JP5696174B2 - Nuclear fuel cladding tube and manufacturing method thereof - Google Patents

Nuclear fuel cladding tube and manufacturing method thereof Download PDF

Info

Publication number
JP5696174B2
JP5696174B2 JP2013093201A JP2013093201A JP5696174B2 JP 5696174 B2 JP5696174 B2 JP 5696174B2 JP 2013093201 A JP2013093201 A JP 2013093201A JP 2013093201 A JP2013093201 A JP 2013093201A JP 5696174 B2 JP5696174 B2 JP 5696174B2
Authority
JP
Japan
Prior art keywords
sic
nuclear fuel
cladding tube
fiber
fuel cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013093201A
Other languages
Japanese (ja)
Other versions
JP2013210372A (en
Inventor
高木 俊
俊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2013093201A priority Critical patent/JP5696174B2/en
Publication of JP2013210372A publication Critical patent/JP2013210372A/en
Application granted granted Critical
Publication of JP5696174B2 publication Critical patent/JP5696174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、沸騰水型、加圧水型等の軽水炉、重水炉、高温ガス炉、超高温ガス炉等のガス冷却炉、溶融金属冷却炉、高速増殖炉等の原子炉において核燃料を保持するための管状体に関する。   The present invention is for holding nuclear fuel in a nuclear reactor such as a light water reactor such as a boiling water type or a pressurized water type, a heavy water reactor, a gas cooling reactor such as a high temperature gas reactor or an ultra high temperature gas reactor, a molten metal cooling reactor or a fast breeder The present invention relates to a tubular body.

今日多くの原子炉では、“被覆管”と呼称される密閉金属チューブ内に燃料が格納され、この燃料被覆は多くの場合ジルコニウム合金または鋼合金製である。被覆管は、原子炉の正常な稼動時に、または考えられる事故の際に、如何なる放射性ガスも固体核分裂生成物も確実にチューブ内に保持されて冷却材へ放出されることがないように設計されている。被覆管が損傷すれば、熱、水素、遂には核分裂生成物が冷却材へ放出される可能性がある。   In many nuclear reactors today, the fuel is stored in a sealed metal tube called the “cladding tube”, which is often made of a zirconium alloy or a steel alloy. The cladding is designed to ensure that no radioactive gases or solid fission products are retained in the tube and released into the coolant during normal operation of the reactor or in the event of a possible accident. ing. If the cladding is damaged, heat, hydrogen and eventually fission products can be released into the coolant.

従来の被覆管に伴う問題点は公知である。例えば、金属製の被覆管は比較的軟質であり、時として冷却システム中に流入して燃料と接触する可能性がある破片と接触して磨耗したり、腐食したりする恐れがある。このような磨耗や腐食は結果として、金属製格納容器の境界壁の損傷、ひいては冷却材中への核分裂生成物の放出を招く可能性がある。さらにまた、金属製被覆管は1000℃以上の熱水と発熱反応し、核燃料が発生させる核分裂生成物崩壊熱にさらなる熱を加えることになる。被覆からのこの追加熱は例えばスリーマイル島で起こったように、事故の深刻さと持続期間を一段と増幅することになる。   The problems associated with conventional cladding tubes are known. For example, metal cladding is relatively soft and can sometimes wear and corrode in contact with debris that can flow into the cooling system and come into contact with fuel. Such wear and corrosion can result in damage to the metal containment boundary walls and thus release of fission products into the coolant. Furthermore, the metal cladding tube undergoes an exothermic reaction with hot water of 1000 ° C. or higher, and adds further heat to the fission product decay heat generated by the nuclear fuel. This additional heat from the coating will further amplify the severity and duration of the accident, as occurred for example on Three Mile Island.

そこで、特許文献1には、多層セラミックチューブ(被覆管)において、モノシリック(一体物の)SiCの内層と;SiCファイバーをSiCマトリックスで囲んだ複合材である中間層と;モノリシックSiCの外層から成ることを特徴とする前記多層セラミックチューブが提案されている。
しかしながら、このような全体としてSiCからなる被覆管は、モノシリックSiC層がCVD(化学気相成長)等で形成され、内層、中間層、外層とも剛性が高いため、特に運転開始時に発生する急激な温度差により発生する歪みが、被覆管の表裏を貫通するクラックに進展する恐れがある。
また、前記発明では、このような問題を防止するために、個々の繊維にクラックの進展を止めるための内側熱分解炭素副層と、酸化性の環境に対して炭素を保護する外側SiC副層からなる2重の被覆を設けることが提案されている。しかしながら、個々の繊維に2重の被覆を設けるためには、個々の繊維を分散させた状態で繊維表面に成膜させなければならず、十分に分散できなければ上記いずれか片方しか被覆できないことがあり、SiC繊維と、SiCマトリックスが接し、熱分解炭素層が十分に機能しない恐れがある。
また、前記に記載の発明は、2回のSiC表面に被覆を設ける工程とSiC繊維からなる予備成形物に、CVD、あるいはポリマー浸透/熱分解を繰り返し多段階処理でSiCマトリックスを形成している。このような製造方法は、何度も処理を繰り替えさなければならず、工程が複雑であった。
Therefore, in Patent Document 1, a multilayer ceramic tube (cladding tube) includes an inner layer of monolithic (integral) SiC; an intermediate layer that is a composite material in which SiC fibers are surrounded by an SiC matrix; and an outer layer of monolithic SiC. The multilayer ceramic tube characterized by the above has been proposed.
However, in such a cladding tube made of SiC as a whole, the monolithic SiC layer is formed by CVD (chemical vapor deposition) or the like, and the inner layer, the intermediate layer, and the outer layer have high rigidity. There is a possibility that the strain generated by the temperature difference may develop into a crack penetrating the front and back of the cladding tube.
Moreover, in the said invention, in order to prevent such a problem, the inner pyrolysis carbon sublayer for stopping the progress of a crack in each fiber, and the outer SiC sublayer for protecting carbon against an oxidizing environment It has been proposed to provide a double coating consisting of However, in order to provide a double coating on each individual fiber, it is necessary to form a film on the fiber surface in a state where each individual fiber is dispersed, and only one of the above can be coated unless it can be sufficiently dispersed. There is a possibility that the SiC fiber and the SiC matrix are in contact with each other and the pyrolytic carbon layer does not function sufficiently.
In the above-described invention, the SiC matrix is formed in a multi-step process by repeatedly performing CVD or polymer infiltration / pyrolysis on the preform formed of the SiC fiber and the process of providing the coating on the SiC surface twice. . Such a manufacturing method had to be repeated many times, and the process was complicated.

特表2008−501977号公報Special table 2008-501977 gazette

本発明は、核燃料の保護に好適であって、必要な使用環境で保護機能を安定に維持できる強度を備え、クラックの発生を防止でき、しかも簡易な方法で提供できる管状体及びその製造方法を提供することを目的とする。 The present invention provides a tubular body that is suitable for nuclear fuel protection, has a strength capable of stably maintaining a protective function in a necessary use environment, can prevent cracks, and can be provided by a simple method, and a method for manufacturing the same. The purpose is to provide.

本発明は以下の通りである。
1)ワインディング法あるいは組紐法で形成されたSiC繊維からなる骨材と該SiC繊維間に気相成長法により充填された熱分解炭素とからなる管状の繊維強化炭素質基材と、
該繊維強化炭素質基材の少なくとも外表面に形成されたSiC層と、
からなる核燃料被覆管であって、
該SiC層は、
該繊維強化炭素質基材表面の熱分解炭素をSiOガスにより反応転化し形成されたCVR−SiC層と、
該CVR−SiC層上に形成されたCVD−SiC層と、
からなり、
該核燃料被覆管は、該繊維強化炭素質基材の該SiC層との境界領域から該繊維強化炭素質基材の内部に向かってケイ素原子が拡散してなることを特徴とする核燃料被覆管。
2)前記核燃料被覆管は、前記SiC層の下に熱分解炭素のみからなる層を有することを特徴とする上記1)に記載の核燃料被覆管。
3)前記核燃料被覆管は、前記繊維強化炭素質基材内部の熱分解炭素にケイ素原子が拡散していることを特徴とする上記1)に記載の核燃料被覆管。
4)前記ワインディング法は、フィラメントワインディング法またはシートワインディング法であることを特徴とする上記1)〜3)のいずれか一項に記載の核燃料被覆管。
5)高温ガス炉用の核燃料被覆管として用いられることを特徴とする上記1)〜4)のいずれか1項に記載の核燃料被覆管。
6)ワインディング法あるいは組紐法でSiC繊維からなる骨材を形成し、
該SiC繊維間に熱分解炭素を気相成長させ管状の繊維強化炭素質基材を得た後、
該繊維強化炭素質基材の表面の熱分解炭素をSiOガスでSiCに反応転化させCVR−SiC層を形成させることにより、該繊維強化炭素質基材の該CVR−SiCとの境界領域から該繊維強化炭素質基材の内部に向かってケイ素原子を拡散させ、
更に、CVD法で前記CVR−SiC層の表面にCVD−SiCを堆積させることを特徴とする核燃料被覆管の製造方法。
7)前記SiC繊維からなる骨材は、あらかじめ、黒鉛粉末を表面に塗布した黒鉛製の中芯型に巻き付けられ、CVD後に離型することを特徴とする6)に記載の核燃料被覆管の製造方法。
8)前記ワインディング法は、フィラメントワインディング法またはシートワインディング法であることを特徴とする6)または7)に記載の核燃料被覆管の製造方法。
The present invention is as follows.
1) a tubular fiber-reinforced carbonaceous base material composed of an aggregate made of SiC fibers formed by a winding method or braid method, and pyrolytic carbon filled between the SiC fibers by a vapor phase growth method ;
A SiC layer formed on at least the outer surface of the fiber-reinforced carbonaceous substrate;
A nuclear fuel cladding tube comprising:
The SiC layer is
A CVR-SiC layer formed by reaction conversion of pyrolytic carbon on the surface of the fiber-reinforced carbonaceous substrate with SiO gas ;
A CVD-SiC layer formed on the CVR-SiC layer;
Consists of
The nuclear fuel cladding tube, wherein the nuclear fuel cladding tube is formed by diffusing silicon atoms from a boundary region of the fiber reinforced carbonaceous substrate with the SiC layer toward the inside of the fiber reinforced carbonaceous substrate.
2) The nuclear fuel cladding tube according to 1) above, wherein the nuclear fuel cladding tube has a layer made only of pyrolytic carbon under the SiC layer.
3) The nuclear fuel cladding tube according to 1) above, wherein the nuclear fuel cladding tube has silicon atoms diffused into pyrolytic carbon inside the fiber-reinforced carbonaceous substrate.
4) The nuclear fuel cladding tube according to any one of 1) to 3) above, wherein the winding method is a filament winding method or a sheet winding method.
5) The nuclear fuel cladding tube according to any one of 1) to 4) above, which is used as a nuclear fuel cladding tube for a HTGR.
6) An aggregate made of SiC fibers is formed by a winding method or braid method,
After vapor growth of pyrolytic carbon between the SiC fibers to obtain a tubular fiber-reinforced carbonaceous substrate,
The CVR-SiC layer is formed by reaction conversion of pyrolytic carbon on the surface of the fiber reinforced carbonaceous substrate to SiC with SiO gas to form the CVR-SiC boundary region of the fiber reinforced carbonaceous substrate. Diffusion of silicon atoms toward the inside of the fiber reinforced carbonaceous substrate,
Furthermore, CVD-SiC is deposited on the surface of the CVR-SiC layer by a CVD method.
7) The production of a nuclear fuel cladding tube according to 6), wherein the aggregate made of SiC fiber is wound around a graphite core mold having graphite powder coated on the surface in advance, and is released after CVD. Method.
8) The method for producing a nuclear fuel cladding tube according to 6) or 7), wherein the winding method is a filament winding method or a sheet winding method.

本発明の管状体は、セラミック繊維の表面が、炭素質に接しているため、熱応力により発生するクラックを、セラミック繊維表面で止めることができ、管状体の内外を貫通するクラックが発生しにくい上、個々のセラミック繊維に被覆を設ける前処理が必要ないため工程が簡略化でき、性能向上によりさらには原子炉をより高温で運転できるため、エネルギー効率の高い原子炉を提供することができると共に使用寿命が長期化可能である。
特に本発明は、炭素と反応する恐れのない冷却材を使用する高温ガス炉等において、構造が簡単で破損しにくい管状体を提供することができる。
In the tubular body of the present invention, since the surface of the ceramic fiber is in contact with the carbonaceous material, cracks caused by thermal stress can be stopped at the surface of the ceramic fiber, and cracks penetrating the inside and outside of the tubular body are unlikely to occur. In addition, since no pretreatment is required to provide coatings on individual ceramic fibers, the process can be simplified, and the reactor can be operated at a higher temperature by improving performance, so that an energy efficient nuclear reactor can be provided. The service life can be extended.
In particular, the present invention can provide a tubular body that has a simple structure and is not easily damaged in a high-temperature gas furnace that uses a coolant that does not react with carbon.

本発明の管状体が用いられる被覆管に核燃料が被覆された状態の管状体の中心軸に平行な面による断面を模式的に示す図である。It is a figure which shows typically the cross section by the surface parallel to the central axis of the tubular body of the state by which the nuclear fuel was coat | covered by the cladding tube in which the tubular body of this invention is used. 本発明の管状体の任意方向の断面を模式的に示す図であり、紙面に対して左が管の内側方向、右が管の外側方向である。It is a figure which shows typically the cross section of the arbitrary directions of the tubular body of this invention, the left is the inner side direction of a pipe | tube with respect to the paper surface, and the right is the outer side direction of a pipe | tube. 本発明の管状体の任意方向の断面を模式的に示す図であり、紙面に対して左が管の内側方向、右が管の外側方向である。It is a figure which shows typically the cross section of the arbitrary directions of the tubular body of this invention, the left is the inner side direction of a pipe | tube with respect to the paper surface, and the right is the outer side direction of a pipe | tube.

本発明の核燃料被覆管は、以下、1)〜4)の管状体に包含され、本発明の核燃料被覆管の製造方法は、以下、5)の管状体の製造方法に包含される。   The nuclear fuel cladding tube of the present invention is included in the tubular body of 1) to 4) below, and the manufacturing method of the nuclear fuel cladding tube of the present invention is included in the manufacturing method of the tubular body of 5) below.

1)セラミック繊維からなる骨材と前記セラミック繊維間に充填された炭素質とからなる管状の繊維強化炭素質基材の少なくとも外表面にSiC層が形成され、
前記繊維強化炭素質基材と前記SiC層の境界領域から当該繊維強化炭素質基材の内部に向かってケイ素原子が拡散してなることを特徴とする管状体。
2)前記繊維強化炭素質基材を構成する骨材は、ワインディング法によりセラミック繊維を管状に形成されていることを特徴とする上記1)に記載の管状体。
3)前記繊維強化炭素質基材を構成する骨材は、セラミック繊維からなるストランドを組紐状に織り合せて形成された中空のメッシュ体であることを特徴とする上記1)に記載の管状体。
4)核燃料被覆管として使用されることを特徴とする上記1)〜3)のいずれかに記載の管状体。
5)上記1)に記載の骨材に熱分解炭素を気相成長させて繊維強化炭素質基材を形成した後、前記繊維強化炭素質基材の少なくとも外表面に位置する熱分解炭素をSiOガスでSiCに反応転化させてSiC層を形成して上記1)〜4)のいずれかに記載の管状体を得ることを特徴とする管状体の製造方法。
6)前記SiC層を形成した後、更に、前記SiC層の表面にSiCを堆積させることを特徴とする上記5)に記載の管状体の製造方法。
1) A SiC layer is formed on at least the outer surface of a tubular fiber-reinforced carbonaceous substrate made of aggregate composed of ceramic fibers and carbonaceous material filled between the ceramic fibers,
A tubular body comprising silicon atoms diffused from a boundary region between the fiber-reinforced carbonaceous substrate and the SiC layer toward the inside of the fiber-reinforced carbonaceous substrate.
2) The tubular body as described in 1) above, wherein the aggregate constituting the fiber-reinforced carbonaceous substrate is formed of a ceramic fiber in a tubular shape by a winding method.
3) The tubular body according to 1) above, wherein the aggregate constituting the fiber-reinforced carbonaceous base material is a hollow mesh body formed by weaving strands made of ceramic fibers into a braid shape. .
4) The tubular body as described in any one of 1) to 3) above, which is used as a nuclear fuel cladding tube.
5) After vapor-decomposing pyrolytic carbon on the aggregate described in 1) above to form a fiber-reinforced carbonaceous substrate, the pyrolytic carbon located on at least the outer surface of the fiber-reinforced carbonaceous substrate is made of SiO. A method for producing a tubular body, characterized in that the tubular body according to any one of (1) to (4) above is obtained by reaction conversion to SiC with a gas to form a SiC layer.
6) After forming the said SiC layer, SiC is further deposited on the surface of the said SiC layer, The manufacturing method of the tubular body as described in said 5) characterized by the above-mentioned.

本発明の管状体は、通常、端部が開放された筒状であるが、原子炉の設計に応じて端部を有するものであってもよい。以下、それぞれの部位について説明する。
繊維強化炭素質基材は、セラミック繊維からなる骨材と、前記セラミック繊維間に充填された炭素質とからなる管状体である。
本発明において、炭素質とは、実質的に炭素からなるものをいい、炭素質としては、熱分解炭素やガラス状炭素などどのような物であってもかまわないが特に熱分解炭素が好ましい。
熱分解炭素は、セラミック繊維、特にSiC繊維との付着性がよいうえ、高純度の原料ガスを使用することにより、高純度の炭素質を得ることができる。前記骨材に、熱分解炭素を気相成長させる化学蒸気浸透(CVI)処理を施すことによりセラミック繊維間に炭素質が充填され繊維強化炭素質基材を形成することができる。なお、CVIはCVDと同じ原理に基づく真空製膜法である。
The tubular body of the present invention is generally cylindrical with an open end, but may have an end depending on the reactor design. Hereinafter, each part will be described.
The fiber reinforced carbonaceous substrate is a tubular body made of an aggregate made of ceramic fibers and a carbonaceous material filled between the ceramic fibers.
In the present invention, the carbonaceous material is substantially composed of carbon, and the carbonaceous material may be any material such as pyrolytic carbon or glassy carbon, but pyrolytic carbon is particularly preferable.
Pyrolytic carbon has good adhesion to ceramic fibers, particularly SiC fibers, and high purity carbonaceous matter can be obtained by using a high purity raw material gas. The aggregate is subjected to chemical vapor infiltration (CVI) treatment in which pyrolytic carbon is vapor-grown, whereby carbonaceous material is filled between the ceramic fibers to form a fiber-reinforced carbonaceous substrate. CVI is a vacuum film forming method based on the same principle as CVD.

前記繊維強化炭素質基材の炭素質は、骨材すべてのセラミック繊維間を密に充填する必要はなく、特にその骨材の表層のみであってもかまわない。表層部分のみ密にあってもSiC層とSiC繊維とのアンカー効果を十分に果たすことができるからである。
繊維強化炭素質基材において、基材全体に対するセラミック繊維の質量比率は、10〜50%が好ましく、20〜30%が更に好ましい。10%を下回ると、基材の強度が低下し、50%を超えると、CVI処理前に圧縮したまま保持することが困難であり形状が変化しやすいからである。
繊維強化炭素質基材の厚みは、0.3〜2mmが好ましく、0.5〜1.2mmが更に好ましい。0.3mm未満では十分な強度を持つことが困難である場合があり、2mmを超えると、冷却材に熱を十分に伝えられない傾向があるからである。
SiC層は、実質的にSiCからなるものを言い、通常、SiCを95質量%以上含むものをいう。
SiC層は、SiOガスにより、繊維強化炭素質基材表面の炭素質をSiCに反応転化させて得ることができる。SiOガスは、例えばSi粉−SiO粉、SiC粉−SiO粉、炭素粉−SiO粉その他の各種ケイ素混合物等を発生源として炉の底部に配し、その上部に前記繊維強化炭素質基材を配し1300〜2300℃で熱処理することにより得られる。
このように反応転化で形成されたSiC層(CVR−SiC層)は、SiC層と繊維強化炭素質基材との境界は明確ではなく、境界領域から当該繊維強化炭素質基材の内部に向かってケイ素原子が拡散した構造となっている(図2に示すように、CVR−SiCは、管の内側から外側方向へその密度が暫時増加するように境界領域7及びSiC層8を形成する)。尚、CVD等で形成されたCVD−SiC層の場合、繊維強化炭素質基材との境界領域から当該繊維強化炭素質基材の内部に向かってケイ素原子の拡散は見られない。
SiCは熱分解炭素に対して、熱膨張係数が2〜3倍であるため、剥離しやすいといった課題があるが、CVR−SiC層は元々炭素質をSiCに転化させたものであり炭素質と明確な境界を持たないため、層間剥離が発生しにくいといった利点がある。
また、水や、溶融金属等の炭素と反応性のある冷却材用の被覆管用途には本発明のSiC層表面上に新たにSiC層を堆積させても良い。堆積させる方法は特に限定されないが、特にCVD法によるCVD−SiC層が望ましい。CVD−SiC層の方が高密度であるため、熱媒体として使用される冷却水、溶融金属との反応性が低く遮蔽効果も高いため、長寿命の管状体が提供できる。
The carbonaceous material of the fiber-reinforced carbonaceous base material does not need to be tightly filled between the ceramic fibers of all the aggregates, and only the surface layer of the aggregates may be used. This is because even if only the surface layer portion is dense, the anchor effect between the SiC layer and the SiC fiber can be sufficiently achieved.
In the fiber reinforced carbonaceous substrate, the mass ratio of the ceramic fiber to the entire substrate is preferably 10 to 50%, more preferably 20 to 30%. If it is less than 10%, the strength of the base material is lowered, and if it exceeds 50%, it is difficult to hold it in a compressed state before the CVI treatment, and the shape tends to change.
The thickness of the fiber reinforced carbonaceous substrate is preferably 0.3 to 2 mm, and more preferably 0.5 to 1.2 mm. If it is less than 0.3 mm, it may be difficult to have sufficient strength, and if it exceeds 2 mm, there is a tendency that heat cannot be sufficiently transmitted to the coolant.
The SiC layer is substantially composed of SiC, and generally includes 95% by mass or more of SiC.
The SiC layer can be obtained by reactive conversion of the carbonaceous material on the surface of the fiber-reinforced carbonaceous substrate to SiC with SiO gas. The SiO gas is arranged at the bottom of the furnace using, for example, Si powder-SiO 2 powder, SiC powder-SiO 2 powder, carbon powder-SiO 2 powder and other various silicon mixtures as the source, and the fiber reinforced carbonaceous material is placed on the top. It is obtained by arranging a substrate and heat-treating at 1300-2300 ° C.
In the SiC layer (CVR-SiC layer) formed by the reaction conversion in this way, the boundary between the SiC layer and the fiber reinforced carbonaceous substrate is not clear, and the boundary region is directed to the inside of the fiber reinforced carbonaceous substrate. (As shown in FIG. 2, CVR-SiC forms the boundary region 7 and the SiC layer 8 so that its density increases for a while from the inside to the outside of the tube) . In the case of a CVD-SiC layer formed by CVD or the like, no diffusion of silicon atoms is seen from the boundary region with the fiber reinforced carbonaceous substrate toward the inside of the fiber reinforced carbonaceous substrate.
Since SiC has a thermal expansion coefficient of 2 to 3 times that of pyrolytic carbon, there is a problem that it is easy to peel off. However, the CVR-SiC layer was originally converted from carbon to SiC, Since there is no clear boundary, there is an advantage that delamination hardly occurs.
In addition, a SiC layer may be newly deposited on the surface of the SiC layer of the present invention for a cladding tube for a coolant reactive with carbon such as water or molten metal. The deposition method is not particularly limited, but a CVD-SiC layer by a CVD method is particularly desirable. Since the CVD-SiC layer has a higher density, the reactivity with cooling water and molten metal used as a heat medium is low and the shielding effect is high, so that a long-life tubular body can be provided.

また、被覆管の表面にさらにCVD−SiC層を積層した場合には、CVR−SiC層とその表面上のCVD−SiC層との界面が同材質であるため熱膨張もほぼ同じであり、接着力も強いため、層間剥離が起こりにくいSiC層が得られるといった利点もある。
本発明のSiC層の厚みは、10〜500μmが好ましく、20〜100μmが更に好ましい。この範囲で本発明の効果が十分に奏されるが、10μm未満であると、摩耗により炭素質層が露出する傾向があり、500μmを超えると、繊維強化炭素質基材の炭素質が少なくなる場合がある。
本発明のSiC層の上にさらにCVD−SiC層をコーティングした場合その厚さは、2〜300μmが好ましく、10〜100μmが更に好ましい。2μm未満の場合には、CVD−SiC層の薄い部分が発生し易く、十分な遮蔽効果を得ることが出来ない場合があり、300μmを超える場合には、成膜の厚さムラによる寸法誤差が大きくなる上に、SiCは硬いために修正加工することも困難な傾向にある。
骨材を構成するセラミック繊維素材としては、SiC、炭素、ZrC等が挙げられるが、中でもSiCや、特に超高温ガス炉用途においてはZrCが好ましい。これらは、冷却材との反応が起こりにくい上に、耐熱性も備えているからである。
セラミック繊維の太さは、特に限定されないが、直径10〜20μmの太さのセラミック繊維を好適に利用できる。ストランドは繊維100〜1000本から構成されているものを好適に利用できる。
本発明の管状体の繊維強化炭素質基材を構成する骨材は、管状に形成されていれば特にその構成に制限はないが、セラミック繊維のストランドを用いてワインディングで形成したり、組紐中空のメッシュ体に編んで形成されるものが好ましい。組紐の場合は、セラミック繊維からなるストランドを、中芯型の中心軸に対して斜めに配向するように織り合せて形成されたり、さらに中心軸に平行なストランドを用いた3軸織りで形成される。
尚、本発明の管状体を形成するワインディング法には、フィラメントを巻き付けるフィラメントワインディング法の他、織布等のシートを巻き付けるシートワインディング法等がある。
In addition, when a CVD-SiC layer is further laminated on the surface of the cladding tube, the interface between the CVR-SiC layer and the CVD-SiC layer on the surface is the same material, so the thermal expansion is almost the same, and adhesion Since the force is strong, there is also an advantage that an SiC layer that hardly causes delamination can be obtained.
10-500 micrometers is preferable and, as for the thickness of the SiC layer of this invention, 20-100 micrometers is still more preferable. In this range, the effect of the present invention is sufficiently exerted, but if it is less than 10 μm, the carbonaceous layer tends to be exposed due to abrasion, and if it exceeds 500 μm, the carbon quality of the fiber-reinforced carbonaceous substrate decreases. There is a case.
When a CVD-SiC layer is further coated on the SiC layer of the present invention, the thickness is preferably 2 to 300 μm, more preferably 10 to 100 μm. If the thickness is less than 2 μm, a thin portion of the CVD-SiC layer is likely to occur, and a sufficient shielding effect may not be obtained. If the thickness exceeds 300 μm, a dimensional error due to film thickness unevenness may occur. Moreover, since SiC is hard, it tends to be difficult to correct and process.
Examples of the ceramic fiber material constituting the aggregate include SiC, carbon, ZrC, and the like. Among them, SiC, and particularly ZrC is preferable for use in an ultrahigh temperature gas furnace. This is because the reaction with the coolant hardly occurs and the heat resistance is also provided.
The thickness of the ceramic fiber is not particularly limited, but a ceramic fiber having a diameter of 10 to 20 μm can be suitably used. A strand composed of 100 to 1000 fibers can be suitably used.
The aggregate constituting the fiber-reinforced carbonaceous substrate of the tubular body of the present invention is not particularly limited as long as it is formed in a tubular shape, but it can be formed by winding using a strand of ceramic fibers or a braided hollow What is formed by knitting the mesh body is preferable. In the case of braid, it is formed by weaving strands made of ceramic fibers so that they are oriented obliquely with respect to the central axis of the core type, or by triaxial weaving using strands parallel to the central axis The
The winding method for forming the tubular body of the present invention includes a sheet winding method for winding a sheet such as a woven fabric in addition to a filament winding method for winding a filament.

次に本発明の管状体の製造方法を説明する(図2参照)。
(1)骨材形成工程
本発明の管状体の骨材はセラミック繊維をフィラメントワインディング、組紐等の方法で所定の太さの中芯型に巻き付けることによって得ることができる。
組紐状では、特に縦糸と互いに反対方向に周回する2組の横糸からなる3軸織りで骨材を構成することが望ましい。3軸織りの場合には2組の横糸に縦糸が筋交いとして加わることにより、より剛性が高く、個々の繊維にかかる張力を押さえた管状体を提供することができる。
セラミック繊維はどのようなものであっても構わないが、例えばSiC繊維として、日本カーボン製ハイニカロン等を利用することができる。
中芯型の材質は、特に限定されないが、後のCVD工程等において反応しないよう黒鉛製の中芯型を用いることが好ましい。
骨材の離型を行い易くするために、中芯型に離型剤を塗布しておくと良い。離型剤の種類は特に限定されないが、CVD後に離型しやすく、不純物の混入の恐れのない黒鉛粉末や、黒鉛粉末をベースとしたものが望ましい。
Next, the manufacturing method of the tubular body of this invention is demonstrated (refer FIG. 2).
(1) Aggregate forming step The aggregate of the tubular body of the present invention can be obtained by winding ceramic fibers around a core type having a predetermined thickness by a method such as filament winding or braid.
In the braided form, it is desirable that the aggregate is composed of a triaxial weave composed of two sets of wefts that circulate in the opposite direction to the warp. In the case of triaxial weaving, a warp is added to the two sets of wefts as a brace, thereby providing a tubular body with higher rigidity and reduced tension on individual fibers.
Any ceramic fiber may be used. For example, Nippon Carbon Hynicalon can be used as the SiC fiber.
The material of the core type is not particularly limited, but it is preferable to use a graphite core type so as not to react in the subsequent CVD process or the like.
In order to facilitate the release of the aggregate, it is preferable to apply a release agent to the middle core. The type of the release agent is not particularly limited, but a graphite powder that is easy to release after CVD and that is free from the mixing of impurities, or a powder based on graphite powder is desirable.

(2)炭素質形成工程
炭素質の形成方法は、CVIによる熱分解炭素や、炭素前駆体となる樹脂溶液の含浸を繰り返し焼成したガラス状炭素等があげられる。中でも、CVI(CVD)による熱分解炭素は、原料ガスを高純度にすることにより、高純度の炭素質が得られやすい上、連続的に原料ガスを供給し1回の処理で炭素質が得られるため、特に望ましい。
尚、CVI(CVD)は、炭化水素ガスを原材料、水素をキャリアガスとし、CVI(CVD)炉で真空度1〜30kPa、1200〜1900℃程度で処理することで得られる。
また、次工程のSiC層で、十分な厚さのSiC層を形成するために、骨材の繊維間に炭素質が充填されてからも引き続き処理を続け、繊維強化炭素質基材表面に熱分解炭素のみからなる厚い炭素質層を成長させても構わない。骨材の繊維間に炭素質が充填された段階でCVI(CVD)処理を停止した場合には、繊維強化炭素質基材表面には多くても100μm程度の熱分解炭素のみからなる炭素質層が形成されるのみであるが、引き続き処理を進めることにより、十分な厚さのSiC層を得るために必要な熱分解炭素のみからなる炭素質層を得ることができる。
尚、炭素質形成工程において、十分な厚さのSiC層を得るために必要な熱分解炭素のみからなる炭素質層を形成しない場合には、(図3)のように、繊維強化炭素質基材内部の炭素質にケイ素原子が拡散した管状体も得ることができる。
(3)SiC層形成工程
上記までに作られた中間製品を大気圧、1200〜2300℃の反応炉を用いて、熱分解炭素表面をSiOガス中で以下の反応(CVR)を行うことで反応転化SiCからなるCVR−SiC層を得ることができる。
2C+SiO→SiC+CO↑
SiC層は、前記繊維強化炭素質基材の外表面だけでなく、内表面にも形成しても構わない。
SiC層を両側に形成する場合は、管状の骨材をそのままCVD炉で熱分解炭素をCVI(CVD)処理し、引き続き反応炉でSiC化処理し、外表面及び内表面を反応転化しSiC化することによって得ることができる。また管状の骨材に中芯型を挿入しCVD炉で熱分解炭素をCVI(CVD)処理し、繊維強化炭素質基材を得た後、中芯型を抜き、外表面及び内表面を反応炉で反応転化しSiC化することによって得ることもできる。
また、本発明では、外表面をCVR−SiC層とした管状体を得るまでに、(1)骨材形成工程、(2)炭素質形成工程、(3)SiC層形成工程の3工程で得られることができ、特許文献1の発明に比べて大幅に工程を簡略化することができる。
(2) Carbonaceous forming step Examples of the carbonaceous forming method include pyrolytic carbon by CVI and glassy carbon obtained by repeatedly impregnating a resin solution serving as a carbon precursor. Among them, pyrolytic carbon by CVI (CVD) is easy to obtain high-purity carbonaceous material by making the raw material gas highly pure, and carbonaceous material can be obtained by supplying the raw material gas continuously and in one treatment. Is particularly desirable.
CVI (CVD) can be obtained by using hydrocarbon gas as a raw material and hydrogen as a carrier gas, and processing in a CVI (CVD) furnace at a vacuum degree of 1 to 30 kPa and about 1200 to 1900 ° C.
In addition, in order to form a sufficiently thick SiC layer in the SiC layer of the next step, the treatment is continued even after the carbonaceous material is filled between the aggregate fibers, and the surface of the fiber reinforced carbonaceous substrate is heated. A thick carbonaceous layer made only of cracked carbon may be grown. When the CVI (CVD) process is stopped at the stage where the carbonaceous material is filled between the aggregate fibers, the surface of the fiber-reinforced carbonaceous substrate is a carbonaceous layer made of only pyrolytic carbon of about 100 μm at most. However, by continuing the processing, it is possible to obtain a carbonaceous layer made of only pyrolytic carbon necessary for obtaining a sufficiently thick SiC layer.
In the carbonaceous formation step, when a carbonaceous layer composed only of pyrolytic carbon necessary for obtaining a SiC layer having a sufficient thickness is not formed, as shown in FIG. A tubular body in which silicon atoms are diffused into the carbonaceous material inside the material can also be obtained.
(3) SiC layer formation process The intermediate product made up to the above is reacted by performing the following reaction (CVR) on the pyrolytic carbon surface in SiO gas using a reactor at atmospheric pressure and 1200 to 2300 ° C. A CVR-SiC layer made of converted SiC can be obtained.
2C + SiO → SiC + CO ↑
The SiC layer may be formed not only on the outer surface of the fiber-reinforced carbonaceous substrate but also on the inner surface.
When forming SiC layers on both sides, the tubular aggregate is directly subjected to CVI (CVD) treatment of pyrolytic carbon in a CVD furnace, followed by SiC conversion in a reaction furnace, and the outer surface and inner surface are converted into SiC by reaction conversion. Can be obtained. In addition, the core type is inserted into the tubular aggregate and pyrolytic carbon is CVI (CVD) processed in a CVD furnace to obtain a fiber-reinforced carbonaceous substrate. Then, the core type is removed and the outer surface and inner surface are reacted. It can also be obtained by reaction conversion and conversion to SiC in a furnace.
Moreover, in this invention, it obtains in three processes, (1) aggregate formation process, (2) carbonaceous formation process, and (3) SiC layer formation process, until it obtains the tubular body which used the outer surface as the CVR-SiC layer. As compared with the invention of Patent Document 1, the process can be greatly simplified.

尚、さらにCVR−SiC層の気密性を高めるために、この上にSiC―CVD層を堆積しても良い。原料ガスとしてはメチルトリクロロシラン(MTS:CHClSi)等を使用し、CVD炉で真空度5〜30kPa、1000〜1400℃で堆積することによって得られる。 In order to further improve the airtightness of the CVR-SiC layer, a SiC-CVD layer may be deposited thereon. As a source gas, methyltrichlorosilane (MTS: CH 3 Cl 3 Si) or the like is used, and it is obtained by depositing at a vacuum degree of 5 to 30 kPa and 1000 to 1400 ° C. in a CVD furnace.

以下に、実施例によって本発明に係る管状体のより具体的な構成およびその製造方法の一例を示す。なお、本発明は、これらの製造方法には限定されず、本発明に係る管状体が得られるのであれば、どのような方法を用いて製造してもよい。 Below, an example shows a more concrete structure of the tubular body concerning the present invention, and an example of the manufacturing method. In addition, this invention is not limited to these manufacturing methods, As long as the tubular body which concerns on this invention is obtained, you may manufacture using what kind of method.

(1)骨材形成工程
まず、3軸織りの組紐を形成するための棒状の中芯型を用意する。中芯型の材質は、CVD工程等において反応しないよう黒鉛製の中芯型を用いる。
中芯型の太さ(直径)は核燃料の大きさ(直径8〜11mm)程度である。
(1) Aggregate forming step First, a rod-shaped core type for forming a triaxial weave braid is prepared. The core core material is a graphite core core so as not to react in the CVD process or the like.
The thickness (diameter) of the core type is about the size of nuclear fuel (diameter 8 to 11 mm).

複数本のSiC繊維を束ねてリボン状のストランドを形成し、3次元ブレイディング法により成形型の外周に沿ってストランドを織り合わせて、組紐を形成する。ストランドの製織には、市販の自動織機(例えば、豊和工業社製、TWM−32C、TRI−AX)を利用する。
なお、ここで使用するSiC繊維は高純度のものを使用することが望ましい。
A plurality of SiC fibers are bundled to form a ribbon-like strand, and the strand is woven along the outer periphery of the mold by a three-dimensional braiding method to form a braid. For the weaving of the strand, a commercially available automatic loom (for example, TWM-32C, TRI-AX, manufactured by Toyoka Industries, Ltd.) is used.
In addition, as for the SiC fiber used here, it is desirable to use a high purity thing.

(2)炭素質形成工程
前記工程で得られた骨材を、熱分解炭素のCVD炉に入れ、熱分解炭素をSiC繊維間に堆積させる。そのときの条件は、プロパンを原料ガスに、水素をキャリアガスとして1700℃程度、1時間程度で繊維間に熱分解炭素を堆積させて厚み1mmで、炭素質が20質量%の繊維強化炭素質基材を得る。
(2) Carbonaceous formation process The aggregate obtained in the above process is put into a CVD furnace for pyrolytic carbon, and pyrolytic carbon is deposited between SiC fibers. The conditions at that time were as follows: fiber reinforced carbonaceous material having a thickness of 1 mm and carbonaceous content of 20% by mass by depositing pyrolytic carbon between fibers in about 1700 ° C. for about 1 hour using propane as a source gas and hydrogen as a carrier gas A substrate is obtained.

(3)SiC層形成工程
前記工程で得られた繊維強化炭素質基材表面を、反応炉によりSiOガスでSiCに反応転化する。尚、SiOガスは、炉内に設置されたSiC粉末とSiO粉末を混合した発生源から発生させ、反応温度は1900℃、圧力は大気圧、反応時間は1時間、アルゴン雰囲気下で好適に転化することができる。CVR−SiC層の厚みは10μmである。
(3) SiC layer forming step The fiber-reinforced carbonaceous substrate surface obtained in the above step is reactively converted to SiC with SiO gas in a reaction furnace. In addition, SiO gas is generated from a generation source in which SiC powder and SiO 2 powder installed in the furnace are mixed, and the reaction temperature is 1900 ° C., the pressure is atmospheric pressure, the reaction time is 1 hour, and preferably in an argon atmosphere. Can be converted. The thickness of the CVR-SiC layer is 10 μm.

(4)CVD−SiC堆積工程
前記工程までで本発明の管状体は作ることができるが、より気密性を高めるため、反応転化したSiC表面にさらにCVD−SiC層を堆積する。CVD炉に前記中間製品を入れ、メチルトリクロロシランガスを用い、1350℃で成膜する。CVD−SiC層の厚みは20μmである。
以上の方法により、本発明の管状体を得ることができる。この管状体を核燃料被覆管に用いる例を図1に示す。
(4) CVD-SiC Deposition Step Although the tubular body of the present invention can be made up to the foregoing step, a CVD-SiC layer is further deposited on the reaction-converted SiC surface in order to further improve the airtightness. The intermediate product is put in a CVD furnace, and a film is formed at 1350 ° C. using methyltrichlorosilane gas. The thickness of the CVD-SiC layer is 20 μm.
The tubular body of the present invention can be obtained by the above method. An example in which this tubular body is used for a nuclear fuel cladding tube is shown in FIG.

2 核燃料
3 セラミックス繊維
4 炭素質
6 繊維強化炭素質基材
7 境界領域
8 SiC層
2 Nuclear fuel 3 Ceramic fiber 4 Carbonaceous 6 Fiber-reinforced carbonaceous substrate 7 Boundary region 8 SiC layer

Claims (8)

ワインディング法あるいは組紐法で形成されたSiC繊維からなる骨材と該SiC繊維間に気相成長法により充填された熱分解炭素とからなる管状の繊維強化炭素質基材と、
該繊維強化炭素質基材の少なくとも外表面に形成されたSiC層と、
からなる核燃料被覆管であって、
該SiC層は、
該繊維強化炭素質基材表面の熱分解炭素をSiOガスにより反応転化し形成されたCVR−SiC層と、
該CVR−SiC層上に形成されたCVD−SiC層と、
からなり、
該核燃料被覆管は、該繊維強化炭素質基材の該SiC層との境界領域から該繊維強化炭素質基材の内部に向かってケイ素原子が拡散してなることを特徴とする核燃料被覆管。
A tubular fiber-reinforced carbonaceous base material composed of an aggregate made of SiC fiber formed by a winding method or braided string method, and pyrolytic carbon filled between the SiC fibers by a vapor phase growth method ;
A SiC layer formed on at least the outer surface of the fiber-reinforced carbonaceous substrate;
A nuclear fuel cladding tube comprising:
The SiC layer is
A CVR-SiC layer formed by reaction conversion of pyrolytic carbon on the surface of the fiber-reinforced carbonaceous substrate with SiO gas ;
A CVD-SiC layer formed on the CVR-SiC layer;
Consists of
The nuclear fuel cladding tube, wherein the nuclear fuel cladding tube is formed by diffusing silicon atoms from a boundary region of the fiber reinforced carbonaceous substrate with the SiC layer toward the inside of the fiber reinforced carbonaceous substrate.
前記核燃料被覆管は、前記SiC層の下に熱分解炭素のみからなる層を有することを特徴とする請求項1に記載の核燃料被覆管。 The nuclear fuel cladding tube according to claim 1, wherein the nuclear fuel cladding tube has a layer made of only pyrolytic carbon under the SiC layer. 前記核燃料被覆管は、前記繊維強化炭素質基材内部の熱分解炭素にケイ素原子が拡散していることを特徴とする請求項1に記載の核燃料被覆管。 The nuclear fuel cladding tube according to claim 1, wherein the nuclear fuel cladding tube has silicon atoms diffused into pyrolytic carbon inside the fiber reinforced carbonaceous substrate. 前記ワインディング法は、フィラメントワインディング法またはシートワインディング法であることを特徴とする請求項1〜3のいずれか一項に記載の核燃料被覆管。   The nuclear fuel cladding tube according to any one of claims 1 to 3, wherein the winding method is a filament winding method or a sheet winding method. 高温ガス炉用の核燃料被覆管として用いられることを特徴とする請求項1〜4のいずれか1項に記載の核燃料被覆管。   The nuclear fuel cladding tube according to any one of claims 1 to 4, wherein the nuclear fuel cladding tube is used as a nuclear fuel cladding tube for a HTGR. ワインディング法あるいは組紐法でSiC繊維からなる骨材を形成し、
該SiC繊維間に熱分解炭素を気相成長させ管状の繊維強化炭素質基材を得た後、
該繊維強化炭素質基材の表面の熱分解炭素をSiOガスでSiCに反応転化させCVR−SiC層を形成させることにより、該繊維強化炭素質基材の該CVR−SiCとの境界領域から該繊維強化炭素質基材の内部に向かってケイ素原子を拡散させ、
更に、CVD法で前記CVR−SiC層の表面にCVD−SiCを堆積させることを特徴とする核燃料被覆管の製造方法。
Form an aggregate made of SiC fiber by the winding method or braid method,
After vapor growth of pyrolytic carbon between the SiC fibers to obtain a tubular fiber-reinforced carbonaceous substrate,
The CVR-SiC layer is formed by reaction conversion of pyrolytic carbon on the surface of the fiber reinforced carbonaceous substrate to SiC with SiO gas to form the CVR-SiC boundary region of the fiber reinforced carbonaceous substrate. Diffusion of silicon atoms toward the inside of the fiber reinforced carbonaceous substrate,
Furthermore, CVD-SiC is deposited on the surface of the CVR-SiC layer by a CVD method.
前記SiC繊維からなる骨材は、あらかじめ、黒鉛粉末を表面に塗布した黒鉛製の中芯型に巻き付けられ、CVD後に離型することを特徴とする請求項6に記載の核燃料被覆管の製造方法。 The method for producing a nuclear fuel cladding tube according to claim 6, wherein the aggregate made of SiC fibers is wound around a graphite core mold having graphite powder coated on the surface in advance, and is released after CVD. . 前記ワインディング法は、フィラメントワインディング法またはシートワインディング法であることを特徴とする請求項6または請求項7に記載の核燃料被覆管の製造方法。   The method of manufacturing a nuclear fuel cladding tube according to claim 6 or 7, wherein the winding method is a filament winding method or a sheet winding method.
JP2013093201A 2013-04-26 2013-04-26 Nuclear fuel cladding tube and manufacturing method thereof Active JP5696174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093201A JP5696174B2 (en) 2013-04-26 2013-04-26 Nuclear fuel cladding tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093201A JP5696174B2 (en) 2013-04-26 2013-04-26 Nuclear fuel cladding tube and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008050324A Division JP2009210266A (en) 2008-02-29 2008-02-29 Tubular body

Publications (2)

Publication Number Publication Date
JP2013210372A JP2013210372A (en) 2013-10-10
JP5696174B2 true JP5696174B2 (en) 2015-04-08

Family

ID=49528311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093201A Active JP5696174B2 (en) 2013-04-26 2013-04-26 Nuclear fuel cladding tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5696174B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3744877A3 (en) 2012-01-20 2021-02-17 Free Form Fibers, LLC High strength ceramic fibers and methods of fabrication thereof
WO2015200257A1 (en) 2014-06-23 2015-12-30 Free Form Fibers, Llc An additive manufacturing technology for the fabrication and characterization of nuclear reactor fuel
JP6490915B2 (en) * 2014-07-09 2019-03-27 イビデン株式会社 Tubular body and manufacturing method thereof
JP6352711B2 (en) * 2014-07-22 2018-07-04 株式会社東芝 Channel box and channel box manufacturing method
JP6460808B2 (en) * 2015-01-23 2019-01-30 イビデン株式会社 Tubular body
EP3497703A4 (en) * 2016-08-08 2020-05-27 General Atomics Engineered sic-sic composite and monolithic sic layered structures
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
US11362256B2 (en) 2017-06-27 2022-06-14 Free Form Fibers, Llc Functional high-performance fiber structure
US10515728B2 (en) * 2017-09-18 2019-12-24 Westinghouse Electric Company Llc High temperature ceramic nuclear fuel system for light water reactors and lead fast reactors
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519748B2 (en) * 1992-09-30 2004-04-19 イビデン株式会社 Heat insulation
JPH08217576A (en) * 1995-02-20 1996-08-27 Hitachi Ltd Heat and oxidation resistant high strength member
JP3958397B2 (en) * 1997-02-17 2007-08-15 東洋炭素株式会社 Method for producing chemical vapor deposition silicon carbide material
JP2002285229A (en) * 2001-03-28 2002-10-03 Ngk Insulators Ltd Carrying roll
US20060039524A1 (en) * 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
EP1951639A4 (en) * 2005-11-23 2009-12-09 Hitco Carbon Composites Inc Refractory composite

Also Published As

Publication number Publication date
JP2013210372A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5696174B2 (en) Nuclear fuel cladding tube and manufacturing method thereof
JP2009210266A (en) Tubular body
Kim et al. Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications
JP3143086B2 (en) SiC composite sleeve and method of manufacturing the same
US9611180B2 (en) Method for manufacturing a part made of CMC
KR101526305B1 (en) Multi-layered metal-ceramic composite nuclear fuel cladding tube
CN110483055B (en) SiC containing codeposition complex phase interfacefPreparation method of/SiC composite material
CN109400169A (en) SiC with SiC coatingfPreparation method of/SiC composite material
JP6490915B2 (en) Tubular body and manufacturing method thereof
JP4700218B2 (en) A crucible made of carbon fiber reinforced carbon composite material for single crystal pulling
JPH11174186A (en) Reactor control rod element
JP6334292B2 (en) Method for manufacturing tubular body
JP2017024923A (en) Ceramic composite material
EP3174063B1 (en) Channel box for a fuel assembly of a boiling water reactor
JP6888949B2 (en) Method for manufacturing SiC fiber reinforced SiC composite material
WO2020039599A1 (en) TUBULAR BODY INCLUDING SiC FIBER
JP6719333B2 (en) Long fiber reinforced silicon carbide member and method for producing the same
Riesch et al. Tungsten-fibre reinforced tungsten composites: A novel concept for improving the toughness of tungsten
CN110526730A (en) A kind of reinforced graphite heating element structure and preparation method thereof
JPH09295889A (en) Seed chuck of apparatus for pulling up semiconductor single crystal
WO2015016071A1 (en) SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL AND PRODUCTION METHOD FOR SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
CN113748096B (en) Method of manufacturing CMC component
JP4170426B2 (en) High temperature member for single crystal pulling apparatus and manufacturing method thereof
JP2017119589A (en) Ceramic composite material and method for producing ceramic composite material
WO2022103297A1 (en) Method for manufacturing a fuel rod cladding tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140820

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5696174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250