattern 1302. The recording head 1401 has the same configuration as the recording head 1301. The mask pattern 1402 is different in printing ratio from the printing pattern in each printing scan. Each of the patterns 1403 to 1407 shows a state in which an image is completed by overlapping the recording scans by the mask pattern 1402, and the same area (area corresponding to the width of each nozzle group) of the recording medium is 5 times in total. It is completed by recording scan. However, unlike the patterns 1303 to 1307, the recording pattern and the recording ratio are low, and the recording ratio by the initial and final recording scans in all the recording scans is low, and the recording ratio by the intermediate recording scan is high.

以上のようなマスクパターンを用いることにより、記録媒体上の同一領域が複数回の走査で複数のノズル群によって形成され、第1ノズル群から第5ノズル群で吐出されるインク量を制御することが可能である。   By using the mask pattern as described above, the same area on the recording medium is formed by a plurality of nozzle groups by a plurality of scans, and the amount of ink ejected from the first nozzle group to the fifth nozzle group is controlled. Is possible.

図7及び図8のマスクパターンを用いて記録した場合の各記録走査におけるインク量を図9に模式的に示す。図9(a)は、各記録走査による記録比率が変化しないマスクパターン、つまり、図7に示すようなマスクパターンによるインク量1501を模式的に示す。図9(b)は、記録走査回数に応じて記録比率が変化するマスクパターン、つまり、図8に示すマスクパターン1402によるインク量1502を示す。   FIG. 9 schematically shows the ink amount in each printing scan when printing is performed using the mask patterns of FIGS. FIG. 9A schematically shows an ink amount 1501 by a mask pattern in which the printing ratio is not changed by each printing scan, that is, by a mask pattern as shown in FIG. FIG. 9B shows a mask pattern whose printing ratio changes according to the number of printing scans, that is, the ink amount 1502 by the mask pattern 1402 shown in FIG.

記録媒体上における有色インク層中の無色インク層の位置制御とマスクパターンとの関係の例について図10に模式図を示す。図10は、縦軸に各記録走査において記録されるインク量、横軸を記録走査回数とし両者の関係をグラフに示す。またこの場合、インク量の描く形状が平坦な形状となるインク量1601の有色インク用のマスクパターンに対し、インク量の形状が異なる無色インク用のマスクパターンを組み合わせた場合に記録媒体上で形成されるインク層の例を示している。   FIG. 10 is a schematic diagram showing an example of the relationship between the position control of the colorless ink layer in the colored ink layer on the recording medium and the mask pattern. FIG. 10 is a graph showing the relationship between the amount of ink recorded in each recording scan on the vertical axis and the number of recording scans on the horizontal axis. Further, in this case, when a mask pattern for colorless ink having a different ink amount shape is combined with a mask pattern for colored ink having an ink amount 1601 in which the shape drawn by the ink amount is a flat shape, it is formed on the recording medium. An example of the ink layer to be performed is shown.

ここで、無色インク用のマスクパターンは、前述したグラフにおけるインク量の形状から単調増加状のインク量変化1602、放物線状のインク量変化1603、単調減少状のインク量変化1604の3種類を示す。3種類に対するインク層はそれぞれ各記録走査におけるインク比率が異なるため、インク層1605〜1607が示すように有色インクと無色インクの存在位置が層状に変化する。例えば、インク量1601と単調増加インク量1602とでは、走査回数の増加に応じて、始め有色インクの記録比率のほうが無色インクより相対的に高い。そのため、有色インクのほうが無色インクより先に多くのインク量が記録媒体上に吐出されることになり、記録媒体に近いほうに有色インクのインク層が位置することとなる。他方、走査回数の最後に近づくにつれ(走査回数が多くなるにつれ)、有色インクに比べて無色インクのインク量が多くなるため、インク層の表面に近いほうに無色インクのインク層が位置することになる。   Here, the mask pattern for colorless ink indicates three types of ink amount change 1602, monotonically increasing ink amount change 1602, parabolic ink amount change 1603, and monotonically decreasing ink amount change 1604 from the shape of the ink amount in the graph described above. . Since the ink layers for the three types have different ink ratios in each printing scan, the positions where the colored ink and the colorless ink are present change in layers as indicated by the ink layers 1605 to 1607. For example, in the ink amount 1601 and the monotonically increasing ink amount 1602, the recording ratio of the colored ink is relatively higher than that of the colorless ink as the number of scans increases. For this reason, a larger amount of the colored ink is ejected onto the recording medium before the colorless ink, and the ink layer of the colored ink is positioned closer to the recording medium. On the other hand, as the number of scans approaches the end (as the number of scans increases), the amount of colorless ink increases as compared to colored ink, so the ink layer of colorless ink is located closer to the surface of the ink layer. become.

従って、図7及び図8に示したような複数のマスクパターンを予め保持し、有色インクと無色インクそれぞれのマスクパターンを切り替えて(組み合わせて)用いることにより、有色インク層中の無色インク層の位置を制御することが可能である。そして、このように各色材のインク層の位置が異なると、空気層とインク層の界面で起こる反射、及びインク層内部で起こる反射による正反射の色付き具合が変化する。   Accordingly, by holding a plurality of mask patterns as shown in FIGS. 7 and 8 in advance and switching (combining) the mask patterns of the colored ink and the colorless ink, the colorless ink layer in the colored ink layer is used. It is possible to control the position. If the positions of the ink layers of the respective color materials are different as described above, the coloration of the reflection that occurs at the interface between the air layer and the ink layer and the regular reflection due to the reflection that occurs inside the ink layer changes.

そこで、無色インク走査記録量制御部608は、乱数発生部609により発生される乱数に基づき、無色インクのマスクパターンを画素ごとに変更することで、注目画素および周辺画素において様々な(ランダムな)光沢色付きを発生させる。以上により、前述のように様々な光沢色付きの集合は白に見えるため、大局的な光沢色付きが低減される。   Therefore, the colorless ink scanning / recording amount control unit 608 changes the mask pattern of the colorless ink for each pixel based on the random number generated by the random number generation unit 609, thereby changing various (random) pixels of interest and surrounding pixels. Glossy coloring is generated. As described above, since the group with various gloss colors appears white as described above, the overall gloss color is reduced.

なお、インク層位置を変更させることができれば、色材と各色材に対するマスクパターンとの組み合わせは上記の例に限られない。例えば、有色インク走査記録量制御部607が有色インクの複数のマスクパターンを保持し、前述したように乱数に応じて変更してもよい。   Note that the combination of the color material and the mask pattern for each color material is not limited to the above example as long as the ink layer position can be changed. For example, the color ink scanning recording amount control unit 607 may hold a plurality of mask patterns of colored ink and change them according to random numbers as described above.

以上説明したように、本実施例によれば、有色インク層中に存在するクリアインク層の位置をランダムに変化させることで、正反射色付きを低減することが可能となる。   As described above, according to this embodiment, it is possible to reduce the regular reflection color by randomly changing the position of the clear ink layer present in the colored ink layer.

実施例1における有色インク走査記録量制御部607、及び無色インク走査記録量制御部608は、乱数発生部609の出力に応じて予め記憶された複数のマスクパターンを切り替えたが、これに限られるものではない。すなわち、乱数発生部の出力に応じてマスクパターンを生成してもよい。   The colored ink scanning recording amount control unit 607 and the colorless ink scanning recording amount control unit 608 according to the first exemplary embodiment switch the plurality of mask patterns stored in advance according to the output of the random number generation unit 609, but are not limited thereto. It is not a thing. That is, the mask pattern may be generated according to the output of the random number generator.

以下、本実施例における有色インク走査記録量制御部607と無色インク走査記録量制御部608によるマスク処理を、記録走査回数が8回の場合の例について説明する。なお、実施例1と異なる点を中心に簡潔に説明する。また、有色インク走査記録量制御部607と無色インク走査記録量制御部608は、同様なマスク処理を行う。   Hereinafter, the mask processing by the colored ink scanning recording amount control unit 607 and the colorless ink scanning recording amount control unit 608 in this embodiment will be described with respect to an example in which the number of printing scans is eight. In addition, it demonstrates concisely centering on a different point from Example 1. FIG. Further, the colored ink scanning recording amount control unit 607 and the colorless ink scanning recording amount control unit 608 perform similar mask processing.

まず、実施例1と同様に乱数発生部609において以下の処理3により一様乱数を発生させる。
Rand(n)=RAND()/RAND_MAX (n=1〜8)・・・(処理3)
ここで、Rand(n):一様乱数、RAND():自然乱数、RAND_MAX:乱数の最大値とする。
First, as in the first embodiment, the random number generator 609 generates uniform random numbers by the following process 3.
Rand (n) = RAND () / RAND_MAX (n = 1-8) (Process 3)
Here, Rand (n) is a uniform random number, RAND () is a natural random number, and RAND_MAX is the maximum random number.

つぎに、有色インク走査記録量制御部607と無色インク走査記録量制御部608は、処理3の出力である8つの乱数を取得する。そして、任意の画像領域における有色インクまたは無色インクの記録走査毎の記録比率を以下のように決定する。   Next, the colored ink scanning / recording amount control unit 607 and the colorless ink scanning / recording amount control unit 608 obtain eight random numbers that are outputs of the process 3. Then, the recording ratio of colored ink or colorless ink in an arbitrary image area for each recording scan is determined as follows.

Figure 0005697425
Figure 0005697425

ここで、Ink_amount_ratio(n):n回目の記録走査における記録比率である。   Here, Ink_mount_ratio (n): a printing ratio in the nth printing scan.

つぎに、上記記録比率に応じて図示しない記録パターンを生成し、生成された記録パターンに従った吐出データY,M,C,K,CLをヘッド駆動回路610に出力する。   Next, a recording pattern (not shown) is generated according to the recording ratio, and ejection data Y, M, C, K, CL according to the generated recording pattern is output to the head driving circuit 610.

なお、上記で算出される乱数は、一様乱数に限られることは無く、記録パターンのインデックスの中心値を中心とした正規乱数などを用いてもよい。さらには、一般的に知られるBayer型・ホワイトノイズマスク・ブルーノイズマスク・グリーンノイズマスク等の特定の周波数変調を行った出力値を生成してもよい。   The random number calculated above is not limited to a uniform random number, and a normal random number centered on the central value of the index of the recording pattern may be used. Furthermore, an output value obtained by performing specific frequency modulation such as a generally known Bayer type, white noise mask, blue noise mask, green noise mask, or the like may be generated.

以上、実施例2により、実施例1のように、複数のマスクパターンを予め保持しておく必要が無いため、メモリ領域の削減などのさらなる効果を得ることが可能である。   As described above, according to the second embodiment, it is not necessary to hold a plurality of mask patterns in advance as in the first embodiment, so that it is possible to obtain further effects such as memory area reduction.

また、本発明は、上述した実施例の機能(例えば、上記の各部の処理を各工程に対応させたフローチャートにより示される処理)を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給することによっても実現できる。この場合、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が、コンピュータが読み取り可能に記憶媒体に格納されたプログラムコードを読み出し実行することにより、上述した実施例の機能を実現する。   The present invention also provides a storage medium storing a program code of software for realizing the functions of the above-described embodiments (for example, the processing shown by the flowchart in which the processing of each unit described above is associated with each step). It can also be realized by supplying to. In this case, the functions of the above-described embodiments are realized by the computer (or CPU or MPU) of the system or apparatus reading and executing the program code stored in the storage medium so that the computer can read the program code.

Claims (9)

記録媒体上の同一領域を同一色材により複数回記録走査することにより画像を形成するための色材データを生成する画像処理装置であって、
前記同一領域内の注目画素に対応する画像データを有色色材の色材量に対応する色材データに変換する変換手段と、
前記注目画素における前記記録走査各々の記録比率を定めた第一の記録比率により、前記注目画素における無色色材の色材量に対応する色材データを生成し、前記注目画素の周辺画素における前記記録走査各々の記録比率を定めた、前記第一の記録比率とは異なる第二の記録比率により、前記周辺画素における無色色材の色材量に対応する色材データを生成する生成手段と
を有することを特徴とする画像処理装置。
An image processing apparatus for generating color material data for forming an image by recording and scanning the same area on a recording medium a plurality of times with the same color material,
Conversion means for converting image data corresponding to the pixel of interest in the same region into color material data corresponding to the color material amount of the color material;
Color material data corresponding to the color material amount of the colorless color material in the pixel of interest is generated by a first recording ratio that determines the recording ratio of each of the recording scans in the pixel of interest, and the pixel in the peripheral pixels of the pixel of interest Generating means for generating color material data corresponding to the amount of the color material of the colorless color material in the peripheral pixels by a second recording ratio different from the first recording ratio, wherein the recording ratio of each recording scan is determined; An image processing apparatus comprising:
乱数を発生させる乱数発生手段と、
前記記録走査各々における記録比率が異なる複数のマスクパターンを保持する保持手段とをさらに有し、
前記生成手段は、前記乱数に応じて前記複数のマスクパターンから少なくとも2つのマスクパターンを選択し、該選択したマスクパターンにより前記色材データを生成することを特徴とする請求項1に記載の画像処理装置。
Random number generating means for generating random numbers;
Holding means for holding a plurality of mask patterns having different printing ratios in each of the printing scans;
2. The image according to claim 1, wherein the generation unit selects at least two mask patterns from the plurality of mask patterns according to the random number, and generates the color material data based on the selected mask patterns. Processing equipment.
前記複数のマスクパターンは、前記記録走査の回数に応じて記録比率が単調増加するマスクパターンと単調減少するマスクパターンとを含むことを特徴とする請求項2に記載の画像処理装置。   The image processing apparatus according to claim 2, wherein the plurality of mask patterns include a mask pattern in which a printing ratio monotonously increases and a mask pattern in which the printing ratio monotonously decreases according to the number of times of the printing scan. 乱数を発生させる乱数発生手段と、
前記生成手段は、前記乱数に応じて、前記記録走査各々における記録比率が異なる複数のマスクパターンを生成し、該生成したマスクパターンにより前記有色色材の色材量に対応する色材データを生成することを特徴とする請求項1に記載の画像処理装置。
Random number generating means for generating random numbers;
The generation unit generates a plurality of mask patterns having different recording ratios in each of the recording scans according to the random number, and generates color material data corresponding to the color material amount of the color material by using the generated mask pattern. The image processing apparatus according to claim 1, wherein:
前記有色色材の色材量に対応する色材データの前記注目画素における前記記録走査各々の記録比率は同一であることを特徴とする請求項1乃至請求項3の何れか一項に記載の画像処理装置。   4. The recording ratio of each of the recording scans in the target pixel of the color material data corresponding to the color material amount of the colored color material is the same. 5. Image processing device. 前記第一の記録比率は前記記録走査各々において同一の記録比率であり、前記第二の記録比率は前記記録走査各々において異なる記録比率であることを特徴とする請求項1乃至請求項4の何れか一項に記載の画像処理装置。   The first recording ratio is the same recording ratio in each of the recording scans, and the second recording ratio is a different recording ratio in each of the recording scans. An image processing apparatus according to claim 1. 前記色材データを用いて画像を形成する画像形成手段を更に有することを特徴とする請求項1乃至請求項6の何れか一項に記載の画像処理装置。   The image processing apparatus according to claim 1, further comprising an image forming unit that forms an image using the color material data. 記録媒体上の同一領域を同一色材により複数回記録走査することにより画像を形成するための色材データを生成する画像処理方法であって、
前記同一領域内の注目画素に対応する画像データを有色色材の色材量に対応する色材データに変換する変換工程と、
前記注目画素における前記記録走査各々の記録比率を定めた第一の記録比率により、前記注目画素における無色色材の色材量に対応する色材データを生成し、前記注目画素の周辺画素における前記記録走査各々の記録比率を定めた、前記第一の記録比率とは異なる第二の記録比率により、前記周辺画素における無色色材の色材量に対応する色材データを生成する生成工程と
を有することを特徴とする画像処理方法。
An image processing method for generating color material data for forming an image by recording and scanning the same region on a recording medium a plurality of times with the same color material,
A conversion step of converting image data corresponding to the target pixel in the same region into color material data corresponding to the color material amount of the color material;
Color material data corresponding to the color material amount of the colorless color material in the pixel of interest is generated by a first recording ratio that determines the recording ratio of each of the recording scans in the pixel of interest, and the pixel in the peripheral pixels of the pixel of interest Generating a color material corresponding to a color material amount of a colorless color material in the peripheral pixels by a second recording ratio different from the first recording ratio, in which a recording ratio of each recording scan is determined; An image processing method comprising:
コンピュータを、請求項1乃至請求項7の何れか一項に記載された画像処理装置の各手段として機能させることを特徴とするプログラム。   A program that causes a computer to function as each unit of the image processing apparatus according to any one of claims 1 to 7.
JP2010276178A 2010-12-10 2010-12-10 Image processing apparatus and image processing method Active JP5697425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276178A JP5697425B2 (en) 2010-12-10 2010-12-10 Image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276178A JP5697425B2 (en) 2010-12-10 2010-12-10 Image processing apparatus and image processing method

Publications (3)

Publication Number Publication Date
JP2012124854A JP2012124854A (en) 2012-06-28
JP2012124854A5 JP2012124854A5 (en) 2014-01-30
JP5697425B2 true JP5697425B2 (en) 2015-04-08

Family

ID=46505812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276178A Active JP5697425B2 (en) 2010-12-10 2010-12-10 Image processing apparatus and image processing method

Country Status (1)

Country Link
JP (1) JP5697425B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075722A1 (en) * 2006-12-19 2008-06-26 Canon Kabushiki Kaisha Ink jet recording device and ink jet recording method
JP5646822B2 (en) * 2009-05-18 2014-12-24 キヤノン株式会社 Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JP2012124854A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5717396B2 (en) Image processing apparatus and image processing method
JP5014475B2 (en) Image processing apparatus and image processing method
JP4838704B2 (en) Image forming apparatus and control method thereof
US8651609B2 (en) Color processing device for determining colorless material recording amount data
JP5634154B2 (en) Image processing apparatus and image processing method
US8888214B2 (en) Image forming apparatus and image forming method
JP2016066830A (en) Image processing apparatus, image processing method and program
US20190068832A1 (en) Image processing apparatus, method thereof, and image forming apparatus
JP5697425B2 (en) Image processing apparatus and image processing method
JP2012039320A (en) Image processing system and image processing method
JP2012081638A (en) Apparatus and method for processing image
JP5634167B2 (en) Image forming apparatus and image forming method
JP5632681B2 (en) Control apparatus and method
JP2014128901A (en) Image processing device and image processing method
JP6860307B2 (en) Image processing device and its method, and image forming device
JP2016019169A (en) Image processing apparatus, image forming apparatus, image processing method, and program
JP2013118516A (en) Image processing apparatus and method thereof
JP2012085123A (en) Image processor and processing method
JP5676967B2 (en) Image forming apparatus and image forming method
JP5733932B2 (en) Color processing apparatus and color processing method
JP2016074110A (en) Image processing device and image processing method
JP2005094528A (en) Color conversion apparatus, color conversion method, print control program, and medium with the print control program recorded thereon
JP2005238465A (en) Determination of amount of used ink for harmoniously realizing high density and high gloss
JP2015197817A (en) Image processor and control method thereof, and printed matter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R151 Written notification of patent or utility model registration

Ref document number: 5697425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151