JP5695831B2 - Crystallizer - Google Patents

Crystallizer Download PDF

Info

Publication number
JP5695831B2
JP5695831B2 JP2010027150A JP2010027150A JP5695831B2 JP 5695831 B2 JP5695831 B2 JP 5695831B2 JP 2010027150 A JP2010027150 A JP 2010027150A JP 2010027150 A JP2010027150 A JP 2010027150A JP 5695831 B2 JP5695831 B2 JP 5695831B2
Authority
JP
Japan
Prior art keywords
crystal
stirring tank
heating
stirring
truncated cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010027150A
Other languages
Japanese (ja)
Other versions
JP2011161375A (en
Inventor
大嶋 寛
寛 大嶋
幸一 五十嵐
幸一 五十嵐
達弥 森北
達弥 森北
午良 西村
午良 西村
野田 秀夫
秀夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Chemical Engineering Co Ltd
Original Assignee
Kansai Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co Ltd filed Critical Kansai Chemical Engineering Co Ltd
Priority to JP2010027150A priority Critical patent/JP5695831B2/en
Publication of JP2011161375A publication Critical patent/JP2011161375A/en
Application granted granted Critical
Publication of JP5695831B2 publication Critical patent/JP5695831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、晶析装置に関する。さらに詳しくは、内部循環型微結晶溶解機能を有する晶析装置に関する。本発明の晶析装置は、特に冷却晶析および貧溶媒晶析の場合に有効である。   The present invention relates to a crystallizer. More specifically, the present invention relates to a crystallization apparatus having an internal circulation type microcrystal dissolution function. The crystallization apparatus of the present invention is particularly effective in the case of cooling crystallization and poor solvent crystallization.

結晶化の方法として、溶媒を蒸発させ溶質の濃度を上げて結晶化させる方法などが知られている。また、溶液を冷却し、溶解度を下げることによって結晶を成長させる晶析法、溶液と貧溶媒とを混合して溶解度を下げることによって結晶を成長させる晶析法、これらを組み合わせる晶析法などが一般的である。ろ過性を重視する晶析工程においては、通常、微結晶の少ない粒径の揃った大きな結晶が望まれる。   As a crystallization method, a method of crystallization by evaporating a solvent and increasing a concentration of a solute is known. In addition, there are a crystallization method in which a crystal is grown by cooling the solution and lowering the solubility, a crystallization method in which the crystal is grown by mixing the solution and a poor solvent to lower the solubility, and a crystallization method combining these. It is common. In the crystallization process that places importance on filterability, large crystals with a small particle size and a uniform particle size are usually desired.

しかし、溶媒を蒸発させて結晶化させる方法では、結晶化すべき物質の溶液中の濃度が高くなり、撹拌混合が十分でない場合は、特に溶媒の蒸発速度が低下するため徐々にしか結晶化が進まず、得られる結晶粒子の粒径の分布もブロードなものになるという問題がある。さらに、長時間溶媒を蒸発させなければならないというコスト面の問題もある。冷却晶析および貧溶媒晶析の場合には、冷却または貧溶媒との混合に伴って微小な結晶が発生し、ろ過が困難になる場合がある。   However, in the method of crystallizing by evaporating the solvent, the concentration of the substance to be crystallized increases in the solution, and when stirring and mixing is not sufficient, the rate of evaporation of the solvent decreases, so the crystallization proceeds only gradually. First, there is a problem that the particle size distribution of the obtained crystal particles becomes broad. Further, there is a cost problem that the solvent must be evaporated for a long time. In the case of cooling crystallization and poor solvent crystallization, fine crystals may be generated with cooling or mixing with a poor solvent, which may make filtration difficult.

このような問題を解消するために、特許文献1には、冷却晶析または貧溶媒晶析を行う場合に、撹拌槽の壁に加熱手段を設け、液体噴出装置を用いて、微結晶を含む液体、スラリーなどを撹拌槽の内壁に散布して微結晶を溶解する晶析装置が記載されている。   In order to solve such a problem, in Patent Document 1, when cooling crystallization or poor solvent crystallization is performed, a heating unit is provided on the wall of the stirring tank, and a liquid ejection device is used to include microcrystals. A crystallization apparatus is disclosed in which a liquid, slurry, or the like is sprayed on the inner wall of a stirring tank to dissolve microcrystals.

しかし、特許文献1に記載の晶析装置は、スラリーを撹拌槽の内壁に散布するため、例えば、粘度の低い液体、スラリーなどが、撹拌槽の内壁からすぐに流れ落ち、十分に微結晶を溶解できない場合がある。また、結晶を含む液を内壁に散布するため、飛散した結晶が内壁面に付着して残る場合がある。さらに、微小な結晶を溶解するために撹拌槽の外壁に加熱ジャケットなどを設置する必要があり、既設の晶析装置では設置が困難である。   However, since the crystallizer described in Patent Document 1 spreads the slurry on the inner wall of the stirring tank, for example, a low-viscosity liquid, slurry or the like immediately flows down from the inner wall of the stirring tank and sufficiently dissolves the microcrystals. There are cases where it is not possible. Further, since the liquid containing the crystal is sprayed on the inner wall, the scattered crystal may remain attached to the inner wall surface. Furthermore, it is necessary to install a heating jacket or the like on the outer wall of the stirring tank in order to dissolve minute crystals, which is difficult to install with an existing crystallizer.

国際公開第2001/14037号International Publication No. 2001/14037

本発明の目的は、微結晶を含む液体、スラリーなどを撹拌槽の内壁に散布することなく微結晶を溶解することができ、粒径の揃った大きな結晶が得られる晶析装置を提供することにある。   An object of the present invention is to provide a crystallizer capable of dissolving microcrystals without spraying liquid, slurry or the like containing microcrystals on the inner wall of a stirring tank, and obtaining large crystals with uniform particle diameters. It is in.

本発明は、撹拌槽と、撹拌軸と、結晶溶解手段と、該結晶溶解手段を加熱するための加熱手段とを備える晶析装置であって、該結晶溶解手段は、該撹拌軸の周りを回転するように備えられており、該結晶溶解手段の回転に伴って、該撹拌槽内の内容物は、該結晶溶解手段に導入されて、該内容物中の微結晶が溶解するように構成されている晶析装置を提供する。   The present invention is a crystallization apparatus comprising a stirring tank, a stirring shaft, a crystal dissolving means, and a heating means for heating the crystal dissolving means, the crystal dissolving means being arranged around the stirring shaft. The contents in the agitation tank are introduced into the crystal dissolution means as the crystal dissolution means rotates, and the fine crystals in the contents are dissolved. A crystallizer is provided.

1つの実施態様では、上記結晶溶解手段は、中空構造の円錐台形;または中空構造の円錐台部と円筒部とから構成され、該円錐台部の外径の大きい端部と該円筒部の一端とが接続された形状を有し、上記撹拌槽内の内容物は、該円錐台部の外径の小さい端部から該結晶溶解手段に導入される。   In one embodiment, the crystal dissolving means is composed of a hollow truncated cone shape; or a hollow truncated cone portion and a cylindrical portion, and an end portion of the truncated cone portion having a large outer diameter and an end of the cylindrical portion. And the contents in the agitation tank are introduced into the crystal dissolving means from the end portion of the truncated cone portion having a small outer diameter.

ある実施態様では、上記加熱手段は、上記結晶溶解手段の外壁面または内壁面に設けられている。   In one embodiment, the heating means is provided on the outer wall surface or the inner wall surface of the crystal melting means.

別の実施態様では、上記加熱手段は、ケーブル状ヒーター、電磁誘導加熱、蒸気または熱媒である。   In another embodiment, the heating means is a cable heater, electromagnetic induction heating, steam or a heating medium.

本発明によれば、微結晶を含む液体、スラリーなどを撹拌槽の内壁に散布することなく微結晶を溶解することができ、粒径の揃った大きな結晶が得られる晶析装置を提供することができる。   According to the present invention, there is provided a crystallizer capable of dissolving microcrystals without spraying a liquid, slurry, or the like containing microcrystals on the inner wall of a stirring tank, and obtaining large crystals with uniform particle diameters. Can do.

本発明の晶析装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the crystallizer of this invention. 本発明の晶析装置において、撹拌槽に、撹拌軸、結晶溶解手段および結晶溶解手段固定軸を備えた時の一実施態様を示し、(a)は上面断面図を示し、(b)は(a)のA−A’の縦断面図を示し、そして(c)は(a)のB−B’の縦断面図を示す。In the crystallization apparatus of the present invention, one embodiment is shown in which a stirring tank is provided with a stirring shaft, a crystal dissolution means, and a crystal dissolution means fixed shaft, (a) shows a top sectional view, (b) shows ( a) AA ′ longitudinal sectional view, and (c) a BB ′ longitudinal sectional view of (a). 本発明の晶析装置を用いて得られたグリシン結晶の累積重量分布を示すグラフである。It is a graph which shows the cumulative weight distribution of the glycine crystal obtained using the crystallizer of this invention.

本発明の晶析装置を、添付の図面を参照して説明する。   The crystallization apparatus of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の晶析装置の一実施態様を示す概略図である。図1の晶析装置1は、撹拌槽2、撹拌軸3、結晶溶解手段4、および結晶溶解手段を加熱するための加熱手段(以下、単に加熱手段と記載する場合がある)6を備える。本発明の晶析装置は、貧溶媒晶析に用いられる場合は、溶液と貧溶媒とを混合する装置をさらに備える。   FIG. 1 is a schematic view showing an embodiment of the crystallization apparatus of the present invention. The crystallization apparatus 1 of FIG. 1 includes a stirring tank 2, a stirring shaft 3, a crystal dissolving means 4, and a heating means (hereinafter sometimes simply referred to as a heating means) 6 for heating the crystal dissolving means. The crystallization apparatus of the present invention further includes an apparatus for mixing a solution and a poor solvent when used for poor solvent crystallization.

撹拌槽2は、液体、スラリーなどの撹拌に使用できる槽であれば、材質、形状など特に限定されない。撹拌槽2の大きさ(容量)は、結晶化させる物質、量などによって適宜設定され得る。   The stirring tank 2 is not particularly limited in terms of material and shape as long as it can be used for stirring liquid, slurry and the like. The size (capacity) of the stirring tank 2 can be appropriately set depending on the substance to be crystallized, the amount, and the like.

撹拌槽2は、好ましくはその外壁面に冷却手段が設けられる。冷却手段としては、例えば、図1に示すような水冷式の冷却手段などが挙げられる。   The stirring tank 2 is preferably provided with a cooling means on its outer wall surface. Examples of the cooling means include a water cooling type cooling means as shown in FIG.

撹拌軸3は、通常、少なくとも1つの撹拌翼を備え、撹拌槽2内の内容物を撹拌し得るように構成されている。撹拌翼は、撹拌槽2内の内容物を撹拌し得る大きさ、形状などであれば、特に限定されない。撹拌軸3は、撹拌翼と結晶溶解手段4とを独立して駆動し得るように二軸構造にすることが好ましい。   The agitation shaft 3 is usually provided with at least one agitation blade and configured to agitate the contents in the agitation tank 2. The stirring blade is not particularly limited as long as it has a size and shape that can stir the contents in the stirring tank 2. The stirring shaft 3 preferably has a biaxial structure so that the stirring blade and the crystal dissolution means 4 can be driven independently.

撹拌軸3の一端は、撹拌槽2の上部でモーターなどの回転手段に接続されている。撹拌軸3の他端は、撹拌槽2の底部に接続されていないが、撹拌槽2の底部付近に位置している。上記撹拌翼は、好ましくは撹拌軸3の他端付近に備えられる。   One end of the stirring shaft 3 is connected to a rotating means such as a motor in the upper part of the stirring tank 2. The other end of the stirring shaft 3 is not connected to the bottom of the stirring tank 2, but is positioned near the bottom of the stirring tank 2. The stirring blade is preferably provided near the other end of the stirring shaft 3.

撹拌軸3の長さおよび外径は、特に限定されず、撹拌槽2の大きさ、形状などによって適宜設定され得る。   The length and outer diameter of the stirring shaft 3 are not particularly limited, and can be appropriately set depending on the size and shape of the stirring tank 2.

結晶溶解手段4は、撹拌槽2内の内容物に含まれる微結晶を溶解する。なお、本明細書において「微結晶」とは、粒径に分布を持って生成する結晶のうちの小さな粒径画分をいい、その粒径は結晶化させる物質の特性による。   The crystal dissolving means 4 dissolves microcrystals contained in the contents in the stirring tank 2. In the present specification, “microcrystal” refers to a small particle size fraction of crystals generated with a distribution in particle size, and the particle size depends on the characteristics of the substance to be crystallized.

結晶溶解手段4は、撹拌槽2の内部において、撹拌軸3の周りを回転するように備えられている。例えば、図1に示すように、結晶溶解手段4は、撹拌軸3を覆うように設けられた結晶溶解手段固定軸5に固定されており、撹拌軸3と結晶溶解手段固定軸5とは独立して回転するように構成されている。   The crystal dissolving means 4 is provided inside the stirring tank 2 so as to rotate around the stirring shaft 3. For example, as shown in FIG. 1, the crystal dissolving means 4 is fixed to a crystal dissolving means fixing shaft 5 provided so as to cover the stirring shaft 3, and the stirring shaft 3 and the crystal dissolving means fixed shaft 5 are independent. And is configured to rotate.

結晶溶解手段4の大きさは、撹拌槽2の内部に入る大きさであれば特に限定されず、撹拌槽2の大きさによって、適宜設定され得る。   The size of the crystal dissolution means 4 is not particularly limited as long as it is a size that can enter the inside of the stirring tank 2, and can be appropriately set depending on the size of the stirring tank 2.

結晶溶解手段4は、加熱によって微結晶を溶解するため、金属製(例えば、アルミニウム、ステンレス、ハステロイなど)であることが好ましい。耐薬品性の点から、ステンレス製であることがより好ましい。   The crystal dissolution means 4 is preferably made of metal (for example, aluminum, stainless steel, Hastelloy, etc.) in order to dissolve the microcrystals by heating. From the viewpoint of chemical resistance, it is more preferably made of stainless steel.

結晶溶解手段4は、結晶溶解手段固定軸5を回転させることによって回転し、回転力を利用して撹拌槽2内の内容物を汲み上げる。結晶溶解手段4に汲み上げられて、結晶溶解手段4に導入された撹拌槽2内の内容物は加熱されて、内容物に含まれる微結晶が溶解される。   The crystal dissolution means 4 rotates by rotating the crystal dissolution means fixed shaft 5 and pumps up the contents in the agitation tank 2 using the rotational force. The contents in the agitation tank 2 pumped up by the crystal dissolving means 4 and introduced into the crystal dissolving means 4 are heated to dissolve the microcrystals contained in the contents.

結晶溶解手段4は、撹拌槽2内の内容物が、結晶溶解手段4に導入されて滞留し、内容物中の微結晶が溶解するように構成されていれば、特に限定されない。例えば、結晶溶解手段4の内部に撹拌翼を設けたり、結晶溶解手段4の内壁を螺旋状に加工したりすることによって、結晶溶解手段4が回転すると揚水力が得られ、撹拌槽2内の内容物が結晶溶解手段4に汲み上げられる。   The crystal dissolution means 4 is not particularly limited as long as the content in the stirring tank 2 is introduced and stays in the crystal dissolution means 4 and the fine crystals in the content are dissolved. For example, by providing a stirring blade inside the crystal dissolving means 4 or processing the inner wall of the crystal dissolving means 4 in a spiral shape, when the crystal dissolving means 4 rotates, a pumping force is obtained, and the inside of the stirring tank 2 The contents are pumped up to the crystal dissolution means 4.

結晶溶解手段4に撹拌槽内2内の内容物を導入し滞留させるために、結晶溶解手段4の回転数(すなわち、結晶溶解手段固定軸5の回転数)は、内容物の粘度、撹拌槽2の大きさなどによって異なる。すなわち、結晶溶解手段4に撹拌槽内2内の内容物を導入するために遠心力を利用するので、撹拌槽2が小さい場合は回転数を速くする必要があり、撹拌槽2が大きい場合は回転数を遅くしてもよい。回転数は、通常50rpm〜500rpmが好ましく、60rpm〜400rpmがより好ましい。   In order to introduce and retain the contents in the stirring tank 2 in the crystal dissolution means 4, the rotation speed of the crystal dissolution means 4 (that is, the rotation speed of the crystal dissolution means fixed shaft 5) is the viscosity of the contents, the stirring tank. It depends on the size of 2. That is, since centrifugal force is used to introduce the contents in the stirring tank 2 into the crystal dissolution means 4, it is necessary to increase the rotational speed when the stirring tank 2 is small, and when the stirring tank 2 is large. The rotational speed may be slowed down. The rotation speed is usually preferably 50 rpm to 500 rpm, more preferably 60 rpm to 400 rpm.

結晶溶解手段4は、例えば、図1に示すように、中空構造の円錐台部41と円筒部42とから構成され、円錐台部41の外径の大きい端部と円筒部42の一端とが接続されている形状が好ましい。このような形状によって、撹拌槽内2内の内容物が円錐台部41の外径の小さい端部から結晶溶解手段4に導入される。結晶溶解手段4に導入された内容物は滞留し、微結晶が容易に溶解され得る。微結晶が溶解した内容物は、円筒部42の上部(すなわち、円錐台部41との接続部と反対の端部)から撹拌槽2に戻る。また、撹拌槽2の大きさ、内容物の粘度などによって、結晶溶解手段4は、円錐台部41のみの形状(円錐台形)でもよい。   For example, as shown in FIG. 1, the crystal dissolution means 4 includes a truncated cone part 41 and a cylindrical part 42 having a hollow structure, and an end part having a large outer diameter of the truncated cone part 41 and one end of the cylindrical part 42 are formed. A connected shape is preferred. With such a shape, the contents in the stirring tank 2 are introduced into the crystal dissolution means 4 from the end of the truncated cone part 41 having a small outer diameter. The content introduced into the crystal dissolving means 4 stays and the microcrystals can be easily dissolved. The content in which the microcrystals are dissolved returns to the stirring tank 2 from the upper part of the cylindrical part 42 (that is, the end opposite to the connection part with the truncated cone part 41). Further, depending on the size of the stirring tank 2 and the viscosity of the contents, the crystal dissolving means 4 may have a shape of only the truncated cone part 41 (conical trapezoidal shape).

加熱手段6は、結晶溶解手段4を加熱するために用いられる。加熱手段6は特に限定されず、例えば、結晶溶解手段4の外壁面に設けられるケーブル状ヒーター、回転軸3(または結晶溶解手段固定軸5)から蒸気(水蒸気など)、熱媒(熱媒油、温水など)などを結晶溶解手段4に供給する手段(図2を参照のこと)、撹拌槽2の外部から電磁誘導によって結晶溶解手段4を発熱させる手段などが挙げられる。   The heating means 6 is used for heating the crystal melting means 4. The heating means 6 is not particularly limited. For example, a cable heater provided on the outer wall surface of the crystal melting means 4, steam (such as water vapor) from the rotating shaft 3 (or the crystal melting means fixed shaft 5), a heat medium (heat medium oil) , Warm water, etc.) to the crystal dissolution means 4 (see FIG. 2), means for heating the crystal dissolution means 4 by electromagnetic induction from the outside of the stirring tank 2, and the like.

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.

(実施例1)
図1に示すような晶析装置を用いて、グリシンの結晶化を行った。
Example 1
Using a crystallizer as shown in FIG. 1, glycine was crystallized.

容量が3.0Lの撹拌槽に撹拌軸を取り付け、撹拌軸の一端をモーターに固定した。グリシンを250mg/mLの割合で、70℃にて溶解した溶液1.7Lを撹拌槽に投入した。次いで、中空構造のアルミニウム製の円錐台部とアルミニウム製の円筒部とから構成され、円錐台部の外径の大きい端部と円筒部の一端とが接続された形状の結晶溶解手段を、円錐台部の外径の小さい端部がグリシン溶液に浸かるように、結晶溶解手段固定軸に固定した。なお、結晶溶解手段の外壁面には、ケーブル状ヒーターを巻き付けた。   A stirring shaft was attached to a stirring tank having a capacity of 3.0 L, and one end of the stirring shaft was fixed to the motor. 1.7 L of a solution in which glycine was dissolved at a rate of 250 mg / mL at 70 ° C. was put into a stirring tank. Next, a crystal melting means composed of a hollow aluminum truncated cone part and an aluminum cylindrical part, in which the end part having a large outer diameter of the truncated cone part and one end of the cylindrical part are connected, It fixed to the crystal-dissolving means fixed shaft so that the edge part with a small outer diameter of a base part might be immersed in a glycine solution. A cable heater was wound around the outer wall surface of the crystal melting means.

次いで、グリシン溶液を40℃まで冷却した後、過飽和となる25℃まで1時間に10℃の割合で冷却した。撹拌軸を400rpmおよび結晶溶解手段固定軸を400rpmの回転数で回転させ、グリシン溶液を冷却しながら、ケーブル状ヒーターの出力が150Wとなるように制御して結晶溶解手段を加熱した。   Next, after the glycine solution was cooled to 40 ° C., it was cooled to 25 ° C., which became supersaturated, at a rate of 10 ° C. per hour. The crystal dissolution means was heated by controlling the output of the cable heater to 150 W while cooling the glycine solution while rotating the stirring shaft at 400 rpm and the rotation speed of the crystal dissolution means fixing shaft at 400 rpm.

撹拌槽内の溶液の温度が25℃に達してから30分間は、引き続き撹拌軸および結晶溶解手段固定軸の両方を回転させた。その後、結晶溶解手段の加熱および結晶溶解手段固定軸の回転を停止し、撹拌軸のみを回転させて、さらに1時間グリシン溶液を撹拌した。結晶溶解手段の加熱を停止した後、1時間溶液を撹拌するのは、加熱によって溶解したグリシンを、再度、結晶成長させるためである。なお、結晶溶解手段の加熱を停止した後、撹拌を続けることによって結晶が破砕され微結晶が増加する場合には、この撹拌を続ける必要はない。   For 30 minutes after the temperature of the solution in the stirring tank reached 25 ° C., both the stirring shaft and the crystal dissolution means fixing shaft were continuously rotated. Thereafter, heating of the crystal dissolution means and rotation of the crystal dissolution means fixed shaft were stopped, only the stirring shaft was rotated, and the glycine solution was further stirred for 1 hour. The reason why the solution is stirred for 1 hour after stopping the heating of the crystal dissolving means is to allow the glycine dissolved by heating to grow again. In addition, it is not necessary to continue this stirring, when a crystal | crystallization is crushed and a microcrystal increases by continuing stirring after stopping the heating of a crystal dissolution means.

得られたグリシンの結晶を吸引ろ過し、結晶を乾燥してからふるいによって結晶の粒径および粒径分布を計測した。結果を図3に示す。なお、図3中の0Wは、結晶溶解手段を加熱せず、回転もさせなかった結果(対照実験)を示す。   The obtained crystals of glycine were subjected to suction filtration, and after drying the crystals, the particle size and particle size distribution of the crystals were measured by sieving. The results are shown in FIG. Note that 0 W in FIG. 3 indicates the result (control experiment) in which the crystal dissolution means was not heated and rotated.

(実施例2)
ケーブル状ヒーターの出力を210Wにしたこと以外は、実施例1と同様の手順でグリシンの結晶を得、結晶の粒径および粒径分布を計測した。結果を図3に示す。
(Example 2)
A glycine crystal was obtained in the same procedure as in Example 1 except that the output of the cable heater was 210 W, and the crystal grain size and particle size distribution were measured. The results are shown in FIG.

(実施例3)
ケーブル状ヒーターの出力を270Wにしたこと以外は、実施例1と同様の手順でグリシンの結晶を得、結晶の粒径および粒径分布を計測した。結果を図3に示す。
(Example 3)
Except that the output of the cable heater was 270 W, glycine crystals were obtained in the same procedure as in Example 1, and the crystal grain size and particle size distribution were measured. The results are shown in FIG.

図3に示すように、ケーブル状ヒーターの出力が150W、210Wおよび270Wいずれの場合も、微結晶の割合が減少し、大きな結晶の割合が増加していることがわかる。特に、150Wの場合よりも210Wの場合の方が、より微結晶が少ないことが分かる。これは、210Wの方が、結晶溶解手段の温度が高くなり、微結晶が十分に溶解したためと推測される。また、210Wおよび270Wにおいて、粒径分布にほとんど差がないのは、いずれの場合も微結晶が十分に溶解したためと推測される。なお、得られた結晶量は、実施例1〜3のいずれの場合もほぼ等量であった。   As shown in FIG. 3, it can be seen that the ratio of microcrystals decreases and the ratio of large crystals increases when the output of the cable heater is 150 W, 210 W, or 270 W. In particular, it can be seen that there are fewer microcrystals at 210 W than at 150 W. This is presumably because the temperature of the crystal dissolution means was higher at 210 W, and the microcrystals were sufficiently dissolved. In addition, it is assumed that there is almost no difference in particle size distribution between 210 W and 270 W because the crystallites are sufficiently dissolved in either case. The amount of crystals obtained was almost the same in any of Examples 1 to 3.

本発明によれば、微結晶を含む液体、スラリーなどを撹拌槽の内壁に散布することなく微結晶を溶解することができ、粒径の揃った大きな結晶が得られる晶析装置を提供することができる。   According to the present invention, there is provided a crystallizer capable of dissolving microcrystals without spraying a liquid, slurry, or the like containing microcrystals on the inner wall of a stirring tank, and obtaining large crystals with uniform particle diameters. Can do.

1 晶析装置
2 撹拌槽
3 撹拌軸
4 結晶溶解手段
41 中空構造の円錐台部
42 円筒部
5 結晶溶解手段固定軸
6 加熱手段
DESCRIPTION OF SYMBOLS 1 Crystallizer 2 Stirrer tank 3 Stirring shaft 4 Crystal dissolution means 41 Frustum part of hollow structure 42 Cylindrical part 5 Crystal dissolution means fixed shaft 6 Heating means

Claims (4)

撹拌槽と、撹拌軸と、結晶溶解手段と、該結晶溶解手段を加熱するための加熱手段とを備える晶析装置であって、
該結晶溶解手段が、該撹拌槽の内部において、該撹拌軸の周りを独立して回転するように備えられており、
該結晶溶解手段の回転に伴って、該撹拌槽内の内容物が、該結晶溶解手段に導入されて滞留し、該内容物中の微結晶が溶解するように構成されている、晶析装置。
A crystallization apparatus comprising a stirring tank, a stirring shaft, a crystal dissolving means, and a heating means for heating the crystal dissolving means,
The crystal dissolving means is provided to rotate independently around the stirring shaft inside the stirring tank;
A crystallizer configured so that the contents in the stirring tank are introduced into the crystal dissolving means and stays with the rotation of the crystal dissolving means, and the fine crystals in the contents are dissolved. .
前記結晶溶解手段が、中空構造の円錐台形;または中空構造の円錐台部と円筒部とから構成され、該円錐台部の外径の大きい端部と該円筒部の一端とが接続された形状を有し、前記撹拌槽内の内容物が、該円錐台部の外径の小さい端部から該結晶溶解手段に導入される、請求項1に記載の晶析装置。   The crystal dissolving means is formed of a hollow truncated cone shape; or a hollow truncated cone portion and a cylindrical portion, and a shape in which an end portion of the truncated cone portion having a large outer diameter is connected to one end of the cylindrical portion. The crystallization apparatus according to claim 1, wherein the content in the stirring tank is introduced into the crystal dissolving means from an end portion of the truncated cone portion having a small outer diameter. 前記加熱手段が、前記結晶溶解手段の外壁面または内壁面に設けられている、請求項1または2に記載の晶析装置。   The crystallization apparatus according to claim 1 or 2, wherein the heating means is provided on an outer wall surface or an inner wall surface of the crystal melting means. 前記加熱手段が、ケーブル状ヒーター、電磁誘導加熱、蒸気または熱媒である、請求項1から3のいずれかの項に記載の晶析装置。   The crystallization apparatus according to any one of claims 1 to 3, wherein the heating means is a cable heater, electromagnetic induction heating, steam, or a heating medium.
JP2010027150A 2010-02-10 2010-02-10 Crystallizer Active JP5695831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027150A JP5695831B2 (en) 2010-02-10 2010-02-10 Crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027150A JP5695831B2 (en) 2010-02-10 2010-02-10 Crystallizer

Publications (2)

Publication Number Publication Date
JP2011161375A JP2011161375A (en) 2011-08-25
JP5695831B2 true JP5695831B2 (en) 2015-04-08

Family

ID=44592701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027150A Active JP5695831B2 (en) 2010-02-10 2010-02-10 Crystallizer

Country Status (1)

Country Link
JP (1) JP5695831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170246595A1 (en) * 2014-02-18 2017-08-31 M. Technique Co., Ltd. Method for producing microparticles
CN107597045A (en) * 2017-10-16 2018-01-19 曹茂娟 A kind of OIL IN LUBRICATING OIL PRODUCTION process equipment
FR3081732B1 (en) * 2018-05-29 2020-09-11 Deasyl Sa THREE-DIMENSIONAL CRUSHER, ITS IMPLEMENTATION PROCESS AND ITS USES
CN114669079B (en) * 2022-04-28 2023-10-20 稀美资源(广东)有限公司 Dynamic crystallization equipment of potassium fluotantalate
CN114887348A (en) * 2022-06-10 2022-08-12 中国海洋大学 Edible salt crystallization device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615928Y2 (en) * 1980-06-04 1986-02-22
US4787985A (en) * 1987-08-25 1988-11-29 Grenco Process Technology B.V. Multi-stage purification unit process
JP2919660B2 (en) * 1990-11-05 1999-07-12 三井化学株式会社 Method for producing crystal of L-α-aspartyl-L-phenylalanine methyl ester
KR100593713B1 (en) * 1999-08-25 2006-06-28 간사이가가쿠기카이세이사쿠가부시키가이샤 Crystal Precipitation Device and Crystal Precipitation Method
KR100776925B1 (en) * 2000-09-28 2007-11-20 간사이가가쿠기카이세이사쿠가부시키가이샤 Heat transfer device

Also Published As

Publication number Publication date
JP2011161375A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5695831B2 (en) Crystallizer
CN1148247C (en) Crystallization apparatus and crystallization method
JP6066199B2 (en) mixer
EP0402317A1 (en) Apparatus for mixing viscous materials
CN103949082B (en) A kind of double cold cooling flowing crystallization apparatus
CN106345363A (en) High-efficiency dispensing equipment with double stirring devices
US8721793B2 (en) Continuous centrifuge feed pipe mixing system
JP6870301B2 (en) Crystallization reaction tank and crystallization classification device using this
TW557230B (en) Tank type scraped surface cooling crystallizer
JP6069659B2 (en) Stirrer
EP1976608A1 (en) Method for the precipitation of organic compounds
CN206334380U (en) The condensing crystallizing tank of anti-caking
KR101121803B1 (en) Reaction apparatus with precise temperature control for continuous cooling crystallization and the system comprising the same
JP6541240B2 (en) Modular subunit for suspension crystallization system and suspension crystallization method using the modular subunit
KR100966175B1 (en) Crystallization reactor
Waval et al. Experimental studies in antisolvent crystallization: Effect of antisolvent ratio and mixing patterns
Nguyen et al. Effect of sinusoidal Taylor vortex flow on cooling crystallization of L-lysine
JP7154613B2 (en) Evaporator
JP2022072411A (en) Method of producing dried material, and dryer
JP2004050147A (en) Crystal grain size controlling unit for crystallizer
JP2563554Y2 (en) Crystal equipment
JP2017036897A (en) Dehydration method and dehydration device of sherbet ice
KR20010050128A (en) CRYSTALLIZATION OF α-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER
TWM539797U (en) Single crystal sugar crystallization machine and stirring device thereof
JPS6268532A (en) Mixer for liquid containing solid substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5695831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250