JP5691185B2 - Lens array, wavefront sensor, and wavefront aberration measuring apparatus - Google Patents
Lens array, wavefront sensor, and wavefront aberration measuring apparatus Download PDFInfo
- Publication number
- JP5691185B2 JP5691185B2 JP2010027062A JP2010027062A JP5691185B2 JP 5691185 B2 JP5691185 B2 JP 5691185B2 JP 2010027062 A JP2010027062 A JP 2010027062A JP 2010027062 A JP2010027062 A JP 2010027062A JP 5691185 B2 JP5691185 B2 JP 5691185B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- shape
- lens array
- lens element
- outer periphery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004075 alteration Effects 0.000 title claims description 16
- 230000003287 optical effect Effects 0.000 claims description 13
- 238000005259 measurement Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Description
本願発明は、レンズアレイ、波面センサ及び波面収差測定装置に関する。 The present invention is Nzuarei relates wavefront sensor and a wavefront aberration measuring apparatus.
波面収差の測定の方法としてシャック・ハルトマン型センサが知られている。例えば、鶴田匡夫著「第4 光の鉛筆」(新技術コミュニケーションズ、1997年、212頁)に波面測定センサの代表例としての解説がある。 A Shack-Hartmann sensor is known as a method for measuring wavefront aberration. For example, “Third Light Pencil” by Tatsuta Tatsuo (New Technology Communications, 1997, p. 212) has a description as a typical example of a wavefront measuring sensor.
従来のシャック・ハルトマン型センサでは、レンズアレイを構成するレンズエレメントの微小開口の形状が円形、四角形のものが一般的である。 In the conventional Shack-Hartmann type sensor, the shape of the minute apertures of the lens elements constituting the lens array is generally circular or square.
また、レンズエレメントとしては、焦点距離が例えば10mmである比較的短い凸レンズが用いられ、各レンズエレメントの微小開口が光軸と直交する方向に平面的に並んでいる。微小開口の大きさに相当するレンズエレメントの直径は分割するサイズに依って異なるが、一般に1mm以下である。 Further, as the lens element, a relatively short convex lens having a focal length of, for example, 10 mm is used, and the minute apertures of each lens element are arranged in a plane perpendicular to the optical axis. The diameter of the lens element corresponding to the size of the minute aperture varies depending on the size to be divided, but is generally 1 mm or less.
このため制作方法としては、例えば特許第4296779号にあるように、フォトレジストをエッチングマスクとして用いて微小なレンズアレイを作成する方法が知られている。 For this reason, as a production method, for example, as disclosed in Japanese Patent No. 4296679, a method of creating a minute lens array using a photoresist as an etching mask is known.
レンズアレイを構成するレンズエレメントの微小開口の形状が円形の場合、波面収差の測定に使用できない不感部分ができるために光量に損失が生じる。 When the shape of the minute apertures of the lens elements constituting the lens array is circular, there is a dead part that cannot be used for wavefront aberration measurement, resulting in a loss in light amount.
シャック・ハルトマン型センサでは光束を細分化するため、光量の損失が発生すると感度が低下する難がある。 Since the Shack-Hartmann type sensor subdivides the luminous flux, it is difficult to reduce the sensitivity when a light amount loss occurs.
また、従来のようにレンズエレメントの微小開口の外周の辺が直線である多角形の場合は、その辺に対して回折による規則的なスポット形状の光芒が生じるため、計測誤差の要因となる。 Further, in the case of a polygonal shape in which the outer peripheral side of the minute aperture of the lens element is a straight line as in the prior art, a regular spot-shaped light beam due to diffraction occurs on the side, which causes a measurement error.
本願発明では上記問題を解消し、光量を有効に利用し、かつ、誤差要因となる回折光の影響を抑えて測定することができるレンズアレイ、波面センサ及び波面収差測定装置を供することを目的とする。 It is an object of the present invention to provide a lens array, a wavefront sensor, and a wavefront aberration measuring apparatus that can solve the above-described problems, can effectively measure the amount of light, and suppress the influence of diffracted light that causes an error. To do.
本願発明を例示する第一の態様によるレンズアレイは、レンズエレメントを二次元状に複数隣接して配列し、該レンズエレメントの開口が光軸に対して直交するように配置されるレンズアレイにおいて、前記レンズエレメントは、前記開口が正の屈折力を有し、かつ、前記レンズエレメントの平面形状は、少なくとも一部が曲線からなり、全ての前記レンズエレメントが互いに同一の平面形状を有し、前記レンズエレメントの平面形状は、曲線からなる辺が対向して配置された多角形状をしていることを特徴とする。
本願発明を例示する第二の態様によるレンズアレイは、レンズエレメントを二次元状に複数隣接して配列し、該レンズエレメントの開口が光軸に対して直交するように配置されるレンズアレイにおいて、前記レンズエレメントは、前記開口が正の屈折力を有し、かつ、前記レンズエレメントの平面形状は、少なくとも一部が曲線からなり、全ての前記レンズエレメントが互いに同一の平面形状を有し、前記レンズエレメントの平面形状は、曲線からなる辺が隣接して配置された多角形状をしていることを特徴とする。
A lens array according to a first aspect illustrating the present invention is a lens array in which a plurality of lens elements are arranged adjacent to each other in a two-dimensional shape, and the openings of the lens elements are arranged so as to be orthogonal to the optical axis. the lens element, the aperture has a positive refractive power, and the planar shape of the lens element is at least partially made of curves, all of the lens elements possess the same planar shape from each other, the the planar shape of the lens element is composed of a curving edge is characterized that you have a polygonal shape disposed opposite.
A lens array according to a second aspect illustrating the present invention is a lens array in which a plurality of lens elements are arranged adjacent to each other in a two-dimensional manner, and the openings of the lens elements are arranged so as to be orthogonal to the optical axis. In the lens element, the opening has a positive refractive power, and the planar shape of the lens element is at least partially curved, and all the lens elements have the same planar shape, The planar shape of the lens element is characterized by a polygonal shape in which curved sides are adjacently arranged.
本願発明を例示する第三の態様による波面センサは、第一の態様によるレンズアレイ又は第二の態様によるレンズアレイを備え、前記レンズエレメントの各焦点の位置に撮像素子を設けたことを特徴とする。
本願発明を例示する第四の態様による波面収差測定装置は、第三の態様による波面センサを備えることを特徴とする。
A wavefront sensor according to a third aspect that exemplifies the present invention comprises the lens array according to the first aspect or the lens array according to the second aspect , and an image sensor is provided at each focal position of the lens element. To do .
A wavefront aberration measuring apparatus according to a fourth aspect illustrating the present invention includes the wavefront sensor according to the third aspect.
本願発明によれば、光量を有効に利用し、かつ、誤差要因となる回折光の影響を抑えて測定することができるレンズアレイ、波面センサ及び波面収差測定装置を供することができる。 According to the present invention, it is possible to provide a lens array, a wavefront sensor, and a wavefront aberration measuring apparatus that can effectively measure the amount of light and suppress the influence of diffracted light that causes an error.
次に、本願発明の実施の形態を示す図面に基づき、レンズアレイ、波面センサ及び波面収差測定装置をさらに詳しく説明する。なお、便宜上同一の機能を奏する部分には同一の符号を付してその説明を省略する。 Next, the lens array, the wavefront sensor, and the wavefront aberration measuring apparatus will be described in more detail based on the drawings showing the embodiments of the present invention. For convenience, portions having the same function are denoted by the same reference numerals and description thereof is omitted.
図1乃至図4において、1はレンズアレイである。レンズアレイ1はレンズエレメント3を二次元状に多数隣接して配列してなる。上記各レンズエレメント3の各微小開口5は矢示する光軸に対し直交に設けられる。上記各レンズエレメント3の微小開口5は、夫々、正の屈折力を有し、かつ、外周辺が4個3a、3b、3c、3dの四角形状体に形成される。上記レンズエレメント3は光軸方向に平行する面の断面形状が入射面のみ上記微小開口5の全部にわたって突弧状に盛り上げられて形成され、外周辺3a、3b、3c、3dがいずれも曲線からなる。そして対向する外周辺3aと外周辺3cとが夫々外側に向かう突弧状及びこれに対応する内側に向かう凹弧状に形成され、外周辺3bと外周辺3dとが夫々外側に向かう突弧状及びこれに対応する内側に向かう凹弧状に形成される。 1 to 4, reference numeral 1 denotes a lens array. The lens array 1 is formed by arranging a large number of lens elements 3 adjacent to each other in two dimensions. Each minute opening 5 of each lens element 3 is provided orthogonal to the optical axis indicated by the arrow. The minute apertures 5 of the lens elements 3 each have a positive refractive power, and the outer periphery is formed into a quadrangular body having four pieces 3a, 3b, 3c, and 3d. The lens element 3 is formed such that the cross-sectional shape of the surface parallel to the optical axis direction is raised in a projecting shape only on the incident surface over the entire minute aperture 5, and the outer peripheries 3a, 3b, 3c and 3d are all curved. . The outer periphery 3a and the outer periphery 3c facing each other are formed in a projecting arc shape toward the outside and a concave arc shape inward corresponding thereto, and the outer periphery 3b and the outer periphery 3d are respectively projecting in an arc shape toward the outside and It is formed in a concave arc shape toward the corresponding inside.
各レンズエレメント3の配列につき、図2(A)に示すように、奇数列目例えば1列目m1と3列目m3では、隣接する各レンズエレメント3は、レンズエレメント3Aとレンズエレメント3A’とが上下方向に180°回転し裏表が反転するように配列され、偶数列目例えば2列目m2と4列目m4では、隣接する各レンズエレメント3は、レンズエレメント3B’とレンズエレメント3Bとが上下方向に180°回転し裏表が反転するように配列される。 Per sequence of each lens element 3, as shown in FIG. 2 (A), the odd-numbered columns for example the first column m 1 and 3 row m 3, each lens element 3 adjacent the lens element 3A and the lens element 3A Are arranged so as to be rotated 180 ° in the vertical direction and the front and back sides are inverted. In the even-numbered rows, for example, the second row m 2 and the fourth row m 4 , the adjacent lens elements 3 are the lens element 3B ′ and the lens. The elements 3B are arranged so as to be rotated 180 ° in the vertical direction and the front and back are reversed.
また、奇数行目例えば1行目n1と3行目n3では、隣接する各レンズエレメント3は、レンズエレメント3Aとレンズエレメント3Bとが左右方向に180°回転し裏表が反転するように配列され、偶数行目例えば2行目n2と4行目n4では、隣接する各レンズエレメント3は、レンズエレメント3A’とレンズエレメント3B’とが左右方向に180°回転し裏表が反転するように配列される。 Further, in the odd-numbered rows, for example, the first row n 1 and the third row n 3 , the adjacent lens elements 3 are arranged so that the lens element 3A and the lens element 3B rotate 180 ° in the left-right direction and the front and back are reversed. In the even-numbered rows, for example, the second row n 2 and the fourth row n 4 , the lens elements 3A ′ and 3B ′ adjacent to each other are rotated 180 ° in the left-right direction so that the front and back sides are reversed. Arranged.
レンズアレイ1は、このように素子の形状が同一のレンズエレメント3を二次元状に多数隣接して配列してなるため、各レンズエレメント3間は隙間なく接している。 Since the lens array 1 is formed by arranging a large number of lens elements 3 having the same element shape in a two-dimensional manner adjacent to each other, the lens elements 3 are in contact with each other without any gap.
上記レンズアレイ1を用いて波面センサ10を構成する場合を図3に示す。この場合、レンズアレイ1の各レンズエレメント3の焦点には電荷結合素子(CCD)からなる撮像素子7が設けられる。 FIG. 3 shows a case where the wavefront sensor 10 is configured using the lens array 1. In this case, an imaging device 7 composed of a charge coupled device (CCD) is provided at the focal point of each lens element 3 of the lens array 1.
図4は、上記波面センサ10を備えた波面収差測定装置40である。該波面収差測定装置40において、次に述べる各部は光学的・電気的に接続されている。即ち、図示しない光源からファイバ41にて導かれた光束Lがレンズ42にてコリメートされ、被検レンズ43に投射される。投射された光束Lは被検レンズ43で集光された後、発散光がレンズ44によりコリメートされ、上記したレンズアレイ1にて分割集光される。次いで集光された光束Lは、波面収差に応じた位置で結像され、上記した撮像素子7で結像位置Mが計測される。この計測データはデータ記憶装置47で記録され、さらに分析装置48で解析されて表示装置49に表示される。 FIG. 4 shows a wavefront aberration measuring apparatus 40 provided with the wavefront sensor 10. In the wavefront aberration measuring apparatus 40, the following sections are optically and electrically connected. That is, the light beam L guided by the fiber 41 from a light source (not shown) is collimated by the lens 42 and projected onto the lens 43 to be examined. The projected light beam L is collected by the lens 43 to be examined, and then the divergent light is collimated by the lens 44 and divided and collected by the lens array 1 described above. Next, the condensed light beam L is imaged at a position corresponding to the wavefront aberration, and the imaging position M is measured by the imaging device 7 described above. The measurement data is recorded in the data storage device 47, further analyzed by the analysis device 48, and displayed on the display device 49.
図5は本願発明によるレンズアレイの他の実施の形態であり、図1のII部を拡大した状態を示す。この場合のレンズアレイ1は6辺13a〜13fを有する六角形状体に形成される。いずれの外周辺13a〜13fも円弧状であって、隣接する辺13a、13b、13cが夫々外側に向かう同一の突弧状に、また隣接する辺13d、13e、13fが夫々内側に向かう同一の凹弧状に形成される。 FIG. 5 shows another embodiment of the lens array according to the present invention, and shows an enlarged view of the portion II in FIG. The lens array 1 in this case is formed in a hexagonal body having six sides 13a to 13f. Any of the outer peripheries 13a to 13f has an arc shape, and the adjacent sides 13a, 13b, and 13c have the same projecting arc shape toward the outside, respectively, and the adjacent sides 13d, 13e, and 13f have the same recess toward the inside. It is formed in an arc shape.
図5の実施の形態において、レンズエレメント13の配列の仕方は、図5(A)に示すように、m方向に並べる各列及びn方向に並べる各行のいずれも隣接する各レンズエレメント13は同一の向きに配列される。その余の構成は、前記実施の形態と同様、各レンズエレメント13が二次元状に多数隣接して配列され、各微小開口15が光軸に対し直交に設けられ、各微小開口15が夫々正の屈折力を有し、各レンズエレメント13の形状が同一である。 In the embodiment of FIG. 5, the lens elements 13 are arranged in the same way as shown in FIG. 5A, in which the adjacent lens elements 13 in each column arranged in the m direction and each row arranged in the n direction are the same. Arranged in the direction of. The remaining configuration is the same as in the embodiment described above, in which a large number of lens elements 13 are two-dimensionally arranged adjacent to each other, each microscopic aperture 15 is provided perpendicular to the optical axis, and each microscopic aperture 15 is a positive one. The lens elements 13 have the same shape.
図5の実施の形態の場合は、レンズエレメント13の辺が6辺からなり、円形により近似するため、図2の実施の形態の場合より、回折光の影響がより少ない計測をすることができる。 In the case of the embodiment of FIG. 5, the side of the lens element 13 consists of six sides, and is approximated by a circle, so that the measurement with less influence of diffracted light can be performed compared to the case of the embodiment of FIG. .
図6は本願発明によるレンズアレイの外周辺を奇数辺としたさらに他の実施の形態であり、図1のII部を拡大した状態を示す。 FIG. 6 shows still another embodiment in which the outer periphery of the lens array according to the present invention is an odd-numbered side, and shows a state in which the II part in FIG. 1 is enlarged.
図6(A)は各レンズエレメント23が3個の辺23a、23b、23cを有する三角形状体に形成される。外周辺23aは内側に向かう凹弧状に、外周辺23bは外側に向かう突弧状に、外周辺23cは外側に向かう突弧状に形成されている。 In FIG. 6A, each lens element 23 is formed in a triangular shape having three sides 23a, 23b, and 23c. The outer periphery 23a is formed in a concave arc shape toward the inside, the outer periphery 23b is formed in a projecting arc shape toward the outside, and the outer periphery 23c is formed in a projecting arc shape toward the outside.
各レンズエレメント23の配列につき、m方向に並べる各列及びn方向に並べる各行のいずれも隣接する各レンズエレメント23は逆の向きに配列される。その余の構成は、前記実施の形態と同様、各レンズエレメント23が二次元状に多数隣接して配列され、各微小開口25が光軸に対し直交に設けられ、各微小開口25が夫々正の屈折力を有し、各レンズエレメント23の形状が同一である。 Regarding the arrangement of the lens elements 23, the adjacent lens elements 23 are arranged in the opposite direction in each column arranged in the m direction and each row arranged in the n direction. The remaining configuration is the same as in the embodiment described above, in which a large number of lens elements 23 are two-dimensionally arranged adjacent to each other, each microscopic aperture 25 is provided orthogonal to the optical axis, and each microscopic aperture 25 is a normal one. The lens elements 23 have the same shape.
図6(B)は、各レンズエレメント33が5個の辺33a〜33eを有する五角形状体に形成される。該5個の辺33a〜33eは交互に外方又は内方に向かう弧状の曲線からなる。即ち、レンズエレメント33Aにつき、外周辺33aは外側に向かう突弧状に、外周辺33bは内側に向かう凹弧状に、外周辺33cは外側に向かう突弧状に、外周辺33dは内側に向かう凹弧状に、外周辺33eは外側に向かう突弧状に形成される。該レンズエレメント33Aに隣接される33A’は弧状に形成される外周辺の内側又は外側に向く向きが、上記レンズエレメント33Aの向きとは反対になるように形成される。各レンズエレメント33の配列につき、m方向に並べられる各列の各レンズエレメント33は、矢印n方向に隣接する素子同士、例えばレンズエレメント33Aとレンズエレメント33A’とは同一の向きに配列される。また奇数列目と偶数列目例えば1列目と2列目ごと、3列目と4列目ごとのように組が形成され、各組ごとに矢印m方向に隣接する素子同士、例えばレンズエレメント33Aとレンズエレメント33Bとが逆の向きに配列される。その余の構成は、前記実施の形態と同様、各レンズエレメント33が二次元状に多数隣接して配列され、各微小開口35が光軸に対し直交に設けられ、各微小開口35が夫々正の屈折力を有し、各レンズエレメント33の形状が同一である。 In FIG. 6B, each lens element 33 is formed in a pentagonal shape having five sides 33a to 33e. The five sides 33a to 33e are formed of arcuate curves that alternately go outward or inward. That is, with respect to the lens element 33A, the outer periphery 33a has an outward arcuate shape, the outer periphery 33b has an inwardly concave arc shape, the outer periphery 33c has an outwardly protruding arc shape, and the outer periphery 33d has an inwardly concave arc shape. The outer periphery 33e is formed in a salient arc shape toward the outside. 33A 'adjacent to the lens element 33A is formed such that the direction toward the inside or outside of the outer periphery formed in an arc is opposite to the direction of the lens element 33A. With respect to the arrangement of the lens elements 33, the lens elements 33 in each column arranged in the m direction are arranged in the same direction with elements adjacent to each other in the arrow n direction, for example, the lens element 33A and the lens element 33A '. Also, pairs are formed as odd rows and even rows, such as every 1st row and every 2nd row, every 3rd row and every 4th row, and elements adjacent to each other in the direction of the arrow m for each set, for example, lens elements 33A and lens element 33B are arranged in opposite directions. The remaining configuration is the same as in the embodiment described above, in which a large number of lens elements 33 are two-dimensionally arranged adjacent to each other, each microscopic aperture 35 is provided orthogonal to the optical axis, and each microscopic aperture 35 is each positive. The lens elements 33 have the same shape.
ここで図7及び図8に基づき、回折光による測定誤差について述べる。 Here, a measurement error due to diffracted light will be described with reference to FIGS.
図7に示すように、本願発明においてはレンズエレメント3の外周辺が曲線からなるため、外周辺が直線からなる場合に比し、回折光50が分散され、局所的に生じる回折光である±1次光50aが減少する。よって図7(C)に示すように、±1次光50aの強度が小となり、回折光の影響を抑制することができ、計測誤差を可及的に防止することができる。 As shown in FIG. 7, in the present invention, since the outer periphery of the lens element 3 is a curved line, the diffracted light 50 is dispersed and locally generated as compared with the case where the outer periphery is a straight line. The primary light 50a decreases. Therefore, as shown in FIG. 7C, the intensity of the ± first-order light 50a is reduced, the influence of diffracted light can be suppressed, and measurement errors can be prevented as much as possible.
この点につき、図8に示すように、レンズエレメント30の外周辺が直線から構成される場合には、回折光50の影響が強く生ずるため、強度が大きい±1次光50bにより結像位置M’に誤差が生じ易いのである。 In this regard, as shown in FIG. 8, when the outer periphery of the lens element 30 is formed of a straight line, the influence of the diffracted light 50 is strongly generated, so that the imaging position M is generated by the ± 1st order light 50b having high intensity. 'Is prone to errors.
本願発明によるレンズアレイ1は上記した実施の形態に制限されることはない。例えば、辺をなす外周辺のすべては曲線である必要はなく、少なくとも2箇の外周辺が曲線であれば足りる。 The lens array 1 according to the present invention is not limited to the above-described embodiment. For example, it is not necessary for all of the outer peripheries that form the sides to be curved, and it is sufficient if at least two outer peripheries are curved.
レンズエレメントの外周辺の曲線は任意であり、突弧状、凹弧状だけでなく、波状その他の曲線形状であっても、隣接する他の外周辺と隙間なく接することができるものであれば形状の如何を問わない。 The outer peripheral curve of the lens element is arbitrary, not only in the shape of a salient arc or concave arc, but also in a wavy or other curved shape as long as it can contact other adjacent outer periphery without any gap. It doesn't matter what.
また、レンズエレメントの外周辺の曲線は上記実施の形態のように規則的なものであってもよいが、規則性のないものであっても、各レンズエレメント間が隙間なく接することができるものであればよい。 In addition, the outer peripheral curve of the lens element may be regular as in the above embodiment, but even if it is not regular, each lens element can be in contact with no gap. If it is.
また、レンズエレメントの外周辺の頂点部には多少のアールの存在が許される。しかし、この場合、光量の損失が生ずるため、頂点部にアールを設けない上記実施の形態のようにするのが望ましい。 In addition, some roundness is allowed at the apex around the outer periphery of the lens element. However, in this case, since the loss of the light amount occurs, it is desirable to use the above-described embodiment in which the radius is not provided at the apex portion.
また、上記微小開口の断面形状は入射面だけでなく、その反対側の面も突弧状に盛り上げられてもよい。 In addition, the cross-sectional shape of the minute opening may be raised not only on the incident surface but also on the opposite surface.
さらに、レンズエレメントは7辺以上からなる多角形状体であってもよい。また、撮像素子としては、CCDの外に、撮像管、CMOSが考えられる。 Furthermore, the lens element may be a polygonal body having seven or more sides. In addition to the CCD, an imaging tube and a CMOS can be considered as the imaging device.
また、レンズエレメントは少なくとも光軸方向に平行する面の断面形状が前記微小開口の全面にわたって突弧状に盛り上げられた形状に形成されてもよい。 The lens element may be formed in a shape in which at least a cross-sectional shape of a surface parallel to the optical axis direction is raised in a projecting arc shape over the entire surface of the minute opening.
また、二次元状に隣接して配列される多数のレンズエレメントがいずれもその平面形状が同一であってもよい。 Moreover, the planar shape of any of a large number of lens elements arranged adjacently in a two-dimensional shape may be the same.
また、微小開口の対向する辺が曲線からなっていてもよい。 Further, the opposite sides of the minute opening may be formed of a curve.
また、微小開口の隣接する辺が曲線からなっていてもよい。 Further, adjacent sides of the minute opening may be formed of a curve.
また、微小開口の断面形状が一面のみ突弧状に盛り上げられていてもよい。 Moreover, the cross-sectional shape of the minute opening may be raised only in a salient shape.
また、微小開口の断面形状が両面とも突弧状に盛り上げられていてもよい。 Moreover, the cross-sectional shape of the minute opening may be raised in a salient shape on both sides.
以上のように、レンズエレメントの配列につき、各レンズエレメントはいずれもその平面形状が同一であるため相互に隙間なく接することができるから、波面収差の測定に使用できない不感部分を生じない。よって光量の損失が防止され、光量の確保をすることができるから、感度の低下を防止する効果がある。 As described above, the lens elements are arranged in the same planar shape and can be in contact with each other without a gap, so that no insensitive portion that cannot be used for wavefront aberration measurement is generated. Therefore, the loss of light quantity is prevented and the light quantity can be ensured, so that there is an effect of preventing a decrease in sensitivity.
また、各レンズエレメントの微小開口の外周辺が円弧状の曲線からなるため、一次回折リングなどの強度が少なく、このため、回折光の影響を抑制することができる。よって計測誤差を可及的に防止することができる。 In addition, since the outer periphery of the minute aperture of each lens element is formed of an arcuate curve, the strength of the first-order diffractive ring or the like is small, so that the influence of diffracted light can be suppressed. Therefore, measurement errors can be prevented as much as possible.
さらに、計測誤差を減少することができるため、焦点距離を短小化することができ、各レンズエレメントの薄型化及びこれによる装置全体の薄型化に寄与する。 Furthermore, since the measurement error can be reduced, the focal length can be shortened, which contributes to thinning of each lens element and thereby thinning of the entire apparatus.
また、回折光の影響が少ないことから、レンズエレメントの微小開口と焦点距離の割合を変えて口径比を大きくできるため、波面計測精度を高める効果がある。 In addition, since the influence of the diffracted light is small, the aperture ratio can be increased by changing the ratio of the minute aperture and the focal length of the lens element, which has the effect of improving the wavefront measurement accuracy.
本願発明によるレンズアレイは、波面センサ、波面収差測定装置だけでなく、例えば望遠鏡、カメラ、コピー機、ファクシミリ機、プリンタ等の光学機器一般に利用することができる。 The lens array according to the present invention can be used not only for a wavefront sensor and a wavefront aberration measuring apparatus but also for general optical equipment such as a telescope, a camera, a copier, a facsimile machine, and a printer.
1 レンズアレイ
3 レンズエレメント
3a 外周辺
3b 外周辺
3c 外周辺
3d 外周辺
5 微小開口
7 撮像素子
10 波面センサ
13 レンズエレメント
13a 外周辺
13b 外周辺
13c 外周辺
13d 外周辺
13e 外周辺
13f 外周辺
15 微小開口
23 レンズエレメント
23a 外周辺
23b 外周辺
23c 外周辺
25 微小開口
33 レンズエレメント
33a 外周辺
33b 外周辺
33c 外周辺
33d 外周辺
33e 外周辺
35 微小開口
40 波面収差測定装置
41 ファイバ
42 レンズ
43 被検レンズ
44 レンズ
47 データ記憶装置
48 分析装置
49 表示装置
50 回折光
50a ±1次光
50b ±1次光
L 光束
M 結像位置
W 波面
DESCRIPTION OF SYMBOLS 1 Lens array 3 Lens element 3a Outer periphery 3b Outer periphery 3c Outer periphery 3d Outer periphery 5 Minute aperture 7 Image sensor 10 Wavefront sensor 13 Lens element 13a Outer periphery 13b Outer periphery 13c Outer periphery 13d Outer periphery 13e Outer periphery 13f Outer periphery 15 Minute Aperture 23 Lens element 23a Outer periphery 23b Outer periphery 23c Outer periphery 25 Minute aperture 33 Lens element 33a Outer periphery 33b Outer periphery 33c Outer periphery 33d Outer periphery 33e Outer periphery 35 Minute aperture 40 Wavefront aberration measuring device 41 Fiber 42 Lens 43 Test lens 44 Lens 47 Data storage device 48 Analysis device 49 Display device 50 Diffracted light 50a ± 1st order light 50b ± 1st order light L Light flux M Imaging position W Wavefront
Claims (7)
前記レンズエレメントは、前記開口が正の屈折力を有し、かつ、前記レンズエレメントの平面形状は、少なくとも一部が曲線からなり、
全ての前記レンズエレメントが互いに同一の平面形状を有し、
前記レンズエレメントの平面形状は、曲線からなる辺が対向して配置された多角形状をしていることを特徴とするレンズアレイ。 In a lens array in which a plurality of lens elements are arranged adjacent to each other in a two-dimensional manner and the openings of the lens elements are arranged so as to be orthogonal to the optical axis,
The lens element has a positive refractive power at the opening, and the planar shape of the lens element is at least partially curved.
All of the lens elements have a same planar shapes,
The planar shape of the lens elements, the lens array characterized that you have a polygonal shape composed of curved sides arranged opposite.
前記レンズエレメントは、前記開口が正の屈折力を有し、かつ、前記レンズエレメントの平面形状は、少なくとも一部が曲線からなり、The lens element has a positive refractive power at the opening, and the planar shape of the lens element is at least partially curved.
全ての前記レンズエレメントが互いに同一の平面形状を有し、All the lens elements have the same planar shape,
前記レンズエレメントの平面形状は、曲線からなる辺が隣接して配置された多角形状をしていることを特徴とするレンズアレイ。The lens array according to claim 1, wherein the planar shape of the lens element is a polygonal shape in which curved sides are adjacently arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010027062A JP5691185B2 (en) | 2010-02-10 | 2010-02-10 | Lens array, wavefront sensor, and wavefront aberration measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010027062A JP5691185B2 (en) | 2010-02-10 | 2010-02-10 | Lens array, wavefront sensor, and wavefront aberration measuring apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011164360A JP2011164360A (en) | 2011-08-25 |
JP2011164360A5 JP2011164360A5 (en) | 2013-03-21 |
JP5691185B2 true JP5691185B2 (en) | 2015-04-01 |
Family
ID=44595105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010027062A Active JP5691185B2 (en) | 2010-02-10 | 2010-02-10 | Lens array, wavefront sensor, and wavefront aberration measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5691185B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403171A (en) * | 2015-12-24 | 2016-03-16 | 吉林大学 | Grating type distortion coefficient measurement device of automobile profile measurement system |
CN106500968A (en) * | 2016-11-16 | 2017-03-15 | 中国科学院云南天文台 | A kind of method based on the theoretical detection telescope image quality of Young's double-slot interference |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104198164B (en) * | 2014-09-19 | 2017-02-15 | 中国科学院光电技术研究所 | Focus detection method based on Hartmann wavefront detection principle |
CN105371783B (en) * | 2015-12-24 | 2017-09-15 | 吉林大学 | Automobile shape measurement system scale-type distortion factor measuring instrument |
CN105352452B (en) * | 2015-12-24 | 2017-11-03 | 吉林大学 | Automobile shape measurement system electronic type distortion factor measuring instrument |
JP6797279B2 (en) * | 2017-02-28 | 2020-12-09 | 富士フイルム株式会社 | Method for manufacturing thermoplastic resin film and thermoplastic resin film |
KR102098228B1 (en) | 2018-05-31 | 2020-04-07 | 한국생산기술연구원 | Automatic control system of hardness of production water |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06265881A (en) * | 1993-03-11 | 1994-09-22 | Mitsubishi Electric Corp | Projection type display device |
JP2006163263A (en) * | 2004-12-10 | 2006-06-22 | Arisawa Mfg Co Ltd | Transmission type screen |
JP2006215400A (en) * | 2005-02-04 | 2006-08-17 | Nikon Corp | Pattern forming method, method for manufacturing optical element, method for manufacturing microlens array, illuminator for projection aligner, projection aligner and aberration measuring instrument |
JP2011085658A (en) * | 2009-10-13 | 2011-04-28 | Denso Corp | Illumination device |
-
2010
- 2010-02-10 JP JP2010027062A patent/JP5691185B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403171A (en) * | 2015-12-24 | 2016-03-16 | 吉林大学 | Grating type distortion coefficient measurement device of automobile profile measurement system |
CN105403171B (en) * | 2015-12-24 | 2017-10-03 | 吉林大学 | Automobile shape measurement system raster pattern distortion factor measuring instrument |
CN106500968A (en) * | 2016-11-16 | 2017-03-15 | 中国科学院云南天文台 | A kind of method based on the theoretical detection telescope image quality of Young's double-slot interference |
CN106500968B (en) * | 2016-11-16 | 2019-07-02 | 中国科学院云南天文台 | A method of telescope image quality is detected based on Young's double-slot interference theory |
Also Published As
Publication number | Publication date |
---|---|
JP2011164360A (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5691185B2 (en) | Lens array, wavefront sensor, and wavefront aberration measuring apparatus | |
US10234694B2 (en) | Spectrally encoded probes | |
JP4264465B2 (en) | Photodetection device for imaging | |
US8908087B2 (en) | Multiband camera, and multiband image capturing method | |
JP5406383B2 (en) | Imaging device | |
ES2466820T3 (en) | Image processing device | |
JP5764747B2 (en) | Polarization imaging device and endoscope | |
JP4455677B2 (en) | Photodetection device for imaging | |
WO2012017577A1 (en) | Imaging device and imaging method | |
US9784641B2 (en) | Lens array, wavefront sensor, wavefront measurement apparatus, shape measurement apparatus, aberration measurement apparatus, manufacturing method of optical element, and manufacturing method of optical device | |
CN102494873B (en) | Method for measuring focal length of micro-lens array | |
JP4495942B2 (en) | Imaging optical system, image forming apparatus, printer and image reading apparatus | |
JP2008249909A (en) | Imaging apparatus and optical system | |
JP2010212625A (en) | Solid-state imaging element | |
CN104570170A (en) | Optical element array, photoelectric conversion apparatus, and image pickup system | |
JP2015166686A (en) | photoelectric encoder | |
US9651365B2 (en) | Optical positioning sensor | |
JP2008286816A (en) | Focus detection optical system and imaging apparatus using the same | |
WO2013114725A1 (en) | Optical system for stereo-endoscope | |
JP2011030213A (en) | Image sensor | |
EP4044233A1 (en) | Spectral element array, imaging element, and imaging device | |
JPS58150920A (en) | Focus detector | |
JPWO2020071253A1 (en) | Imaging device | |
JP2006284563A (en) | Photoelectric encoder | |
JP2005268356A (en) | Solid state imaging element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140305 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5691185 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |