JP5696681B2 - Power transmission system and power transmission device and power reception device - Google Patents

Power transmission system and power transmission device and power reception device Download PDF

Info

Publication number
JP5696681B2
JP5696681B2 JP2012085325A JP2012085325A JP5696681B2 JP 5696681 B2 JP5696681 B2 JP 5696681B2 JP 2012085325 A JP2012085325 A JP 2012085325A JP 2012085325 A JP2012085325 A JP 2012085325A JP 5696681 B2 JP5696681 B2 JP 5696681B2
Authority
JP
Japan
Prior art keywords
power
voltage
converter
power transmission
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012085325A
Other languages
Japanese (ja)
Other versions
JP2013215065A5 (en
JP2013215065A (en
Inventor
隆彦 村山
隆彦 村山
祐司 前川
祐司 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012085325A priority Critical patent/JP5696681B2/en
Publication of JP2013215065A publication Critical patent/JP2013215065A/en
Publication of JP2013215065A5 publication Critical patent/JP2013215065A5/en
Application granted granted Critical
Publication of JP5696681B2 publication Critical patent/JP5696681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電力伝送システム並びにその送電装置及び受電装置に関する。 The present invention relates to a power transmission system , a power transmission device, and a power reception device .

従来から非接触給電方式として、電磁誘導方式、電波受信方式、電界結合方式及び磁界共鳴方式等が知られている。これらの方式の内、磁界共鳴方式とは、送電装置側と受電装置側に、コイルとコンデンサからなるLC共振回路を設け、両回路間で磁界を共鳴させてワイヤレスで電力を伝送する技術である(下記特許文献1参照)。
この磁界共鳴方式は、広く実用化されている電磁誘導方式と比べて、弱い磁界で高効率且つ長距離の電力伝送を実現できるという特徴があり、携帯端末や電気自動車等の充電に利用可能な次世代のワイヤレス電力伝送技術として注目されている。
Conventionally, as a non-contact power feeding method, an electromagnetic induction method, a radio wave reception method, an electric field coupling method, a magnetic field resonance method, and the like are known. Among these methods, the magnetic field resonance method is a technology in which an LC resonance circuit composed of a coil and a capacitor is provided on the power transmission device side and the power reception device side, and the power is transmitted wirelessly by resonating the magnetic field between the two circuits. (See Patent Document 1 below).
This magnetic field resonance method has a feature that it can realize high-efficiency and long-distance power transmission with a weak magnetic field, compared to a widely used electromagnetic induction method, and can be used for charging mobile terminals, electric vehicles, etc. It is attracting attention as a next-generation wireless power transmission technology.

特開2011−147271号公報JP 2011-147271 A

非接触給電方式(特に磁界共鳴方式)の電力伝送システムは、交流電源から供給される交流電力をアンプにて増幅した後、送電側共鳴コイルによって無線送電する送電装置と、受電側共鳴コイルによって受電した交流電力を整流器によって直流電力に変換し、さらに直流変換器(DC/DCコンバータ)によって所望の直流電力(例えばバッテリの充電用電力)に変換する受電装置とから構成される。なお、受電装置側において、整流器と直流変換器とが一体的に組み込まれて充電器(AC/DC変換器)を構成している場合もある。   The power transmission system of the non-contact power feeding method (particularly the magnetic field resonance method) amplifies the AC power supplied from the AC power source with an amplifier, and then receives power by the power transmitting resonance coil and the power transmitting resonance coil. The AC power is converted into DC power by a rectifier, and further converted into desired DC power (for example, battery charging power) by a DC converter (DC / DC converter). In some cases, on the power receiving device side, a rectifier and a DC converter are integrally incorporated to form a charger (AC / DC converter).

送電装置から受電装置への電力伝送開始時において、インピーダンスのマッチングがとれていない状態(直流変換器が動作していない状態)で、送電装置側のアンプ出力電圧を上げると、受電装置側の整流器出力電圧は、LC共振回路のQ値の影響を受けてアンプ出力電圧より高くなる。そのような高電圧が比較的急に(数秒以下)、整流器後段の直流変換器に印加されるため、直流変換器の耐圧を越えて破損する可能性がある。   When power transmission from the power transmission device to the power reception device is started, if the impedance matching is not achieved (the DC converter is not operating) and the amplifier output voltage on the power transmission device side is increased, the rectifier on the power reception device side The output voltage is higher than the amplifier output voltage due to the influence of the Q value of the LC resonance circuit. Since such a high voltage is applied to the DC converter after the rectifier relatively abruptly (several seconds or less), there is a possibility that the breakdown voltage exceeds the withstand voltage of the DC converter.

また、直流変換器を制御するマイコン等の制御装置の電源(制御電源)が入っていない状態、或いは制御装置のスタートアップが不安定な状態で、直流変換器に高電圧が印加されることになり、直流変換器の暴走などの予期せぬトラブルが発生する可能性がある。このような直流変換器の暴走を回避するためには、制御電源供給用のバッテリやコンデンサ等の蓄電デバイスを別に用意する必要があり、コストの上昇を招く要因となる。   In addition, a high voltage is applied to the DC converter when the power supply (control power supply) of a control device such as a microcomputer for controlling the DC converter is not turned on or when the startup of the control device is unstable. Unexpected troubles such as DC converter runaway may occur. In order to avoid such a runaway DC converter, it is necessary to separately prepare a power storage device such as a battery for supplying control power and a capacitor, which causes an increase in cost.

本発明は上述した事情に鑑みてなされたものであり、蓄電デバイスを別に用意することなく、受電装置側の整流器後段に設けられた直流変換器の破損を防止することの可能な電力伝送システム並びにその送電装置及び受電装置を提供することを目的とする。 The present invention has been made in view of the circumstances described above, and can provide a power transmission system capable of preventing damage to a DC converter provided at a subsequent stage of a rectifier on the power receiving device side without separately preparing a power storage device , and An object is to provide the power transmission device and the power reception device .

上記目的を達成するために、本発明では、電力伝送システムに係る第1の解決手段として、供給される交流電力或いは直流電力を交流電力に変換して伝送路を介して送電する送電装置と、前記伝送路を介して前記交流電力を受電する受電装置とを備えた電力伝送システムにおいて、前記送電装置は、前記供給される交流電力或いは直流電力の交流変換を行う交流変換器と、前記交流変換器から得られる交流電力を磁界共鳴方式により無線送電するための送電側共鳴コイルと、前記交流変換器を制御する送電側制御装置と、を備え、前記受電装置は、前記送電側共鳴コイルから前記交流電力を無線受電するための受電側共鳴コイルと、前記受電側共鳴コイルにて受電した前記交流電力を直流電力に変換する整流器と、前記整流器から出力される直流電力の直流変換を行う直流変換器と、前記直流変換器を制御する受電側制御装置と、前記整流器の出力電圧から制御電源電圧を生成して前記受電側制御装置へ出力する電源回路と、を備え、前記受電側制御装置は、前記制御電源電圧が入力されて起動した後、前記整流器の出力電圧を測定してその測定結果を前記送電側制御装置へ送信し、前記送電側制御装置は、前記交流電力の伝送開始時点から前記整流器の出力電圧の測定結果を受信するまでの期間、前記整流器の出力電圧が徐々に上昇するように前記交流変換器を制御し、前記測定結果を受信した後、当該測定結果に基づいて前記整流器の出力電圧が前記直流変換器の入力電圧として適した値となるように前記交流変換器を制御する、という手段を採用する。  In order to achieve the above object, in the present invention, as a first solving means related to a power transmission system, a power transmission apparatus that converts supplied AC power or DC power into AC power and transmits the AC power via a transmission line; In a power transmission system including a power receiving device that receives the AC power via the transmission path, the power transmission device includes an AC converter that performs AC conversion of the supplied AC power or DC power, and the AC conversion. A power transmission side resonance coil for wirelessly transmitting AC power obtained from a power supply by a magnetic field resonance method, and a power transmission side control device for controlling the AC converter, wherein the power reception device includes the power transmission side resonance coil from the power transmission side resonance coil. A power receiving resonance coil for wirelessly receiving AC power, a rectifier that converts the AC power received by the power receiving resonance coil into DC power, and output from the rectifier A direct current converter that performs direct current power conversion, a power reception side control device that controls the direct current converter, a power supply circuit that generates a control power supply voltage from the output voltage of the rectifier and outputs the control power supply voltage to the power reception side control device; The power receiving side control device is activated by receiving the control power supply voltage, and then measures the output voltage of the rectifier and transmits the measurement result to the power transmission side control device. The AC converter is controlled so that the output voltage of the rectifier gradually increases during the period from the start of transmission of the AC power until the measurement result of the output voltage of the rectifier is received, and the measurement result is received. Thereafter, a means for controlling the AC converter so that the output voltage of the rectifier becomes a suitable value as the input voltage of the DC converter based on the measurement result is adopted.

また、本発明では、電力伝送システムに係る第2の解決手段として、上記第1の解決手段において、前記受電側制御装置は、前記整流器の出力電圧が前記直流変換器の入力電圧として適した値となった場合に前記直流変換器の制御を開始する、という手段を採用する。  In the present invention, as the second solving means relating to the power transmission system, in the first solving means, the power receiving side control device is configured such that the output voltage of the rectifier is a value suitable as the input voltage of the DC converter. In such a case, a means for starting the control of the DC converter is adopted.

本発明によれば、電力伝送開始時において、インピーダンスのマッチングがとれていない状態(電力変換器が動作していない状態)では、整流器の出力電圧を徐々に上昇させることにより、電力変換器の破損を防止することができる。また、受電側制御装置が確実に起動してから、整流器の出力電圧を直流変換器の入力電圧として適した値とすることにより、直流変換器の暴走などの予期せぬトラブルを防ぐことができる。さらに、この直流変換器の暴走を防ぐための蓄電デバイスを別に用意する必要はなく、コストの上昇も抑制できる。  According to the present invention, at the start of power transmission, in a state where impedance matching is not achieved (a state where the power converter is not operating), the power converter is damaged by gradually increasing the output voltage of the rectifier. Can be prevented. In addition, by setting the output voltage of the rectifier to a value suitable as the input voltage of the DC converter after the power-receiving-side control device has started up reliably, unexpected troubles such as runaway of the DC converter can be prevented. . Furthermore, it is not necessary to prepare a separate power storage device for preventing the DC converter from running out of control, and an increase in cost can be suppressed.

本実施形態に係る電力伝送システムAの概略構成図である。It is a schematic block diagram of the electric power transmission system A which concerns on this embodiment. 整流器22の出力電圧Vr(DC/DCコンバータ23の入力電圧)と、制御電源電圧Vc(レギュレータ23cの出力電圧)と、受電側制御装置23dの動作状態との時間的な対応関係を示すタイミングチャートである。Timing chart showing temporal correspondence between output voltage Vr of rectifier 22 (input voltage of DC / DC converter 23), control power supply voltage Vc (output voltage of regulator 23c), and operating state of power receiving side control device 23d. It is.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る電力伝送システムAの概略構成図である。この図に示すように、本実施形態に係る電力伝送システムAは、例えば駐車場等の所定位置に設置された充電設備100から電気自動車200へ充電用電力(交流電力)を空間伝送路300を介して無線伝送する非接触給電方式の電力伝送システムであり、充電設備100側に搭載された送電装置10と、電気自動車200側に搭載された受電装置20とから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a power transmission system A according to the present embodiment. As shown in this figure, the power transmission system A according to the present embodiment supplies charging power (AC power) from a charging facility 100 installed at a predetermined position such as a parking lot to an electric vehicle 200 through a spatial transmission path 300. It is a non-contact power feeding type power transmission system that wirelessly transmits through the power transmission system 10, and includes a power transmission device 10 mounted on the charging facility 100 side and a power reception device 20 mounted on the electric vehicle 200 side.

送電装置10は、同じく充電設備100側に設けられた交流電源30(例えば単相200V、周波数50或いは60Hzの商用電源)から供給される交流電力を空間伝送路300を介して無線送電するものであり、アンプ11及び送電側共鳴コイル12を備えている。  The power transmission device 10 wirelessly transmits AC power supplied from an AC power source 30 (for example, a commercial power source having a single phase of 200 V, a frequency of 50 or 60 Hz) provided on the charging facility 100 side via the spatial transmission line 300. Yes, an amplifier 11 and a power transmission resonance coil 12 are provided.

アンプ11は、交流電源30から供給される交流電力の交流/交流変換を行い、これによって得られた交流電力を送電側共鳴コイル12へ出力する交流変換器である。詳細には、このアンプ11は、交流電源30から供給される交流電力を直流電力に変換する整流回路11aと、この整流回路11aから出力される直流電力を所定電圧及び所定周波数を有する交流電力に変換して送電側共鳴コイル12へ出力するインバータ11bと、このインバータ11bを構成するMOS−FET等のスイッチング素子をPWM(Pulse Width Modulation)制御する送電側制御装置11cを備えている。  The amplifier 11 is an AC converter that performs AC / AC conversion of AC power supplied from the AC power supply 30 and outputs the AC power obtained thereby to the power transmission resonance coil 12. Specifically, the amplifier 11 includes a rectifier circuit 11a that converts AC power supplied from the AC power supply 30 into DC power, and DC power output from the rectifier circuit 11a into AC power having a predetermined voltage and a predetermined frequency. The inverter 11b which converts and outputs to the power transmission side resonance coil 12 and the power transmission side control apparatus 11c which performs PWM (Pulse Width Modulation) control of switching elements, such as MOS-FET which comprises this inverter 11b, are provided.

送電側制御装置11cは、上記インバータ11bを構成するスイッチング素子をPWM制御する(つまり、スイッチング素子のデューティ比を制御する)ことで、上記インバータ11bから出力される交流電力の電圧及び周波数を制御する。また、この送電側制御装置11cは、アンテナ11dを介して、Bluetooth(登録商標)等の近距離無線通信規格を用いて後述の受電側制御装置23dと無線通信を行う機能を有している。  The power transmission side control device 11c controls the voltage and frequency of the AC power output from the inverter 11b by PWM-controlling the switching elements constituting the inverter 11b (that is, controlling the duty ratio of the switching elements). . The power transmission side control device 11c has a function of performing wireless communication with a power reception side control device 23d (described later) using a short-range wireless communication standard such as Bluetooth (registered trademark) via the antenna 11d.

送電側共鳴コイル12は、アンプ11から入力される交流電力を空間伝送路300を介して磁界共鳴方式により無線送電するための螺旋状に巻かれたヘリカルコイルである。この送電側共鳴コイル12は、不図示のコンデンサとともにLC共振回路を構成している。なお、LC共振回路を構成するためのコンデンサとして、ヘリカルコイルの寄生容量を利用しても良いし、或いはコンデンサ素子を別に設けても良い。  The power transmission side resonance coil 12 is a helical coil wound in a spiral shape for wirelessly transmitting AC power input from the amplifier 11 through the spatial transmission path 300 by a magnetic field resonance method. The power transmission resonance coil 12 forms an LC resonance circuit together with a capacitor (not shown). Note that the parasitic capacitance of the helical coil may be used as a capacitor for configuring the LC resonance circuit, or a capacitor element may be provided separately.

受電装置20は、空間伝送路200を介して送電装置10から無線送電された交流電力を無線受電し、その受電した交流電力を充電用の直流電力に変換して電気自動車200側に搭載された例えばリチウムイオン電池等のバッテリ40へ供給するものであり、受電側共鳴コイル21、整流器22及びDC/DCコンバータ23を備えている。  The power receiving device 20 wirelessly receives AC power wirelessly transmitted from the power transmission device 10 via the space transmission path 200, and converts the received AC power into charging DC power and is mounted on the electric vehicle 200 side. For example, the battery is supplied to a battery 40 such as a lithium ion battery, and includes a power receiving resonance coil 21, a rectifier 22, and a DC / DC converter 23.

受電側共鳴コイル21は、空間伝送路300を介して送電側共鳴コイル12から交流電力を無線受電するための螺旋状に巻かれたヘリカルコイルである。この受電側共鳴コイル21も、不図示のコンデンサとともにLC共振回路を構成している。送電装置10と受電装置20の両方のLC共振回路が等しくなるように回路定数を設定すれば、送電側共鳴コイル12と受電側共鳴コイル21との間に磁界共鳴を発生させることができる。  The power reception side resonance coil 21 is a helical coil wound in a spiral shape for wirelessly receiving AC power from the power transmission side resonance coil 12 via the spatial transmission path 300. The power receiving resonance coil 21 also forms an LC resonance circuit together with a capacitor (not shown). If circuit constants are set so that both LC resonance circuits of the power transmission device 10 and the power reception device 20 are equal, magnetic field resonance can be generated between the power transmission side resonance coil 12 and the power reception side resonance coil 21.

磁界共鳴が発生すると、アンプ11から出力される交流電力は送電側共鳴コイル12によって磁気エネルギーに変換されて無線送電され、その磁気エネルギーは受電側共鳴コイル21によって交流電力に再変換される。受電側共鳴コイル21から得られた交流電力は、後段に設けられた整流器22へ出力される。整流器22は、受電側共鳴コイル21から入力される交流電力を整流して直流電力に変換し、その得られた直流電力をDC/DCコンバータ23へ出力する。  When magnetic field resonance occurs, AC power output from the amplifier 11 is converted into magnetic energy by the power transmission side resonance coil 12 and wirelessly transmitted, and the magnetic energy is reconverted to AC power by the power reception side resonance coil 21. The AC power obtained from the power receiving resonance coil 21 is output to the rectifier 22 provided at the subsequent stage. The rectifier 22 rectifies the AC power input from the power receiving resonance coil 21 and converts it to DC power, and outputs the obtained DC power to the DC / DC converter 23.

DC/DCコンバータ23は、整流器22から入力される直流電力の直流/直流変換を行い、得られた直流電力を充電用直流電力としてバッテリ40へ出力する。詳細には、このDC/DCコンバータ23は、整流器22から入力される直流電力をMOS−FET等のスイッチング素子のオンオフ動作によって降圧する降圧スイッチング回路23aと、上記スイッチング素子をオンオフさせるためのゲート信号を生成するゲート駆動回路23bと、整流器22の出力電圧Vrから制御電源電圧Vcを生成して受電側制御装置23dへ出力するレギュレータ(電源回路)23cと、ゲート駆動回路23bを介して降圧スイッチング回路23aのスイッチング素子をPWM制御する受電側制御装置23dとを備えている。  The DC / DC converter 23 performs direct current / direct current conversion of the direct current power input from the rectifier 22 and outputs the obtained direct current power to the battery 40 as charging direct current power. Specifically, the DC / DC converter 23 includes a step-down switching circuit 23a for stepping down DC power input from the rectifier 22 by an on / off operation of a switching element such as a MOS-FET, and a gate signal for turning on / off the switching element. A gate drive circuit 23b for generating a voltage, a regulator (power supply circuit) 23c for generating a control power supply voltage Vc from the output voltage Vr of the rectifier 22 and outputting it to the power receiving side control device 23d, and a step-down switching circuit via the gate drive circuit 23b And a power receiving side control device 23d that performs PWM control of the switching element 23a.

この受電側制御装置23dは、アンテナ23eを備えており、Bluetooth等の近距離無線通信規格を用いて上記の送電側制御装置11cと無線通信を行う機能を有している。受電側制御装置23dは、レギュレータ23cから制御電源電圧Vcが入力されて起動した後、整流器22の出力電圧Vrを測定してその測定結果を送電側制御装置11cへ送信する。一方、送電側制御装置11cは、交流電力の伝送開始時点から整流器22の出力電圧Vrの測定結果を受信するまでの期間、整流器22の出力電圧が徐々に上昇するようにアンプ11(インバータ11b)を制御し、前記測定結果を受信した後、当該測定結果に基づいて整流器22の出力電圧VrがDC/DCコンバータ23の入力電圧として適した値となるようにアンプ11を制御する。  The power receiving side control device 23d includes an antenna 23e and has a function of performing wireless communication with the power transmission side control device 11c using a short-range wireless communication standard such as Bluetooth. After receiving the control power supply voltage Vc from the regulator 23c and starting up, the power receiving side control device 23d measures the output voltage Vr of the rectifier 22 and transmits the measurement result to the power transmission side control device 11c. On the other hand, the power transmission side control device 11c is configured so that the output voltage of the rectifier 22 gradually increases during the period from the start of AC power transmission until the measurement result of the output voltage Vr of the rectifier 22 is received. After receiving the measurement result, the amplifier 11 is controlled so that the output voltage Vr of the rectifier 22 becomes a value suitable as the input voltage of the DC / DC converter 23 based on the measurement result.

次に、上記のように構成された本実施形態に係る電力伝送システムAの動作について、図2を参照しながら詳細に説明する。図2は、整流器22の出力電圧Vr(DC/DCコンバータ23の入力電圧)と、制御電源電圧Vc(レギュレータ23cの出力電圧)と、受電側制御装置23dの動作状態との時間的な対応関係を示すタイミングチャートである。  Next, the operation of the power transmission system A according to the present embodiment configured as described above will be described in detail with reference to FIG. FIG. 2 shows a temporal correspondence relationship between the output voltage Vr of the rectifier 22 (the input voltage of the DC / DC converter 23), the control power supply voltage Vc (the output voltage of the regulator 23c), and the operating state of the power receiving side control device 23d. It is a timing chart which shows.

まず、充電設備100の設置位置の近くに電気自動車200が停車すると、送電装置10の送電側制御装置11cは、図2に示す交流電力の伝送開始時点t1から、整流器22の出力電圧Vrが徐々に上昇するようにアンプ11のPWM制御を開始する。これにより、送電装置10側において、送電側制御装置11cによるPWM制御に応じた交流電力がアンプ11から送電側共鳴コイル12に出力され、送電側共鳴コイル12と受電側共鳴コイル21との間で磁界共鳴が発生する。  First, when the electric vehicle 200 stops near the installation position of the charging facility 100, the power transmission side control device 11c of the power transmission device 10 gradually increases the output voltage Vr of the rectifier 22 from the AC power transmission start time t1 shown in FIG. PWM control of the amplifier 11 is started so as to rise. Thereby, on the power transmission device 10 side, AC power corresponding to the PWM control by the power transmission side control device 11c is output from the amplifier 11 to the power transmission side resonance coil 12, and between the power transmission side resonance coil 12 and the power reception side resonance coil 21. Magnetic field resonance occurs.

磁界共鳴が発生すると、アンプ11から出力された交流電力は送電側共鳴コイル12から受電側共鳴コイル21へ伝送(無線送電)される。そして、受電装置20側において、受電側共鳴コイル21にて受電された交流電力は、整流器22によって直流電力に変換されてDC/DCコンバータ23へ入力される。ここで、図2に示すように、整流器22の出力電圧Vrは、伝送開始時点t1から時間経過に伴って徐々に上昇する。  When magnetic field resonance occurs, AC power output from the amplifier 11 is transmitted (wireless power transmission) from the power transmission resonance coil 12 to the power reception resonance coil 21. Then, on the power receiving device 20 side, the AC power received by the power receiving resonance coil 21 is converted into DC power by the rectifier 22 and input to the DC / DC converter 23. Here, as shown in FIG. 2, the output voltage Vr of the rectifier 22 gradually increases with time from the transmission start time t1.

なお、図2において、伝送開始時点t1から整流器22の出力電圧Vrがレギュレータ23cの動作可能電圧Vr1まで上昇する時刻t2までの期間、レギュレータ23から出力される制御電源電圧Vcは0V(グランドレベル)となり、受電側制御装置23dは動作停止状態となっている。そして、整流器22の出力電圧Vrが、時刻t2にレギュレータ23cの動作可能電圧Vr1まで上昇すると、この時刻t2にレギュレータ23が動作を開始し、制御電源電圧Vcが受電側制御装置23dの電源電圧として必要な5Vまで立ち上がる。  In FIG. 2, the control power supply voltage Vc output from the regulator 23 is 0 V (ground level) during the period from the transmission start time t1 to the time t2 when the output voltage Vr of the rectifier 22 rises to the operable voltage Vr1 of the regulator 23c. Thus, the power receiving side control device 23d is in an operation stop state. When the output voltage Vr of the rectifier 22 rises to the operable voltage Vr1 of the regulator 23c at time t2, the regulator 23 starts operating at this time t2, and the control power supply voltage Vc is used as the power supply voltage of the power receiving side control device 23d. Stand up to the required 5V.

時刻t2に5Vの制御電源電圧Vcがレギュレータ23から受電側制御装置23dに出力されると、受電側制御装置23dは動作停止状態から起動し、時刻t2以降、一定の制御周期で、整流器22の出力電圧Vrを測定してその測定結果を送電側制御装置11cへ送信する。一方、送電側制御装置11cは、受電側制御装置23dから整流器22の出力電圧Vrの測定結果を受信すると、その測定結果に基づいて整流器22の出力電圧VrがDC/DCコンバータ23の入力電圧として適した値(DC/DCコンバータ23の動作可能電圧Vr2)となるようにアンプ11をPWM制御する。  When the control power supply voltage Vc of 5V is output from the regulator 23 to the power receiving side control device 23d at time t2, the power receiving side control device 23d starts from the operation stop state, and after time t2, the rectifier 22 has a constant control cycle. The output voltage Vr is measured and the measurement result is transmitted to the power transmission side control device 11c. On the other hand, when the power transmission side control device 11c receives the measurement result of the output voltage Vr of the rectifier 22 from the power reception side control device 23d, the output voltage Vr of the rectifier 22 is used as the input voltage of the DC / DC converter 23 based on the measurement result. The amplifier 11 is PWM-controlled so as to have an appropriate value (operable voltage Vr2 of the DC / DC converter 23).

これにより、図2に示すように、整流器22の出力電圧Vrは、時刻t2からDC/DCコンバータ23の動作可能電圧Vr2に向かって上昇する。そして、時刻t3に整流器22の出力電圧VrがDC/DCコンバータ23の動作可能電圧Vr2に到達すると、受電側制御装置23dは、DC/DCコンバータ23の制御、つまりバッテリ40の充電制御を行うと共に、送電側制御装置11cに対して整流器22の出力電圧VrがDC/DCコンバータ23の動作可能電圧Vr2に到達した旨を送信する。送電側制御装置11cは、この通知を受信すると、整流器22の出力電圧VrがVr2一定となるようにアンプ11をPWM制御する。  Thereby, as shown in FIG. 2, the output voltage Vr of the rectifier 22 increases from the time t2 toward the operable voltage Vr2 of the DC / DC converter 23. When the output voltage Vr of the rectifier 22 reaches the operable voltage Vr2 of the DC / DC converter 23 at time t3, the power receiving side control device 23d performs control of the DC / DC converter 23, that is, charging control of the battery 40. Then, the fact that the output voltage Vr of the rectifier 22 has reached the operable voltage Vr2 of the DC / DC converter 23 is transmitted to the power transmission side control device 11c. Upon receiving this notification, the power transmission side control device 11c performs PWM control on the amplifier 11 so that the output voltage Vr of the rectifier 22 becomes constant at Vr2.

以上のように、本実施形態によれば、電力伝送開始時において、インピーダンスのマッチングがとれていない状態(DC/DCコンバータ23が動作していない状態)では、整流器22の出力電圧Vrを徐々に上昇させることにより、DC/DCコンバータ23を含めたシステム全体の装置、部品などの破損を防止することができる。また、受電側制御装置23dが確実に起動してから、整流器22の出力電圧VrをDC/DCコンバータ23の動作可能電圧Vr2まで上昇させることにより、DC/DCコンバータ23の暴走などの予期せぬトラブルを防ぐことができる。さらに、このDC/DCコンバータ23の暴走を防ぐための蓄電デバイスを別に用意する必要はなく、コストの上昇も抑制できる。  As described above, according to the present embodiment, the output voltage Vr of the rectifier 22 is gradually increased in a state where impedance matching is not achieved (a state where the DC / DC converter 23 is not operating) at the start of power transmission. By raising it, it is possible to prevent damage to the devices and parts of the entire system including the DC / DC converter 23. Further, after the power-receiving-side control device 23d is reliably started, the output voltage Vr of the rectifier 22 is increased to the operable voltage Vr2 of the DC / DC converter 23, so that an unexpected runaway of the DC / DC converter 23 is caused. Trouble can be prevented. Furthermore, it is not necessary to prepare a separate power storage device for preventing the DC / DC converter 23 from running out of control, and an increase in cost can be suppressed.

なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
例えば、上記実施形態では、充電設備100から電気自動車200へ充電用電力(交流電力)を空間伝送路300を介して無線伝送する非接触給電方式の電力伝送システムAを例示したが、本発明はこれに限定されず、例えば、携帯端末に対し非接触給電方式で電力伝送して、携帯端末のバッテリを充電するような電力伝送システムにも本発明を適用することができる。また、DC/DCコンバータ23に限らず、その他の2次側装置にも適用可能である。また、アンプ11には必要に応じてPFCを設けても良い。
また、上記実施形態では、充電設備100側に設けられた電源が交流電源30である場合を例示したが、この電源が直流電源である場合、つまり電源から送電装置10に直流電力が供給される場合には、アンプ11から整流回路11aを削除すれば良い。また、電源以外から交流電力或いは直流電力が供給されるシステム構成としても良い。
In addition, this invention is not limited to the said embodiment, The following modifications are mentioned.
For example, in the above embodiment, the non-contact power feeding type power transmission system A that wirelessly transmits the charging power (AC power) from the charging facility 100 to the electric vehicle 200 via the spatial transmission path 300 is described. For example, the present invention can be applied to a power transmission system in which power is transmitted to a mobile terminal by a non-contact power feeding method and a battery of the mobile terminal is charged. Further, the present invention is not limited to the DC / DC converter 23 but can be applied to other secondary devices. The amplifier 11 may be provided with a PFC as necessary.
Moreover, although the case where the power supply provided in the charging equipment 100 side is the alternating current power supply 30 was illustrated in the said embodiment, when this power supply is a DC power supply, that is, DC power is supplied to the power transmission apparatus 10 from a power supply. In this case, the rectifier circuit 11a may be deleted from the amplifier 11. Further, a system configuration in which AC power or DC power is supplied from other than the power source may be employed.

A…電力伝送システム、10…送電装置、11…アンプ(交流変換器)、11c…送電側制御装置、12…送電側共鳴コイル、20…受電装置、21…受電側共鳴コイル、22…整流器、23…DC/DCコンバータ(直流変換器)、23c…レギュレータ(電源回路)、23d…受電側制御装置、30…交流電源、40…バッテリ、100…充電設備、200…電気自動車、300…空間伝送路   DESCRIPTION OF SYMBOLS A ... Electric power transmission system, 10 ... Power transmission apparatus, 11 ... Amplifier (alternating current converter), 11c ... Power transmission side control apparatus, 12 ... Power transmission side resonance coil, 20 ... Power reception apparatus, 21 ... Power reception side resonance coil, 22 ... Rectifier 23 ... DC / DC converter (DC converter), 23c ... regulator (power supply circuit), 23d ... power receiving side control device, 30 ... AC power supply, 40 ... battery, 100 ... charging equipment, 200 ... electric vehicle, 300 ... spatial transmission Road

Claims (10)

供給される交流電力或いは直流電力を交流電力に変換して伝送路を介して送電する送電装置と、前記伝送路を介して前記交流電力を受電する受電装置とを備えた電力伝送システムにおいて、
前記送電装置は、
前記供給される交流電力或いは直流電力の交流変換を行う交流変換器と、
前記交流変換器から得られる交流電力を磁界共鳴方式により無線送電するための送電側共鳴コイルと、
前記交流変換器を制御する送電側制御装置と、を備え、
前記受電装置は、
前記送電側共鳴コイルから前記交流電力を無線受電するための受電側共鳴コイルと、
前記受電側共鳴コイルにて受電した前記交流電力を直流電力に変換する整流器と、
前記整流器から出力される直流電力の直流変換を行う直流変換器と、
前記直流変換器を制御する受電側制御装置と、
前記整流器の出力電圧から制御電源電圧を生成して前記受電側制御装置へ出力する電源回路と、を備え、
前記受電側制御装置は、前記制御電源電圧が入力されて起動した後、前記整流器の出力電圧を測定してその測定結果を前記送電側制御装置へ送信し、
前記送電側制御装置は、前記交流電力の伝送開始時点から前記整流器の出力電圧の測定結果を受信するまでの期間、前記整流器の出力電圧が、前記直流変換器の入力電圧として適した値を超えることなく徐々に上昇するように前記交流変換器を制御し、前記測定結果を受信した後、当該測定結果に基づいて前記整流器の出力電圧が前記適した値となるように前記交流変換器を制御することを特徴とする電力伝送システム。
In a power transmission system including a power transmission device that converts AC power or DC power supplied into AC power and transmits the power via a transmission line, and a power reception device that receives the AC power via the transmission line,
The power transmission device is:
An AC converter for performing AC conversion of the supplied AC power or DC power;
A power transmission side resonance coil for wirelessly transmitting AC power obtained from the AC converter by a magnetic resonance method,
A power transmission side control device for controlling the AC converter,
The power receiving device is:
A power receiving side resonance coil for wirelessly receiving the AC power from the power transmission side resonance coil;
A rectifier that converts the AC power received by the power-receiving-side resonance coil into DC power;
A DC converter that performs DC conversion of DC power output from the rectifier;
A power receiving side control device for controlling the DC converter;
A power supply circuit that generates a control power supply voltage from the output voltage of the rectifier and outputs the control power supply voltage to the power receiving side control device, and
The power receiving side control device, after the control power supply voltage is input and started, measures the output voltage of the rectifier and transmits the measurement result to the power transmission side control device,
The power transmission side control device is configured such that the output voltage of the rectifier exceeds a value suitable as an input voltage of the DC converter during a period from the start of transmission of the AC power to reception of a measurement result of the output voltage of the rectifier. gradually controlling said AC converter to rise, the measurement result after receiving, controlling said AC converter to a value that the output voltage of the rectifier is suitable on the basis of the results of the measurement without An electric power transmission system.
前記受電側制御装置は、前記整流器の出力電圧が前記直流変換器の入力電圧として適した値となった場合に、前記直流変換器の制御を開始することを特徴とする請求項1に記載の電力伝送システム。   The power receiving side control device starts control of the DC converter when an output voltage of the rectifier becomes a value suitable as an input voltage of the DC converter. Power transmission system. 電源に接続されるべき交流変換器と、
前記交流変換器に接続され、前記交流変換器から入力される交流電力を受電装置に向かって非接触方式で伝送する共鳴コイルと、
を有し、
前記交流変換器は、第1の時刻から第2の時刻までにおいては、前記受電装置に設けられた整流器の出力電圧を第1の電圧まで増加させ、前記第2の時刻より後から第3の時刻においては、前記受電装置から受け取る前記出力電圧の測定結果に基づき前記出力電圧を前記第1の電圧から第2の電圧まで増加させ、前記第3の時刻より後においては、前記出力電圧が前記第2の電圧であるよう前記出力電圧を制御する、電力伝送システムの送電装置。
An AC converter to be connected to the power supply;
A resonance coil connected to the AC converter and transmitting AC power input from the AC converter toward a power receiving device in a non-contact manner;
Have
The AC converter increases the output voltage of the rectifier provided in the power receiving device to the first voltage from the first time to the second time, and the third time after the second time. At the time, the output voltage is increased from the first voltage to the second voltage based on the measurement result of the output voltage received from the power receiving device, and after the third time, the output voltage is A power transmission device of a power transmission system that controls the output voltage to be a second voltage.
前記交流変換器は、前記受電装置から前記出力電圧が前記第2の電圧に到達した旨を示す信号を受け取ることを特徴とする請求項3に記載の電力伝送システムの送電装置。   The power transmission device according to claim 3, wherein the AC converter receives a signal indicating that the output voltage has reached the second voltage from the power reception device. 前記整流器の前記出力電圧は、前記受電装置に設けられ、前記受電装置の制御装置に電圧を出力するレギュレータに入力され、
前記第1の電圧は、前記レギュレータが動作可能となる電圧であることを特徴とする請求項3に記載の電力伝送システムの送電装置。
The output voltage of the rectifier is provided in the power receiving device, and is input to a regulator that outputs a voltage to the control device of the power receiving device,
The power transmission device of the power transmission system according to claim 3, wherein the first voltage is a voltage that enables the regulator to operate.
前記整流器の前記出力電圧は、前記受電装置に設けられた直流変換器に入力され、
前記第2の電圧は、前記直流変換器が動作可能となる電圧であることを特徴とする請求項3に記載の電力伝送システムの送電装置。
The output voltage of the rectifier is input to a DC converter provided in the power receiving device,
The power transmission system according to claim 3, wherein the second voltage is a voltage that enables the DC converter to operate.
送電装置から非接触方式で伝送された交流電力を受信する共鳴コイルと、
前記共鳴コイルと接続され、前記交流電力を直流電力に変換する整流器と、
前記整流器及びバッテリに接続されると共に、前記整流器の出力電圧が第1の電圧まで増加した後に電源電圧を出力するレギュレータ、前記電源電圧が入力され、前記出力電圧の測定結果を前記送電装置に送信し、さらに前記出力電圧が前記第1の電圧から第2の電圧まで増加した際に前記出力電圧が前記第2の電圧に到達した旨を前記送電装置に送信する制御装置、を含む直流変換器と、
を有する電力伝送システムの受電装置。
A resonance coil that receives AC power transmitted in a non-contact manner from the power transmission device;
A rectifier connected to the resonance coil and converting the AC power into DC power;
A regulator that is connected to the rectifier and the battery and outputs a power supply voltage after the output voltage of the rectifier has increased to a first voltage, the power supply voltage is input, and the measurement result of the output voltage is transmitted to the power transmission device And a controller that transmits to the power transmission device that the output voltage has reached the second voltage when the output voltage increases from the first voltage to the second voltage. When,
A power receiving device for a power transmission system.
前記第1の電圧は、前記レギュレータが動作可能となる電圧であることを特徴とする請求項7に記載の電力伝送システムの受電装置。   The power receiving device of the power transmission system according to claim 7, wherein the first voltage is a voltage that enables the regulator to operate. 前記第2の電圧は、前記直流変換器が動作可能となる電圧であることを特徴とする請求項7に記載の電力伝送システムの受電装置。   The power receiving device of the power transmission system according to claim 7, wherein the second voltage is a voltage that enables the DC converter to operate. 前記直流変換器は、前記バッテリと接続されるべき降圧スイッチング回路、前記降圧スイッチング回路及び前記制御装置と接続されたゲート駆動回路、をさらに含むことを特徴とする請求項7に記載の電力伝送システムの受電装置。   The power transmission system according to claim 7, wherein the DC converter further includes a step-down switching circuit to be connected to the battery, the step-down switching circuit, and a gate drive circuit connected to the control device. Power receiving device.
JP2012085325A 2012-04-04 2012-04-04 Power transmission system and power transmission device and power reception device Expired - Fee Related JP5696681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085325A JP5696681B2 (en) 2012-04-04 2012-04-04 Power transmission system and power transmission device and power reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085325A JP5696681B2 (en) 2012-04-04 2012-04-04 Power transmission system and power transmission device and power reception device

Publications (3)

Publication Number Publication Date
JP2013215065A JP2013215065A (en) 2013-10-17
JP2013215065A5 JP2013215065A5 (en) 2014-03-06
JP5696681B2 true JP5696681B2 (en) 2015-04-08

Family

ID=49588025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085325A Expired - Fee Related JP5696681B2 (en) 2012-04-04 2012-04-04 Power transmission system and power transmission device and power reception device

Country Status (1)

Country Link
JP (1) JP5696681B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057477B2 (en) * 2014-10-15 2017-01-11 学校法人加計学園 岡山理科大学 Non-contact power feeding device
CN104890680B (en) * 2015-06-17 2017-06-06 株洲中车轨道交通装备有限公司 A kind of fast rail vehicle control system net changing method of administrative region of a city and control system
JP6718133B2 (en) * 2016-02-16 2020-07-08 Tdk株式会社 Wireless power receiving device and wireless power transmission system
JP2017184411A (en) * 2016-03-30 2017-10-05 ミネベアミツミ株式会社 Wireless power supply device, wireless power reception device, and wireless power transmission system
JP6897231B2 (en) * 2017-03-30 2021-06-30 富士通株式会社 Transmitters, power receivers, wireless power supply systems and wireless power supply methods
WO2018198167A1 (en) * 2017-04-24 2018-11-01 三菱電機エンジニアリング株式会社 Resonant-type power reception apparatus
JP6619770B2 (en) * 2017-04-26 2019-12-11 ミネベアミツミ株式会社 Wireless power transmission system and method for protecting wireless power transmission system
JP7003445B2 (en) 2017-05-19 2022-02-04 オムロン株式会社 Contactless power supply
JP2019176707A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power transmission device and wireless power transmission system
WO2022009459A1 (en) 2020-07-06 2022-01-13 株式会社村田製作所 Wireless power transmission device and wireless power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336717A (en) * 2006-06-15 2007-12-27 Sharp Corp Non-contact power transfer system, power transmission device and electric power receiving device
JP2007336787A (en) * 2006-06-19 2007-12-27 Dainippon Printing Co Ltd Contactless power supply system, power supply device, and power receiving device
JP5459058B2 (en) * 2009-11-09 2014-04-02 株式会社豊田自動織機 Resonant contactless power transmission device

Also Published As

Publication number Publication date
JP2013215065A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5696681B2 (en) Power transmission system and power transmission device and power reception device
JP5867592B2 (en) Power transmission system and power transmission device used therefor
US8987941B2 (en) Power transmission system
US9466987B2 (en) Power transmission device and wireless power transmission system using the power transmission device
US10277082B2 (en) Power-transmitting device and wireless power-supplying system
US10340743B2 (en) Power transmission device, power transmission method, and wireless power transfer system
US10065510B2 (en) Power transmission system
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
JP5853889B2 (en) Power receiving device and power transmission system
US9787104B2 (en) Power transmission system
JP2013198260A (en) Power transmission system
EP2866328A1 (en) Non-contact power transmission device
JP2012070463A (en) Non-contact power supply device
JP2013169081A (en) Charger
JP5772687B2 (en) Power transmission system, power transmission device and power reception device, charging facility, and electric vehicle
KR102396628B1 (en) Transmission system for contactless energy transmission
WO2016006066A1 (en) Contactless power supply device
JP6675094B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6675093B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
TWI553993B (en) Non-contact power supply equipment secondary side of the receiving circuit
WO2019176358A1 (en) Power reception device
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
JP6615575B2 (en) Power supply system
JP2013115908A (en) Power supply apparatus of non-contact power transmission apparatus
JP2015089187A (en) Non-contact power transmission device, power transmission apparatus and power reception apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R151 Written notification of patent or utility model registration

Ref document number: 5696681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees