JP5696206B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5696206B2
JP5696206B2 JP2013268191A JP2013268191A JP5696206B2 JP 5696206 B2 JP5696206 B2 JP 5696206B2 JP 2013268191 A JP2013268191 A JP 2013268191A JP 2013268191 A JP2013268191 A JP 2013268191A JP 5696206 B2 JP5696206 B2 JP 5696206B2
Authority
JP
Japan
Prior art keywords
plasma
coil
ring
induction antenna
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013268191A
Other languages
Japanese (ja)
Other versions
JP2014075362A (en
Inventor
吉岡 健
健 吉岡
吉開 元彦
元彦 吉開
西尾 良司
良司 西尾
忠義 川口
忠義 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013268191A priority Critical patent/JP5696206B2/en
Publication of JP2014075362A publication Critical patent/JP2014075362A/en
Application granted granted Critical
Publication of JP5696206B2 publication Critical patent/JP5696206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、プラズマにより基板のエッチングや薄膜形成等の表面処理を行うプラズマ処理装置、特に誘導結合型プラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus for performing surface treatment such as etching of a substrate and thin film formation by plasma, and more particularly to an inductively coupled plasma processing apparatus.

半導体デバイス製造分野においては、誘導結合型のプラズマ処理装置がエッチングやCVD装置として利用されている。この誘導結合型プラズマ処理装置は、真空容器の外側に数ターンの誘導コイルを配置し、当該誘導コイルに高周波電流を流すことで、真空容器内に生成されるプラズマにパワーを供給し、そのプラズマを維持する。この誘導コイルは、十分なコイル電流を供給するために、最大数KVの高電圧がコイルに沿って不均一に発生するとともに、誘導コイルとプラズマとの間に存在する無視できない大きさの浮遊容量が存在する。   In the semiconductor device manufacturing field, inductively coupled plasma processing apparatuses are used as etching and CVD apparatuses. In this inductively coupled plasma processing apparatus, an induction coil having several turns is arranged outside a vacuum vessel, and a high frequency current is passed through the induction coil to supply power to the plasma generated in the vacuum vessel. To maintain. In order to supply a sufficient coil current, this induction coil generates a high voltage of a maximum of several KV non-uniformly along the coil and has a non-negligible stray capacitance existing between the induction coil and the plasma. Exists.

この高電圧と浮遊容量は、次の二つの問題を引き起こす。一つは、コイル上の高電圧が、プラズマとの間に存在する浮遊容量によって静電的に結合し、コイルとプラズマとの間に存在する誘導窓に対する局所損傷を引き起こすという問題である。もう一つの問題は、コイル上を電流が周回する間に、線路上に存在する浮遊容量の存在によって、コイル電流が一定値でなくなり、生成するプラズマの周方向の均一性を悪化させることである。   This high voltage and stray capacitance cause the following two problems. One problem is that the high voltage on the coil is electrostatically coupled by stray capacitance that exists between the plasma and causes local damage to the induction window that exists between the coil and the plasma. Another problem is that while the current circulates on the coil, the coil current becomes non-constant due to the presence of the stray capacitance existing on the line, and the circumferential uniformity of the generated plasma is deteriorated. .

前者の問題に対しては、例えば、特許文献1や特許文献2に開示されるように、誘導コイルとプラズマとの間にファラデーシールドを設置することにより解決することができる。
また、後者の問題に対しては、たとえば、非特許文献1に開示されるように、誘導コイルの終端側にカップリングコンデンサを設置することで、周回コイル電流の変動を緩和する方法がよく知られている。しかし、このカップリングコンデンサを導入する方法は、次の点で課題があった。一つは、カップリングコンデンサは、周回電流の不均一を緩和する効果があるが、厳密な意味で均一化することはできない。この点については、定量的な説明を後述する。二つ目の問題点は、運転条件(運転プラズマ密度、圧力、使用ガス条件等)によって、コンデンサの最適値が変わるが、その都度コンデンサを交換することは量産装置では困難である。あるいはコンデンサをバリアブルコンデンサにすることは、制御装置の高コスト化と運転方法の複雑化を招く。三つ目の問題点は、カップリングコンデンサは、数十KVAの耐圧性能を持つものが必要となり、幾何学的形状が決して小さくはなく、たとえば装置上部に設けるマッチングボックス内に実装しようとすると、マッチングボックスのサイズが大きくなり、実装上の問題が生ずる。
The former problem can be solved by installing a Faraday shield between the induction coil and the plasma as disclosed in, for example, Patent Document 1 and Patent Document 2.
In addition, for the latter problem, for example, as disclosed in Non-Patent Document 1, a method for reducing fluctuations in the coil current by installing a coupling capacitor on the terminal end side of the induction coil is well known. It has been. However, the method of introducing this coupling capacitor has the following problems. For one, the coupling capacitor has the effect of alleviating non-uniformity of the circulating current, but cannot be made uniform in a strict sense. Regarding this point, a quantitative explanation will be given later. The second problem is that the optimum value of the capacitor changes depending on the operating conditions (operating plasma density, pressure, operating gas conditions, etc.), but it is difficult to replace the capacitor each time in a mass production apparatus. Alternatively, the use of a variable capacitor as the capacitor leads to an increase in cost of the control device and a complicated operation method. The third problem is that the coupling capacitor needs to have a withstand voltage performance of several tens of KVA, and the geometrical shape is never small. For example, when mounting in a matching box provided on the upper part of the device, The size of the matching box is increased, which causes a mounting problem.

とくに、誘導コイル群を、内周と外周の2系統に分け、それぞれのコイル電流比を可変とすることでプラズマの径方向の均一性を運転条件に応じて調整する装置(特許文献2や特許文献3等)の場合や、ファラデーシールドに印加する電圧を調整して、プラズマとの静電結合の度合いを調整することで真空容器内の内壁状態を安定化させる装置(特許文献2や特許文献4等)の場合には、前記第2及び第3の問題点が顕著であった。   In particular, the induction coil group is divided into two systems, an inner circumference and an outer circumference, and the respective coil current ratios are variable to adjust the plasma radial uniformity according to operating conditions (Patent Document 2 and Patents). In the case of Document 3, etc.) or a device that stabilizes the inner wall state in the vacuum vessel by adjusting the voltage applied to the Faraday shield and adjusting the degree of electrostatic coupling with the plasma (Patent Document 2 and Patent Document) In the case of 4), the second and third problems are remarkable.

米国特許第5534231号明細書及び図面US Pat. No. 5,534,231 and drawings 米国特許第6756737号明細書及び図面US Pat. No. 6,756,737 and drawings 米国特許第5777289号明細書及び図面U.S. Pat. No. 5,777,289 and drawings 米国特許第5817534号明細書及び図面US Pat. No. 5,817,534 and drawing

MarkJ. Kushner, "Athree-dimensional model for inductively coupled plasma etching reactors :Azimuthal symmetry, coil properties, and comparison to experiments " J.Appl. Phys. 80, 1337MarkJ. Kushner, "Athree-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison to experiments" J. Appl. Phys. 80, 1337

そこで、コイル電流に周回に伴う不均一があった場合は、それに対する対策を取らなければ生成するプラズマの周方向の均一性が低下することになるので、コイル電流に不均一があっても当該電流の不均一を補償することで、生成するプラズマの周方向の不均一を向上することが望まれる。
本発明の目的は、コイル周回に伴い変化するコイル電流を、補償し、生成されるプラズマの周方向の均一性を向上させるプラズマ処理装置を提供することである。
Therefore, if there is non-uniformity in the coil current due to circulation, the uniformity in the circumferential direction of the generated plasma will be reduced unless measures are taken against it. It is desired to improve the nonuniformity of the generated plasma in the circumferential direction by compensating the nonuniformity of the current.
An object of the present invention is to provide a plasma processing apparatus that compensates for a coil current that changes as the coil circulates and improves the uniformity of the generated plasma in the circumferential direction.

一般に、プラズマの密度は誘導によって生じたプラズマ電流で決まるが、その誘導プラズマ電流はコイル自身の電流値とともにコイル・プラズマ間の相互インダクタンスの大きさで決まる。コイル近傍にリング状のパッシブ導体があった場合は、コイル・プラズマ間の前記相互インダクタンスに加えて、リング導体・プラズマ間相互インダクタンス及びリング導体・コイル間相互インダクタンスが発生し、それがプラズマ電流の大きさに影響を与える。このことは、これら相互インダクタンスはプラズマ電流の大きさを制御する要因となり得ることを示している。即ち、コイル電流に周回に伴う不均一があった場合は、その不均一を補償するように、周回に伴い前記相互インダクタンスを角度によって変えてやればよい。本発明では、その具体的方法と、効果の確認結果を開示するものである。   Generally, the plasma density is determined by the plasma current generated by induction, and the induced plasma current is determined by the magnitude of the mutual inductance between the coil and the plasma, together with the current value of the coil itself. When there is a ring-shaped passive conductor in the vicinity of the coil, in addition to the mutual inductance between the coil and plasma, a mutual inductance between the ring conductor and plasma and a mutual inductance between the ring conductor and coil are generated. Affects size. This indicates that these mutual inductances can be a factor controlling the magnitude of the plasma current. In other words, if the coil current has non-uniformity associated with the turn, the mutual inductance may be changed according to the angle with the turn so as to compensate for the non-uniformity. In the present invention, the specific method and the confirmation result of the effect are disclosed.

上記目的を達成するために、本発明によるプラズマ処理装置は、内側にプラズマを生成する真空処理室と、前記真空処理室内にガスを導入する手段と、前記真空処理室内に試料を載置する載置台と、前記真空処理室の上部を形成して前記載置台上方のプラズマ生成空間を覆う絶縁性の誘導窓と、前記誘導窓外側に配置され前記真空処理室内の前記プラズマ生成空間にプラズマを生成するためのコイル状の誘導アンテナと、前記誘導アンテナに電流を供給するための高周波電源とマッチングボックスを備え、前記誘導アンテナの近傍であって且つ前記誘導アンテナに沿って配置された導体を有し、前記導体とアンテナ間及び前記導体とプラズマ間の周方向位置での相互インダクタンスを制御したことを特徴としている。   In order to achieve the above object, a plasma processing apparatus according to the present invention comprises a vacuum processing chamber for generating plasma inside, means for introducing a gas into the vacuum processing chamber, and a mounting for mounting a sample in the vacuum processing chamber. An insulating induction window that forms an upper part of the vacuum processing chamber and covers the plasma generation space above the mounting base, and generates plasma in the plasma generation space inside the vacuum processing chamber that is disposed outside the induction window. A coil-shaped induction antenna, a high-frequency power supply for supplying current to the induction antenna, and a matching box, and a conductor disposed near the induction antenna and along the induction antenna The mutual inductance at the circumferential position between the conductor and the antenna and between the conductor and the plasma is controlled.

このプラズマ処理装置において、前記誘導アンテナに沿って配置された前記導体は、前記誘導アンテナとほぼ同心のリング状導体であり、当該リング状導体と前記誘導アンテナ間及び前記リング状導体とプラズマ間の相互インダクタンスが前記リング状導体の周方向への周回に応じて漸化するような形状を有することが好ましい。
導体をリング状導体とした上記のプラズマ処理装置において、前記誘導窓と前記誘導コイル(誘導アンテナ)との間には、その電圧を、前記マッチングボックスを通じて調節可能としたファラデーシールドを配設することができる。また、前記リング状導体は、前記ファラデーシールドに電気的に接しており、複数本の前記誘導コイル(誘導アンテナ)の最外周に配置され、そのリング内周の半径が、リングの周回に応じて漸化する形状であるか、或いは前記リング状導体は、前記ファラデーシールドに電気的に接しており、複数本の前記誘導コイルの最内周に配置され、そのリング外周の半径が、リングの周回に応じて漸化する形状であるとすることができる。
即ち、誘導コイルの近傍にリング状の導体を設置し、そのリング状導体は、装置の中心からの半径及びリング導体の断面形状がコイルの周回角度ごとに異なることとすることができる。
In this plasma processing apparatus, the conductor disposed along the induction antenna is a ring-shaped conductor substantially concentric with the induction antenna, and between the ring-shaped conductor and the induction antenna and between the ring-shaped conductor and the plasma. It is preferable that the mutual inductance has such a shape that is gradually increased according to the circumference of the ring-shaped conductor.
In the plasma processing apparatus using a ring conductor as a conductor, a Faraday shield is provided between the induction window and the induction coil (induction antenna) so that the voltage can be adjusted through the matching box. Can do. The ring-shaped conductor is in electrical contact with the Faraday shield, and is disposed on the outermost periphery of the plurality of induction coils (induction antennas). The radius of the inner periphery of the ring is in accordance with the circulation of the ring. The ring-shaped conductor is in electrical contact with the Faraday shield and is arranged on the innermost circumference of the plurality of induction coils, and the radius of the outer circumference of the ring is the circumference of the ring. It can be assumed that the shape is recurring according to.
That is, a ring-shaped conductor is installed in the vicinity of the induction coil, and the ring-shaped conductor can have a different radius from the center of the device and a cross-sectional shape of the ring conductor for each coil turning angle.

このプラズマ処理装置において、前記誘電窓を平板状形状とすることができる。平板状誘導窓に、平面状誘導コイルを配置して、プラズマ処理装置を構成することができる。   In this plasma processing apparatus, the dielectric window can have a flat plate shape. A plasma processing apparatus can be configured by arranging a planar induction coil on a flat induction window.

このプラズマ処理装置によれば、誘導アンテナの近傍であって且つ誘導アンテナに沿って配置された導体を有し、この導体と誘導アンテナ間及びこの導体とプラズマ間の周方向位置での相互インダクタンスを制御しているので、コイル周回に伴い変化するコイル電流を補償することができ、生成されるプラズマの周方向の均一性を向上させることができる。   According to this plasma processing apparatus, there is a conductor disposed in the vicinity of the induction antenna and along the induction antenna, and the mutual inductance between the conductor and the induction antenna and between the conductor and the plasma in the circumferential position is reduced. Since it is controlled, it is possible to compensate for the coil current that changes as the coil circulates, and to improve the uniformity of the generated plasma in the circumferential direction.

図1は、本発明のプラズマ処理装置の断面図である。FIG. 1 is a cross-sectional view of the plasma processing apparatus of the present invention. 図2は、本発明の第一の実施例を示す図である。FIG. 2 is a diagram showing a first embodiment of the present invention. 図3は、従来技術における、誘導コイル上の電流分布を示す図である。FIG. 3 is a diagram showing a current distribution on the induction coil in the prior art. 図4は、従来技術における誘導コイルとプラズマ回路をモデル化した等価回路図である。FIG. 4 is an equivalent circuit diagram modeling an induction coil and a plasma circuit in the prior art. 図5は、従来技術におけるプラズマ電流の分布を示す図である。FIG. 5 is a diagram showing the distribution of plasma current in the prior art. 図6は、従来技術におけるプラズマの真空容器内の拡散の様子を解析した図である。FIG. 6 is an analysis of the state of plasma diffusion in a vacuum vessel according to the prior art. 図7は、従来技術におけるウエハ上のプラズマ密度の実測結果、SiOエッチングレート実測結果、及びウエハ上のプラズマ密度の計算結果を示す図である。FIG. 7 is a diagram showing the actual measurement result of the plasma density on the wafer, the actual measurement result of the SiO 2 etching rate, and the calculation result of the plasma density on the wafer in the prior art. 図8は、従来技術における誘導コイル終端に最適カップリングコンデンサを挿入した場合のコイル電流の分布を示す図である。FIG. 8 is a diagram showing a distribution of coil current when an optimum coupling capacitor is inserted at the induction coil termination in the prior art. 図9は、本発明のリング状導体を挿入したときのコイル電流の分布、プラズマ電流の分布及び導体リング上の電流分布を示す図である。FIG. 9 is a diagram showing a coil current distribution, a plasma current distribution, and a current distribution on the conductor ring when the ring-shaped conductor of the present invention is inserted. 図10は、本発明のリング状導体、誘導コイルとプラズマ回路をモデル化した等価回路図FIG. 10 is an equivalent circuit diagram modeling the ring-shaped conductor, induction coil and plasma circuit of the present invention. 図11は、本発明のリング状導体の他の実施例を示す図である。FIG. 11 is a diagram showing another embodiment of the ring-shaped conductor of the present invention. 図12は、本発明のリング状導体グのもうひとつの他の実施例を示す図である。FIG. 12 is a diagram showing another embodiment of the ring-shaped conductor according to the present invention. 図13は、本発明の第2の実施例の装置構成を示す図である。FIG. 13 is a diagram showing an apparatus configuration of the second embodiment of the present invention. 図14は、第2の実施例において、本発明のリング状導体を用いない場合のコイル電流分布、プラズマ電流分布を示す図である。FIG. 14 is a diagram showing a coil current distribution and a plasma current distribution when the ring-shaped conductor of the present invention is not used in the second embodiment. 図15は、第2の実施例において、本発明のリング状導体8aを用いた場合のコイル電流分布、プラズマ電流分布を示す図である。FIG. 15 is a diagram showing a coil current distribution and a plasma current distribution when the ring-shaped conductor 8a of the present invention is used in the second embodiment. 図16は、第2の実施例において、本発明のリング状導体8bを用いた場合のコイル電流分布、プラズマ電流分布を示す図である。FIG. 16 is a diagram showing a coil current distribution and a plasma current distribution when the ring-shaped conductor 8b of the present invention is used in the second embodiment.

以下、本発明によるプラズマ処理装置の実施例について図面を用いて説明する。
第一の実施例は、特許文献2に開示される誘導結合型エッチング装置を例にするものであり、この誘導結合型エッチング装置を例に採って、コイル周回電流の不均一防止について説明する。
Embodiments of a plasma processing apparatus according to the present invention will be described below with reference to the drawings.
The first embodiment is an example of the inductively coupled etching apparatus disclosed in Patent Document 2, and this inductive coupling etching apparatus will be taken as an example to describe the prevention of non-uniformity of coil circulation current.

図1は本発明によるプラズマ処理装置の断面図を示す。真空容器2は、内部に、プラズマ生成部を形成する絶縁材料(例えば、Alセラミック等の非導電性材料)で成る放電窓2aと、被処理物である試料12を搭載するための電極5が配置された処理部2bとを備えている。放電窓2aの外側にはコイル状の誘導結合アンテナ1が配置されている。誘導結合アンテナ1は、それぞれが2ターンの内周コイル1aと外周コイル1bの2系統に分かれており、後述のマッチングボックス3の内部の可変コンデンサVC4の制御によって、通電電流を系統毎に制御できるようになっている。また、放電窓2aの外側には、プラズマ6と静電容量的に結合する円錐台状のファラデーシールド8が設けられている。誘導結合アンテナ1とファラデーシールド8は、整合器(マッチングボックス)3を介して第一の高周波電源10に直列に接続されている。また、ファラデーシールド8と並列に、インピーダンスの大きさが可変な回路(VC3、L3)がアースに接地してあり、ファラデーシールド8への印加電圧を制御できるようになっている。 FIG. 1 shows a cross-sectional view of a plasma processing apparatus according to the present invention. The vacuum vessel 2 has a discharge window 2a made of an insulating material (for example, non-conductive material such as Al 2 O 3 ceramic) that forms a plasma generating portion and a sample 12 that is an object to be processed. And a processing section 2b on which the electrode 5 is disposed. A coiled inductively coupled antenna 1 is disposed outside the discharge window 2a. The inductive coupling antenna 1 is divided into two systems of an inner peripheral coil 1a and an outer peripheral coil 1b each having two turns, and the energization current can be controlled for each system by controlling a variable capacitor VC4 inside the matching box 3 described later. It is like that. Further, a frustoconical Faraday shield 8 that is capacitively coupled to the plasma 6 is provided outside the discharge window 2a. The inductively coupled antenna 1 and the Faraday shield 8 are connected in series to a first high frequency power supply 10 via a matching unit (matching box) 3. In parallel with the Faraday shield 8, circuits (VC3, L3) having variable impedances are grounded to the ground so that the voltage applied to the Faraday shield 8 can be controlled.

真空容器2内にはガス供給装置4から処理ガスが供給される一方で、排気装置7によって所定の圧力に減圧排気される。ガス供給装置4より真空容器2内に処理ガスを供給し、該処理ガスを誘導結合アンテナ1とファラデーシールド8により発生する電界の作用によってプラズマ化する。電極5には第二の高周波電源11が接続されている。また、第一の高周波電源10により発生する、例えば、13.56MHz、27.12MHz、2MHz等のHF帯の高周波電力を誘導結合アンテナ1とファラデーシールド8に供給することによりプラズマ生成用の電界を得ているが、電力の反射を抑えるために整合器(マッチングボックス)3を用いて、誘導結合アンテナ1のインピーダンスを第一の高周波電源10の出力インピーダンスに一致させている。整合器(マッチングボックス)3は、一般的に逆L型と呼ばれる、静電容量を可変可能な可変コンデンサ9a,9bを用いたものを使用している。また、プラズマ6中に存在するイオンを試料12上に引き込むために電極5に第二の高周波電源11によりバイアス電圧を印加する。   While the processing gas is supplied from the gas supply device 4 into the vacuum vessel 2, it is evacuated to a predetermined pressure by the exhaust device 7. A processing gas is supplied from the gas supply device 4 into the vacuum vessel 2, and the processing gas is turned into plasma by the action of an electric field generated by the inductively coupled antenna 1 and the Faraday shield 8. A second high frequency power supply 11 is connected to the electrode 5. In addition, by supplying high frequency power in the HF band such as 13.56 MHz, 27.12 MHz, and 2 MHz generated by the first high frequency power supply 10 to the inductively coupled antenna 1 and the Faraday shield 8, an electric field for generating plasma is generated. However, in order to suppress the reflection of power, the matching unit (matching box) 3 is used to match the impedance of the inductively coupled antenna 1 with the output impedance of the first high-frequency power source 10. The matching unit (matching box) 3 uses a variable capacitor 9a, 9b, which is generally called an inverted L type, and whose capacitance can be varied. In addition, a bias voltage is applied to the electrode 5 by the second high-frequency power source 11 in order to draw ions present in the plasma 6 onto the sample 12.

ファラデーシールド8は、縦縞状のスリットを有する金属導体で構成されており、セラミック製の真空容器2に重なる形で配置されている。ファラデーシールド8への電圧は、図1のVC3で表される可変コンデンサで調節できるようになっている。ファラデーシールド8は、内外周のコイル1a,1bが持つ不均一高電圧に起因したプラズマへの局所的静電結合によるセラミック放電窓2aの局所損傷を防止する機能や、積極的に制御された大きさの均一な静電結合をプラズマに与えることで、プラズマ内壁を最適状態に保つ機能を有する。   The Faraday shield 8 is made of a metal conductor having a vertically striped slit, and is arranged so as to overlap the ceramic vacuum vessel 2. The voltage to the Faraday shield 8 can be adjusted by a variable capacitor represented by VC3 in FIG. The Faraday shield 8 has a function of preventing local damage of the ceramic discharge window 2a due to local electrostatic coupling to plasma caused by the non-uniform high voltage of the inner and outer coils 1a and 1b, and a positively controlled size. By providing the plasma with uniform electrostatic coupling, it has a function of maintaining the plasma inner wall in an optimum state.

本発明によるプラズマ処理装置に用いられる特有の形状をしたリング状導体8a及び8bは、図1において図示の場所に設置される。即ち、リング状導体8aは、2系統誘導コイルのうち内周用誘導コイル1aを流れるコイル電流に周回に伴って生じる不均一を補償するもので、誘導コイル1aの内側(円錐台状のファラデーシールド8の上底場所に設置される)。リング状導体8bは、外周用誘導コイル1bを流れるコイル電流に周回に伴って生じる不均一を補償するものであり、誘導コイル1bの外側で円錐台の裾部に設置される。   The ring-shaped conductors 8a and 8b having a specific shape used in the plasma processing apparatus according to the present invention are installed at the locations shown in FIG. That is, the ring-shaped conductor 8a compensates for non-uniformity caused by the circulation of the coil current flowing through the inner induction coil 1a out of the two-system induction coils, and the inner side of the induction coil 1a (frustum-shaped Faraday shield). 8 installed at the bottom of the floor). The ring-shaped conductor 8b compensates for the non-uniformity caused by the circulation of the coil current flowing through the outer periphery induction coil 1b, and is installed at the bottom of the truncated cone outside the induction coil 1b.

リング状導体8a及び8bのリング形状の一例を図2に示す。図2(a)は図1に示すプラズマ処理装置に用いられるリング状導体の第一の実施例を示す図であり、図2(b)は図2(a)に示すリング状導体のうち外側リング状導体について示す図である。リングのメカニズムについては後述するが、コイル終端にカップリングコンデンサを挿入しない場合、一般に、電源がつながっている給電端(入り口側)で、コイル電流が(したがって、プラズマ電流も)弱く、終端(出口側)に向かって徐々にコイル電流が増加する(したがって、プラズマ電流も増加する)という傾向を持つ。図1に示した例では、内側コイル1aがそうしたコイルに相当する。そこで、内側コイル補償用のリング状導体8aは、厚さは均一であるが、内周コイル1a入り口近傍では導体の径方向幅が小さくなるように、逆に内周コイル1aの出口近傍では導体内半径は変わらないが導体外半径を大きくすることで径方向幅が広くなるような形状としている。こうすることによって、リング状導体8aの径方向幅が小さい周方向位置(給電端)ではリング状導体8aとプラズマ及び内周コイル1aとの相互インダクタンスが小さくなり、誘導されるプラズマ電流は大きくなる方向となる。逆にリング状導体8aの径方向幅が大きい周方向位置(終端)ではプラズマ・コイル1aとリング状導体8aとの相互インダクタンスが大きくなって、リング状導体8aに電流が食われる結果、プラズマ電流は小さくなる傾向となる。したがって、もともとあるコイル電流の周回に伴うプラズマ電流の不均一を補償することができる。   An example of the ring shape of the ring-shaped conductors 8a and 8b is shown in FIG. 2A is a view showing a first embodiment of a ring-shaped conductor used in the plasma processing apparatus shown in FIG. 1, and FIG. 2B is an outer side of the ring-shaped conductor shown in FIG. It is a figure shown about a ring-shaped conductor. Although the ring mechanism will be described later, when a coupling capacitor is not inserted at the end of the coil, the coil current (and hence the plasma current) is generally weak at the power supply end (inlet side) to which the power is connected, and the end (exit) The coil current gradually increases (and therefore the plasma current also increases). In the example shown in FIG. 1, the inner coil 1a corresponds to such a coil. Thus, the ring-shaped conductor 8a for compensating the inner coil has a uniform thickness, but conversely, in the vicinity of the outlet of the inner peripheral coil 1a, the conductor has a smaller radial width in the vicinity of the inlet of the inner peripheral coil 1a. Although the inner radius is not changed, the radial width is increased by increasing the conductor outer radius. By doing so, the mutual inductance between the ring-shaped conductor 8a and the plasma and the inner coil 1a is reduced at the circumferential position (feed end) where the radial width of the ring-shaped conductor 8a is small, and the induced plasma current is increased. Direction. Conversely, at the circumferential position (termination) where the radial width of the ring-shaped conductor 8a is large, the mutual inductance between the plasma coil 1a and the ring-shaped conductor 8a increases, and as a result, the current flows in the ring-shaped conductor 8a. Tends to be smaller. Therefore, it is possible to compensate for the non-uniformity of the plasma current that accompanies the circulation of the original coil current.

一方、外側リング状導体8bは、厚さは均一であるが、外側コイル1bの入り口近傍では導体外半径は変わらないが導体内半径を小さくすることで導体の径方向幅が大きくなるように、逆に外側コイル1bの出口近傍では導体外半径は変わらないが導内外半径を大きくすることで径方向幅が狭くなるような形状としている。こうすることによって、リング状導体8bの径方向幅が大きい周方向位置(給電端)ではリング状導体8bとプラズマ及びコイル1bとの相互インダクタンスが大きくなり、リング状導体8bに電流が食われる結果、誘導されるプラズマ電流は小さくなる方向となる。逆にリング状導体8bの径方向幅が小さい周方向位置(終端)ではプラズマ・コイル1bとリング状導体8bとの相互インダクタンスが小さくなって、プラズマ電流は大きくなる傾向となる。したがって、もともとあるコイル電流の周回に伴うプラズマ電流の不均一を補償することができる。   On the other hand, the outer ring-shaped conductor 8b is uniform in thickness, but the outer radius of the conductor is not changed near the entrance of the outer coil 1b, but the radial width of the conductor is increased by reducing the inner radius of the conductor. Conversely, the outer radius of the conductor does not change in the vicinity of the outlet of the outer coil 1b, but the radial width is narrowed by increasing the inner radius. By doing so, the mutual inductance between the ring-shaped conductor 8b and the plasma and the coil 1b is increased at the circumferential position (feeding end) where the radial width of the ring-shaped conductor 8b is large, and the current is eroded by the ring-shaped conductor 8b. The induced plasma current becomes smaller. Conversely, at the circumferential position (termination) where the radial width of the ring-shaped conductor 8b is small, the mutual inductance between the plasma coil 1b and the ring-shaped conductor 8b decreases, and the plasma current tends to increase. Therefore, it is possible to compensate for the non-uniformity of the plasma current that accompanies the circulation of the original coil current.

以下、本発明によるプラズマ処理装置に用いられるリング状導体を、より定量的に説明するとともに、機能の妥当性を検証するための、シミュレーションと実験の結果を述べる。   Hereinafter, the ring-shaped conductor used in the plasma processing apparatus according to the present invention will be described more quantitatively, and the results of simulations and experiments for verifying the validity of the function will be described.

まず現状の従来技術における、コイル電流の不均一、それに起因するプラズマ電流の不均一、及びエッチング結果の不均一について、シミュレーションと実験データを用いて説明する。ここで、従来技術としては、図1又は図2において、導体リング8a,8bが無い場合、又は円周方向に内半径、外半径が一定のリングが存在した場合のものと定義する。   First, the non-uniformity of the coil current, the non-uniformity of the plasma current resulting from the non-uniformity of the plasma current, and the non-uniformity of the etching result in the current prior art will be described using simulation and experimental data. Here, as a prior art, in FIG. 1 or FIG. 2, it defines as a thing when there is no conductor ring 8a, 8b, or when a ring with a constant inner radius and outer radius exists in the circumferential direction.

図3は、コイルに沿ってコイル電流を求めたものである。図3の(a)は、内周コイル1aに対するもの、(b)は外周コイル1bに対するものである。図の縦軸は、コイル電流の平均値で規格化したコイル電流を表す。横軸のL0,L1〜L9のうち、L0とL9はそれぞれコイルの給電ライン(給電端)と戻りラインの縦シャフト部分(終端)を表す。L1,L2〜L8は、コイルを8分割(90°毎、2ターン分)したときのそれぞれの90°円弧を、給電側から順になぞったものである。なお、これらのコイル電流は、後述する図4に示す等価回路から計算したものである。このときの計算条件としては、図2に示したVC3+L3の合成インピーダンスがゼロになる条件とした。すなわち、ファラデーシールド8が接地された運転条件である。また、コイル1aと1bに流れる電流比を調整するためのVC4は100pFとした。これは、[内周コイル1aの電流]/[外周コイル1bの電流]=1/2としたことに相当する。   FIG. 3 shows the coil current obtained along the coil. 3A is for the inner coil 1a, and FIG. 3B is for the outer coil 1b. The vertical axis in the figure represents the coil current normalized by the average value of the coil current. Of L0 and L1 to L9 on the horizontal axis, L0 and L9 respectively represent a feed line (feed end) and a vertical shaft portion (end) of the return line of the coil. L1, L2 to L8 are obtained by tracing the respective 90 ° arcs when the coil is divided into 8 (every 90 °, 2 turns) in order from the power feeding side. These coil currents are calculated from an equivalent circuit shown in FIG. 4 described later. The calculation conditions at this time were such that the combined impedance of VC3 + L3 shown in FIG. That is, it is an operating condition in which the Faraday shield 8 is grounded. Further, VC4 for adjusting the ratio of the current flowing through the coils 1a and 1b was set to 100 pF. This corresponds to [current of the inner peripheral coil 1a] / [current of the outer peripheral coil 1b] = 1/2.

計算結果を示した図3の記載から、内周コイル1aは周回に伴って、コイル電流値が上昇することが、一方、外周コイル1bは周回に伴ってコイル電流値が減少することが判る。本実施例で取り上げた例では、内周コイル1aについては給電端及び終端にコンデンサがなく、外周コイル1bについては内周/外周コイル電流比を調整して径方向の均一性を確保するために終端にバリアブルコンデンサVC4が付いている。このため、図3(a)と(b)とで、コイル電流の増加・減少傾向が互いに逆になる。この現象が起こる理由について、以下で説明する。   From the description of FIG. 3 showing the calculation results, it can be seen that the coil current value of the inner peripheral coil 1a increases as it goes around, while the coil current value of the outer coil 1b decreases as it goes around. In the example taken up in the present embodiment, the inner peripheral coil 1a has no capacitors at the feeding end and the terminal end, and the outer peripheral coil 1b has an inner / outer coil current ratio adjusted to ensure radial uniformity. A variable capacitor VC4 is attached to the end. For this reason, the increasing / decreasing tendency of the coil current is opposite to each other in FIGS. The reason why this phenomenon occurs will be described below.

コイル1a,1bとプラズマとファラデーシールド8との間の等価回路は、図4のように表される。ここで、図4は外周コイル1b(又は内周コイル1a)に対応している。ただし、内周コイル1aの場合はVC4=∞(短絡)、外周コイル1bの場合はVC4=100pFとする。L0,L9はコイルの給電ラインと戻りラインの縦シャフト部分のインダクタンス、L1,L2,…,L8は、コイルを8分割(90°毎、2ターン分)したときのそれぞれの90°円弧の自己インダクタンスをあらわす。またC1〜C9は、コイル1a,1bとファラデーシールド8間の浮遊容量を表す。なお、この浮遊容量は、ファラデーシールド8を有さない装置においても、コイル1a,1bとプラズマ間の浮遊容量が存在するので、以下説明する状況はほぼ同じとなる。Lp1〜Lp2はプラズマ内を流れる誘導電流リングの自己インダクタンスを表し、それぞれ1/4周毎に分割してある。2ターンのコイルと1ターンのプラズマ電流とは、誘導的に結合しており、たとえば、プラズマのLp1と、コイルのL1とL5は、相互インダクタンスM1p1,M5p1を通じて結合している。
なお、回路計算に用いた自己インダクタンスL、相互インダクタンスM、及び浮遊容量Cの表式は、
L=μ(Log(8R/a)−2)
M=μ(R0.5*[(2/k−k)K(k)−2/kE(k)]
k=[4R/((R+R+d)]0.5
d=((R−R+(Z−Z0.5
C=2πεεL/ln(2h/a)
を用いた。ここで、
μ:真空透磁率、
a/b:コイルa/bの主半径、
a:コイルaの小半径、
a/b:コイルa/bの高さ方向位置、
K(k),E(k):第1種、第2種完全楕円積分、
ε:真空誘電率、
ε:比誘電率、
L:コイル周長、
h:コイル・ファラデーシールド間距離又はコイル・プラズマ間距離(ファラデーシールドのない場合)である。
An equivalent circuit between the coils 1a and 1b, the plasma, and the Faraday shield 8 is expressed as shown in FIG. Here, FIG. 4 corresponds to the outer peripheral coil 1b (or the inner peripheral coil 1a). However, in the case of the inner peripheral coil 1a, VC4 = ∞ (short circuit), and in the case of the outer peripheral coil 1b, VC4 = 100 pF. L0 and L9 are the inductances of the longitudinal shaft portions of the power feeding line and the return line of the coil, and L1, L2,..., L8 are the self of each 90 ° arc when the coil is divided into 8 (every 90 °, 2 turns). Represents inductance. C1 to C9 represent stray capacitances between the coils 1a and 1b and the Faraday shield 8. Note that this stray capacitance is substantially the same in the following description because there is a stray capacitance between the coils 1a and 1b and the plasma even in a device without the Faraday shield 8. Lp1 and Lp2 represent self-inductances of the induction current ring flowing in the plasma, and are divided every quarter. The two-turn coil and the one-turn plasma current are inductively coupled. For example, the plasma Lp1 and the coils L1 and L5 are coupled through mutual inductances M1p1 and M5p1.
The expression of the self-inductance L, the mutual inductance M, and the stray capacitance C used in the circuit calculation is
L = μ 0 R a (Log (8R a / a) −2)
M = μ 0 (R a R b ) 0.5 * [(2 / k−k) K (k) −2 / kE (k)]
k = [4R a R b / ((R a + R b ) 2 + d 2 )] 0.5
d = ((R a −R b ) 2 + (Z a −Z b ) 2 ) 0.5
C = 2πε 0 εL / ln (2h / a)
Was used. here,
μ 0 : Vacuum permeability,
R a / b : main radius of the coil a / b,
a: small radius of coil a,
Z a / b : height direction position of coil a / b,
K (k), E (k): first kind, second kind perfect elliptic integral,
ε 0 : vacuum dielectric constant,
ε: dielectric constant,
L: coil circumference,
h: Distance between coil and Faraday shield or distance between coil and plasma (when no Faraday shield is provided).

また、装置として使用した具体的寸法は、内周コイル1aに関しては、a=3.2mm,Ra/b=71mm,86mm,Za/b=80mm,68mm,外周コイル1bに関しては、Ra/b=137mm,153mm,Za/b=27mm,15mm,プラズマに関してはa=20mm,R=60mm(図2−6a)及び125mm(図26b),Z=55mm(図2−6a),及び0mm(図26b)とした。また、h=12.5mm,L=2πR,ε=1とした。 Moreover, specific dimensions used as an apparatus, with respect to the inner circumference coil 1a, a = 3.2mm, R a / b = 71mm, 86mm, Z a / b = 80mm, 68mm, with respect to the outer circumference coil 1b is R a / B = 137 mm, 153 mm, Z a / b = 27 mm, 15 mm, for plasma, a = 20 mm, R a = 60 mm (FIG. 2-6a) and 125 mm (FIG. 26b), Z a = 55 mm (FIG. 2-6a) , And 0 mm (FIG. 26b). Further, h = 12.5 mm, L = 2πR a , and ε = 1.

コイル1a,1bとファラデーシールド8は、直列Lと並列Cのトランスミッションラインを構成しており、一般に、終端が短絡の場合には終端に向かって電流が増加し、終端開放(又はコンデンサ終端)の場合には終端に向かって電流が減少することが知られている。(例えば、上記の非特許文献1)。図3(a),(b)は、この原理に相当する。図3に示したコイル電流の分布は、図4に示した回路をコイル電流に関して解くことによって求めている。   The coils 1a and 1b and the Faraday shield 8 constitute a transmission line of series L and parallel C. Generally, when the terminal is short-circuited, the current increases toward the terminal, and the terminal is opened (or the capacitor terminal). In some cases, it is known that the current decreases towards the end. (For example, said nonpatent literature 1). 3A and 3B correspond to this principle. The distribution of the coil current shown in FIG. 3 is obtained by solving the circuit shown in FIG. 4 with respect to the coil current.

図5は、コイル電流に上記した不均一があった場合に、プラズマ電流の周方向分布を図4に示した回路で求めたものである。コイル電流の不均一に応じて、プラズマ電流にも不均一が現れ、レンジで約5%の周方向不均一となることが解る。   FIG. 5 shows the distribution of the plasma current in the circumferential direction obtained by the circuit shown in FIG. 4 when the coil current has the above-described non-uniformity. It can be seen that non-uniformity appears in the plasma current according to the non-uniformity of the coil current, and the circumferential non-uniformity is about 5% in the range.

プラズマは、真空容器2のコイル直近で生成され、容器2内を拡散して、試料台である電極5の表面に到達する。拡散・到達の過程でプラズマ生成分布の不均一は、ある程度緩和されるが、試料表面上で周方向不均一状態が残る。この様子を計算で求めたものが図6であり、プラズマ密度Nに関する拡散方程式∇・D∇N=Sを真空容器2内で、3次元有限要素法で求めたものである。ここでSはプラズマの発生分布であり、図5に示したプラズマ電流の二乗に発生分布が比例するとして、コイル直下の領域(図2における6a,6b・・・「図2に6a,6bは示されていない」)に与えた。プラズマは生成部から、下流方向に拡散して、試料表面に到達する様子が示されており、結果として、試料表面でのプラズマ密度の不均一は、この場合5%となり、エッチングレートの不均一に影響する。図6の例では、内周コイル1aの平均電流を外周コイル1bの平均電流の2倍となるような運転条件で計算しており、この場合、ウエハ上のプラズマ密度分布は、外周コイル1bの周方向不均一を主として反映した分布となり、給電端より左半面で密度が高く、右半面で密度が低くなる分布となる。   The plasma is generated in the immediate vicinity of the coil of the vacuum container 2, diffuses in the container 2, and reaches the surface of the electrode 5 that is a sample stage. In the diffusion / arrival process, the nonuniformity of the plasma generation distribution is alleviated to some extent, but the circumferential nonuniformity remains on the sample surface. FIG. 6 shows the state obtained by calculation, and the diffusion equation ∇ · D∇N = S concerning the plasma density N is obtained in the vacuum vessel 2 by the three-dimensional finite element method. Here, S is the plasma generation distribution, and it is assumed that the generation distribution is proportional to the square of the plasma current shown in FIG. 5, and the regions immediately below the coils (6a, 6b... Not shown "). It is shown that the plasma diffuses in the downstream direction from the generation part and reaches the sample surface. As a result, the non-uniformity of the plasma density on the sample surface is 5% in this case, and the etching rate is non-uniform. Affects. In the example of FIG. 6, the average current of the inner peripheral coil 1a is calculated under operating conditions that are twice the average current of the outer peripheral coil 1b. In this case, the plasma density distribution on the wafer is the same as that of the outer peripheral coil 1b. The distribution mainly reflects the non-uniformity in the circumferential direction. The distribution is such that the density is higher on the left half surface and lower on the right half surface than the feeding end.

図7は、試料表面に、マルチプローブを設置して、プラズマ密度を実測したときの結果と、被エッチング材料としてのSiO薄膜を、Cl/BClガスでエッチングしたときの結果を、上記図6で示した計算結果と並べて示したものである。三者の不均一の方向がほぼ一致しており、上記下コイル電流の不均一が、エッチング性能に影響を与えていることがわかる。 FIG. 7 shows the results of measuring the plasma density by installing a multi-probe on the sample surface, and the results of etching the SiO 2 thin film as the material to be etched with Cl 2 / BCl 3 gas. It is shown side by side with the calculation result shown in FIG. The three non-uniform directions are almost the same, and it can be seen that the non-uniformity of the lower coil current affects the etching performance.

なお、本装置体系に、公知例で示される終端に最適値コンデンサを挿入した場合について示す。本実施例の場合は、外周コイルの給電端から見た入力インダクタンスは、L=1.1μHであるので、最適挿入コンデンサの値は、容量値でC=2/ω/L=200pFとなる。(ωは角周波数で、2π*13.56MHz)。この場合のコイル電流は、図8に示すように、入力端と終端が同一電流値となり、コイルに沿った不均一は大分緩和されるが、それでもコイル中間部で電流が最大となるため、不均一は完全には制御できない。本実施例のように、2ターンで一組をなす誘導コイルの場合は、2ターン分の平均化効果が加わってプラズマ電流はある程度均一化され得るが、例えば装置大口径化に伴い、複数の1ターンコイルの並列接続のようなコイル構成を採る場合は、終端コンデンサを用いても、コイル中腹部の極値が残ることになる。 In addition, it shows about the case where the optimum value capacitor is inserted into the terminal end shown in the publicly known example in this apparatus system. In the case of this embodiment, the input inductance viewed from the feeding end of the outer peripheral coil is L = 1.1 μH, so the value of the optimum insertion capacitor is C = 2 / ω 2 / L = 200 pF in capacitance value. . (Ω is an angular frequency, 2π * 13.56 MHz). As shown in FIG. 8, the coil current in this case has the same current value at the input end and termination, and the non-uniformity along the coil is largely alleviated. Uniformity cannot be completely controlled. As in this embodiment, in the case of an induction coil that forms a set with two turns, an averaging effect for two turns can be added and the plasma current can be made uniform to some extent. In the case of adopting a coil configuration such as a parallel connection of one-turn coils, the extreme value of the middle part of the coil remains even if a termination capacitor is used.

次に、本発明によるプラズマ処理装置において形状可変型のリング状導体を装着した場合について説明する。この場合、本実施例の図2の場合は、ウエハ上のプラズマ密度不均一に強い影響を持つのは外周コイルであるので、外周コイルの挙動について主として説明する。   Next, a case where a variable shape ring conductor is mounted in the plasma processing apparatus according to the present invention will be described. In this case, in the case of FIG. 2 of the present embodiment, since the outer peripheral coil has a strong influence on the plasma density non-uniformity on the wafer, the behavior of the outer peripheral coil will be mainly described.

図9は、コイル電流、リング電流、及びプラズマ電流の周方向の分布を、リング状導体8bを入れた場合について示したものである。リング状導体のない図3(b)、図5(b)に比較して、コイル電流自体の不均一性は変わらないが、図2に示したように、リング状導体の内半径が周方向の位置に応じて変えてあり、その結果、プラズマ、コイル、リング状導体間の相互インダクタンスが変わる結果、プラズマが感じる誘導磁場が結果として一様となり、図9(b)に示したようにプラズマ電流の分布は均一になっている。また図9(c)に見るように、リング状導体には、コイル電流の不均一を補うべく周方向で分布した電流が結果として流れている。リング状導体を周回する電流が一定でない分の余剰電流(もしくは不足電流)は、ファラデーシールドの桟部分を通じて流れることで、全体の電流保存を満たしているが、この桟部分の電流は、プラズマへの誘導電流には影響することはない。   FIG. 9 shows the distribution in the circumferential direction of the coil current, ring current, and plasma current when the ring-shaped conductor 8b is inserted. Compared with FIGS. 3B and 5B without the ring-shaped conductor, the non-uniformity of the coil current itself does not change, but as shown in FIG. 2, the inner radius of the ring-shaped conductor is in the circumferential direction. As a result, the mutual inductance between the plasma, the coil, and the ring-shaped conductor changes, and as a result, the induced magnetic field felt by the plasma becomes uniform, resulting in the plasma as shown in FIG. The current distribution is uniform. As shown in FIG. 9C, a current distributed in the circumferential direction flows in the ring-shaped conductor as a result to compensate for the non-uniformity of the coil current. The surplus current (or insufficient current) for the current that circulates around the ring-shaped conductor flows through the Faraday shield's beam part to satisfy the entire current conservation. This does not affect the induced current.

この結果は、図10に示すリング状導体を導入した場合の等価回路モデルから求めたものである。Lf1〜Lf4で示されるリング状導体回路が、図4の等価回路に対して加わった形となっており、またリング状導体の存在によって、プラズマ、コイル間と相互インダクタンスが、例えば辺要素Lf1に関しては、Mp1f1,M1f1,M5f1等が新たに加わっている。プラズマ電流の均一性が改善された結果として、ウエハ表面のプラズマ密度均一性が改善される。なお、可変半径のリング状導体の各位置における実際の半径寸法は、図2の右下部に示したように、Lf1,Lf2,Lf3,Lf4の順番で、163、159、157、155(単位:mm)であった。この寸法は、図10の回路計算を繰り返し計算することで、最適値を求めた。
本実施例では、内周コイルの電流不均一がエッチング均一性に及ぼす影響は大きくないため、計算詳細は提示しなかったが、内周コイルの不均一を補償するには、例えば、図3に示したリング状導体8aを用い、同様の原理で、内周コイルが生成するプラズマ電流部分を均一化することができる。
This result is obtained from an equivalent circuit model when the ring-shaped conductor shown in FIG. 10 is introduced. A ring-shaped conductor circuit indicated by Lf1 to Lf4 is added to the equivalent circuit of FIG. 4, and due to the presence of the ring-shaped conductor, the mutual inductance between the plasma and the coil is, for example, related to the side element Lf1. Mp1f1, M1f1, M5f1, etc. are newly added. As a result of the improved plasma current uniformity, the plasma density uniformity on the wafer surface is improved. Note that the actual radial dimension at each position of the ring conductor having a variable radius is 163, 159, 157, 155 (unit: Lf1, Lf2, Lf3, Lf4 in this order) as shown in the lower right part of FIG. mm). For this dimension, the optimum value was obtained by repeatedly calculating the circuit calculation of FIG.
In this embodiment, since the influence of the current nonuniformity of the inner peripheral coil on the etching uniformity is not great, the calculation details are not presented. Using the ring-shaped conductor 8a shown, the plasma current portion generated by the inner peripheral coil can be made uniform by the same principle.

本実施例では、図3に示した形状のリング状導体にて説明したが、例えばリング状導体は本体と調整リングとに分割されており、調整リングを交換容易なように設計しておけば、実機運転状況に応じた調整や、装置間での機差に対する調整にも便利である。   In the present embodiment, the ring-shaped conductor having the shape shown in FIG. 3 has been described. For example, the ring-shaped conductor is divided into a main body and an adjustment ring, and the adjustment ring should be designed so that it can be easily replaced. It is also convenient for adjustment according to the actual machine operating conditions and adjustment for machine differences between devices.

本実施例では、リング状導体は、内半径又は外半径が周回に応じて変化する平板状リングを例に説明したが、リングの辺要素と、コイル要素及びプラズマ要素との間の相互インダクタンスが周回に応じて可変である形状であれば、本発明の原理によるプラズマ均一化が可能である。たとえば、外側のリング状導体8bについて、図11に示すような半径と幅が一定な単純リングであって、その高さ方向位置が周回に応じて変わるような形状であっても良い。また、図12に示すように、テーパー状の放電窓2aのテーパー面に沿って、シート状のリング状導体を配してもよい。   In the present embodiment, the ring-shaped conductor is described as an example of a flat ring whose inner radius or outer radius changes according to the circulation, but the mutual inductance between the side element of the ring, the coil element, and the plasma element is If the shape is variable according to the circulation, the plasma can be made uniform according to the principle of the present invention. For example, the outer ring-shaped conductor 8b may be a simple ring having a constant radius and width as shown in FIG. 11, and may have a shape in which the position in the height direction changes according to the circulation. Further, as shown in FIG. 12, a sheet-like ring-shaped conductor may be arranged along the tapered surface of the tapered discharge window 2a.

次に、本発明の第2の実施例について説明する。第2の実施例は、石英製の平板状誘導窓に、平面状誘導コイルを配置した場合の実施例についてである。   Next, a second embodiment of the present invention will be described. The second embodiment is an embodiment in which a planar induction coil is arranged on a flat plate-shaped induction window made of quartz.

図13に、その全体構造を示す。図13(a)は第2の実施例の平面図、図13(b)はその側面断面図である。平板誘導窓2aの上に、2ターンの誘導コイル1aを配置している。また、補償リングは、リング状導体8a又は8bのような形状のもののどちらかを用いる。ただし、外周にある補償リング8bの場合は、コイル室全体を取り囲む導体カバー13に電気的に接続されているものとする。また、この実施例の場合、実施例1で示したようなファラデーシールドは有さない。この場合、等価回路としては、図4並びに図10に示したものと同じものを用いることができるが、コイルとファラデーシールドとの浮遊容量(C1〜C9)をコイルとプラズマとの間の浮遊容量と定義を変えて計算すればよい。   FIG. 13 shows the overall structure. FIG. 13A is a plan view of the second embodiment, and FIG. 13B is a side sectional view thereof. A two-turn induction coil 1a is arranged on the flat plate induction window 2a. In addition, the compensation ring has a shape like the ring-shaped conductor 8a or 8b. However, in the case of the compensation ring 8b on the outer periphery, it is assumed that it is electrically connected to the conductor cover 13 surrounding the entire coil chamber. In the case of this embodiment, there is no Faraday shield as shown in the first embodiment. In this case, the equivalent circuit shown in FIGS. 4 and 10 can be used as the equivalent circuit, but the stray capacitance (C1 to C9) between the coil and the Faraday shield is the stray capacitance between the coil and the plasma. And change the definition.

まず、補償用リング状導体がない場合のコイル上の電流分布、及びプラズマ上の電流分布を、図14に示す。この実施例での、コイル電流やプラズマ電流の不均一さは、第1の実施例に示したコイル電流(図3(a))やプラズマ電流分布図5(a)に比して大きくなっている。これは、たまたま、例に取り上げた図13の体系において、コイル1aを誘導窓2aに対してほぼ密着して配置したため、コイルとプラズマ間の浮遊容量が大きくなっていることによる。即ち、第1の実施例において、内周コイルとファラデーシールドとの浮遊容量は、約30pFであるのに対して、第2の実施例の場合コイルとプラズマ間の浮遊容量が誘電体窓2aを挟む関係上、約100pFと大きくなる。   First, FIG. 14 shows the current distribution on the coil and the current distribution on the plasma when there is no compensating ring conductor. In this embodiment, the nonuniformity of the coil current and the plasma current is larger than the coil current (FIG. 3A) and the plasma current distribution diagram 5A shown in the first embodiment. Yes. This is because the stray capacitance between the coil and the plasma is increased because the coil 1a is arranged in close contact with the induction window 2a in the system of FIG. 13 taken up as an example. That is, in the first embodiment, the stray capacitance between the inner peripheral coil and the Faraday shield is about 30 pF, whereas in the second embodiment, the stray capacitance between the coil and the plasma causes the dielectric window 2a to pass through the dielectric window 2a. Due to the sandwiching, it becomes large at about 100 pF.

図15に、補償用リング状導体のうち、内側のリング状導体8aのみを付加した場合のコイル電流分布、プラズマ電流分布及び補償用のリング状導体の外周に流れる電流の分布を示す。コイル電流自体の分布の不均一性は図14に比して改善はされないが、プラズマ電流分布は均一になっていることが解る。また、補償用のリング状導体8aの外周には、周方向で分布した電流が流れていることが解る。これは、外周径が、周回に応じて異なる補償用のリング状導体8aを配したため、各場所での補償用リング状導体、誘導コイル、及びプラズマの三者間の、相互誘導インダクタンスが変わり、その結果として、プラズマ電流を均一にしているものである。   FIG. 15 shows a coil current distribution, a plasma current distribution, and a distribution of current flowing on the outer periphery of the compensating ring conductor when only the inner ring conductor 8a is added among the compensating ring conductors. Although the non-uniformity of the distribution of the coil current itself is not improved as compared with FIG. 14, it can be seen that the plasma current distribution is uniform. It can also be seen that a current distributed in the circumferential direction flows on the outer periphery of the compensating ring-shaped conductor 8a. This is because the compensation ring-shaped conductors 8a having different outer diameters depending on the circumferences are arranged, so that the mutual induction inductance between the compensation ring-shaped conductor, the induction coil, and the plasma at each location changes, As a result, the plasma current is made uniform.

図16に、補償導体リングのうち、外側導体リング8bのみを設置した場合のコイル電流分布、プラズマ電流分布及び補償導体リングの内周に流れる電流の分布を示す。図15の例と同様に、コイル電流自体の分布の不均一性は図14に比して改善はされないが、プラズマ電流分布は均一になっていることが解る。また、補償導体リング8bの内周には、周方向で分布した電流が流れていることが解る。これも、図1で説明したのと同様の原理、即ち各場所によって相互インダクタンスが変わることがプラズマ電流分布の均一化に貢献している。   FIG. 16 shows the coil current distribution, the plasma current distribution, and the distribution of the current flowing in the inner circumference of the compensation conductor ring when only the outer conductor ring 8b is installed among the compensation conductor rings. As in the example of FIG. 15, the non-uniformity of the distribution of the coil current itself is not improved as compared with FIG. 14, but it can be seen that the plasma current distribution is uniform. It can also be seen that a current distributed in the circumferential direction flows on the inner circumference of the compensation conductor ring 8b. Again, the principle similar to that described with reference to FIG. 1, that is, the fact that the mutual inductance changes depending on the location, contributes to uniform plasma current distribution.

以上説明したごとく、本発明によれば、誘導コイルの持つ浮遊容量の存在による、プラズマ電流の周方向不均一性をコイル近傍に置いた補償導体リングにて、大きく改善させることができる。   As described above, according to the present invention, the circumferential nonuniformity of the plasma current due to the presence of the stray capacitance of the induction coil can be greatly improved by the compensation conductor ring placed in the vicinity of the coil.

1 アンテナ
2 真空容器
3 インピーダンス整合器
4 ガス供給装置
5 電極
6 プラズマ
7 ガス排気装置
8 ファラデーシールド
8a 補償導体リング
8b 補償導体リング
9 バリコン
10 高周波電源
11 高周波電源
12 試料
13 コイル室カバー
DESCRIPTION OF SYMBOLS 1 Antenna 2 Vacuum container 3 Impedance matching device 4 Gas supply apparatus 5 Electrode 6 Plasma 7 Gas exhaust apparatus 8 Faraday shield 8a Compensation conductor ring 8b Compensation conductor ring 9 Variable capacitor 10 High frequency power supply 11 High frequency power supply 12 Sample 13 Coil chamber cover

Claims (6)

試料がプラズマ処理される真空処理室と、
前記試料を載置する載置台と、
前記真空処理室の上部を気密に封止する絶縁性の誘導窓と、
前記誘導窓の外側に配置され誘導磁場を放射するコイル状の誘導アンテナと、
前記誘導アンテナに高周波電力を供給する高周波電源と、
前記誘導アンテナに沿って配置されたリング状の導体とを備え、
前記導体のリング幅は、前記誘導アンテナの周回に応じて漸化することを特徴とするプラズマ処理装置。
A vacuum processing chamber in which the sample is plasma treated;
A mounting table for mounting the sample;
An insulating guide window that hermetically seals the upper part of the vacuum processing chamber;
A coiled induction antenna disposed outside the induction window and radiating an induction magnetic field;
A high frequency power supply for supplying high frequency power to the induction antenna;
A ring-shaped conductor disposed along the induction antenna,
The plasma processing apparatus, wherein the ring width of the conductor is gradually increased according to the circumference of the induction antenna.
請求項1に記載のプラズマ処理装置において、
前記誘導アンテナの終端が短絡されている場合、前記導体のリング幅は、前記誘導アンテナの給電端から前記誘導アンテナの終端に向かう周回に応じて大きくなることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
When the terminal end of the induction antenna is short-circuited, the ring width of the conductor increases in accordance with the circulation from the feeding end of the induction antenna toward the terminal end of the induction antenna.
請求項1に記載のプラズマ処理装置において、
前記誘導アンテナの終端が開放されている場合、前記導体のリング幅は、前記誘導アンテナの給電端から前記誘導アンテナの終端に向かう周回に応じて小さくなることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
When the terminal end of the induction antenna is open, the ring width of the conductor is reduced according to the circulation from the feeding end of the induction antenna toward the terminal end of the induction antenna.
請求項1ないし請求項3のいずれか一項に記載のプラズマ処理装置において、
前記誘導窓が平板状であることを特徴とするプラズマ処理装置。
In the plasma processing apparatus according to any one of claims 1 to 3,
The plasma processing apparatus, wherein the guide window has a flat plate shape.
請求項1に記載のプラズマ処理装置において、
前記誘導アンテナは、第一の誘導アンテナと第二の誘導アンテナを具備し、
前記導体は、少なくとも前記第一の誘導アンテナまたは前記第二の誘導アンテナに沿って配置されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
The induction antenna comprises a first induction antenna and a second induction antenna;
The plasma processing apparatus, wherein the conductor is disposed along at least the first induction antenna or the second induction antenna.
試料がプラズマ処理される真空処理室と、
前記試料を載置する載置台と、
前記真空処理室の上部を気密に封止する絶縁性の誘導窓と、
前記誘導窓の外側に配置され誘導磁場を放射するコイル状の誘導アンテナと、
前記誘導アンテナに高周波電力を供給する高周波電源と、
前記誘導アンテナに沿って配置されたリング状の導体とを備え、
前記リング状の導体の半径方向における、前記導体と前記誘導アンテナとの間の最短距離が、前記誘導アンテナの周回に応じて漸化することを特徴とするプラズマ処理装置。
A vacuum processing chamber in which the sample is plasma treated;
A mounting table for mounting the sample;
An insulating guide window that hermetically seals the upper part of the vacuum processing chamber;
A coiled induction antenna disposed outside the induction window and radiating an induction magnetic field;
A high frequency power supply for supplying high frequency power to the induction antenna;
A ring-shaped conductor disposed along the induction antenna,
The plasma processing apparatus, wherein a shortest distance between the conductor and the induction antenna in a radial direction of the ring-shaped conductor is gradually increased according to the circumference of the induction antenna.
JP2013268191A 2013-12-26 2013-12-26 Plasma processing equipment Active JP5696206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268191A JP5696206B2 (en) 2013-12-26 2013-12-26 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268191A JP5696206B2 (en) 2013-12-26 2013-12-26 Plasma processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009257312A Division JP5451324B2 (en) 2009-11-10 2009-11-10 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2014075362A JP2014075362A (en) 2014-04-24
JP5696206B2 true JP5696206B2 (en) 2015-04-08

Family

ID=50749345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268191A Active JP5696206B2 (en) 2013-12-26 2013-12-26 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5696206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180889A1 (en) * 2018-03-22 2019-09-26 株式会社Kokusai Electric Substrate treating device, semiconductor device manufacturing method, and electrostatic shield

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462865B2 (en) * 2001-07-10 2003-11-05 三菱重工業株式会社 Feeding antenna and semiconductor manufacturing apparatus
JP5451324B2 (en) * 2009-11-10 2014-03-26 株式会社日立ハイテクノロジーズ Plasma processing equipment

Also Published As

Publication number Publication date
JP2014075362A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5451324B2 (en) Plasma processing equipment
KR101917290B1 (en) Plasma processing apparatus
US8911588B2 (en) Methods and apparatus for selectively modifying RF current paths in a plasma processing system
KR102137617B1 (en) Plasma processing apparatus
JP5643062B2 (en) Plasma processing equipment
KR102033873B1 (en) Plasma processing apparatus
TWI595807B (en) Plasma processing equipment
KR102070471B1 (en) Plasma processing device and filter unit
US10998168B2 (en) Plasma processing apparatus
KR101872076B1 (en) Plasma processing apparatus
US20130240145A1 (en) Methods and apparatus for correcting for non-uniformity in a plasma processing system
KR102168961B1 (en) Plasma treatment device
US11094509B2 (en) Plasma processing apparatus
TWI553693B (en) An inductance coil and inductively coupled plasma processing device
US20130240147A1 (en) Methods and apparatus for selectively modulating azimuthal non-uniformity in a plasma processing system
KR101986744B1 (en) Plasma processing apparatus and method
JP6530859B2 (en) Plasma processing system
JP5696206B2 (en) Plasma processing equipment
TW202004831A (en) Plasma treatment apparatus
CN104918401A (en) Inductive coupling type plasma processing apparatus
JP2020017445A (en) Plasma processing apparatus
JP2015130349A (en) plasma processing apparatus and plasma processing method
US20220208512A1 (en) Induction Coil Assembly for Plasma Processing Apparatus
KR20160092808A (en) Plasma generating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5696206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350