JP5690635B2 - Nonvolatile semiconductor memory device and method of manufacturing the same - Google Patents

Nonvolatile semiconductor memory device and method of manufacturing the same Download PDF

Info

Publication number
JP5690635B2
JP5690635B2 JP2011084216A JP2011084216A JP5690635B2 JP 5690635 B2 JP5690635 B2 JP 5690635B2 JP 2011084216 A JP2011084216 A JP 2011084216A JP 2011084216 A JP2011084216 A JP 2011084216A JP 5690635 B2 JP5690635 B2 JP 5690635B2
Authority
JP
Japan
Prior art keywords
metal
perovskite oxide
oxygen
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011084216A
Other languages
Japanese (ja)
Other versions
JP2012222059A (en
Inventor
木下 健太郎
健太郎 木下
明紘 花田
明紘 花田
勝彦 松原
勝彦 松原
貴博 福原
貴博 福原
悟 岸田
悟 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2011084216A priority Critical patent/JP5690635B2/en
Publication of JP2012222059A publication Critical patent/JP2012222059A/en
Application granted granted Critical
Publication of JP5690635B2 publication Critical patent/JP5690635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

本発明は、不揮発性半導体記憶装置および同装置の製造方法に係り、特に、電圧の印加により抵抗値の変化を利用する抵抗変化型不揮発性半導体記憶装置および同装置の製造方法に関する。   The present invention relates to a nonvolatile semiconductor memory device and a method for manufacturing the same, and more particularly to a variable resistance nonvolatile semiconductor memory device that utilizes a change in resistance value by applying a voltage and a method for manufacturing the same.

新たなメモリ素子として、RRAM(Resistance Random Access Memory)と呼ばれる不揮発性半導体記憶装置が注目されている。RRAMは、抵抗値が異なる複数の抵抗状態を記憶し、外部から電気的刺激を与えることにより抵抗状態が変化する抵抗記憶素子を用い、抵抗記憶素子の高抵抗状態と低抵抗状態とを例えば情報の“0”と“1”とに対応づけることにより、メモリ素子として利用するものである。RRAMは、高速性、大容量性、低消費電力性等、そのポテンシャルの高さから、その将来性が期待されている。   As a new memory element, a nonvolatile semiconductor memory device called RRAM (Resistance Random Access Memory) has attracted attention. The RRAM stores a plurality of resistance states having different resistance values, uses a resistance memory element that changes its resistance state by applying an electrical stimulus from the outside, and uses, for example, information on a high resistance state and a low resistance state of the resistance memory element. By associating with "0" and "1", the memory element is used. The future of RRAM is expected because of its high potential such as high speed, large capacity, and low power consumption.

抵抗記憶素子は、電圧の印加により抵抗状態が変化する抵抗記憶材料を一対の電極間に狭持したものである。抵抗記憶材料としては、代表的なものとして遷移金属を含む酸化物材料が知られており、電気的特性の違いから大きく2つに分類することができる。   In the resistance memory element, a resistance memory material whose resistance state is changed by application of a voltage is sandwiched between a pair of electrodes. As a typical resistance memory material, an oxide material containing a transition metal is known, and can be roughly classified into two types depending on the difference in electrical characteristics.

1つは、高抵抗状態と低抵抗状態との間で抵抗状態を変化するために互いに異なる極性の電圧を用いるものであり、クロム(Cr)等の不純物を微量にドープしたSrTiO3やSrZrO3、或いは超巨大磁気抵抗(CMR:Colossal Magneto-Resistance)を示すPr1-xCaxMnO3やLa1-xCaxMnO3等が該当する。このような双極性の材料を用いたRRAMは、例えば特許文献1、特許文献2、非特許文献1又は非特許文献2に記載されている。 One is to use voltages having different polarities in order to change the resistance state between a high resistance state and a low resistance state, and SrTiO 3 or SrZrO 3 doped with a small amount of impurities such as chromium (Cr). Alternatively, Pr 1-x Ca x MnO 3 , La 1-x Ca x MnO 3, or the like exhibiting a giant magnetic resistance (CMR) is applicable. An RRAM using such a bipolar material is described in Patent Document 1, Patent Document 2, Non-Patent Document 1, or Non-Patent Document 2, for example.

もう1つは、高抵抗状態と低抵抗状態との間で抵抗状態を変化するために同じ極性の電圧を用いるものであり、例えばNiOxやTiOxのような単一の遷移金属の酸化物等が該当する。このような単極性の材料を用いたRRAMは、例えば非特許文献3に記載されている。 The other is to use a voltage of the same polarity to change the resistance state between a high resistance state and a low resistance state, for example a single transition metal oxide such as NiO x or TiO x . Etc. An RRAM using such a unipolar material is described in Non-Patent Document 3, for example.

米国特許第6473332号明細書US Pat. No. 6,473,332 特開2005−025914号公報JP 2005-025914 A

A. Beck et al., Appl.Phys. Lett. Vol. 77, p. 139 (2001)A. Beck et al., Appl.Phys. Lett.Vol. 77, p. 139 (2001) W. W. Zhuang et al.,Tech. Digest IEDM 2002, p.193W. W. Zhuang et al., Tech. Digest IEDM 2002, p.193 I. G. Baek et al.,Tech. Digest IEDM 2004, p.587I. G. Baek et al., Tech. Digest IEDM 2004, p. 587

電極/ペロブスカイト酸化物/電極なる構造において、上下電極間に電圧を印加することで生じる抵抗変化現象は、高抵抗状態と低抵抗状態の抵抗値の比が精々一桁程度と小さく、データ読み出しの際、読み出し時の抵抗の高低を識別する上で不利となっている。前記電極/ペロブスカイト酸化物/電極構造において上下電極間に印加する電圧の絶対値或いは印加電圧パルスのパルス幅を変えることで抵抗値の制御が可能であり、電圧の絶対値が大きいほど或いは電圧パルスのパルス幅が広いほど、高抵抗状態の抵抗値はより高く、
低抵抗状態の抵抗値はより低くすることが出来、この特性を利用することでメモリの多値化が可能である。しかし、前述のように、高抵抗状態と低抵抗状態の抵抗値の比が小さいという事実が多値応用の妨げとなっている。
In the electrode / perovskite oxide / electrode structure, the resistance change phenomenon that occurs when a voltage is applied between the upper and lower electrodes is such that the ratio of the resistance value between the high resistance state and the low resistance state is as small as an order of magnitude. However, this is disadvantageous in identifying the level of resistance during reading. In the electrode / perovskite oxide / electrode structure, the resistance value can be controlled by changing the absolute value of the voltage applied between the upper and lower electrodes or the pulse width of the applied voltage pulse. The wider the pulse width, the higher the resistance value in the high resistance state,
The resistance value in the low resistance state can be made lower, and by using this characteristic, the memory can be multi-valued. However, as described above, the fact that the ratio of the resistance value between the high resistance state and the low resistance state is small hinders multivalue application.

また、この構造を多数作製してメモリ素子として用いる場合、例えば、同一ウエハ上にフォトリソグラフィー等を利用して電極/ペロブスカイト酸化物/電極なる構造を多数作製した場合、ウエハの周辺と、中心に位置する構造とでは前記高抵抗と低抵抗の比を含むメモリ特性に差異が生じることがある。この素子間ばらつきを抑制する方法は現在までのところ確立されておらず、メモリ素子としての大容量化を妨げる要因となっている。   In addition, when a large number of such structures are manufactured and used as a memory element, for example, when a large number of electrode / perovskite oxide / electrode structures are formed on the same wafer using photolithography or the like, the periphery and center of the wafer are formed. There may be a difference in the memory characteristics including the ratio of the high resistance and the low resistance with the located structure. A method for suppressing the variation between the elements has not been established so far, and is a factor that hinders an increase in capacity as a memory element.

本発明の目的は、高抵抗状態と低抵抗状態の抵抗値の比を大きくし得る素子構造および同素子の製造方法及び素子間ばらつきの低減方法を提供することで、読み出しエラーの効果的な防止と多値応用、更に、メモリ素子の大容量化を可能とすることにある。   An object of the present invention is to effectively prevent a read error by providing an element structure capable of increasing a resistance value ratio between a high resistance state and a low resistance state, a method for manufacturing the element, and a method for reducing variation between elements. And multi-value application, and further to increase the capacity of the memory element.

本発明請求項1に係る発明は、Bi 2 Sr 2 CaCu 2 8+δ よりなるペロブスカイト酸化物の一面に当該ペロブスカイト酸化物における酸化のギブズエネルギーより小なる酸化のギブズエネルギーを有する金属が設けられるとともに、前記ペロブスカイト酸化物から前記金属へ当該ペロブスカイト酸化物の酸素が移動することで当該金属の酸化と当該ペロブスカイト酸化物の還元が進行するために必要な活性化エネルギー以上のエネルギーが与えられるように加熱することによって得られる酸素欠乏層が前記ペロブスカイト酸化物の前記金属と接触した近傍の領域に存在するようになし、前記金属よりなる一方の電極と前記酸素欠乏層を介して対となる他方の電極間の電圧−電流特性のヒステリシス特性を利用することを特徴とする不揮発性半導体記憶装置を提供する。なお、本書においては、ペロブスカイト型或いは層状ペロブスカイト型の結晶構造を有する金属酸化物を総称して、「ペロブスカイト酸化物」という。 Invention, a metal having a Bi 2 Sr 2 CaCu 2 O 8 + Gibbs energy of small becomes oxidized than Gibbs energy of oxidation in the perovskite oxide on one surface of the perovskite oxide consisting of δ is provided according to the present invention according to claim 1 At the same time, the oxygen of the perovskite oxide moves from the perovskite oxide to the metal, so that the energy higher than the activation energy required for the oxidation of the metal and the reduction of the perovskite oxide to proceed is given. An oxygen-deficient layer obtained by heating is present in a region in the vicinity of the perovskite oxide in contact with the metal, and the other electrode paired via the one electrode made of the metal and the oxygen-deficient layer Non-volatile, using the hysteresis characteristics of voltage-current characteristics between electrodes To provide a semiconductor memory device. In this document, metal oxides having a perovskite type or layered perovskite type crystal structure are collectively referred to as “perovskite oxide”.

本発明請求項2に係る発明は、ペロブスカイト酸化物の一面に当該ペロブスカイト酸化物における酸化のギブズエネルギーより小なる酸化のギブズエネルギーを有する金属を設けた後、前記ペロブスカイト酸化物から前記金属へ当該ペロブスカイト酸化物の酸素が移動することで当該金属の酸化と当該ペロブスカイト酸化物の還元が進行するために必要な活性化エネルギー以上のエネルギーが与えられるように、Ar、He等の不活性ガス又はN ガス中で加熱することによって、前記ペロブスカイト酸化物の前記金属と接触した近傍の領域に酸素欠乏層を作るようになし、前記金属よりなる一方の電極と前記酸素欠乏層を介して対となる他方の電極を設けることを特徴とする不揮発性半導体記憶装置の製造方法を提供する。 According to the second aspect of the present invention, a metal having an oxidation Gibbs energy smaller than the oxidation Gibbs energy in the perovskite oxide is provided on one surface of the perovskite oxide, and then the perovskite oxide is transferred from the perovskite oxide to the metal. An inert gas such as Ar or He or N 2 is provided so that an energy higher than the activation energy necessary for the oxidation of the metal and the reduction of the perovskite oxide to proceed due to the movement of oxygen in the oxide. By heating in gas , an oxygen-deficient layer is formed in the vicinity of the perovskite oxide in contact with the metal, and one electrode made of the metal and the other paired via the oxygen-deficient layer A method for manufacturing a nonvolatile semiconductor memory device is provided.

本発明請求項3に係る発明は、記金属は、Al、Cu、Ti、Ni、Ta、V、Cr、Sb、Mn、Fe、Co、Zn、Hf、Nb、Mo、Sn、Siのいずれか1つ或いはその合金より選択された物質であることを特徴とする請求項1に記載の不揮発性半導体記憶装置を提供する。 The invention according to the present invention claimed in claim 3, prior Symbol metal is either Al, Cu, Ti, Ni, Ta, V, Cr, Sb, Mn, Fe, Co, Zn, Hf, Nb, Mo, Sn, of Si The nonvolatile semiconductor memory device according to claim 1, wherein the nonvolatile semiconductor memory device is a material selected from one or an alloy thereof.

本発明請求項4に係る発明は、前記ペロブスカイト酸化物は、Bi2Sr2CuO6+δ、Bi2Sr2CaCu28+δ、Bi2Sr2Ca2Cu310+δ、YBa2Cu37-δ、La2-xBaxCuO4、TlBa2Can-1Cun2n+3(n=1、2、3、4、5)、Tl2Ba2Can-1Cun2n+4(n=1、2、3、4)、HgBa2YCan-1Cun2n+2+δ(n=1、2、3、4、5)、La2-xSrxCuO4、Nd2-xCexCuO4、La2-xSrxCuO4のいずれか1つより選択された物質であり、前記金属は、Al、Cu、Ti、Ni、Ta、V、Cr、Sb、Mn、Fe、Co、Zn、Hf、Nb、Mo、Sn、Siのいずれか1つ或いはその合金より選択された物質であることを特徴とする請求項2に記載の不揮発性半導体記憶装置の製造方法を提供する。
In the invention according to claim 4, the perovskite oxide may be Bi 2 Sr 2 CuO 6 + δ , Bi 2 Sr 2 CaCu 2 O 8 + δ , Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ , YBa. 2 Cu 3 O 7-δ, La 2-x Ba x CuO 4, TlBa 2 Ca n-1 Cu n O 2n + 3 (n = 1,2,3,4,5), Tl 2 Ba 2 Ca n- 1 Cu n O 2n + 4 ( n = 1,2,3,4), HgBa 2 YCa n-1 Cu n O 2n + 2 + δ (n = 1,2,3,4,5), La 2- x Sr x CuO 4, Nd 2 -x Ce x CuO 4, La is 2-x Sr x from any one selected substance of CuO 4, wherein the metal, Al, Cu, Ti, Ni , Ta, The substance according to claim 2, wherein the substance is selected from V, Cr, Sb, Mn, Fe, Co, Zn, Hf, Nb, Mo, Sn, Si, or an alloy thereof. To provide a method of manufacturing a nonvolatile semiconductor memory device.

本発明は、上記のような構成の不揮発性半導体記憶装置であり、従来の抵抗変化型半導体記憶装置に比し、高抵抗と低抵抗の比を大きくすることができ、従って読み出しの信頼度が向上し、多値応用に有利である。   The present invention is a non-volatile semiconductor memory device having the above-described configuration, which can increase the ratio of high resistance to low resistance as compared with the conventional resistance change type semiconductor memory device, and therefore, the read reliability is high. Improved and advantageous for multi-value applications.

また、記憶装置の使用目的に応じ材料の選択ができる。さらにまた、本件装置は加熱処理によって製造することができるので、半導体ウエハ面内の素子間のばらつきが低減され、ひいては大容量化を可能にするものである。   Further, materials can be selected according to the purpose of use of the storage device. Furthermore, since the present apparatus can be manufactured by heat treatment, variation between elements in the semiconductor wafer surface is reduced, and as a result, the capacity can be increased.

(a)、(b)、(c)、(d)は本発明の一実施例における装置の主要部の製造方法を説明するための断面図である。(a), (b), (c), (d) is sectional drawing for demonstrating the manufacturing method of the principal part of the apparatus in one Example of this invention. (a)は同上実施例によって得られた装置の電流−電圧特性を示す図であり、(b)は比較のために掲げた別装置の電流−電圧特性を示す図である。(a) is a figure which shows the current-voltage characteristic of the apparatus obtained by the Example same as the above, (b) is a figure which shows the current-voltage characteristic of another apparatus hung up for comparison. 本発明を説明するためのエネルギー準位を示す図である。It is a figure which shows the energy level for demonstrating this invention. (a)、(b)、(c)は本発明の作用効果を説明するための図である。(a), (b), (c) is a figure for demonstrating the effect of this invention. 特定ペロブスカイト酸化物の酸化・還元の程度により抵抗率が変化する状況を示す図である。It is a figure which shows the condition from which resistivity changes with the grade of the oxidation and reduction | restoration of a specific perovskite oxide. 本発明の他の実施例における装置の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the apparatus in the other Example of this invention.

以下、本発明の実施例につき、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、図1(a)に示すように、ペロブスカイト酸化物の一例であるBi-2212(銅酸化物超伝導体Bi2Sr2CaCu28+δ)の両面にAl電極とPt電極とをそれぞれ 100nm成膜し、Al/Bi-2212/Pt構造を作製した。Al、Ptの成膜にはスパッタ法を用いた。成膜方法は蒸着法やCVD法等であっても良い。 First, as shown in FIG. 1A, an Al electrode and a Pt electrode are formed on both surfaces of Bi-2212 (copper oxide superconductor Bi 2 Sr 2 CaCu 2 O 8 + δ ) which is an example of a perovskite oxide. Each 100 nm film was formed to produce an Al / Bi-2212 / Pt structure. Sputtering was used to form Al and Pt. The film forming method may be a vapor deposition method or a CVD method.

図1(a)で作製したものをAr雰囲気中において、100、200、300、400、500℃でそれぞれ1時間ずつ熱処理した(図1(b))。ここで、Arの代わりにHe等の不活性ガスを使用しても良い。不活性ガスを使用する主たる理由は電極の酸化を防ぐことにある。したがって、不活性ガスに限られず、例えばNガス(窒素ガス)が寧ろよい場合がある。すなわち、電極金属としてTiを使用した場合、金属がBi-2212と接している側では酸化が進み、金属表面では窒化物が形成されるが、Tiの窒化物はTiのままで使用するより安定な電極として使用可能である。 1A was heat-treated at 100, 200, 300, 400, and 500 ° C. for 1 hour in an Ar atmosphere (FIG. 1B). Here, an inert gas such as He may be used instead of Ar. The main reason for using an inert gas is to prevent electrode oxidation. Therefore, the gas is not limited to the inert gas, and N 2 gas (nitrogen gas) may be preferable. That is, when Ti is used as the electrode metal, oxidation proceeds on the side where the metal is in contact with Bi-2212, and nitride is formed on the metal surface, but Ti nitride is more stable than using Ti as it is. It can be used as a simple electrode.

(a)、 (b)の工程を経ることで、Al電極がBi-2212から酸素を奪うことでAlOxを形成し、Bi-2212のAl電極と接触した近傍の領域には酸素欠乏(還元)層が形成される(図1(c))。   Through the steps (a) and (b), the Al electrode takes Al from Bi-2212 to form AlOx, and the region in contact with the Al electrode of Bi-2212 has an oxygen deficiency (reduction). A layer is formed (FIG. 1 (c)).

次に、図1(d)に示すように、Pt電極を接地し、Al電極にバイアス電圧Vを印加することで、 (a)−(c)の工程で得られた素子のI-V特性を測定した。   Next, as shown in FIG. 1 (d), the Pt electrode is grounded and the bias voltage V is applied to the Al electrode, thereby measuring the IV characteristics of the element obtained in the steps (a) to (c). did.

図2(a)に図1(d)で測定されたI-V特性を示す。図1(c)の工程におけるアニール温度を増加させると共にヒステリシスの開きが大きくなり、高抵抗と低抵抗の比(= 高抵抗/低抵抗)が増加した。   FIG. 2 (a) shows the IV characteristics measured in FIG. 1 (d). As the annealing temperature was increased in the process of FIG. 1 (c), the hysteresis opening became larger, and the ratio of high resistance to low resistance (= high resistance / low resistance) increased.

比較のため、上下両方の電極にPtを用いた場合に測定されたI-V特性を図2(b)に示す。as-prepared(作製したままの状態)から400℃アニールの試料までヒステリシスは殆ど確認されず、アニール温度に拘らず類似のI-V特性が観測された。また、注意すべき点として、Al/Bi-2212/Pt構造にAr雰囲気にて500℃, 1時間の熱処理を施した場合には、 Alの酸化が進行し過ぎてAlOxがAl2O3となり、高い絶縁性のためメモリ素子としての機能を果たさなかった。 For comparison, FIG. 2 (b) shows the IV characteristics measured when Pt is used for both the upper and lower electrodes. Almost no hysteresis was observed from as-prepared (as-made) to 400 ° C annealed samples, and similar IV characteristics were observed regardless of annealing temperature. It should also be noted that when Al / Bi-2212 / Pt structure is heat-treated at 500 ° C. for 1 hour in an Ar atmosphere, Al oxidation proceeds too much and AlO x becomes Al 2 O 3. Therefore, the function as a memory element was not achieved due to high insulation.

要するところ、加熱処理は、Bi-2212(ペロブスカイト酸化物)からAl(金属)へ当該Bi-2212(ペロブスカイト酸化物)の酸素が移動することで当該Al(金属)の酸化と当該Bi-2212(ペロブスカイト酸化物)の還元が進行するために必要な活性化エネルギー以上のエネルギーが与えられるように加熱することが必要である。併せて、Al(金属)の過剰な酸化により酸化領域の抵抗がBi-2212(ペロブスカイト酸化物)の酸素欠乏層の抵抗に比べて高くなり、Bi-2212(ペロブスカイト酸化物)への電圧印加を妨げることで、Bi-2212(ペロブスカイト酸化物)における高抵抗から低抵抗或いは低抵抗から高抵抗への抵抗変化を妨げるエネルギー未満であることも実用上大切である。   In short, the heat treatment is performed by transferring the oxygen of the Bi-2212 (perovskite oxide) from Bi-2212 (perovskite oxide) to Al (metal), thereby oxidizing the Al (metal) and the Bi-2212 ( It is necessary to heat so that an energy higher than the activation energy necessary for the reduction of the perovskite oxide) to proceed. In addition, excessive oxidation of Al (metal) increases the resistance of the oxidized region compared to the resistance of the oxygen-deficient layer of Bi-2212 (perovskite oxide), and voltage application to Bi-2212 (perovskite oxide) It is also practically important that the energy is less than that which prevents the resistance change from high resistance to low resistance or low resistance to high resistance in Bi-2212 (perovskite oxide).

図3にAl-TE(TEは上部電極を意味し、以下同じ。)/Bi-2212界面におけるAl + Bi2Sr2CaCu2O8+δ1 (α)とAl2O3 + Bi2Sr2CaCu2O8+δ2 (β)のエネルギー準位を示す。状態αから酸素欠乏層が形成されるβへ転移するためには活性化エネルギーEaを越える必要があり、その反応速度v = Aexp(-Ea/kBT)はアニール温度Tに依存する。一方で、Pt-TE/Bi-2212やBi-2212/Pt-BE(BEは下部電極を意味し、以下同じ。)界面ではPtが酸化し難いため、酸素の移動が生じ難い。Al-TE/Bi-2212/Pt-BE構造のas-prepared試料の抵抗がPt-TE/Bi-2212/Pt-BE構造に比べて高いのはAl堆積時のスパッタリングエネルギー(プラズマの輻射熱とスパッタ粒子の運動エネルギー)により、α ⇒ βの反応が一部進行したためである。 Fig. 3 shows Al-TE (TE means the upper electrode, the same shall apply hereinafter) / Bi-2212 interface Al + Bi 2 Sr 2 CaCu 2 O 8 + δ1 (α) and Al 2 O 3 + Bi 2 Sr 2 Indicates the energy level of CaCu 2 O 8 + δ2 (β). In order to transition from the state α to β where the oxygen-deficient layer is formed, the activation energy E a needs to be exceeded, and the reaction rate v = Aexp (−E a / k B T) depends on the annealing temperature T . On the other hand, at the Pt-TE / Bi-2212 and Bi-2212 / Pt-BE (BE means the lower electrode, the same shall apply hereinafter) interface, Pt is difficult to oxidize, and oxygen migration is unlikely to occur. The resistance of as-prepared specimens of Al-TE / Bi-2212 / Pt-BE structure is higher than that of Pt-TE / Bi-2212 / Pt-BE structure. Sputtering energy during Al deposition (plasma radiant heat and sputtering) This is because the reaction of α ⇒ β partially progressed due to the kinetic energy of the particles.

図4に酸素欠乏(還元)層(Oxygen-depleted layer)の形成及びそれにより、Alに正バイアスを印加することで低抵抗、負バイアスを印加することで高抵抗のスイッチングが生じるようになる理由を示す。   Fig. 4 shows the reason for the formation of an oxygen-depleted layer (Oxygen-depleted layer) and the resulting high resistance switching by applying a positive bias to Al and applying a negative bias to Al. Indicates.

最初に、ギブズエネルギーの低い金属(Al)をBi-2212単結晶上に堆積することで、AlがBi-2212から酸素を奪って酸素欠乏層が形成され、HRS(高抵抗状態)になる(図4(a))。   First, by depositing a metal (Al) with low Gibbs energy on a Bi-2212 single crystal, Al takes oxygen from Bi-2212 and forms an oxygen-deficient layer, resulting in HRS (high resistance state) ( Fig. 4 (a)).

更に、アニール処理を施すことでAlによる酸素欠乏層の還元が促進され、抵抗が増加する。続いて、Alに正電圧を印加するとBi-2212単結晶内の酸素イオンがクーロン力でAl側に引き寄せられて酸素欠乏層の酸化が進み、酸素欠乏層が修復されるためLRS(低抵抗状態)になる(図4(b))。再びAlに負電圧を印加すると、酸素イオンがBE側に移動し、Bi-2212に再度酸素欠乏層が形成され、HRSになる(図4(c))。   Furthermore, the annealing treatment promotes the reduction of the oxygen-deficient layer by Al, and the resistance increases. Subsequently, when a positive voltage is applied to Al, oxygen ions in the Bi-2212 single crystal are attracted to the Al side by Coulomb force, the oxidation of the oxygen-deficient layer proceeds, and the oxygen-deficient layer is repaired. (Fig. 4 (b)). When a negative voltage is applied to Al again, oxygen ions move to the BE side, and an oxygen-deficient layer is formed again on Bi-2212, resulting in HRS (FIG. 4 (c)).

従って、Bi-2212単結晶を用いたReRAMの抵抗スイッチングは酸素イオンの移動によるAl電極近傍のBi-2212の酸化/還元によって生じると考えられる。酸素欠乏層中の酸素濃度はアニール温度の増加と共に減少し、高抵抗状態の抵抗を増加させる。故に、アニール温度の増加によってRHRS /RLRSは増加する。 Therefore, it is considered that resistance switching of ReRAM using a Bi-2212 single crystal is caused by oxidation / reduction of Bi-2212 near the Al electrode due to the movement of oxygen ions. The oxygen concentration in the oxygen-deficient layer decreases as the annealing temperature increases, increasing the resistance in the high resistance state. Therefore, R HRS / R LRS increases with increasing annealing temperature.

補足説明として、Bi2Sr2CaCu2O8+δは酸化/還元、即ちδの変化により抵抗率が大きく変化することを述べておく。 As a supplementary explanation, it is stated that Bi 2 Sr 2 CaCu 2 O 8 + δ has a large change in resistivity due to oxidation / reduction, that is, a change in δ.

図5にWatanabe等によって報告されたBi2Sr2CaCu2O8+δの抵抗率のδ依存性を示す。δの減少と共に抵抗率が増加している。 FIG. 5 shows the δ dependence of the resistivity of Bi 2 Sr 2 CaCu 2 O 8 + δ reported by Watanabe et al. The resistivity increases as δ decreases.

図4(a)において、Bi-2212中に酸素欠乏(還元)層、即ちδの減少が生じることで、当該領域が高抵抗化し、高抵抗状態が実現する。一方、図4(b)では、Al電極に正バイアスを印加することでBi-2212単結晶内の酸素イオンがクーロン力でAl側に引き寄せられて酸素欠乏層の酸化が進み, 酸素欠乏層が修復される、即ちδがある程度回復するためLRSになる。続いて、図4(c)では、Alに負電圧を印加することで, 酸素イオンがBE側に移動し、Bi-2212に再度酸素欠乏層が形成される、即ちδが減少するため、HRSとなる。   In FIG. 4 (a), an oxygen-deficient (reduced) layer, ie, a decrease in δ occurs in Bi-2212, so that the region has a high resistance and a high resistance state is realized. On the other hand, in FIG. 4 (b), by applying a positive bias to the Al electrode, oxygen ions in the Bi-2212 single crystal are attracted to the Al side by Coulomb force, and the oxidation of the oxygen-deficient layer proceeds. Since it is repaired, that is, δ recovers to some extent, it becomes LRS. Subsequently, in FIG. 4 (c), when a negative voltage is applied to Al, oxygen ions move to the BE side, and an oxygen-deficient layer is formed again in Bi-2212, that is, δ decreases. It becomes.

なお、本実施例においてAl電極は次の材料(Alも含めて)、Al、Cu、Ti、Ni、Ta、V、Cr、Sb、Mn、Fe、Co、Zn、Hf、Nb、Mo、Sn、Siのいずれか1つ或いはその合金
であっても良い。
In this embodiment, the Al electrode is made of the following materials (including Al): Al, Cu, Ti, Ni, Ta, V, Cr, Sb, Mn, Fe, Co, Zn, Hf, Nb, Mo, Sn Any one of Si and an alloy thereof may be used.

また、Pt電極は次の材料(Ptも含めて)、即ち、Pt、Au、Ag、Pd、Irのいずれか1つ或いはその合金であっても良い。   Further, the Pt electrode may be any one of the following materials (including Pt), that is, any one of Pt, Au, Ag, Pd, and Ir, or an alloy thereof.

更に、Bi-2212は次の材料(Bi-2212も含めて)であっても良い。即ち、Bi2Sr2CuO6+δBi2Sr2CaCu28+δ、Bi2Sr2Ca2Cu310+δ、YBa2Cu37-δLa2-xBaxCuO4、TlBa2Can-1Cun2n+3(n=1、2、3、4、5)、Tl2Ba2Can-1Cun2n+4(n=1、2、3、4)、HgBa2YCan-1Cun2n+2+δ(n=1、2、3、4、5)、La2-xSrxCuO4、Nd2-xCexCuO4、La2-xSrxCuO4、Pr1−xCaxMnO3(PCMO)、SrTiO3 である。 Further, Bi-2212 may be the following materials (including Bi-2212). That is, Bi 2 Sr 2 CuO 6 + δ , Bi2 Sr 2 CaCu 2 O 8 + δ , Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ , YBa 2 Cu 3 O 7-δ , La2-x Ba x CuO 4 , TlBa 2 Ca n-1 Cu n O 2n + 3 (n = 1,2,3,4,5), Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4 (n = 1,2,3, 4), HgBa 2 YCa n- 1 Cu n O 2n + 2 + δ (n = 1,2,3,4,5), La 2-x Sr x CuO 4, Nd 2-x Ce x CuO 4, La 2-x Sr x CuO 4 , Pr 1-xCax MnO 3 (PCMO), SrTiO 3 .

これらの材料から、図3に基づいて採用するペロブスカイト酸化物における酸化のギブズエネルギーより小なる酸化のギブズエネルギーを有する金属という組み合わせを選択し、Ea以上の温度に加熱することで、Al/Bi2212/Ptと同等の機能を満たす。 A combination of metals having an oxidation Gibbs energy smaller than the oxidation Gibbs energy in the perovskite oxide employed based on FIG. 3 is selected from these materials, and heated to a temperature equal to or higher than E a to obtain Al / Bi2212. / Same function as Pt.

電極の位置関係についてもAl電極とPt電極、即ち酸化物還元用電極と酸化反応に対して不活性な電極は必ずしも酸化物の表裏に配置されている必要はない。例えば、図6に示すように酸化物の同一平面上に配置されていても良い。   Regarding the positional relationship of the electrodes, the Al electrode and the Pt electrode, that is, the oxide reducing electrode and the electrode inactive to the oxidation reaction do not necessarily need to be arranged on the front and back of the oxide. For example, as shown in FIG. 6, it may be arranged on the same plane of the oxide.

Claims (4)

Bi 2 Sr 2 CaCu 2 8+δ よりなるペロブスカイト酸化物の一面に当該ペロブスカイト酸化物における酸化のギブズエネルギーより小なる酸化のギブズエネルギーを有する金属が設けられるとともに、前記ペロブスカイト酸化物から前記金属へ当該ペロブスカイト酸化物の酸素が移動することで当該金属の酸化と当該ペロブスカイト酸化物の還元が進行するために必要な活性化エネルギー以上のエネルギーが与えられるように加熱することによって得られる酸素欠乏層が前記ペロブスカイト酸化物の前記金属と接触した近傍の領域に存在するようになし、前記金属よりなる一方の電極と前記酸素欠乏層を介して対となる他方の電極間の電圧−電流特性のヒステリシス特性を利用することを特徴とする不揮発性半導体記憶装置。 With the metal having a Bi 2 Sr 2 CaCu Gibbs energy of small becomes oxidized than Gibbs energy of oxidation in the perovskite oxide on one surface of the perovskite oxide consisting of 2 O 8 + δ is provided, to the metal from the perovskite oxide There is an oxygen-deficient layer obtained by heating so that an energy higher than the activation energy necessary for the oxidation of the metal and the reduction of the perovskite oxide to proceed as the oxygen of the perovskite oxide moves. Hysteresis characteristics of voltage-current characteristics between the one electrode made of the metal and the other electrode paired via the oxygen-deficient layer so as to exist in the vicinity of the perovskite oxide in contact with the metal A nonvolatile semiconductor memory device characterized by using the above. ペロブスカイト酸化物の一面に当該ペロブスカイト酸化物における酸化のギブズエネルギーより小なる酸化のギブズエネルギーを有する金属を設けた後、前記ペロブスカイト酸化物から前記金属へ当該ペロブスカイト酸化物の酸素が移動することで当該金属の酸化と当該ペロブスカイト酸化物の還元が進行するために必要な活性化エネルギー以上のエネルギーが与えられるように、Ar、He等の不活性ガス又はN ガス中で加熱することによって、前記ペロブスカイト酸化物の前記金属と接触した近傍の領域に酸素欠乏層を作るようになし、前記金属よりなる一方の電極と前記酸素欠乏層を介して対となる他方の電極を設けることを特徴とする不揮発性半導体記憶装置の製造方法。 After providing a metal having an oxidation Gibbs energy smaller than the oxidation Gibbs energy in the perovskite oxide on one surface of the perovskite oxide, oxygen of the perovskite oxide moves from the perovskite oxide to the metal The perovskite is heated by heating in an inert gas such as Ar or He or N 2 gas so that energy higher than the activation energy necessary for the oxidation of the metal and the reduction of the perovskite oxide to proceed is given. An oxygen-deficient layer is formed in a region in the vicinity of the oxide in contact with the metal, and one electrode made of the metal and the other electrode paired via the oxygen-deficient layer are provided. For manufacturing a conductive semiconductor memory device. 記金属は、Al、Cu、Ti、Ni、Ta、V、Cr、Sb、Mn、Fe、Co、Zn、Hf、Nb、Mo、Sn、Siのいずれか1つ或いはその合金より選択された物質であることを特徴とする請求項1に記載の不揮発性半導体記憶装置。 Before SL metals, Al, Cu, Ti, Ni , selected Ta, V, Cr, Sb, Mn, Fe, Co, Zn, Hf, Nb, Mo, Sn, from any one or an alloy of Si The nonvolatile semiconductor memory device according to claim 1, wherein the nonvolatile semiconductor memory device is a substance. 前記ペロブスカイト酸化物は、Bi2Sr2CuO6+δ、Bi2Sr2CaCu28+δ、Bi2Sr2Ca2Cu310+δ、YBa2Cu37-δ、La2-xBaxCuO4、TlBa2Can-1Cun2n+3(n=1、2、3、4、5)、Tl2Ba2Can-1Cun2n+4(n=1、2、3、4)、HgBa2YCan-1Cun2n+2+δ(n=1、2、3、4、5)、La2-xSrxCuO4、Nd2-xCexCuO4、La2-xSrxCuO4のいずれか1つより選択された物質であり、前記金属は、Al、Cu、Ti、Ni、Ta、V、Cr、Sb、Mn、Fe、Co、Zn、Hf、Nb、Mo、Sn、Siのいずれか1つ或いはその合金より選択された物質であることを特徴とする請求項2に記載の不揮発性半導体記憶装置の製造方法。 The perovskite oxides are Bi 2 Sr 2 CuO 6 + δ , Bi 2 Sr 2 CaCu 2 O 8 + δ , Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ , YBa 2 Cu 3 O 7-δ , La 2 -x Ba x CuO 4, TlBa 2 Ca n-1 Cu n O 2n + 3 (n = 1,2,3,4,5), Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4 (n = 1,2,3,4), HgBa 2 YCa n- 1 Cu n O 2n + 2 + δ (n = 1,2,3,4,5), La 2-x Sr x CuO 4, Nd 2-x A material selected from one of Ce x CuO 4 and La 2 -x Sr x CuO 4 , wherein the metal is Al, Cu, Ti, Ni, Ta, V, Cr, Sb, Mn, Fe, 3. The method of manufacturing a nonvolatile semiconductor memory device according to claim 2, wherein the nonvolatile semiconductor memory device is a material selected from any one of Co, Zn, Hf, Nb, Mo, Sn, and Si or an alloy thereof. .
JP2011084216A 2011-04-06 2011-04-06 Nonvolatile semiconductor memory device and method of manufacturing the same Active JP5690635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084216A JP5690635B2 (en) 2011-04-06 2011-04-06 Nonvolatile semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084216A JP5690635B2 (en) 2011-04-06 2011-04-06 Nonvolatile semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012222059A JP2012222059A (en) 2012-11-12
JP5690635B2 true JP5690635B2 (en) 2015-03-25

Family

ID=47273274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084216A Active JP5690635B2 (en) 2011-04-06 2011-04-06 Nonvolatile semiconductor memory device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP5690635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056821B1 (en) * 2016-09-29 2018-11-23 Paris Sciences Et Lettres - Quartier Latin PERFECTIONAL ELECTROLYTE SUPER CAPACITOR
KR102049687B1 (en) * 2019-02-25 2019-11-27 연세대학교 산학협력단 Next Generation Non-Volatile Mott Memory Device using Characteristic of Transition Metal Oxides

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849891B1 (en) * 2003-12-08 2005-02-01 Sharp Laboratories Of America, Inc. RRAM memory cell electrodes
US20060171200A1 (en) * 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
ATE472157T1 (en) * 2004-05-03 2010-07-15 Unity Semiconductor Corp NON-VOLATILE PROGRAMMABLE MEMORY
JP4829502B2 (en) * 2005-01-11 2011-12-07 シャープ株式会社 Manufacturing method of semiconductor memory device
US20070048990A1 (en) * 2005-08-30 2007-03-01 Sharp Laboratories Of America, Inc. Method of buffer layer formation for RRAM thin film deposition
WO2007114099A1 (en) * 2006-03-30 2007-10-11 Nec Corporation Switching device and method for manufacturing switching device
US7569459B2 (en) * 2006-06-30 2009-08-04 International Business Machines Corporation Nonvolatile programmable resistor memory cell
US8264864B2 (en) * 2008-12-19 2012-09-11 Unity Semiconductor Corporation Memory device with band gap control
JP4881400B2 (en) * 2009-03-23 2012-02-22 株式会社東芝 Nonvolatile semiconductor memory device and screening method thereof
JP5186634B2 (en) * 2010-06-29 2013-04-17 シャープ株式会社 Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
JP2012222059A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
KR101257365B1 (en) Resistive RAM of having threshold switching operation and Method of fabricating the same
Panda et al. Perovskite oxides as resistive switching memories: a review
Lee et al. Low-power switching of nonvolatile resistive memory using hafnium oxide
JP4822287B2 (en) Nonvolatile memory device
CN100481389C (en) Programmable resistive RAM and manufacturing method thereof
US7943920B2 (en) Resistive memory structure with buffer layer
Li et al. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer
KR101457812B1 (en) 2-Terminal Switching Device Having Bipolar Switching Property, Fabrication Methods for the Same, and Resistance Memory Cross-Point Array Having the Same
KR20080052590A (en) Switching device
Chen et al. Resistance switching for RRAM applications
Shi et al. Pt/WO 3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing
Yu et al. Metal oxide resistive switching memory
US8749023B2 (en) Resistance-variable memory device and a production method therefor
CN101159309A (en) Method for implementing low power consumption resistance memory
KR102464065B1 (en) switching device and method of fabricating the same, and resistive random access memory having the switching device as selection device
JP5263856B2 (en) Switching element and manufacturing method thereof
US20140183432A1 (en) MoOx-Based Resistance Switching Materials
US20110253966A1 (en) Ionic-modulated dopant profile control in nanoscale switching devices
JP5690635B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR101481920B1 (en) Using metal-insulator transition selection device and nonvolatile memory cell including the same
WO2006101151A1 (en) Nonvolatile memory element
Mehonic et al. Resistive switching in oxides
JP2007335869A (en) NONVOLATILE VARIABLE RESISTANCE MEMORY DEVICE INCLUDING Cu2O
JP5476686B2 (en) Resistance change element and resistance change element manufacturing method
JP2013183040A (en) Nonvolatile semiconductor storage device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5690635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250