JP5689992B1 - Vertical axis type device that obtains rotational force from the kinetic force of fluid - Google Patents

Vertical axis type device that obtains rotational force from the kinetic force of fluid Download PDF

Info

Publication number
JP5689992B1
JP5689992B1 JP2014036770A JP2014036770A JP5689992B1 JP 5689992 B1 JP5689992 B1 JP 5689992B1 JP 2014036770 A JP2014036770 A JP 2014036770A JP 2014036770 A JP2014036770 A JP 2014036770A JP 5689992 B1 JP5689992 B1 JP 5689992B1
Authority
JP
Japan
Prior art keywords
rotating
rotating body
rotational force
fluid
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014036770A
Other languages
Japanese (ja)
Other versions
JP2015161223A (en
Inventor
本保康太
Original Assignee
本保 康太
本保 康太
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本保 康太, 本保 康太 filed Critical 本保 康太
Priority to JP2014036770A priority Critical patent/JP5689992B1/en
Application granted granted Critical
Publication of JP5689992B1 publication Critical patent/JP5689992B1/en
Publication of JP2015161223A publication Critical patent/JP2015161223A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

【課題】 流体の抗力を利用して回転力を得る垂直軸型の装置において、回転翼が流体の運動方向と逆方向に向かうときの逆抗力を最小限に抑えること。【解決手段】 回転翼が描く空間を回転軸および流体の運動方向に平行な仮想平面で2分した片方を覆いつつ、流体の抵抗を受けにい、流体の運動方向に追随する外形を備えた立体を、回転翼および回転軸に接触しない方法で、装置に回転自在に取り付ければよい。そこで前記立体に、回転翼が描く空間を挟み込む位置で2ヶ所の回転支点を設け、一方を装置を設置する基盤に固定した軸に、もう一方を前記固定した軸と同軸位置にありながら回転軸に接触しないように配した構築物に、回転自在に連結することにより、前記課題を解決する。なお前記「回転翼が描く空間を回転軸に平行な仮想平面で2分」とは、等2分とは限らず、前記立体の形状にもよるが、前記空間を遮蔽する適正な度合いは2分の1以上3分の2以内と考えられる。【選択図】図1PROBLEM TO BE SOLVED: To minimize a reverse drag when a rotor blade is directed in a direction opposite to a fluid movement direction in a vertical axis type device that obtains a rotational force by using a drag force of a fluid. SOLUTION: A space drawn by a rotor blade is covered with a rotation plane and a virtual plane parallel to the direction of fluid movement, and is divided into two, and has an outer shape that receives the resistance of the fluid and follows the direction of fluid movement. What is necessary is just to attach a solid | 3D rotatably to an apparatus by the method which does not contact a rotary blade and a rotating shaft. Therefore, two rotation fulcrums are provided on the solid body at a position where the space drawn by the rotor blades is sandwiched. The above-mentioned problem is solved by rotatably connecting to a structure arranged so as not to come into contact with. Note that “the space drawn by the rotating blades is two minutes on a virtual plane parallel to the rotation axis” is not necessarily equal to two minutes, and depending on the shape of the solid, the appropriate degree of shielding the space is 2 It is considered to be within 1/3 and within 2/3. [Selection] Figure 1

Description

本発明は、流体の運動力から回転力を得る装置のうち、流体からの抗力を受けて回転体を回転させる抗力利用型の装置であって、流体の運動方向に垂直な回転軸を持つ垂直軸型の装置に関する。   The present invention is a drag-utilization type device that rotates a rotating body in response to a drag force from a fluid among devices that obtain a rotation force from a fluid motion force, and has a vertical axis having a rotation axis perpendicular to the fluid motion direction. The present invention relates to a shaft type device.

流体からの抗力を受けて流体の運動力から回転力を得る垂直軸型装置のうち、回転翼が回転する時に描く空間の片側を遮蔽物で覆って、回転翼が流体の運動方向に逆行するときにはたらく逆抗力を打ち消すことで、正回転力を高める発想から生まれた発明として、流体が空気などの気体の分野では、特許第5024975号や特開2013−44323などの発明がある。しかし遮蔽物の構造や遮蔽物の方向を制御する仕組み、および遮蔽物を取り付ける構造において、本発明と大きな違いがある。   Among vertical axis type devices that obtain rotational force from the fluid's kinetic force in response to drag from the fluid, one side of the space drawn when the rotor blades rotate is covered with a shield, and the rotor blades go backward in the direction of fluid motion As inventions born out of the idea of increasing the normal rotational force by canceling the counter-repulsive force, there are inventions such as Japanese Patent No. 5024975 and Japanese Patent Application Laid-Open No. 2013-44323 in the field of gases such as air. However, there is a significant difference from the present invention in the structure of the shield, the mechanism for controlling the direction of the shield, and the structure for attaching the shield.

特許公報 特許第5024975号Patent Gazette Patent No. 5024975 公開特許公報 特許公開2013−44323Published Patent Gazette Patent Published 2013-44323

流体の抗力を利用して回転力を得る垂直軸型の装置において、回転翼が流体の運動方向と逆方向に向かうときの逆抗力を最小限に抑えること。   In a vertical axis type device that obtains rotational force by using the drag of the fluid, the reverse drag when the rotor blades go in the direction opposite to the direction of fluid movement is minimized.

回転翼が回転する時に描く空間のうち、回転翼が流体の運動方向と逆方向に向かう位置にある空間を遮蔽すれば、逆抗力が抑制され、流体の運動力を十分引き出すことができる。しかし流体の運動方向が変動する環境においては、前記空間の遮蔽位置を流体の運動方向に合わせて変える必要がある。本発明は前記空間の遮蔽位置を、流体の運動方向の変動に合わせて変える仕組みを導入することにより、前記課題を解決する。   Of the space that is drawn when the rotor blades rotate, if the rotor blades are shielded from the space in the direction opposite to the fluid movement direction, the reverse drag is suppressed and the fluid motion force can be sufficiently extracted. However, in an environment where the movement direction of the fluid varies, it is necessary to change the shielding position of the space according to the movement direction of the fluid. The present invention solves the above problem by introducing a mechanism for changing the shielding position of the space in accordance with a change in the direction of movement of the fluid.

前記仕組みを導入するには、回転翼が描く空間を回転軸および流体の運動方向に平行な仮想平面で2分した片方を覆いつつ、流体の抵抗を受けにい、流体の運動方向に追随する外形を備えた立体を、回転翼および回転軸に接触しない方法で、装置に回転自在に取り付ければよい。
そこで前記立体に、回転翼が描く空間を挟み込む位置で2ヶ所の回転支点を設け、一方を、装置を設置する基盤に固定した軸に、もう一方を、装置を設置する基盤に立脚しつつ回転軸に接触しないように配した構築物に、回転自在に連結することにより、前記課題を解決する。
なお前記「回転翼が描く空間を回転軸に平行な仮想平面で2分」とは、等2分とは限らず、前記立体の形状にもよるが、前記空間を遮蔽する適正な度合いは2分の1以上3分の2以内と考えられる。
In order to introduce the above mechanism, the space drawn by the rotor blade is covered with one of the two divided by a virtual plane parallel to the rotation axis and the fluid movement direction, and receives the resistance of the fluid, and follows the fluid movement direction. What is necessary is just to attach the solid | solid body provided with the external shape to the apparatus rotatably by the method which does not contact a rotary blade and a rotating shaft.
Therefore, the three-dimensional object is provided with two rotation fulcrums at the positions where the space drawn by the rotor blades is sandwiched, and one is rotated on the axis fixed to the base on which the device is installed and the other is based on the base on which the device is installed. The said subject is solved by connecting with the structure arrange | positioned so that it may not contact a shaft so that rotation is possible.
Note that “the space drawn by the rotating blades is two minutes on a virtual plane parallel to the rotation axis” is not necessarily equal to two minutes, and depending on the shape of the solid, the appropriate degree of shielding the space is 2 It is considered to be within 1/3 and within 2/3.

課題を解決するための手段を具体化した1番目の装置として以下提案する。
本装置(図1)は、垂直軸型の回転翼が流体からの抗力を受けて回転力を得る装置である。本装置は次の要素から成る。
1 本装置を設置する基盤に固定した固定軸。以下「固定中心軸」という。図2−a
2 中空円柱形の回転軸と、複数の回転翼と、回転力を外部装置に伝達する部品から成る回転体。以下「回転体」という。図2−b
3 回転体の回転翼が流体の抗力を受けて回転するときに描く空間の一部を、一定の隙間を保って覆いつつ、流体の運動方向の変動に応じ、固定中心軸を支点として自身の向きを変えるように成形した立体。以下「遮蔽回動体」という。図3−a
4 本装置を設置する基盤に固定して、遮蔽回動体の一端を回転自在に支持する構築物。以下「支持構築物」という。図3−b

本装置は流体中で回転体が回転力を得て、他の装置へ回転力を伝えることができるまでの機構を指し、前記回転力を受け取る他の装置(発電機等)は外部装置と見なして本装置の構成から除く。
本装置を構成する要素の詳細と各要素との連携は以下の通り。
回転体の複数の回転翼は回転軸に、回転軸と垂直に等角度放射状に、流体の抗力を受ける面が回転軸と平行になるように取り付ける。回転軸はどちらか一端が、回転翼を取り付けた位置より延長して長く、その一端近傍に回転力を外部装置に伝達する部品(歯車等)を持つ。回転体は回転軸を固定中心軸に取り付ける。
遮蔽回動体が流体の運動方向の変動に応じ、固定中心軸を支点として自身の向きを変える動きを、以下「回動」という。遮蔽回動体は固定中心軸に取り付けたときに、固定中心軸に垂直な仮想平面で切断したときの、断面の外形線が流線形に似た、内部空洞の立体とする。遮蔽回動体は中心部近くに、回転翼が回転したときに描く空間の2分の1以上が納まるくぼみを持つ。前記くぼみを形成する壁の2ヶ所で、固定中心軸が遮蔽回動体を貫通して回動支点とする。前記2ヶ所のうち、回転体の回転軸を延長した側のヶ所は回転体の回転軸も通る。遮蔽回動体には回転軸はなく、前記2ヶ所のうち、回転体の回転軸が通らない方を固定中心軸に回転自在に軸支し、回転体の回転軸が通る方を、回転軸周囲を取り囲むように配置した支持構築物の先端に、下記の方法で回転自在に連結する。
下記の方法とは、遮蔽回動体と支持構築物の双方の連結部に、回転体の回転軸を取り囲み回転軸と垂直な平面を持ち回転軸方向に噛み合う2段リング状部品を取り付けて連結する。図4
遮蔽回動体の穴および前記2段リング状部品の内径は、回転体の回転軸の直径よりやや大きくとる。これにより、遮蔽回動体は回転体の回転軸に接触することなく回動することができる。
遮蔽回動体の流線形後端に、固定中心軸から後端までの長さが、先端までの長さの2倍以上となるよう、方向舵を取り付ける。
以上の構成により、回転体は流体中において、回転翼が描く空間の2分の1以上が常に遮蔽回動体に遮蔽されて回転し、回転翼が流体の運動方向と逆の方向に向かうときの逆抗力が抑制され、無駄のない回転力を得る。
The following is proposed as a first apparatus that embodies the means for solving the problems.
This apparatus (FIG. 1) is an apparatus in which a vertical axis type rotor blade receives a drag force from a fluid to obtain a rotational force. This device consists of the following elements.
1 Fixed shaft fixed to the base on which this device is installed. Hereinafter, it is referred to as a “fixed central axis”. Fig. 2-a
2 A rotating body composed of a hollow cylindrical rotating shaft, a plurality of rotating blades, and a component that transmits rotational force to an external device. Hereinafter referred to as “rotating body”. Fig. 2-b
3 While covering a part of the space drawn when the rotor blades of the rotating body are rotated by the drag of the fluid while maintaining a certain gap, the fixed center axis is used as a fulcrum according to the fluctuation of the fluid movement direction. Solid shaped to change direction. Hereinafter, it is referred to as “shielding rotating body”. Fig. 3-a
4 A structure that is fixed to a base on which the apparatus is installed and rotatably supports one end of the shield rotating body. Hereinafter referred to as “support structure”. Fig. 3-b

This device refers to a mechanism in which a rotating body obtains rotational force in a fluid and can transmit rotational force to other devices, and other devices (such as generators) that receive the rotational force are regarded as external devices. This is excluded from the configuration of this device.
Details of the elements that make up this device and the linkage between each element are as follows.
The plurality of rotating blades of the rotating body are attached to the rotating shaft at an equiangular radial direction perpendicular to the rotating shaft so that the surface that receives the drag force of the fluid is parallel to the rotating shaft. One end of the rotating shaft is longer and longer than the position where the rotor blades are attached, and has a part (gear or the like) that transmits the rotational force to the external device in the vicinity of the one end. The rotating body has a rotating shaft attached to a fixed central shaft.
The movement in which the shield rotating body changes its direction with the fixed central axis as a fulcrum according to the change in the direction of movement of the fluid is hereinafter referred to as “rotation”. When the shield rotating body is attached to the fixed central axis, the outer shape of the cross section when it is cut along a virtual plane perpendicular to the fixed central axis is a solid body of an internal cavity having a streamline-like shape. The shield rotating body has a recess near the center for accommodating more than half of the space drawn when the rotor blades rotate. At two locations on the wall forming the indentation, the fixed central axis passes through the shield rotating body and serves as a pivot point. Of the two locations, the portion on the side where the rotating shaft of the rotating body is extended also passes through the rotating shaft of the rotating body. There is no rotating shaft in the shield rotating body. Of the two locations, the one that does not pass the rotating shaft of the rotating body is rotatably supported on the fixed central axis, and the rotating shaft of the rotating body passes around the rotating shaft. Is connected to the front end of the support structure arranged so as to surround it by the following method.
In the following method, a two-stage ring-shaped part that surrounds the rotating shaft of the rotating body and has a plane perpendicular to the rotating shaft and meshes in the rotating shaft direction is connected and connected to the connecting portion of both the shielding rotating body and the support structure. FIG.
The inner diameter of the hole of the shield rotating body and the two-stage ring-shaped part is slightly larger than the diameter of the rotating shaft of the rotating body. Thereby, the shielding rotating body can be rotated without contacting the rotating shaft of the rotating body.
A rudder is attached to the streamline rear end of the shield rotating body so that the length from the fixed central axis to the rear end is at least twice as long as the length to the front end.
With the above configuration, when the rotating body rotates in the fluid, more than half of the space drawn by the rotating blade is always shielded by the shielding rotating body, and the rotating blade moves in the direction opposite to the fluid movement direction. The reverse drag is suppressed, and a lean rotational force is obtained.

課題を解決するための手段を具体化した2番目の装置として以下提案する。図5
請求項1の装置を元に、構成要素の一部を改変し、請求項1の回転体に似た回転体を2個取付け、両回転体の回転力を別に設置する回転軸に集めて、流体の運動力から回転力を得る装置である。本装置は次の要素から成る。
1 請求項1と同様な固定中心軸1個。以下「固定中心軸」という。
2 請求項1の回転体に似た回転体2個。以下「回転体」という。図6
3 請求項1の遮蔽回動体に似た形状ながら、2の回転体を取り付けるくぼみ2ヶ所と、回転体の回転力を4の結合回転軸に伝える機構を納める仕切り空間を有する立体1個。以下「遮蔽回動体」という。図7
4 2個の回転体の回転力を集めて外部装置に回転力を受け渡す、請求項1にはない回転軸1個。以下「結合回転軸」という。図6
5 請求項1と同様の支持構築物1個。以下「支持構築物」という。

本装置は流体中で回転体が回転力を得て、他の装置へ回転力を伝えることができるまでの機構を指し、前記回転力を受け取る他の装置(発電機等)は外部装置と見なして本装置の構成から除く。
2個の回転体はそれぞれ一端に、回転力を結合回転軸に伝達する部品(歯車またはプーリー等)をもつ。これを略して以下「伝達部品」という。回転体は固定中心軸ではなく遮蔽回動体に、先端と後端を含み固定中心軸に平行な仮想平面を対称面として面対称に、回転軸が固定中心軸と平行になるように取り付ける。
それに合わせて遮蔽回動体に、回転体の回転翼が描く空間の一部が納まる請求項1と同様なくぼみを2ヶ所設ける。遮蔽回動体は、取り付ける回転体の回転翼が回転したときに描く空間の一部それぞれを一括で覆う形式とする。そのため、両回転体は流体中で互いに逆向きに回転する。遮蔽回動体に、回転体の回転力を結合回転軸に伝える機構を納める仕切り空間を別途設ける。この仕切り空間を以下「結合室」という。図7
結合回転軸は、中空円柱形の回転軸と、回転体から回転力を受け取る部品(歯車等)と、受けた回転力を外部装置に伝える部品から成り、固定中心軸に軸支する。
2個の回転体のそれぞれ一端に取り付けた伝達部品と、結合回転軸の一端に取り付けた回転力を受け取る部品を、前記結合室内で組み合わせ、回転力の受け渡しをする仕組みとする。このとき2個の回転体は互いに逆向きに回転しているので、一方の回転体の伝達部品と結合回転軸の受け取り部品との間に回転方向が逆向きになる受け取り部品を1個増設し、もう一方の回転体の回転方向と同じにして受け取る。図6
遮蔽回動体と支持構築物の連結方法は請求項1と同様とする。ただし請求項1における連結方法の記述中にある「回転体の回転軸」は、本請求項では「結合回転体の回転軸」と読み替える。
以上の構成により、2個の回転体は流体中において、回転翼が描く空間の2分の1以上が常に遮蔽されて回転し、回転翼が流体の運動方向と逆方向に向かうときの逆抗力が抑制され、無駄のない回転力を得る。
A second device that embodies the means for solving the problem is proposed below. FIG.
Based on the apparatus of claim 1, some of the components are modified, two rotating bodies similar to the rotating body of claim 1 are attached, and the rotational force of both rotating bodies is collected on a rotating shaft separately installed, It is a device that obtains rotational force from the kinetic force of fluid. This device consists of the following elements.
1 A single fixed central shaft as in claim 1. Hereinafter, it is referred to as a “fixed central axis”.
2. Two rotating bodies similar to the rotating body of claim 1. Hereinafter referred to as “rotating body”. FIG.
3. A solid body having a shape similar to that of the shield rotating body according to claim 1 and having two recesses for attaching the two rotating bodies and a partition space for storing a mechanism for transmitting the rotational force of the rotating bodies to the four coupled rotating shafts. Hereinafter, it is referred to as “shielding rotating body”. FIG.
4. One rotating shaft not in claim 1 that collects the rotating force of two rotating bodies and delivers the rotating force to an external device. Hereinafter, it is referred to as “coupled rotation axis”. FIG.
5. One support structure as in claim 1. Hereinafter referred to as “support structure”.

This device refers to a mechanism in which a rotating body obtains rotational force in a fluid and can transmit rotational force to other devices, and other devices (such as generators) that receive the rotational force are regarded as external devices. This is excluded from the configuration of this device.
Each of the two rotating bodies has a component (such as a gear or a pulley) that transmits a rotational force to the coupled rotating shaft at one end. This is abbreviated as “transmission component” hereinafter. The rotating body is attached not to the fixed center axis but to the shield rotating body so as to be plane symmetric with a virtual plane including the front and rear ends and parallel to the fixed center axis as a symmetry plane so that the rotation axis is parallel to the fixed center axis.
Correspondingly, two recesses are provided in the shielding rotating body as in the case of claim 1 where a part of the space drawn by the rotor blades of the rotating body is accommodated. The shield rotating body is configured to collectively cover a part of the space drawn when the rotating blades of the rotating body to be attached rotate. Therefore, both rotating bodies rotate in opposite directions in the fluid. A separate space for accommodating a mechanism for transmitting the rotational force of the rotating body to the coupled rotating shaft is provided in the shield rotating body. This partition space is hereinafter referred to as a “combining chamber”. FIG.
The coupled rotating shaft is composed of a hollow cylindrical rotating shaft, a component (such as a gear) that receives a rotational force from a rotating body, and a component that transmits the received rotational force to an external device, and is supported by a fixed central shaft.
A transmission component attached to one end of each of the two rotating bodies and a component for receiving the rotational force attached to one end of the combined rotation shaft are combined in the coupling chamber to deliver the rotational force. At this time, since the two rotating bodies are rotating in opposite directions, one receiving part whose rotating direction is opposite is added between the transmitting part of one rotating body and the receiving part of the combined rotating shaft. , Receive in the same direction as the rotation of the other rotating body. FIG.
The connecting method of the shielding rotating body and the support structure is the same as that of the first aspect. However, “rotation axis of the rotating body” in the description of the connection method in claim 1 is read as “rotation axis of the combined rotating body” in this claim.
With the above configuration, the two rotating bodies rotate in the fluid while shielding at least one half of the space drawn by the rotor blades is always shielded, and the rotor blades move in the direction opposite to the fluid movement direction. Is suppressed, and a rotating force without waste is obtained.

抗力利用の垂直軸回転翼が流体の水平運動方向と逆方向に向かうときの逆抗力を抑制し、無駄のない回転力を得ることができる。
流体の運動力から回転力を得る装置の分野では、抗力利用型は流体の運動速度が極度に増しても、回転翼の運動速度は流体の運動速度を超えることがないため、流体の予測最高運動速度を照準とした強度設計とすれば、揚力利用型のように回転体の回転速度を制御する仕組みがなくても済むという優位性がある。また垂直軸型は、水平軸型のように回転軸の回転力を取り出す機構を回転軸とともに旋回できる位置に置く必要がなく、装置を設置する基盤上に置くことができるという優位性がある。本発明による装置は前記両方の優位性を併せ持つ。
It is possible to suppress a counter drag when the vertical axis rotor blade using the drag moves in the direction opposite to the horizontal movement direction of the fluid, and to obtain a rotating force without waste.
In the field of devices that obtain the rotational force from the fluid's kinetic force, the drag-based type does not exceed the fluid's motion speed even if the fluid's motion speed increases extremely. If the strength design is aimed at the movement speed, there is an advantage that there is no need to have a mechanism for controlling the rotation speed of the rotating body as in the lift-powered type. In addition, the vertical shaft type has an advantage that a mechanism for extracting the rotational force of the rotary shaft does not need to be placed at a position where the rotary shaft can be turned together with the rotary shaft, and can be placed on a base on which the apparatus is installed. The device according to the invention has the advantages of both.

1番目の装置の全体斜視図Overall perspective view of the first device (a)1番目の装置の固定中心軸、 (b)1番目の装置の回転体(A) Fixed central axis of the first device, (b) Rotating body of the first device (a)1番目の装置の遮蔽回動体、 (b)1番目の装置の支持構築物(A) Shield rotating body of the first device (b) Support structure of the first device 1番目の装置の遮蔽回動体に2段リング状部品を取り付けた斜視図The perspective view which attached the 2 step | paragraph ring-shaped component to the shield rotation body of the 1st apparatus. 2番目の装置の全体斜視図Overall perspective view of second device 2番目の装置の回転体と結合回転軸の連結を表す斜視図The perspective view showing the connection of the rotary body of a 2nd apparatus, and a joint rotating shaft. 2番目の装置の遮蔽回動体の斜視図 (a)斜め前方から、 (b)斜め後方からThe perspective view of the shield rotation body of the 2nd device (a) From diagonally forward, (b) From diagonally backward 1番目の装置において、固定中心軸の上端を固定する枠組みを取り付けた斜視図A perspective view of the first device with a frame that fixes the upper end of the fixed central shaft 遮蔽回動体と回転翼が描く空間の断面図による遮蔽位置角度の例Example of shielding position angle by sectional view of space drawn by shielding rotating body and rotor blade

本装置の実施形態は、1番目の装置、2番目の装置ともに、最終的に回転力を取り出す軸端側を下方に向けて本装置を地上に設置するのが標準的だが、本装置は垂直軸型であり、回転体の回転軸が流体の運動方向に対して垂直でさえあれば、どういう向きにも設置できる。
例えば河川を流れる水を流体として利用する場合、前記地上設置と同じ向きでは都合が悪いから、最終的に回転力を取り出す軸端側を上に向けて、上に別途設置基盤を構築または橋などの既存設備を利用して固定する方法が考えられる。この場合反対側の軸端を川底に固定すれば強度が増す。河川を流れる水を流体として利用する場合、水位が変動しても回転体が一部でも水中にあれば回転力を得ることができる。また最終的に回転力を取り出す軸端を上方に延長し、回転力を受け取る外部装置を予測最高水位より高い位置に設置して接続すれば、増水時でも外部装置が水に浸かることはない。
また、運動方向が変動しにくい、例えば大型配管内を流れる液体または気体を流体として利用する場合、装置を水平に設置することもできる。
In the embodiment of this apparatus, it is standard that both the first apparatus and the second apparatus are installed on the ground with the shaft end side from which the rotational force is finally extracted facing downward. It can be installed in any direction as long as it is a shaft type and the rotation axis of the rotating body is perpendicular to the direction of fluid movement.
For example, when water flowing in a river is used as a fluid, it is not convenient in the same direction as the above-mentioned installation on the ground, so the shaft end side for finally extracting the rotational force faces upward, and a separate installation base is built up or a bridge etc. A method of fixing using existing equipment is considered. In this case, the strength increases if the opposite shaft end is fixed to the riverbed. When water flowing in a river is used as a fluid, even if the water level fluctuates, a rotational force can be obtained if a part of the rotating body is in water. Further, if the shaft end for finally extracting the rotational force is extended upward and the external device receiving the rotational force is installed and connected at a position higher than the predicted maximum water level, the external device will not be immersed in water even when the water level increases.
Moreover, when using the liquid or gas which flows through the large sized pipe | tube as a fluid, for example, it is hard to fluctuate, a device can also be installed horizontally.

本装置は構造上、遮蔽回動体が回転体に比し大型にならざるを得ず、外形が概流線形としても流体からかかる力は大きなものがある。本装置は流体から遮蔽回動体にかかる力を、固定中心軸と支持構築物で受け止める構造となっているが、なかでも固定中心軸には大きな強度が求められる。
固定中心軸の強化対策としては、軸自体の強度のほか、固定中心軸の一端を装置を設置する基盤に一部埋め込み、基盤上で別途固定部材で固定するなどの強化策をとる。 さらに強度が必要な場合は、固定中心軸のもう一端を、別に構築する補強枠組みで固定する。図8
Due to the structure of this device, the shield rotating body has to be larger than the rotating body, and there is a large force applied from the fluid even if the outer shape is generally streamlined. This device has a structure in which the force applied to the shield rotating body from the fluid is received by the fixed central axis and the support structure, and among them, the fixed central axis is required to have high strength.
As measures for strengthening the fixed central shaft, in addition to the strength of the shaft itself, a strengthening measure is taken such that one end of the fixed central shaft is partially embedded in the base on which the device is installed and fixed on the base with a separate fixing member. If more strength is required, fix the other end of the fixed central shaft with a separately constructed reinforcing frame. FIG.

遮蔽回動体が、回転体の回転翼が回転するときに描く空間を覆う範囲は、前記空間を、遮蔽回動体の先端と後端を含む固定中心軸に平行な仮想平面で等2分した片方でよいとは言えない。なぜなら回転翼が遮蔽側から非遮蔽側に回転移動した瞬間、流体が遮蔽側空間に流入し、後に続く回転翼を本来の回転方向とは逆方向に押す力が僅かに発生する。したがって、先端側の遮蔽非遮蔽境界は、遮蔽回動体の先端と後端を結ぶ直線上より非遮蔽側にとる必要がある。図8において、標準的な遮蔽回動体と前記空間の断面外形線を使って、標準的な遮蔽位置を示した。   The range in which the shielding rotating body covers the space drawn when the rotating blades of the rotating body rotate is one side obtained by equally dividing the space into two equal parts by a virtual plane parallel to the fixed central axis including the front and rear ends of the shielding rotating body. It's not good. This is because, at the moment when the rotor blades rotate from the shield side to the non-shield side, the fluid flows into the shield side space, and a slight force is generated to push the subsequent rotor blades in the direction opposite to the original rotation direction. Therefore, it is necessary to set the shielding non-shielding boundary on the front end side to the non-shielding side from the straight line connecting the front end and the rear end of the shielding rotating body. In FIG. 8, a standard shielding position is shown using a standard shielding rotating body and a sectional outline of the space.

回転体の回転翼一つ一つの形状は、単純な平板ではなく、回転翼が遮蔽回動体に遮蔽されない側で流体の運動方向と垂直な位置に来たときに、中央部が流体の運動方向に湾曲しているか、または平板の回転先端部を流体の運動方向とは逆方向に湾曲させた形状にして、当たった流体が逃げにくい構造とする。
回転体や遮蔽回動体、結合回転軸を、遮蔽回動体や固定中心軸に回転自在に軸支するに当たっては、軸方向へ動かないよう、必要箇所に軸受けを取り付けて固定する。
支持構築物は遮蔽回動体の片方の回動支点を回転自在に支持するものであればその形状は問わないが、回転力を取り出す回転軸端を取り囲む位置にくるので、前記回転軸端に隣接して設置すべき外部装置も合わせて取り囲む閉空間をもつ構造にすれば、外部装置を外界から保護することもできる。
The shape of each rotor blade is not a simple flat plate, but when the rotor blade comes to a position perpendicular to the fluid movement direction on the side that is not shielded by the shield rotating body, the central part is the fluid movement direction. Or a shape in which the rotating tip of the flat plate is curved in the direction opposite to the direction of fluid movement so that the hit fluid is difficult to escape.
When the rotating body, the shield rotating body, and the combined rotating shaft are rotatably supported on the shielding rotating body and the fixed central axis, bearings are attached and fixed at necessary places so as not to move in the axial direction.
The support structure may be of any shape as long as it can rotatably support one of the rotation fulcrums of the shield rotation body. However, since the support structure comes to a position that surrounds the end of the rotation shaft from which the rotational force is extracted, it is adjacent to the end of the rotation shaft. If the structure has a closed space that also surrounds the external device to be installed, the external device can be protected from the outside world.

風力発電、水力発電、潮流発電、水蒸気発電などの動力源として、また発電機以外の機械作業機の動力源としての利用が考えられる。 It can be used as a power source for wind power generation, hydroelectric power generation, tidal current power generation, steam power generation, etc., and as a power source for mechanical working machines other than generators.

Claims (2)

課題を解決するための手段を具体化した1番目の装置として以下提案する。
本装置は、垂直軸型の回転翼が流体からの抗力を受けて回転力を得る装置である。本装置は次の要素から成る。
1 本装置を設置する基盤に固定した固定軸。以下「固定中心軸」という。
2 中空円柱形の回転軸と、複数の回転翼と、回転力を外部装置に伝達する部品から成る回転体。以下「回転体」という。
3 回転体の回転翼が流体の抗力を受けて回転するときに描く空間の一部を、一定の隙間を保って覆いつつ、流体の運動方向の変動に応じ、固定中心軸を支点として自身の向きを変えるように成形した立体。以下「遮蔽回動体」という。
4 本装置を設置する基盤に固定して、遮蔽回動体の一端を回転自在に支持する構築物。以下「支持構築物」という。

本装置は流体中で回転体が回転力を得て、他の装置へ回転力を伝えることができるまでの機構を指し、前記回転力を受け取る他の装置(発電機等)は外部装置と見なして本装置の構成から除く。
本装置を構成する要素の詳細と各要素との連携は以下の通り。
回転体の複数の回転翼は回転軸に、回転軸と垂直に等角度放射状に、流体の抗力を受ける面が回転軸と平行になるように取り付ける。回転軸はどちらか一端が、回転翼を取り付けた位置より延長して長く、その一端近傍に回転力を外部装置に伝達する部品(歯車等)を持つ。回転体は回転軸を固定中心軸に取り付ける。
遮蔽回動体が流体の運動方向の変動に応じ、固定中心軸を支点として自身の向きを変える動きを、以下「回動」という。遮蔽回動体は固定中心軸に取り付けたときに、固定中心軸に垂直な仮想平面で切断したときの、断面の外形線が流線形に似た、内部空洞の立体とする。遮蔽回動体は中心部近くに、回転翼が回転したときに描く空間の2分の1以上が納まるくぼみを持つ。前記くぼみを形成する壁の2ヶ所で、固定中心軸が遮蔽回動体を貫通して回動支点とする。前記2ヶ所のうち、回転体の回転軸を延長した側のヶ所は回転体の回転軸も通る。遮蔽回動体には回転軸はなく、前記2ヶ所のうち、回転体の回転軸が通らない方を固定中心軸に回転自在に軸支し、回転体の回転軸が通る方を、回転軸周囲を取り囲むように配置した支持構築物の先端に、下記の方法で回転自在に連結する。
下記の方法とは、遮蔽回動体と支持構築物の双方の連結部に、回転体の回転軸を取り囲み回転軸と垂直な平面を持ち回転軸方向に噛み合う2段リング状部品を取り付けて連結する。
遮蔽回動体の穴および前記2段リング状部品の内径は、回転体の回転軸の直径よりやや大きくとる。これにより、遮蔽回動体は回転体の回転軸に接触することなく回動することができる。
遮蔽回動体の流線形後端に、固定中心軸から後端までの長さが、先端までの長さの2倍以上となるよう、方向舵を取り付ける。
以上の構成により、回転体は流体中において、回転翼が描く空間の2分の1以上が常に遮蔽回動体に遮蔽されて回転し、回転翼が流体の運動方向と逆の方向に向かうときの逆抗力が抑制され、無駄のない回転力を得る。
The following is proposed as a first apparatus that embodies the means for solving the problems.
This apparatus is an apparatus in which a vertical axis type rotor blade receives a drag force from a fluid to obtain a rotational force. This device consists of the following elements.
1 Fixed shaft fixed to the base on which this device is installed. Hereinafter, it is referred to as a “fixed central axis”.
2 A rotating body composed of a hollow cylindrical rotating shaft, a plurality of rotating blades, and a component that transmits rotational force to an external device. Hereinafter referred to as “rotating body”.
3 While covering a part of the space drawn when the rotor blades of the rotating body are rotated by the drag of the fluid while maintaining a certain gap, the fixed center axis is used as a fulcrum according to the fluctuation of the fluid movement direction. Solid shaped to change direction. Hereinafter, it is referred to as “shielding rotating body”.
4 A structure that is fixed to a base on which the apparatus is installed and rotatably supports one end of the shield rotating body. Hereinafter referred to as “support structure”.

This device refers to a mechanism in which a rotating body obtains rotational force in a fluid and can transmit rotational force to other devices, and other devices (such as generators) that receive the rotational force are regarded as external devices. This is excluded from the configuration of this device.
Details of the elements that make up this device and the linkage between each element are as follows.
The plurality of rotating blades of the rotating body are attached to the rotating shaft at an equiangular radial direction perpendicular to the rotating shaft so that the surface that receives the drag force of the fluid is parallel to the rotating shaft. One end of the rotating shaft is longer and longer than the position where the rotor blades are attached, and has a part (gear or the like) that transmits the rotational force to the external device in the vicinity of the one end. The rotating body has a rotating shaft attached to a fixed central shaft.
The movement in which the shield rotating body changes its direction with the fixed central axis as a fulcrum according to the change in the direction of movement of the fluid is hereinafter referred to as “rotation”. When the shield rotating body is attached to the fixed central axis, the outer shape of the cross section when it is cut along a virtual plane perpendicular to the fixed central axis is a solid body of an internal cavity having a streamline-like shape. The shield rotating body has a recess near the center for accommodating more than half of the space drawn when the rotor blades rotate. At two locations on the wall forming the indentation, the fixed central axis passes through the shield rotating body and serves as a pivot point. Of the two locations, the portion on the side where the rotating shaft of the rotating body is extended also passes through the rotating shaft of the rotating body. There is no rotating shaft in the shield rotating body. Of the two locations, the one that does not pass the rotating shaft of the rotating body is rotatably supported on the fixed central axis, and the rotating shaft of the rotating body passes around the rotating shaft. Is connected to the front end of the support structure arranged so as to surround it by the following method.
In the following method, a two-stage ring-shaped part that surrounds the rotating shaft of the rotating body and has a plane perpendicular to the rotating shaft and meshes in the rotating shaft direction is connected and connected to the connecting portion of both the shielding rotating body and the support structure.
The inner diameter of the hole of the shield rotating body and the two-stage ring-shaped part is slightly larger than the diameter of the rotating shaft of the rotating body. Thereby, the shielding rotating body can be rotated without contacting the rotating shaft of the rotating body.
A rudder is attached to the streamline rear end of the shield rotating body so that the length from the fixed central axis to the rear end is at least twice as long as the length to the front end.
With the above configuration, when the rotating body rotates in the fluid, more than half of the space drawn by the rotating blade is always shielded by the shielding rotating body, and the rotating blade moves in the direction opposite to the fluid movement direction. The reverse drag is suppressed, and a lean rotational force is obtained.
本装置は請求項1の装置を元に、構成要素の一部を改変し、請求項1の回転体に似た回転体を2個取付け、両回転体の回転力を別に設置する回転軸に集めて、流体の運動力から回転力を得る装置である。本装置は次の要素から成る。
1 請求項1と同様な固定中心軸1個。以下「固定中心軸」という。
2 請求項1の回転体に似た回転体2個。以下「回転体」という。
3 請求項1の遮蔽回動体に似た形状ながら、2の回転体を取り付けるくぼみ2ヶ所と、回転体の回転力を4の結合回転軸に伝える機構を納める仕切り空間を有する立体1個。以下「遮蔽回動体」という。
4 2個の回転体の回転力を集めて外部装置に回転力を受け渡す、請求項1にはない回転軸1個。以下「結合回転軸」という。
5 請求項1と同様の支持構築物1個。以下「支持構築物」という。

本装置は流体中で回転体が回転力を得て、他の装置へ回転力を伝えることができるまでの機構を指し、前記回転力を受け取る他の装置(発電機等)は外部装置と見なして本装置の構成から除く。
2個の回転体はそれぞれ一端に、回転力を結合回転軸に伝達する部品(歯車またはプーリー等)をもつ。これを略して以下「伝達部品」という。回転体は固定中心軸ではなく遮蔽回動体に、先端と後端を含み固定中心軸に平行な仮想平面を対称面として面対称に、回転軸が固定中心軸と平行になるように取り付ける。それに合わせて遮蔽回動体に、回転体の回転翼が描く空間の一部が納まる請求項1と同様なくぼみを2ヶ所設ける。遮蔽回動体は、取り付ける回転体の回転翼が回転したときに描く空間の一部それぞれを一括で覆う形式とする。そのため、両回転体は流体中で互いに逆向きに回転する。遮蔽回動体に、回転体の回転力を結合回転軸に伝える機構を納める仕切り空間を別途設ける。この仕切り空間を以下「結合室」という。
結合回転軸は、中空円柱形の回転軸と、回転体から回転力を受け取る部品(歯車等)と、受けた回転力を外部装置に伝える部品から成り、固定中心軸に軸支する。
2個の回転体のそれぞれ一端に取り付けた伝達部品と、結合回転軸の一端に取り付けた回転力を受け取る部品を、前記結合室内で組み合わせ、回転力の受け渡しをする仕組みとする。このとき2個の回転体は互いに逆向きに回転しているので、一方の回転体の伝達部品と結合回転軸の受け取り部品との間に回転方向が逆向きになる受け取り部品を1個増設し、もう一方の回転体の回転方向と同じにして受け取る。
遮蔽回動体と支持構築物の連結方法は請求項1と同様とする。ただし請求項1における連結方法の記述中にある「回転体の回転軸」は、本請求項では「結合回転体の回転軸」と読み替える。
以上の構成により、2個の回転体は流体中において、回転翼が描く空間の2分の1以上が常に遮蔽されて回転し、回転翼が流体の運動方向と逆方向に向かうときの逆抗力が抑制され、無駄のない回転力を得る。
This apparatus is based on the apparatus of claim 1, modified a part of the constituent elements, attached two rotating bodies similar to the rotating body of claim 1, and installed on a rotating shaft for separately installing the rotational force of both rotating bodies. It is a device that collects and obtains rotational force from the kinetic force of fluid. This device consists of the following elements.
1 A single fixed central shaft as in claim 1. Hereinafter, it is referred to as a “fixed central axis”.
2. Two rotating bodies similar to the rotating body of claim 1. Hereinafter referred to as “rotating body”.
3. A solid body having a shape similar to that of the shield rotating body according to claim 1 and having two recesses for attaching the two rotating bodies and a partition space for storing a mechanism for transmitting the rotational force of the rotating bodies to the four coupled rotating shafts. Hereinafter, it is referred to as “shielding rotating body”.
4. One rotating shaft not in claim 1 that collects the rotating force of two rotating bodies and delivers the rotating force to an external device. Hereinafter, it is referred to as “coupled rotation axis”.
5. One support structure as in claim 1. Hereinafter referred to as “support structure”.

This device refers to a mechanism in which a rotating body obtains rotational force in a fluid and can transmit rotational force to other devices, and other devices (such as generators) that receive the rotational force are regarded as external devices. This is excluded from the configuration of this device.
Each of the two rotating bodies has a component (such as a gear or a pulley) that transmits a rotational force to the coupled rotating shaft at one end. This is abbreviated as “transmission component” hereinafter. The rotating body is attached not to the fixed center axis but to the shield rotating body so as to be plane symmetric with a virtual plane including the front and rear ends and parallel to the fixed center axis as a symmetry plane so that the rotation axis is parallel to the fixed center axis. Correspondingly, two recesses are provided in the shielding rotating body as in the case of claim 1 where a part of the space drawn by the rotor blades of the rotating body is accommodated. The shield rotating body is configured to collectively cover a part of the space drawn when the rotating blades of the rotating body to be attached rotate. Therefore, both rotating bodies rotate in opposite directions in the fluid. A separate space for accommodating a mechanism for transmitting the rotational force of the rotating body to the coupled rotating shaft is provided in the shield rotating body. This partition space is hereinafter referred to as a “combining chamber”.
The coupled rotating shaft is composed of a hollow cylindrical rotating shaft, a component (such as a gear) that receives a rotational force from a rotating body, and a component that transmits the received rotational force to an external device, and is supported by a fixed central shaft.
A transmission component attached to one end of each of the two rotating bodies and a component for receiving the rotational force attached to one end of the combined rotation shaft are combined in the coupling chamber to deliver the rotational force. At this time, since the two rotating bodies are rotating in opposite directions, one receiving part whose rotating direction is opposite is added between the transmitting part of one rotating body and the receiving part of the combined rotating shaft. , Receive in the same direction as the rotation of the other rotating body.
The connecting method of the shielding rotating body and the support structure is the same as that of the first aspect. However, “rotation axis of the rotating body” in the description of the connection method in claim 1 is read as “rotation axis of the combined rotating body” in this claim.
With the above configuration, the two rotating bodies rotate in the fluid while shielding at least one half of the space drawn by the rotor blades is always shielded, and the rotor blades move in the direction opposite to the fluid movement direction. Is suppressed, and a rotating force without waste is obtained.
JP2014036770A 2014-02-27 2014-02-27 Vertical axis type device that obtains rotational force from the kinetic force of fluid Active JP5689992B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036770A JP5689992B1 (en) 2014-02-27 2014-02-27 Vertical axis type device that obtains rotational force from the kinetic force of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036770A JP5689992B1 (en) 2014-02-27 2014-02-27 Vertical axis type device that obtains rotational force from the kinetic force of fluid

Publications (2)

Publication Number Publication Date
JP5689992B1 true JP5689992B1 (en) 2015-03-25
JP2015161223A JP2015161223A (en) 2015-09-07

Family

ID=52823324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036770A Active JP5689992B1 (en) 2014-02-27 2014-02-27 Vertical axis type device that obtains rotational force from the kinetic force of fluid

Country Status (1)

Country Link
JP (1) JP5689992B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979125A (en) * 2017-04-17 2017-07-25 马桂芳 A kind of bilobed wheel fluid power plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909560B1 (en) * 2017-06-22 2018-03-06 Daniel F. Hollenbach Turbine apparatus with airfoil-shaped enclosure
JP7048925B2 (en) * 2019-10-15 2022-04-06 裕幸 酒見 Hydroelectric power generation device using natural fluid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292128A1 (en) * 1974-11-21 1976-06-18 Gourjon Michel Windmill with vertical rotor - has rotatable defector to shield blades moving against wind
JPS55112879A (en) * 1979-02-24 1980-09-01 Kazuichi Torii Windmill
JPS57183577A (en) * 1981-04-23 1982-11-11 Berugaa Mitsushieru Vertical shaft type aerogenerator with two rotor through channel type air flow
JPS60152070U (en) * 1984-03-19 1985-10-09 三井造船株式会社 paddle type windmill
DE3913948A1 (en) * 1989-04-27 1991-01-03 Ulrich Bufe Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane
US20080131282A1 (en) * 2006-11-20 2008-06-05 Know How Italia S.P.A. Wind apparatus
JP2009293610A (en) * 2008-05-02 2009-12-17 Seeds Design Office Co Ltd Low-resistance wind power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292128A1 (en) * 1974-11-21 1976-06-18 Gourjon Michel Windmill with vertical rotor - has rotatable defector to shield blades moving against wind
JPS55112879A (en) * 1979-02-24 1980-09-01 Kazuichi Torii Windmill
JPS57183577A (en) * 1981-04-23 1982-11-11 Berugaa Mitsushieru Vertical shaft type aerogenerator with two rotor through channel type air flow
JPS60152070U (en) * 1984-03-19 1985-10-09 三井造船株式会社 paddle type windmill
DE3913948A1 (en) * 1989-04-27 1991-01-03 Ulrich Bufe Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane
US20080131282A1 (en) * 2006-11-20 2008-06-05 Know How Italia S.P.A. Wind apparatus
JP2009293610A (en) * 2008-05-02 2009-12-17 Seeds Design Office Co Ltd Low-resistance wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979125A (en) * 2017-04-17 2017-07-25 马桂芳 A kind of bilobed wheel fluid power plant

Also Published As

Publication number Publication date
JP2015161223A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5689992B1 (en) Vertical axis type device that obtains rotational force from the kinetic force of fluid
EP3536600A1 (en) Underwater turbine
JP5389082B2 (en) Turbine blade type generator
KR101543721B1 (en) Generating device using precessional motion
JP2012002220A (en) Water wheel impeller blade type electric power generating apparatus
KR101581336B1 (en) Rotatable individual generation device
JPWO2014122731A1 (en) Power generation system
KR20160025196A (en) Bouyant apparatus for wave power generation
JP6592259B2 (en) Water turbine propeller rotor
JP2016500417A (en) Hydroelectric power plants for utilizing the energy of guided or unrestricted water streams
KR101372128B1 (en) Rotating axis converting-type tidal current power generating system
JP4995955B2 (en) Hydroelectric power generation system
KR101022346B1 (en) a hydroelectric powergeneration system
KR101604543B1 (en) Wave-power generating apparatus
KR20140064305A (en) Turbine generator with torque measurement function and wave generation system using thereof
KR20130139366A (en) Natural energy extraction device
EP2832987B1 (en) Energy generation device and energy harvesting device comprising the same
KR101265742B1 (en) Rotation transmit device of wind power generator using permanent magnet
JP6836769B2 (en) Fluid machinery and power generators
JP5498559B1 (en) Hydroelectric generator
JP5073087B1 (en) Water current generator, tidal current generator and tidal current power generation method using the same
RU152321U1 (en) WIND POWER PLANT
CN205349606U (en) Ocean current power generation device
KR20170046985A (en) hydraulic power generator
JP5683039B1 (en) Falling water turbine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5689992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250