JP5693311B2 - Heat transfer tube structure - Google Patents

Heat transfer tube structure Download PDF

Info

Publication number
JP5693311B2
JP5693311B2 JP2011060314A JP2011060314A JP5693311B2 JP 5693311 B2 JP5693311 B2 JP 5693311B2 JP 2011060314 A JP2011060314 A JP 2011060314A JP 2011060314 A JP2011060314 A JP 2011060314A JP 5693311 B2 JP5693311 B2 JP 5693311B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
suspended
header
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011060314A
Other languages
Japanese (ja)
Other versions
JP2012193939A (en
Inventor
博典 横尾
博典 横尾
裕昭 市川
裕昭 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2011060314A priority Critical patent/JP5693311B2/en
Publication of JP2012193939A publication Critical patent/JP2012193939A/en
Application granted granted Critical
Publication of JP5693311B2 publication Critical patent/JP5693311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、ボイラ火炉の伝熱管構造に関し、特に互いに異なる管総本数を有する横置き伝熱管と吊下げ伝熱管との連結構造に係わり、それらを構成する部材を低減可能な伝熱管構造に関する。   TECHNICAL FIELD The present invention relates to a heat transfer tube structure of a boiler furnace, and more particularly to a connection structure of a horizontally placed heat transfer tube and a suspended heat transfer tube having different numbers of tubes, and a heat transfer tube structure capable of reducing the members constituting them.

図5はボイラ火炉内部の伝熱管の配置状態を模式的に示した側面図である。高温の燃焼ガスに曝される板型伝熱管群13又はU型伝熱管群14は、紙面垂直方向に隣接する管群との間隔を、例えばそれぞれ1600mm、800mmと比較的大きく離して配置している。これは石炭灰の融点や軟化点と密接に関わり、溶融した灰が管群に付着し、そして成長する現象を繰り返し、隣接する管群同士が灰で連結されることによって、燃焼ガスの流路を塞ぐことを防止するためである。   FIG. 5 is a side view schematically showing the arrangement of the heat transfer tubes inside the boiler furnace. The plate-type heat transfer tube group 13 or the U-type heat transfer tube group 14 exposed to the high-temperature combustion gas is arranged at a relatively large distance from, for example, 1600 mm and 800 mm, respectively, with the adjacent tube groups in the vertical direction of the paper. Yes. This is closely related to the melting point and softening point of coal ash, and the molten ash adheres to the tube group and repeats the phenomenon of growth. This is to prevent blocking.

一方、これらの吊下げ伝熱管群13,14の後流側の吊下げ入口伝熱管3や吊下げ出口伝熱管4が配置されている部位は、伝熱管群13,14によって熱交換された排ガス流れの後流側にあるため、伝熱管群13,14が配置された部位に比べて雰囲気温度が低い領域である。そのため、灰融点の高い石炭が用いられる場合、吊下げ入口伝熱管3や吊下げ出口伝熱管4の紙面垂直方向に隣接する管群との間隔を200mm程度にまで小さくしても、これらの伝熱管3,4に付着する灰が溶融することにより伝熱管3,4がそれぞれ隣接する管群と連結してガス流路が閉塞されるというような問題は生じなかった。   On the other hand, the portions where the suspension inlet heat transfer tubes 3 and the suspension outlet heat transfer tubes 4 on the downstream side of these suspension heat transfer tube groups 13 and 14 are disposed are the exhaust gas heat-exchanged by the heat transfer tube groups 13 and 14. Since it is on the downstream side of the flow, it is a region where the ambient temperature is lower than the portion where the heat transfer tube groups 13 and 14 are disposed. For this reason, when coal having a high ash melting point is used, even if the interval between the hanging inlet heat transfer tube 3 and the hanging outlet heat transfer tube 4 and the adjacent tube group in the vertical direction on the paper surface is reduced to about 200 mm, the transfer of these tubes is reduced. As the ash adhering to the heat tubes 3 and 4 melts, there is no problem that the heat transfer tubes 3 and 4 are connected to adjacent tube groups and the gas flow path is blocked.

しかしながら、近年、炭種の多様化に伴い、灰融点の低い石炭が使用され始めるようになり、このような場合に上記のような灰の連結防止の観点から、パネル状に構成される吊下げ入口伝熱管3や吊下げ出口伝熱管4の隣接管群との間隔を、例えば450mm程度にまで拡げる必要がある。しかし、前記隣接管群との間隔が450mm程度である場合には、前記200mmの間隔で配置される構造に比べて、一定のスペースに配置される吊下げ入口伝熱管3の総本数は減少せざるを得ず、吊下げ入口伝熱管3と吊下げ出口伝熱管4の後流側に配置される横置き伝熱管2との管総本数に大きな差が生じることになる。   However, in recent years, with the diversification of coal types, coal with a low ash melting point has begun to be used. In such a case, from the viewpoint of preventing the connection of ash as described above, the suspension is configured in a panel shape. It is necessary to increase the distance between the inlet heat transfer tube 3 and the adjacent tube group of the suspended outlet heat transfer tube 4 to, for example, about 450 mm. However, when the interval between the adjacent tube groups is about 450 mm, the total number of the suspended inlet heat transfer tubes 3 arranged in a certain space is reduced compared to the structure arranged at the interval of 200 mm. Inevitably, there will be a large difference in the total number of tubes between the hanging inlet heat transfer tubes 3 and the horizontally placed heat transfer tubes 2 arranged on the downstream side of the hanging outlet heat transfer tubes 4.

図7は、吊下げ入口伝熱管3の総本数と横置き伝熱管2の管総本数に大きな差がある場合の対策として考えられる公知ではないボイラ火炉内に配置される横置き伝熱管2と吊下げ入口伝熱管3、出口伝熱管4の連結構造を示す部分の斜視図であり、図8は図7のH−H線から見た部分側面図である。   FIG. 7 shows a horizontal heat transfer tube 2 arranged in a non-known boiler furnace, which is considered as a countermeasure when there is a large difference between the total number of hanging inlet heat transfer tubes 3 and the total number of horizontal heat transfer tubes 2. It is a perspective view of the part which shows the connection structure of the hanging inlet heat exchanger tube 3 and the outlet heat exchanger tube 4, and FIG. 8 is the fragmentary side view seen from the HH line | wire of FIG.

図7と図8に示す構造では、横置き伝熱管2は天井壁管12を貫通した後、その上端のボイラ炉幅方向(図5の紙面直角方向)に複数設置された横置き伝熱管出口管寄せ7(図7上では、管寄せ7だけでなく管寄せ5,10も両端側の一部のみ表示している)に接続し、それぞれの横置き伝熱管出口管寄せ7を横置き伝熱管出口マニホルド8に連結して横置き伝熱管2内を流れる流体を集合させていた。その流体を更に過熱するため、横置き伝熱管出口管寄せ7を連絡配管9A,9Bによって吊下げ伝熱管3へ連結される系統構成となっている。   In the structure shown in FIGS. 7 and 8, the horizontal heat transfer tubes 2 pass through the ceiling wall tube 12, and then a plurality of horizontal heat transfer tube outlets installed at the upper end of the boiler furnace width direction (the direction perpendicular to the plane of FIG. 5). Connected to the header 7 (in FIG. 7, not only the header 7 but also the headers 5 and 10 are only partly shown at both ends), the horizontal heat transfer tube outlet header 7 is connected to the lateral header. The fluid flowing in the horizontal heat transfer tube 2 was gathered by being connected to the heat tube outlet manifold 8. In order to further heat the fluid, the horizontal heat transfer tube outlet header 7 is connected to the suspended heat transfer tube 3 by connecting piping 9A, 9B.

この連絡配管9A,9Bから流出する流体は吊下げ伝熱管入口マニホルド11を介して各吊下げ伝熱管入口管寄せ10へ分配され、各吊下げ伝熱管入口管寄せ10から吊下げ入口伝熱管3および吊下げ出口伝熱管4に送られて過熱された後、吊下げ伝熱管出口管寄せ5を通り、吊下げ伝熱管出口マニホルド6を経由してタービンへ送られる。  The fluid flowing out from the connecting pipes 9A and 9B is distributed to each suspended heat transfer pipe inlet header 10 via the suspended heat transfer pipe inlet manifold 11, and from each suspended heat transfer pipe inlet header 10 to the suspended inlet heat transfer pipe 3. And after being sent to the suspension outlet heat transfer tube 4 and overheated, it passes through the suspension heat transfer tube outlet header 5 and is sent to the turbine via the suspension heat transfer tube outlet manifold 6.

図7と図8に示す構成のように、ボイラ炉幅方向における横置き伝熱管2の総本数と吊下げ入口伝熱管3の総管本数が相違する場合には、横置き伝熱管2と吊下げ入口伝熱管3とを伝熱管同士で直接連結できないため、個々の独立した横置き伝熱管出口管寄せ7および出口マニホルド8、さらに吊下げ伝熱管入口マニホルド11および吊下げ伝熱管入口管寄せ10を設置して連絡配管9A,9Bにより連結する構成とすることが考えられる。   When the total number of the horizontal heat transfer tubes 2 in the boiler furnace width direction and the total number of the suspension inlet heat transfer tubes 3 are different as shown in FIGS. 7 and 8, the horizontal heat transfer tubes 2 and the suspended heat transfer tubes 2 are suspended. Since the heat transfer tubes cannot be directly connected to each other, the heat transfer tubes 3 cannot be directly connected to each other. Therefore, the individual horizontal heat transfer tube outlet header 7 and the outlet manifold 8, and the suspended heat transfer tube inlet manifold 11 and the suspended heat transfer tube inlet header 10. It can be considered that a configuration is used in which the connecting pipes 9A and 9B are connected.

なお、管寄せ5,7,10がそれぞれ接続されるマニホルド6,8,11はその目的を達成するためであれば、管寄せと兼用できる。図9はその構成例を示し、図9は図8中の破線で囲むJ部の部分側面図である。前述したように横置き伝熱管2内の内部流体は、横置き伝熱管出口管寄せ7を介して横置き伝熱管出口マニホルド8へ集められる。図9に示すように横置き伝熱管出口管寄せ7を介さず、横置き伝熱管2を直接的に横置き伝熱管出口マニホルド8へ接続しても、内部流体はマニホルド8へ集合できる。伝熱管3,4も同様に直接マニホルド8,11に接続する構成を採用することもできる。   The manifolds 6, 8, and 11 to which the headers 5, 7, and 10 are respectively connected can also be used as headers in order to achieve the purpose. FIG. 9 shows an example of the configuration, and FIG. 9 is a partial side view of a portion J surrounded by a broken line in FIG. As described above, the internal fluid in the horizontal heat transfer tube 2 is collected to the horizontal heat transfer tube outlet manifold 8 via the horizontal heat transfer tube outlet header 7. As shown in FIG. 9, even if the horizontal heat transfer tube 2 is directly connected to the horizontal heat transfer tube outlet manifold 8 without using the horizontal heat transfer tube outlet header 7, the internal fluid can be collected in the manifold 8. Similarly, the heat transfer tubes 3 and 4 can be directly connected to the manifolds 8 and 11.

しかしながら、この構成例でボイラ建設地への製品輸送や建設現場での製品搬入出のし易さを考慮した場合、横置き伝熱管2と横置き伝熱管出口マニホルド8を製品製作工場で溶接接合した状態でボイラ建設地へ搬入するには、高さ方向で10m以上、長さ方向で20m以上の大きさとなることから現実的ではない。   However, in this configuration example, considering the ease of product transportation to the boiler construction site and the ease of product loading / unloading at the construction site, the horizontal heat transfer pipe 2 and the horizontal heat transfer pipe outlet manifold 8 are welded and joined at the product manufacturing factory. It is not realistic to carry it into the boiler construction site in such a state because it is 10 m or more in the height direction and 20 m or more in the length direction.

従って、図9中のD部の位置で、横置き伝熱管2が溶接された横置き伝熱管出口マニホルド8と横置き伝熱管2に分割して建設地へ搬入する必要がある。ボイラ建設地では、D部での伝熱管溶接によってボイラを組み立てることになり、狭隘部で、しかも溶接員数(箇所数)は数十〜数百倍に増加することから、通常、横置き伝熱管出口管寄せ7を個別に配置して、横置き伝熱管2と横置き伝熱管出口管寄せ7を工場溶接とし、横置き伝熱管出口管寄せ7と横置き伝熱管出口マニホルド8とを現地で溶接接合するボイラの組み立てる手順を用いることが考えられる。   Therefore, it is necessary to divide the horizontal heat transfer tube outlet manifold 8 to which the horizontal heat transfer tube 2 is welded and the horizontal heat transfer tube 2 into the construction site at the position D in FIG. At the boiler construction site, the boiler is assembled by heat transfer tube welding at part D, and the number of welders (number of points) increases by several tens to several hundreds times at the narrow part. The outlet header 7 is arranged individually, the horizontal heat transfer pipe 2 and the horizontal heat transfer pipe outlet header 7 are factory-welded, and the horizontal heat transfer pipe outlet header 7 and the horizontal heat transfer pipe outlet manifold 8 are locally installed. It is conceivable to use a procedure for assembling a welded boiler.

特開平9−60810号公報Japanese Patent Laid-Open No. 9-60810

上記した図7,図8及び図9に示す伝熱管構造は、管寄せ5,7,10に集まった流体を後流側に運ぶために、管寄内の流体を集合させるマニホルド6,8,11や流路連結のために連絡配管9A,9Bを必要とする構成であった。そのため、構成する部品は多く、コストのかかる構成であった。さらに現地でのそれらの部品の据付時の溶接作業量も多い傾向にあった。   The above-described heat transfer tube structure shown in FIGS. 7, 8 and 9 has manifolds 6 and 8 for collecting the fluid in the header in order to carry the fluid collected in the headers 5, 7, and 10 to the downstream side. 11 and connecting pipes 9A and 9B for connecting the flow paths. Therefore, there are many components to configure, and the configuration is costly. In addition, the amount of welding work during installation of these parts on-site tended to be large.

特許文献1には複数の入口管寄と出口管寄との間に中間パネルと側部パネルを設け、側部パネルに水平方向左右に張り出し部を形成することでパネル相互間に所定の間隔を保持させ、更に複数の入口管寄と出口管寄の各長さ方向の中間部上側に入口連絡管及び出口連絡官を接続することで管寄全体の構成を簡素化できると記載されている。   In Patent Document 1, an intermediate panel and a side panel are provided between a plurality of entrance pipes and an outlet pipe, and a laterally extending portion is formed on the side panel so that a predetermined interval is provided between the panels. In addition, it is described that the structure of the entire header can be simplified by holding and connecting the inlet communication pipe and the outlet communication officer to the upper side of each of the lengthwise intermediate portions of the inlet and outlet headers.

しかし、特許文献1記載の発明では本発明の課題とする吊下げ伝熱管と横置き伝熱管の管総本数が相違する場合の伝熱管構造に関するものではなく、また、従来の高品質の燃料を使用していたボイラ火炉では、吊下げ伝熱管と横置き伝熱管の管総本数が相違するとか、前記伝熱管のボイラ炉幅方向の間隔が異なるということが無かった。   However, the invention described in Patent Document 1 does not relate to the heat transfer tube structure in the case where the total number of the suspended heat transfer tubes and the horizontally placed heat transfer tubes is the subject of the present invention. In the boiler furnace used, there was no difference in the total number of the suspended heat transfer tubes and the horizontal heat transfer tubes, or in the interval between the heat transfer tubes in the boiler furnace width direction.

そこで本発明の課題は、吊下げ伝熱管や横置き伝熱管などの伝熱管をパネル状に配置する場合のパネル間に灰が堆積してパネルが連結することを防止し、そのために大径のマニホルドや連結管を用いること無く、輸送性と現地据付性(最終組立)が容易な伝熱管構造を提供することである。   Therefore, an object of the present invention is to prevent the ash from being accumulated between the panels when the heat transfer tubes such as the suspended heat transfer tubes and the horizontal heat transfer tubes are arranged in a panel shape, and to connect the panels. The object is to provide a heat transfer tube structure that can be easily transported and installed in the field (final assembly) without using a manifold or connecting pipe.

本発明に係わる伝熱管構造は、上記課題の解決を目的としており、横置き伝熱管と吊下げ伝熱管の管本数に影響されず、構成する部材の重量を低減できる構造とした。さらに、部品点数を低減することで据付性も向上する構成とする。   The heat transfer tube structure according to the present invention is intended to solve the above-described problems, and has a structure in which the weight of constituent members can be reduced without being affected by the number of horizontal heat transfer tubes and suspended heat transfer tubes. Furthermore, it is set as the structure which improves installation property by reducing a number of parts.

請求項1記載の発明は、ボイラの前後方向に複数の伝熱管が吊下げられた吊下げ伝熱管3と、ボイラの後部伝熱部の前後方向に横置きされ、上下に積層する複数の伝熱管を順次折り返して後部伝熱部の下方から上方に向かって積み重ね、後部伝熱部の上方では垂直方向に延びる垂直部分を有する横置き伝熱管2を備え、ボイラ天井壁12を貫通させて前記吊り下げ伝熱管3と横置き伝熱管2の垂直部分を延ばしてボイラ天井壁の上方で前記吊り下げ伝熱管3と横置き伝熱管2の垂直部分を中間管寄せ1で接続して一組の熱交換ユニットとし、該熱交換ユニットをボイラ炉幅方向に複数組配置したことを特徴とする伝熱管構造である。  The invention described in claim 1 is a suspended heat transfer tube 3 in which a plurality of heat transfer tubes are suspended in the front-rear direction of the boiler, and a plurality of heat transfer layers that are horizontally placed in the front-rear direction of the rear heat transfer portion of the boiler and stacked vertically. The heat tubes are sequentially folded and stacked from the lower side to the upper side of the rear heat transfer unit, the horizontal heat transfer tube 2 having a vertical portion extending in the vertical direction is provided above the rear heat transfer unit, and the boiler ceiling wall 12 is penetrated to pass through the heat transfer tube 2. A vertical portion of the suspended heat transfer tube 3 and the horizontal heat transfer tube 2 is extended, and the vertical portion of the suspended heat transfer tube 3 and the horizontal heat transfer tube 2 are connected by an intermediate header 1 above the boiler ceiling wall. The heat transfer tube structure is characterized in that a plurality of heat exchange units are arranged in the boiler furnace width direction.

請求項2記載の発明は、前記一組の熱交換ユニットの吊下げ伝熱管3は、前記中間管寄せ1に接続された伝熱管がそれぞれ天井壁12の下方でボイラ後方側に折り曲げられ、上方に折り返して天井壁12を貫通し、前記中間管寄せ1を跨ぐようにして、前記中間管寄せ1の上方で吊下げ伝熱管4の出口管寄せ5に接続されることを特徴とする請求項1に記載の伝熱管構造である。  According to the second aspect of the present invention, the suspended heat transfer tubes 3 of the set of heat exchange units are configured such that the heat transfer tubes connected to the intermediate header 1 are respectively bent below the ceiling wall 12 toward the boiler rear side. And is connected to the outlet header 5 of the suspended heat transfer tube 4 above the intermediate header 1 so as to pass through the ceiling wall 12 and straddle the intermediate header 1. 1. The heat transfer tube structure according to 1.

請求項3記載の発明は、前記一組の熱交換ユニットの吊下げ伝熱管3は、前記中間管寄せ1に接続された伝熱管がそれぞれ天井壁12の下方でボイラ前方側に折り曲げられ、上方に折り返して天井壁12を貫通し、前記中間管寄せ1を跨ぐようにして、前記中間管寄せ1の上方で吊下げ出口伝熱管4の出口管寄せ5に接続されることを特徴とする請求項1に記載の伝熱管構造である。  According to a third aspect of the present invention, in the suspended heat transfer tube 3 of the set of heat exchange units, the heat transfer tubes connected to the intermediate header 1 are respectively bent below the ceiling wall 12 toward the front side of the boiler. And is connected to the outlet header 5 of the suspended outlet heat transfer tube 4 above the intermediate header 1 so as to pass through the ceiling wall 12 and straddle the intermediate header 1. Item 2. The heat transfer tube structure according to Item 1.

請求項1記載の発明によれば、伝熱管総本数の違う横置き伝熱管2と吊下げ伝熱管3であっても、これら両伝熱管2,3の連結のために、個々の独立した管寄せを用いずに各伝熱管2,3の入口と出口の管寄せを一体型とすることで、前記伝熱管をパネル状に配置する場合にパネル間に灰が堆積することが無く、ボイラ耐圧部品の部品点数を減らし、重量を低減することができる。また、部品点数の低減は輸送や据付けへの効果が大きい。   According to the first aspect of the present invention, even if the horizontal heat transfer tubes 2 and the suspended heat transfer tubes 3 having different total numbers of heat transfer tubes are used, the individual heat transfer tubes 2 and 3 are connected to each other independently. By integrating the inlet and outlet headers of the heat transfer tubes 2 and 3 without using a header, ash does not accumulate between the panels when the heat transfer tubes are arranged in a panel, and the boiler pressure resistance The number of parts can be reduced and the weight can be reduced. In addition, reducing the number of parts has a great effect on transportation and installation.

請求項2記載の発明によれば、中間管寄せ1が吊下げ出口伝熱管4の隣接管の間隔を通り抜けることがない構造であるため、比較的短い中間管寄せを用いることができ、輸送性が向上する。   According to the second aspect of the present invention, since the intermediate header 1 does not pass through the interval between the adjacent tubes of the suspended outlet heat transfer tube 4, a relatively short intermediate header can be used and transportability is improved. Will improve.

請求項3記載の発明によれば、吊下げ出口伝熱管4を炉内ガス流れの低温側に配置するため、吊下げ出口伝熱管4の肉厚を比較的薄くすることができる。   According to invention of Claim 3, since the hanging outlet heat exchanger tube 4 is arrange | positioned at the low temperature side of the gas flow in a furnace, the wall thickness of the hanging outlet heat exchanger tube 4 can be made comparatively thin.

本発明の実施例1の伝熱管配置構成を示す側面図である。It is a side view which shows the heat exchanger tube arrangement | positioning structure of Example 1 of this invention. 図1のB−B線矢視平面図である。It is a BB line arrow top view of FIG. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 本発明の実施例2の伝熱管配置構成を示す側面図である。It is a side view which shows the heat exchanger tube arrangement structure of Example 2 of this invention. ボイラ全体の伝熱管の配置構成を示す側面図である。It is a side view which shows the arrangement configuration of the heat exchanger tube of the whole boiler. 本発明と従来技術の構造と伝熱管群を連結する構造の発生応力の相違に関する説明図である。It is explanatory drawing regarding the difference of the generated stress of the structure which connects this invention and the structure of a prior art, and a heat exchanger tube group. 管総本数が異なる伝熱管群を連結する従来の構成を示す斜視図である。It is a perspective view which shows the conventional structure which connects the heat exchanger tube group from which a total number of tubes differs. 管総本数が異なる伝熱管群を連結する従来の構成を示す部分側面図である。It is a partial side view which shows the conventional structure which connects the heat exchanger tube group from which a total number of tubes differs. 管総本数が異なる伝熱管群を連結する従来構成の別法を示す部分側面図である。It is a partial side view which shows another method of the conventional structure which connects the heat exchanger tube group from which a total number of tubes differs.

以下本発明に係るボイラの伝熱管構造の実施の形態を図面によって説明する。なお、本実施例の伝熱管は、図5に示すボイラ内に配置される伝熱管に関わるものである。   Embodiments of a heat transfer tube structure for a boiler according to the present invention will be described below with reference to the drawings. In addition, the heat exchanger tube of a present Example is concerned with the heat exchanger tube arrange | positioned in the boiler shown in FIG.

図1において横置き伝熱管2と吊下げ入口伝熱管3はその管総本数が一致していない。一例として次のことを想定する。
すなわち、横置き伝熱管2は1パネル14本の管で構成され、蒸気発生器当たり104パネルあり、全1456本の管が存在する。一方、吊下げ入口伝熱管3と吊下げ出口伝熱管4は1パネル20本の管、52パネルとし、全1040本の管で構成されている。横置き伝熱管2と吊下げ入口伝熱管3の伝熱管本数が相違するため、横置き伝熱管2と吊下げ入口伝熱管3を直接連結することはできない。そこで、これらの管群を中間管寄せ1に接続する。
In FIG. 1, the horizontal heat transfer tubes 2 and the suspended inlet heat transfer tubes 3 do not match the total number of tubes. As an example, assume the following.
That is, the horizontal heat transfer tube 2 is composed of 14 tubes per panel, 104 panels per steam generator, and there are a total of 1456 tubes. On the other hand, the suspension inlet heat transfer tube 3 and the suspension outlet heat transfer tube 4 are composed of 20 panels for one panel and 52 panels for a total of 1040 tubes. Since the number of heat transfer tubes of the horizontal heat transfer tube 2 and the suspension inlet heat transfer tube 3 are different, the horizontal heat transfer tube 2 and the suspension inlet heat transfer tube 3 cannot be directly connected. Therefore, these tube groups are connected to the intermediate header 1.

すなわち、1つの中間管寄せ1に、炉幅方向の間隔がそれぞれ異なる横置き伝熱管2のパネルと、吊下げ入口伝熱管3と吊下げ出口伝熱管4のパネルとが一連となった吊下げ伝熱管パネルとを接続する。   In other words, in one intermediate header 1, a suspended heat transfer tube 2 panel having different intervals in the furnace width direction, and a suspension inlet heat transfer tube 3 and a suspension outlet heat transfer tube 4 panel are suspended. Connect the heat transfer tube panel.

本例の場合、図2に示す横置き伝熱管2と吊下げ入口伝熱管3のパネル枚数は2対1の関係であることから、横置き伝熱管2はその4つのパネルを、吊下げ入口伝熱管3は2つのパネルを一つの中間管寄せ1に接続すれば、全ての伝熱管が中間管寄せ1に均等に接続できる。この中間管寄せ1を介して内部流体は、吊下げ入口伝熱管3から吊下げ出口伝熱管4を通り、図1に示す吊下げ伝熱管出口管寄せ5に入り、吊下げ伝熱管出口マニホルド6で混合される。本実施例の場合によれば全26本の中間管寄せ1を配置する。   In the case of this example, since the number of panels of the horizontal heat transfer tube 2 and the suspension inlet heat transfer tube 3 shown in FIG. 2 has a two-to-one relationship, the horizontal heat transfer tube 2 has four panels connected to the suspension inlet. If the two heat transfer tubes 3 are connected to one intermediate header 1, all the heat transfer tubes can be connected to the intermediate header 1 equally. Through this intermediate header 1, the internal fluid passes from the suspension inlet heat transfer tube 3 through the suspension outlet heat transfer tube 4, enters the suspension heat transfer tube outlet header 5 shown in FIG. 1, and enters the suspended heat transfer tube outlet manifold 6. Mixed in. According to the present embodiment, a total of 26 intermediate headers 1 are arranged.

図3を用いて吊下げ出口伝熱管4と中間管寄せ1の配置を説明する。
過度の伝熱管温度上昇を防ぐため、より低温の吊下げ入口伝熱管3が炉内ガスの上流側(ガス高温側)へ配置される。そのため、中間管寄せ1は、吊下げ出口伝熱管4を越えて吊下げ入口伝熱管3まで達するように配置しなければならない。今、吊下げ出口伝熱管4は溶融灰連結による流路閉塞を防ぐため、管群同士の間隔を450mm程度と従来に比べて拡げていることから、その吊下げ出口伝熱管4の中の互いに隣接する伝熱管の間を水平方向に真直ぐに通り抜けするように配置することで中間管寄せ1を配置できる。
The arrangement of the suspended outlet heat transfer tube 4 and the intermediate header 1 will be described with reference to FIG.
In order to prevent an excessive increase in the temperature of the heat transfer tube, the lower-temperature hanging inlet heat transfer tube 3 is disposed on the upstream side (gas high temperature side) of the in-furnace gas. Therefore, the intermediate header 1 must be arranged so as to reach the suspension inlet heat transfer tube 3 beyond the suspension outlet heat transfer tube 4. Now, in order to prevent the flow path blockage due to the molten ash connection, the suspension outlet heat transfer tube 4 has an interval between the tube groups of about 450 mm, which is larger than the conventional one. The intermediate header 1 can be arrange | positioned by arrange | positioning so that it may pass between the adjacent heat exchanger tubes in the horizontal direction.

更に、図1に示す構造を採用することで、横置き伝熱管2と吊下げ入口伝熱管3の天井壁管12から上方の部分の長さを減少させることができる。
図8に示す伝熱管構造のG−G線矢視断面図である図6(b)のように、天井壁管12と横置き伝熱管出口マニホルド8と天井壁管12と吊下げ伝熱管入口マニホルド11は、ボイラ運転中にそれらの温度差によって、ボイラ中心からマニホルド8,11の管軸方向へ向かっての熱伸び差が生じる。この時、伝熱管2,3はマニホルド8,11にそれぞれ接続された管寄せ7,10に連結されているため、前記マニホルド8,11の熱伸び差分だけ強制的に変形させられる。この場合、管寄せ7,10と伝熱管2,3の溶接接合部であるE部(図6(b))には大きな応力が発生する。
図8に示す伝熱管構造では図6(b)に示すように、伝熱管2,3の応力低減の観点から、マニホルド8,11は天井壁12から2500mm程度上方に配置し、フレキシブルな構造を採用する必要があった。
Furthermore, by adopting the structure shown in FIG. 1, the length of the portion of the horizontal heat transfer tube 2 and the suspended inlet heat transfer tube 3 above the ceiling wall tube 12 can be reduced.
As shown in FIG. 6B, which is a cross-sectional view taken along the line GG of the heat transfer tube structure shown in FIG. 8, the ceiling wall tube 12, the horizontal heat transfer tube outlet manifold 8, the ceiling wall tube 12, and the suspended heat transfer tube inlet The manifold 11 has a difference in thermal expansion from the center of the boiler in the direction of the pipe axis of the manifolds 8 and 11 due to the temperature difference during boiler operation. At this time, since the heat transfer tubes 2 and 3 are connected to the headers 7 and 10 connected to the manifolds 8 and 11, respectively, the heat transfer tubes 2 and 3 are forcibly deformed by the difference in thermal expansion between the manifolds 8 and 11. In this case, a large stress is generated in an E portion (FIG. 6B) which is a welded joint between the headers 7 and 10 and the heat transfer tubes 2 and 3.
In the heat transfer tube structure shown in FIG. 8, as shown in FIG. 6B, the manifolds 8 and 11 are arranged about 2500 mm above the ceiling wall 12 from the viewpoint of reducing the stress of the heat transfer tubes 2 and 3, and have a flexible structure. There was a need to adopt.

一方、図1のF−F線矢視断面図を示す図6(a)のように、本実施例1の構成を採用すれば、図7に示すマニホルド8,11を設置していないため、中間管寄せ1は天井壁管12と一緒に熱移動する。すなわち中間管寄せ1と天井壁管12との熱伸び差は生じない。   On the other hand, since the manifolds 8 and 11 shown in FIG. 7 are not installed if the configuration of the first embodiment is adopted as shown in FIG. The intermediate header 1 moves heat together with the ceiling wall pipe 12. That is, there is no difference in thermal expansion between the intermediate header 1 and the ceiling wall pipe 12.

従って、中間管寄せ1に接続される伝熱管2,3には、フレキシビリティを確保する必要はなく、中間管寄せ1を天井壁管12の上方2000mm程度の位置に配置すればよく、天井壁管12から上部の伝熱に全く寄与しない部分の上方の部分の長さを低減できる。   Therefore, the heat transfer tubes 2 and 3 connected to the intermediate header 1 do not need to secure flexibility, and the intermediate header 1 may be disposed at a position of about 2000 mm above the ceiling wall tube 12. The length of the upper part of the part which does not contribute to the heat transfer from the pipe 12 at all can be reduced.

また、据付費は、中間管寄せ1を図1に示すC部で分割し、ボイラを設置する現地においてC部を溶接接合すれば26ヶ所分のみの溶接となる。
図7、図8に示す構造では、マニホルド8,11と連絡配管9A,9Bとの溶接4ヶ所及び管寄せ7,10とマニホルド8,11との溶接箇所は52ヶ所となることから本実施例では溶接箇所を半減でき、図7、図8に示す構造に比べて据付費の低減および据付性の向上が図れる。
Moreover, the installation cost will be only 26 places if the intermediate header 1 is divided | segmented by the C section shown in FIG. 1, and the C section is welded and joined in the field where a boiler is installed.
In the structure shown in FIGS. 7 and 8, there are four welds between the manifolds 8 and 11 and the connecting pipes 9 </ b> A and 9 </ b> B and 52 welds between the headers 7 and 10 and the manifolds 8 and 11. Then, the welding location can be halved, and the installation cost can be reduced and the installation performance can be improved as compared with the structures shown in FIGS.

図4は本実施例の構造を示す側面図であって、実施例1と異なる点は、輸送性をさらに向上させるために、吊下げ入口伝熱管3を炉内ガス流れの後流側に、吊下げ出口伝熱管4を炉内ガス流れの前流側に配置したことである。
横置き伝熱管2が連結された中間管寄せ1は、吊下げ出口伝熱管4の隣接管の間隔を通り抜けることなく配置でき、中間管寄せ1に接続された吊下げ入口伝熱管3は、吊下げ出口伝熱管4を介して吊下げ伝熱管出口管寄せ5へ接続され、そして、吊下げ伝熱管出口管寄せ5は吊下げ伝熱管出口マニホルド6に接続される。
FIG. 4 is a side view showing the structure of the present embodiment. The difference from the first embodiment is that in order to further improve the transportability, the suspension inlet heat transfer tube 3 is placed on the downstream side of the gas flow in the furnace. The suspension outlet heat transfer tube 4 is arranged on the upstream side of the gas flow in the furnace.
The intermediate header 1 to which the horizontal heat transfer tubes 2 are connected can be arranged without passing through the interval between the adjacent tubes of the suspension outlet heat transfer tubes 4, and the suspension inlet heat transfer tubes 3 connected to the intermediate header 1 are suspended. The suspended heat transfer tube outlet header 5 is connected to the suspended heat transfer tube outlet header 5 through the lowered outlet heat transfer tube 4, and the suspended heat transfer tube outlet header 5 is connected to the suspended heat transfer tube outlet manifold 6.

本実施例は中間管寄せ1が吊下げ出口伝熱管4の隣接管の間隔を通り抜ける実施例1の構成とは異なり、中間管寄せ1が吊下げ出口伝熱管4の隣接管の間隔を通り抜けることがない構造であるため、中間管寄せ1の長さは、実施例1の構造に比べて2000mm程度は短くなり、輸送性が向上する。   This embodiment differs from the configuration of the first embodiment in which the intermediate header 1 passes through the interval between adjacent tubes of the hanging outlet heat transfer tube 4, and the intermediate header 1 passes through the interval between adjacent tubes of the hanging outlet heat transfer tube 4. Therefore, the length of the intermediate header 1 is about 2000 mm shorter than the structure of the first embodiment, and the transportability is improved.

但し、前述の通り吊下げ出口伝熱管4群を炉内ガス流れの高温側に配置するため、吊下げ出口伝熱管4の温度が実施例1の吊下げ出口伝熱管4の温度に比べて上昇するため、吊下げ出口伝熱管4の肉厚は実施例1のそれよりも厚くする必要がある。   However, since the suspension outlet heat transfer tubes 4 are arranged on the high temperature side of the furnace gas flow as described above, the temperature of the suspension outlet heat transfer tubes 4 is higher than the temperature of the suspension outlet heat transfer tubes 4 of the first embodiment. Therefore, it is necessary to make the wall thickness of the hanging outlet heat transfer tube 4 thicker than that of the first embodiment.

1 中間管寄せ 2 横置き伝熱管
3 吊下げ入口伝熱管 4 吊下げ出口伝熱管
5 吊下げ伝熱管出口管寄せ 6 吊下げ伝熱管出口マニホルド
7,10 管寄せ 8 横置き伝熱管出口マニホルド
9A,9B 連絡配管
11 吊下げ伝熱管入口マニホルド
12 天井壁管 13 板型伝熱管群
14 U型伝熱管群
DESCRIPTION OF SYMBOLS 1 Intermediate header 2 Horizontally placed heat transfer tube 3 Hanging inlet heat transfer tube 4 Hanging outlet heat transfer tube 5 Hanging Heat transfer tube outlet header 6 Hanging Heat transfer tube outlet manifold 7, 10 Header 8 Horizontal heat transfer tube outlet manifold 9A, 9B Connecting piping
11 Hanging Heat Transfer Tube Inlet Manifold 12 Ceiling Wall Tube 13 Plate Type Heat Transfer Tube Group 14 U Type Heat Transfer Tube Group

Claims (3)

ボイラの前後方向に複数の伝熱管が吊下げられた吊下げ伝熱管と、ボイラの後部伝熱部の前後方向に横置きされ、上下に積層する複数の伝熱管を順次折り返して後部伝熱部の下方から上方に向かって積み重ね、後部伝熱部の上方では垂直方向に延びる垂直部分を有する横置き伝熱管を備え、ボイラ天井壁を貫通させて前記吊り下げ伝熱管と横置き伝熱管の垂直部分を延ばしてボイラ天井壁の上方で前記吊り下げ伝熱管と横置き伝熱管の垂直部分を中間管寄せで接続して一組の熱交換ユニットとし、該熱交換ユニットをボイラ炉幅方向に複数組配置したことを特徴とする伝熱管構造。  The rear heat transfer section is a suspended heat transfer pipe in which a plurality of heat transfer pipes are hung in the front-rear direction of the boiler, and a plurality of heat transfer tubes that are horizontally placed in the front-rear direction of the rear heat transfer section of the boiler and stacked vertically A horizontal heat transfer tube having a vertical portion vertically extending above the rear heat transfer section and vertically extending between the suspended heat transfer pipe and the horizontal heat transfer pipe through the boiler ceiling wall. Extending the part and connecting the vertical part of the suspended heat transfer tube and the horizontal heat transfer tube above the boiler ceiling wall with an intermediate header to form a set of heat exchange units, a plurality of heat exchange units in the boiler furnace width direction A heat transfer tube structure characterized by a set arrangement. 前記一組の熱交換ユニットの吊下げ伝熱管は、前記中間管寄せに接続された伝熱管がそれぞれ天井壁の下方でボイラ後方側に折り曲げられ、上方に折り返して天井壁を貫通し、前記中間管寄せを跨ぐようにして、前記中間管寄せの上方で吊下げ伝熱管の出口管寄せに接続されることを特徴とする請求項1に記載の伝熱管構造。   The suspended heat transfer tubes of the set of heat exchange units are configured such that the heat transfer tubes connected to the intermediate header are bent at the rear side of the boiler below the ceiling wall and folded upward to penetrate the ceiling wall. The heat transfer tube structure according to claim 1, wherein the heat transfer tube structure is connected to an outlet header of a suspended heat transfer tube above the intermediate header so as to straddle the header. 前記一組の熱交換ユニットの吊下げ伝熱管は、前記中間管寄せに接続された伝熱管がそれぞれ天井壁の下方でボイラ前方側に折り曲げられ、上方に折り返して天井壁を貫通し、前記中間管寄せを跨ぐようにして、前記中間管寄せの上方で吊下げ出口伝熱管の出口管寄せに接続されることを特徴とする請求項1に記載の伝熱管構造。   The suspended heat transfer tubes of the pair of heat exchange units are configured such that the heat transfer tubes connected to the intermediate header are bent forward of the boiler below the ceiling wall and folded upward to penetrate the ceiling wall. The heat transfer tube structure according to claim 1, wherein the heat transfer tube structure is connected to an outlet header of a suspended outlet heat transfer tube above the intermediate header so as to straddle the header.
JP2011060314A 2011-03-18 2011-03-18 Heat transfer tube structure Active JP5693311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060314A JP5693311B2 (en) 2011-03-18 2011-03-18 Heat transfer tube structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060314A JP5693311B2 (en) 2011-03-18 2011-03-18 Heat transfer tube structure

Publications (2)

Publication Number Publication Date
JP2012193939A JP2012193939A (en) 2012-10-11
JP5693311B2 true JP5693311B2 (en) 2015-04-01

Family

ID=47085993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060314A Active JP5693311B2 (en) 2011-03-18 2011-03-18 Heat transfer tube structure

Country Status (1)

Country Link
JP (1) JP5693311B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936207B2 (en) * 2018-11-21 2021-09-15 三菱パワー株式会社 Boiler device

Also Published As

Publication number Publication date
JP2012193939A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
US10697706B2 (en) Heat exchanger
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JP6911295B2 (en) boiler
JP6840008B2 (en) Heat exchanger, heat exchange unit and heat source machine
JP2013011409A (en) Water heater
JP5693311B2 (en) Heat transfer tube structure
EP3954880B1 (en) Heat exchanger with inner sensor grid and restraints for sensor wires and heat exchange tubes
AU646128B2 (en) Water tube boiler
WO2019017093A1 (en) Heat-exchanger manufacturing method, heat-exchanger overlaying method, heat exchanger and multi-row heat exchanger
JP2013160469A (en) Heat exchanger
CN203561262U (en) Heat exchanger
CN219328115U (en) Tubular air preheater
CN101796347B (en) Apparatus and method for providing detonation damage resistance in ductwork
JP2012007836A (en) Suspension type heat exchanger, and boiler device with the same
TWI757942B (en) gas to gas heat exchanger
JP5780520B2 (en) Waste heat recovery boiler
US20150308387A1 (en) Gas heat exchanger, in particular for exhaust gases of an engine
US6500221B2 (en) Cooled tubes arranged to form impact type particle separators
JP5160180B2 (en) Support structure of header
CN110057209B (en) Tube type light pipe evaporator and welding method thereof
JP6939265B2 (en) Heat recovery device
JP6099003B2 (en) Heat exchanger and hot water device provided with the same
JP6025561B2 (en) Vibration suppression device for heat transfer tube and repair method for the vibration suppression device
JP4565316B2 (en) Heat source equipment
CN1332735C (en) Cooled tubes arranged to form impact type particle separators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350