JP5689071B2 - Electrochromic material - Google Patents

Electrochromic material Download PDF

Info

Publication number
JP5689071B2
JP5689071B2 JP2011539402A JP2011539402A JP5689071B2 JP 5689071 B2 JP5689071 B2 JP 5689071B2 JP 2011539402 A JP2011539402 A JP 2011539402A JP 2011539402 A JP2011539402 A JP 2011539402A JP 5689071 B2 JP5689071 B2 JP 5689071B2
Authority
JP
Japan
Prior art keywords
electrochromic
formula
material according
carbon atoms
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011539402A
Other languages
Japanese (ja)
Other versions
JPWO2011055792A1 (en
Inventor
章博 田中
章博 田中
宮本 操
操 宮本
利彦 長村
利彦 長村
善南 金
善南 金
秀蘭 金
秀蘭 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nissan Chemical Corp
Original Assignee
Kyushu University NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nissan Chemical Corp filed Critical Kyushu University NUC
Priority to JP2011539402A priority Critical patent/JP5689071B2/en
Publication of JPWO2011055792A1 publication Critical patent/JPWO2011055792A1/en
Application granted granted Critical
Publication of JP5689071B2 publication Critical patent/JP5689071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明はエレクトロクロミック材料に関し、更に詳述するとエレクトロクロミック特性を発現する化合物をポリマー部分として有する高分岐ポリマーからなるエレクトロクロミック材料に関する。   The present invention relates to an electrochromic material, and more particularly to an electrochromic material comprising a hyperbranched polymer having a compound that exhibits electrochromic properties as a polymer portion.

調光素子や表示素子に応用されるエレクトロクロミック素子は、電圧を印加すると可逆的に酸化還元反応が起こり、可逆的に着色化又は無色化されるエレクトロクロミズムという現象を利用した素子である。このエレクトロクロミック素子は、一般に、例えば透明電極基板、エレクトロクロミック層、対極基板が順次設けられている素子により構成される。   An electrochromic element applied to a light control element or a display element is an element that utilizes a phenomenon called electrochromism in which a redox reaction occurs reversibly when a voltage is applied and is reversibly colored or colorless. This electrochromic element is generally composed of an element in which, for example, a transparent electrode substrate, an electrochromic layer, and a counter electrode substrate are sequentially provided.

これまで、エレクトロクロミック特性を有する化合物として、例えば酸化タングステンなどの無機化合物が知られており(特許文献1)、透明電極上に該無機酸化物を真空蒸着法又はスパッタリング法にて成膜して、エレクトロクロミック素子を作製する方法が提案されている。しかしながら、この製造方法は、膜形成時に真空技術が必須であり、コストが高くなるという課題がある。   Until now, inorganic compounds such as tungsten oxide have been known as compounds having electrochromic properties (Patent Document 1), and the inorganic oxide is deposited on a transparent electrode by vacuum deposition or sputtering. A method for manufacturing an electrochromic device has been proposed. However, this manufacturing method requires a vacuum technique at the time of film formation, and there is a problem that costs increase.

より安価で簡単な製造工程により製造できる素子として、例えばビオロゲン誘導体などからなる有機エレクトロクロミック化合物等を利用した各種エレクトロクロミック素子が提案されている。
例えば、緑色エレクロトクロミック表示用ビオロゲン化合物(特許文献2)、ビオロゲン構造を有する高分子化合物を用いたエレクトロクロミックミラー(特許文献3)、高分子固体電解質の前駆体成分と反応性ビオロゲン化合物の共重合により得られる電解質層を設けたエレクトロクロミック素子(特許文献4)や、高分子型エレクトロクロミック化合物を用いたエレクトロクロミック素子(特許文献5)などが提案されている。
As an element that can be manufactured by a cheaper and simpler manufacturing process, various electrochromic elements using, for example, an organic electrochromic compound made of a viologen derivative or the like have been proposed.
For example, a green electrochromic display viologen compound (Patent Document 2), an electrochromic mirror using a polymer compound having a viologen structure (Patent Document 3), a precursor component of a polymer solid electrolyte and a reactive viologen compound. An electrochromic element (Patent Document 4) provided with an electrolyte layer obtained by polymerization, an electrochromic element using a polymer type electrochromic compound (Patent Document 5), and the like have been proposed.

さらに、陽イオンのドープによりエレクトロクロミック特性を発現させたトリアジン環含有多分岐重合体(特許文献6)、外周部にエレクトロクロミック機能を有する機能性官能基からなる機能性層を有するコア−シェル型ミクロスフィア(該ミクロスフィアは例えばデンドリマーやハイパーブランチポリマーである)の含有層を有するエレクトロクロミック素子(特許文献7)、エレクトロクロミック特性を発現する化合物をポリマー部分として有するハイパーブランチポリマー(特許文献8)など、ハイパーブランチポリマーのエレクトロクロミック素子への適用も提案されている。   Furthermore, a triazine ring-containing multi-branched polymer that exhibits electrochromic properties by cation doping (Patent Document 6), and a core-shell type having a functional layer composed of a functional functional group having an electrochromic function on the outer peripheral portion Electrochromic device (Patent Document 7) having a microsphere (the microsphere is, for example, a dendrimer or a hyperbranched polymer), and a hyperbranched polymer (Patent Document 8) having a compound exhibiting electrochromic properties as a polymer portion The application of hyperbranched polymers to electrochromic devices has also been proposed.

特開昭63−18336号公報JP-A-63-18336 特開平5−170738号公報JP-A-5-170738 特開平11−38454号公報Japanese Patent Laid-Open No. 11-38454 特開平11−183940号公報Japanese Patent Laid-Open No. 11-183940 特開平11−183941号公報Japanese Patent Laid-Open No. 11-183941 特開平9−302073号公報Japanese Patent Laid-Open No. 9-302073 特開2003−121883号公報JP 2003-121883 A 国際公開第2009/136626号パンフレットInternational Publication No. 2009/136626 Pamphlet

これまでに提案されている有機エレクトロクロミック化合物は、特に表示素子への適用という観点から、応答速度や着色効率、繰り返し安定性などの点において、従来の表示素子である液晶におけるそれら性能と比して課題を残すものであり、更なる性能向上が求められるものであった。
また、前述のハイパーブランチポリマー型の有機エレクトロクロミック化合物にあっては、各種有機溶媒に対する溶解性が低く、使用可能な溶媒が限定されることとなり、素子作製時の薄膜形成が困難であるなどの問題があった。
一方、単官能性の重合性モノマーの共重合体を用いた高分子型エレクトロクロミック化合物は各種溶媒への溶解性が高く、薄膜形成を行いやすいなどの利点はあるものの、同一ポリマー内のエレクトロクロミック部位の密度が低下するため、コントラストが弱くなるなどの課題が残る。しかも、エレクトロクロミック部位の高密度化のために共重合体の高分岐化を図ったとしても、通常の高分岐ポリマーの製法では反応条件が厳しく、また手順が煩雑で生産コストもかさみ、その上、ポリマーが得られとしても、エレクトロクロミック化合物としての実用的な応答速度や着色効率を備えていないといった問題があった。
The organic electrochromic compounds that have been proposed so far are compared with those of conventional liquid crystal display devices in terms of response speed, coloring efficiency, and repetitive stability, particularly from the viewpoint of application to display devices. Therefore, further improvement in performance was required.
Moreover, in the above-mentioned hyperbranched polymer type organic electrochromic compound, the solubility in various organic solvents is low, and usable solvents are limited, and it is difficult to form a thin film at the time of device fabrication. There was a problem.
On the other hand, a polymer type electrochromic compound using a copolymer of a monofunctional polymerizable monomer has advantages such as high solubility in various solvents and easy formation of a thin film. Since the density of the part is lowered, problems such as a decrease in contrast remain. Moreover, even if the copolymer is highly branched in order to increase the density of the electrochromic site, the reaction conditions are strict in the ordinary hyperbranched polymer manufacturing method, the procedure is complicated, and the production cost is high. Even if a polymer is obtained, there is a problem that a practical response speed and coloring efficiency as an electrochromic compound are not provided.

本発明は、このような事情に鑑みてなされたものであり、応答速度が速く、高い着色効率を有し、繰り返し安定性に優れ長期使用可能であり、しかも種々の溶媒への溶解性に優れ、さらには製造が簡便であるエレクトロクロミック材料を提供することを目的とする。   The present invention has been made in view of such circumstances, has a high response speed, has high coloring efficiency, is excellent in repeated stability, can be used for a long time, and has excellent solubility in various solvents. Furthermore, it aims at providing the electrochromic material which manufacture is easy.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーを、モノマーに対して20乃至300モル%量の重合開始剤の存在下で重合させることにより得られる高分岐ポリマーが、優れたエレクトロクロミックと溶解性に優れる高分子材料となり得ることを見出し、本発明を完成した。   As a result of intensive studies in order to achieve the above object, the present inventors have determined that a monomer having an electrochromic property in the same molecule and a monomer having two or more radical polymerizable double bonds to the monomer. The present inventors have found that a hyperbranched polymer obtained by polymerizing in the presence of a polymerization initiator in an amount of 20 to 300 mol% can be a polymer material having excellent electrochromic properties and solubility.

すなわち本発明は、第1観点として、同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーからなる、エレクトロクロミック材料に関する。
第2観点として、前記同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーAが、下記式(1)で表される化合物である、第1観点に記載のエレクトロクロミック材料に関する。
[式中、R1及びR2はそれぞれ独立して、水素原子又はメチル基を表し、A1及びA2はそれぞれ独立して、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至14の2価の炭化水素残基を表し、Eはエレクトロクロミック特性を発現する部分を表す。]
第3観点として、前記式(1)中、A1及びA2が下記式(2)乃至式(5)の何れかで表される構造である、第2観点に記載のエレクトロクロミック材料に関する。
[式中、p、q、r及びsは繰り返し数であり、それぞれ独立して、1乃至6の整数を表し、*はエレクトロクロミック特性を発現する部分であるEと連結する側である。]
第4観点として、前記式(1)で表されるモノマーAが下記式(6)で表される化合物である、第2観点に記載のエレクトロクロミック材料に関する。
[式中、Eは前記式(1)と同じ意味を表す。]
第5観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが、4級ビピリジニウム塩構造の部分、1,4−ジアセチルベンゼン構造の部分、テレフタル酸ジエステル構造の部分、又はビフェニル−4,4’−ジカルボン酸ジエステル構造の部分である、第4観点に記載のエレクトロクロミック材料に関する。
第6観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(7)で表される構造である、第5観点に記載のエレクトロクロミック材料に関する。
[式中、R3乃至R10はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表し、X-及びY-はそれぞれ独立して、Cl-、Br-、I-、ClO4 -、BF4 -、PF6 -、CH3COO-、PhSO3 -、p−TolSO3 -又はR27SO4 -を表す(前記式中、Phはフェニル基を表し、p−Tolはパラ−トリル基を表し、R27は炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。)。]
第7観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(8)で表される、第5観点に記載のエレクトロクロミック材料に関する。
[式中、R11乃至R14はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第8観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(9)で表される、第5観点に記載のエレクトロクロミック材料に関する。
[式中、R15乃至R18はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第9観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(10)で表される、第5観点に記載のエレクトロクロミック材料に関する。
[式中、R19乃至R26はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第10観点として、前記重合開始剤Bがアゾ系重合開始剤である、第1観点乃至第9観点の何れか一項に記載のエレクトロクロミック材料に関する。
第11観点として、前記重合開始剤Bが2,2’−アゾビスイソ酪酸ジメチルである、第10観点に記載のエレクトロクロミック材料に関する。
第12観点として、前記高分岐ポリマーのゲル浸透クロマトグラフィーで測定される重量平均分子量(Mw)が、ポリエチレングリコール換算で1,000乃至2,000,000、又はポリスチレン換算で1,000乃至200,000である、第1観点乃至第11観点の何れか一項に記載のエレクトロクロミック材料に関する。
第13観点として、下記式(6)で表される、エレクトロクロミック特性を発現する部分を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーに関する。
[式中、Eはエレクトロクロミック特性を発現する部分を表す。]
第14観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(7)で表される構造である、第13観点に記載の高分岐ポリマーに関する。
[式中、R3乃至R10はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表し、X-及びY-はそれぞれ独立して、Cl-、Br-、I-、ClO4 -、BF4 -、PF6 -、CH3COO-、PhSO3 -、p−TolSO3 -又はR27SO4 -を表す(前記式中、Phはフェニル基を表し、p−Tolはパラ−トリル基を表し、R27は炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。)。]
第15観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(8)で表される構造である、第13観点に記載の高分岐ポリマーに関する。
[式中、R11乃至R14はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第16観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(9)で表される構造である、第13観点に記載の高分岐ポリマーに関する。
[式中、R15乃至R18はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第17観点として、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(10)で表される構造である、第13観点に記載の高分岐ポリマーに関する。
[式中、R19乃至R26はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
第18観点として、第1観点乃至第12観点のうち何れか一項に記載のエレクトロクロミック材料が、少なくとも1種の溶剤に溶解又は分散していることを特徴とするワニスに関する。
第19観点として、第1観点乃至第12観点うち何れか一項に記載のエレクトロクロミック材料を含有する薄膜状構造体に関する。
第20観点として、少なくとも片方が透明である2枚の電極層間に、第1観点乃至第12観点のうち何れか一項に記載のエレクトロクロミック材料を含有する薄膜状構造体が挟まれているエレクトロクロミック素子に関する。
That is, as a first aspect, the present invention provides a monomer A having a portion exhibiting electrochromic properties and two or more radical polymerizable double bonds in the same molecule in an amount of 20 to 300 mol% relative to the monomer A. The present invention relates to an electrochromic material comprising a hyperbranched polymer obtained by polymerization in the presence of the polymerization initiator B.
As a second aspect, the monomer A having a moiety that exhibits electrochromic properties in the same molecule and two or more radical polymerizable double bonds is a compound represented by the following formula (1): The electrochromic material described in 1.
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and A 1 and A 2 each independently represent an alkyl group having 1 to 1 carbon atoms which may contain an ether bond or an ester bond. 14 represents a divalent hydrocarbon residue, and E represents a portion that exhibits electrochromic properties. ]
As a third aspect, the present invention relates to the electrochromic material according to the second aspect, wherein A 1 and A 2 in the formula (1) are structures represented by any of the following formulas (2) to (5).
[Wherein, p, q, r and s are repeating numbers, each independently represents an integer of 1 to 6, and * is a side linked to E which is a portion that develops electrochromic properties. ]
As a fourth aspect, the present invention relates to the electrochromic material according to the second aspect, in which the monomer A represented by the formula (1) is a compound represented by the following formula (6).
[In formula, E represents the same meaning as said Formula (1). ]
As a fifth aspect, the part E expressing the electrochromic property in the formula (6) is a quaternary bipyridinium salt structure part, a 1,4-diacetylbenzene structure part, a terephthalic acid diester structure part, or biphenyl-4. , 4′-dicarboxylic acid diester structure-related electrochromic material according to the fourth aspect.
As a sixth aspect, the present invention relates to the electrochromic material according to the fifth aspect, wherein the portion E that exhibits the electrochromic characteristics in the formula (6) has a structure represented by the following formula (7).
[Wherein R 3 to R 10 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. And X and Y are each independently Cl , Br , I , ClO 4 , BF 4 , PF 6 , CH 3 COO , PhSO 3 , p-TolSO 3 or R. 27 represents SO 4 (wherein Ph represents a phenyl group, p-Tol represents a para-tolyl group, and R 27 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Represents a group). ]
As a seventh aspect, the present invention relates to the electrochromic material according to the fifth aspect, in which the part E expressing the electrochromic property in the formula (6) is represented by the following formula (8).
[Wherein R 11 to R 14 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As an eighth aspect, the present invention relates to the electrochromic material according to the fifth aspect, in which the portion E expressing the electrochromic property in the formula (6) is represented by the following formula (9).
[Wherein, R 15 to R 18 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As a ninth aspect, the present invention relates to the electrochromic material according to the fifth aspect, in which the portion E expressing the electrochromic property in the formula (6) is represented by the following formula (10).
[Wherein, R 19 to R 26 each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As a tenth aspect, the present invention relates to the electrochromic material according to any one of the first aspect to the ninth aspect, in which the polymerization initiator B is an azo polymerization initiator.
As an eleventh aspect, the present invention relates to the electrochromic material according to the tenth aspect, in which the polymerization initiator B is dimethyl 2,2′-azobisisobutyrate.
As a twelfth aspect, the weight average molecular weight (Mw) measured by gel permeation chromatography of the hyperbranched polymer is 1,000 to 2,000,000 in terms of polyethylene glycol, or 1,000 to 200,000 in terms of polystyrene. The electrochromic material according to any one of the first to eleventh aspects, which is 000.
As a thirteenth aspect, the monomer A represented by the following formula (6) having a portion that exhibits electrochromic properties is polymerized in the presence of a polymerization initiator B in an amount of 20 to 300 mol% with respect to the monomer A. It is related with the hyperbranched polymer obtained by making it.
[In formula, E represents the part which expresses an electrochromic characteristic. ]
As a fourteenth aspect, the present invention relates to the hyperbranched polymer according to the thirteenth aspect, in which the part E expressing the electrochromic property in the formula (6) is a structure represented by the following formula (7).
[Wherein R 3 to R 10 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. And X and Y are each independently Cl , Br , I , ClO 4 , BF 4 , PF 6 , CH 3 COO , PhSO 3 , p-TolSO 3 or R. 27 represents SO 4 (wherein Ph represents a phenyl group, p-Tol represents a para-tolyl group, and R 27 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Represents a group). ]
As a fifteenth aspect, the present invention relates to the hyperbranched polymer according to the thirteenth aspect, in which the part E expressing the electrochromic property in the formula (6) is a structure represented by the following formula (8).
[Wherein R 11 to R 14 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As a sixteenth aspect, the present invention relates to the hyperbranched polymer according to the thirteenth aspect, in which the part E expressing the electrochromic property in the formula (6) is a structure represented by the following formula (9).
[Wherein, R 15 to R 18 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As a seventeenth aspect, the present invention relates to the hyperbranched polymer according to the thirteenth aspect, in which the part E expressing the electrochromic property in the formula (6) is a structure represented by the following formula (10).
[Wherein, R 19 to R 26 each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
As an eighteenth aspect, the present invention relates to a varnish characterized in that the electrochromic material according to any one of the first aspect to the twelfth aspect is dissolved or dispersed in at least one solvent.
As a nineteenth aspect, the present invention relates to a thin film structure containing the electrochromic material according to any one of the first to twelfth aspects.
As a twentieth aspect, an electro in which a thin film-like structure containing the electrochromic material according to any one of the first aspect to the twelfth aspect is sandwiched between two electrode layers, at least one of which is transparent. The present invention relates to a chromic element.

本発明のエレクトロクロミック材料は、応答速度が速く、高い着色効率を有し、繰り返し安定性に優れ長期使用可能なエレクトロクロミック特性を有する。特に本発明のエレクトロクロミック材料は、高分岐させたポリマーにエレクトロクロミック部位を組みこむことにより、着色効率を高めることが可能となり、膜厚を薄くしても高いコントラストを得ることができ、一層の薄膜化による応答速度向上が達成できる。   The electrochromic material of the present invention has a fast response speed, high coloring efficiency, excellent repetitive stability, and electrochromic characteristics that can be used for a long time. In particular, the electrochromic material of the present invention can increase coloring efficiency by incorporating an electrochromic site into a highly branched polymer, and can provide high contrast even when the film thickness is reduced. Response speed can be improved by thinning.

また本発明のエレクトロクロミック材料は、エレクトロクロミック部位を導入したモノマーから一段階で合成できるため製造が容易であり、また、高分子化合物という特性を生かして、簡単な塗布・乾燥操作でそのまま薄膜状の構造体を形成させることが可能である。しかも、本発明のエレクトロクロミック材料は、N,N−ジメチルホルムアミド(DMF)やジメチルスルホキシド(DMSO)だけでなく、アルコールや水などにも可溶であることから、溶媒を限定することなくワニスの形態にすることができ、薄膜状の構造体を形成することができる。さらに、本発明のエレクトロクロミック材料は通常の平板状の基板上だけでなく、フレキシブルなフィルム状の基板上にも薄膜状の構造体の形成が可能であり、このため、フレキシブルなフィルム状のエレクトロクロミック素子を作製することも可能となる。   In addition, the electrochromic material of the present invention is easy to manufacture because it can be synthesized in one step from a monomer having an electrochromic moiety introduced. Also, by taking advantage of the characteristics of a polymer compound, it can be made into a thin film by a simple coating / drying operation. It is possible to form the structure. Moreover, since the electrochromic material of the present invention is soluble not only in N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) but also in alcohol or water, the varnish of the varnish is not limited. Thus, a thin film structure can be formed. Furthermore, the electrochromic material of the present invention can form a thin film-like structure not only on a normal flat plate-like substrate but also on a flexible film-like substrate. It is also possible to produce a chromic element.

図1は本発明のエレクトロクロミック材料を用いて作製したエレクトロクロミック素子の構成例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the configuration of an electrochromic element manufactured using the electrochromic material of the present invention. 図2は本発明のエレクトロクロミック材料を用いて作製したエレクトロクロミック素子の別の構成例を示す断面図である。FIG. 2 is a cross-sectional view showing another configuration example of an electrochromic element manufactured using the electrochromic material of the present invention. 図3は実施例1で合成した高分岐ポリマーのTEM画像を示す図である。FIG. 3 is a diagram showing a TEM image of the hyperbranched polymer synthesized in Example 1. 図4は実施例6で作製した、高分岐ポリマー1を用いたエレクトロクロミックセル(EC発色層膜厚:約200nm)に正電圧又は負電圧を印加した際の、波長530nmにおける吸光度の時間変化を示す図である(実施例7参照)。FIG. 4 shows the time change of absorbance at a wavelength of 530 nm when a positive voltage or a negative voltage is applied to an electrochromic cell (EC color-developing layer film thickness: about 200 nm) using the hyperbranched polymer 1 prepared in Example 6. It is a figure shown (refer Example 7). 図5は実施例8で作製した、高分岐ポリマー1を用いたフレキシブルエレクトロクロミック素子の可とう性を示す図である。FIG. 5 is a view showing the flexibility of the flexible electrochromic device using the hyperbranched polymer 1 produced in Example 8. 図6は実施例9で作製した、ECセルA及びECセルCの電流−電圧特性のEC層膜厚依存性を示す図である(実施例10参照)。FIG. 6 is a diagram showing the EC layer thickness dependence of the current-voltage characteristics of EC cells A and C produced in Example 9 (see Example 10). 図7は実施例9で作成した、ECセルA及びECセルCの透過率のEC層膜厚依存性を示す図である(実施例11参照)。FIG. 7 is a diagram showing the EC layer thickness dependence of the transmittance of EC cells A and C created in Example 9 (see Example 11). 図8は実施例9で作成したECセルBの吸光度の印加電圧依存性を示す図である(実施例12参照)。FIG. 8 is a graph showing the applied voltage dependence of the absorbance of EC cell B prepared in Example 9 (see Example 12). 図9は実施例9で作成したECセルCの発色応答速度の印加電圧依存性を示す図である(実施例13参照)。FIG. 9 is a graph showing the applied voltage dependence of the color development response speed of the EC cell C created in Example 9 (see Example 13). 図10は実施例9で作成したECセルCに正電圧又は負電圧を印加した際の、波長550nmにおける吸光度の時間変化を示す図である(実施例14参照)。FIG. 10 is a diagram showing the time change of absorbance at a wavelength of 550 nm when a positive voltage or a negative voltage is applied to the EC cell C created in Example 9 (see Example 14).

本発明のエレクトロクロミック材料は、同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーである。また本発明の高分岐ポリマーは、いわゆる開始剤断片組込み型高分岐ポリマーであり、その末端に重合に使用した重合開始剤Bの断片を有している。   In the electrochromic material of the present invention, a monomer A having a portion exhibiting electrochromic properties and two or more radical polymerizable double bonds in the same molecule is polymerized in an amount of 20 to 300 mol% with respect to the monomer A. It is a highly branched polymer obtained by polymerizing in the presence of initiator B. The hyperbranched polymer of the present invention is a so-called initiator fragment-incorporating hyperbranched polymer, and has a fragment of the polymerization initiator B used for polymerization at the terminal.

<モノマーA>
本発明において、上記モノマーAとしては、同一分子内にエレクトロクロミック特性を発現する部分と、ビニル基又は(メタ)アクリル基の何れか一方を2個以上又は双方を合わせて2個以上とを有する化合物であることが好ましく、より好ましくは、前記式(1)で表される化合物である。
<Monomer A>
In the present invention, the monomer A has a portion that expresses electrochromic properties in the same molecule, and two or more vinyl groups or (meth) acryl groups, or a combination of both. It is preferable that it is a compound, More preferably, it is a compound represented by the said Formula (1).

前記式(1)中、R1及びR2はそれぞれ独立して、水素原子又はメチル基を表し、A1及びA2はそれぞれ独立して、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至14の2価の炭化水素残基を表し、Eはエレクトロクロミック特性を発現する部分を表す。
前記A1及びA2は、好ましくは前記式(2)乃至式(5)で表される構造を表し、式(2)乃至式(5)中、p、q、r及びsは繰り返し数であり、それぞれ独立して、1乃至6の整数を表し、*はエレクトロクロミック特性を発現する部分であるEと連結する側である。
中でも、前記式(1)で表されるモノマーAとして、前記式(6)で表される化合物が好ましい(式(6)中、Eはエレクトロクロミック特性を発現する部分を表す。)。
In the formula (1), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and A 1 and A 2 each independently represent a carbon atom that may contain an ether bond or an ester bond. It represents a divalent hydrocarbon residue of formulas 1 to 14, and E represents a moiety that exhibits electrochromic properties.
The A 1 and A 2 preferably represent structures represented by the formulas (2) to (5), and in the formulas (2) to (5), p, q, r, and s are repeating numbers. Each independently represents an integer of 1 to 6, and * is the side linked to E, which is a part that develops electrochromic properties.
Especially, as the monomer A represented by the said Formula (1), the compound represented by the said Formula (6) is preferable (In Formula (6), E represents the part which expresses an electrochromic characteristic).

本発明において、エレクトロクロミック特性を発現する部分Eは、4級ビピリジニウム塩構造の部分、1,4−ジアセチルベンゼン構造の部分、テレフタル酸ジエステル構造の部分、又はビフェニル−4,4’−ジカルボン酸ジエステル構造の部分であり、具体的には、前記式(7)乃至式(10)で表される構造が挙げられる。   In the present invention, the portion E that exhibits electrochromic properties is a quaternary bipyridinium salt structure portion, a 1,4-diacetylbenzene structure portion, a terephthalic acid diester structure portion, or a biphenyl-4,4′-dicarboxylic acid diester. Specifically, examples of the structure include structures represented by the formulas (7) to (10).

前記式(7)中、R3乃至R10はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表し、X-及びY-はそれぞれ独立して、Cl-、Br-、I-、ClO4 -、BF4 -、PF6 -、CH3COO-、PhSO3 -、p−TolSO3 -又はR27SO4 -を表す。なお前記式中、Phはフェニル基を表し、p−Tolはパラ−トリル基を表し、R27は炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。
また、前記式(8)中のR11乃至R14、前記式(9)中のR15乃至R18、そして前記式(10)中のR19乃至R26は、それぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。
In the formula (7), R 3 to R 10 are each independently a hydrogen atom, a linear, branched or cyclic group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represents an alkyl group, and X and Y are each independently Cl , Br , I , ClO 4 , BF 4 , PF 6 , CH 3 COO , PhSO 3 , p-TolSO 3. - or R 27 SO 4 - represents a. In the above formula, Ph represents a phenyl group, p-Tol represents a para-tolyl group, and R 27 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
R 11 to R 14 in the formula (8), R 15 to R 18 in the formula (9), and R 19 to R 26 in the formula (10) are each independently a hydrogen atom. Or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond.

前記式(7)中のR3乃至R10、R27、前記式(8)中のR11乃至R14、前記式(9)中のR15乃至R18、そして前記式(10)中のR19乃至R26における直鎖状アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ヘキシル基等が挙げられる。また、前記分岐鎖状アルキル基の具体例としては、イソプロピル基、イソブチル基、2−メチルプロピル基等が挙げられる。
さらに、前記環状アルキル基としては、炭素原子数3乃至30の単環式、多環式、架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素原子数3以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。
R 3 to R 10 and R 27 in the formula (7), R 11 to R 14 in the formula (8), R 15 to R 18 in the formula (9), and the formula (10) Specific examples of the linear alkyl group for R 19 to R 26 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group. Specific examples of the branched alkyl group include isopropyl group, isobutyl group, 2-methylpropyl group and the like.
Furthermore, examples of the cyclic alkyl group include alicyclic aliphatic groups having a monocyclic, polycyclic or bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, pentacyclo structure or the like having 3 or more carbon atoms.

<重合開始剤B>
本発明における重合開始剤Bとしては、好ましくはアゾ系重合開始剤が用いられる。
アゾ系重合開始剤としては、例えば以下の(1)〜(5)に示す化合物を挙げることができる。
(1)アゾニトリル化合物:
2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2−(カルバモイルアゾ)イソブチロニトリル等;
(2)アゾアミド化合物:
2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス{2−メチル−N−[2−(1−ヒドロキシブチル)]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)等;
(3)環状アゾアミジン化合物:
2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジスルフェートジヒドレート、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]ジヒドロクロリド、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2'−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)ジヒドロクロリド等;
(4)アゾアミジン化合物:
2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]テトラヒドレート等;
(5)その他:
2,2’−アゾビスイソ酪酸ジメチル、4,4’−アゾビス−4−シアノバレリン酸、2,2’−アゾビス(2,4,4−トリメチルペンタン)、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)等。
<Polymerization initiator B>
As the polymerization initiator B in the present invention, an azo polymerization initiator is preferably used.
Examples of the azo polymerization initiator include compounds shown in the following (1) to (5).
(1) Azonitrile compound:
2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( 1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile and the like;
(2) Azoamide compound:
2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl-N- [2- ( 1-hydroxybutyl)] propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [N- (2-propenyl) -2- Methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) and the like;
(3) Cyclic azoamidine compound:
2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride and the like;
(4) Azoamidine compound:
2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, etc .;
(5) Other:
Dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis-4-cyanovaleric acid, 2,2′-azobis (2,4,4-trimethylpentane), 1,1′-azobis (1-acetoxy-1 -Phenylethane) and the like.

上記アゾ系重合開始剤の中でも、重合開始剤の溶媒への溶解性が高くハンドリングしやすい観点から、また得られる高分岐ポリマーはその末端に重合に使用した重合開始剤の断片を有しているため、ポリマー末端に組み込まれるエステル基の化学変換により、前記ポリマーの溶解性が制御できるという観点から、2,2’−アゾビスイソ酪酸ジメチルが好ましい。   Among the above-mentioned azo polymerization initiators, from the viewpoint that the polymerization initiator is highly soluble in a solvent and easy to handle, the resulting hyperbranched polymer has a fragment of the polymerization initiator used for the polymerization at its terminal. Therefore, dimethyl 2,2′-azobisisobutyrate is preferred from the viewpoint that the solubility of the polymer can be controlled by chemical conversion of the ester group incorporated at the polymer terminal.

前記重合開始剤Bは、前記モノマーAに対して、20乃至300モル%の量で使用され、好ましくは50乃至300モル%、より好ましくは50乃至200モル%の量で使用される。   The polymerization initiator B is used in an amount of 20 to 300 mol%, preferably 50 to 300 mol%, more preferably 50 to 200 mol%, based on the monomer A.

<高分岐ポリマーの製造方法>
本発明のエレクトロクロミック材料(高分岐ポリマー)は、前述のモノマーに対して所定量の重合開始剤Bの存在下で重合させて得られ、該重合方法としては公知の方法、例えば溶液重合、分散重合、沈殿重合、及び塊状重合等が挙げられ、中でも溶液重合又は沈殿重合が好ましい。特に分子量制御の点から、有機溶媒中での溶液重合によって反応を実施することが好ましい。
このとき用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶媒;n−ヘキサン、n−ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素系溶媒;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、オルトジクロロベンゼン等のハロゲン系溶媒;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル系又はエステルエーテル系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノン等のケトン系溶媒;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、tert−ブタノール、2−エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール系溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン等の複素環式化合物系溶媒、並びにこれらの2種以上の混合溶媒が挙げられる。
これらのうち好ましいのは、芳香族炭化水素系溶媒、ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒、ケトン系溶媒、アルコール系溶媒、アミド系溶媒、スルホキシド系溶媒等であり、特に好ましいものはトルエン、キシレン、オルトジクロロベンゼン、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、1,4−ジオキサン、メチルセロソルブ、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等である。
<Method for producing hyperbranched polymer>
The electrochromic material (hyperbranched polymer) of the present invention is obtained by polymerizing the above-mentioned monomer in the presence of a predetermined amount of polymerization initiator B. As the polymerization method, known methods such as solution polymerization and dispersion are used. Polymerization, precipitation polymerization, bulk polymerization and the like can be mentioned, among which solution polymerization or precipitation polymerization is preferable. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
Examples of organic solvents used here include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbon solvents such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate , Ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, and other ester or ester ether solvents; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cello Ether solvents such as rub, butyl cellosolve, propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone; methanol, ethanol, n-propanol, isopropanol, n-butanol, iso Alcohol solvents such as butanol, tert-butanol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol; amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide, N -Heterocyclic compound type | system | group solvents, such as methyl-2-pyrrolidone, and these 2 or more types of mixed solvents are mentioned.
Of these, preferred are aromatic hydrocarbon solvents, halogen solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents, amide solvents, sulfoxide solvents, etc., and particularly preferred are toluene. Xylene, orthodichlorobenzene, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, 1,4-dioxane, methyl cellosolve, N, N-dimethylformamide, N, N-dimethylacetamide and the like.

上記重合反応を有機溶媒の存在下で行う場合、重合反応物全体における有機溶媒の含量は前記モノマーAの1質量部に対し、好ましくは1〜100質量部、さらに好ましくは5〜50質量部である。
重合反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N2等の不活性ガス雰囲気下で行うのが好ましい。
重合反応の温度は好ましくは50〜200℃、さらに好ましくは70〜150℃であり、重合時間は好ましくは1〜24時間、さらに好ましくは3〜10時間である。
When the polymerization reaction is carried out in the presence of an organic solvent, the content of the organic solvent in the entire polymerization reaction product is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight with respect to 1 part by weight of the monomer A. is there.
The polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The temperature of the polymerization reaction is preferably 50 to 200 ° C., more preferably 70 to 150 ° C., and the polymerization time is preferably 1 to 24 hours, more preferably 3 to 10 hours.

重合反応の終了後、得られた高分岐ポリマー(エレクトロクロミック材料)を任意の方法で回収し、必要に応じて洗浄等の後処理を行なう。反応溶液から高分岐ポリマーを回収する方法としては、再沈殿等の方法が挙げられる。   After completion of the polymerization reaction, the obtained hyperbranched polymer (electrochromic material) is collected by an arbitrary method, and post-treatment such as washing is performed as necessary. Examples of a method for recovering the hyperbranched polymer from the reaction solution include a method such as reprecipitation.

得られた高分岐ポリマー(エレクトロクロミック材料)の重量平均分子量(以下Mwと略記)は、ゲル浸透クロマトグラフィー(GPC)によるポリエチレングリコール換算で1,000乃至2,000,000、好ましくは10,000乃至2,000,000、或いは、ポリスチレン換算で1,000乃至200,000、好ましくは5,000乃至100,000である。   The weight average molecular weight (hereinafter abbreviated as Mw) of the obtained hyperbranched polymer (electrochromic material) is 1,000 to 2,000,000, preferably 10,000 in terms of polyethylene glycol by gel permeation chromatography (GPC). To 1,000,000, or 1,000 to 200,000 in terms of polystyrene, preferably 5,000 to 100,000.

なおこのようにして得られたポリマーも本発明の対象である。
すなわち、本発明は前記式(6)で表される、エレクトロクロミック特性を発現する部分を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーにも関する。なお前述した通り、本発明の高分岐ポリマーは、いわゆる開始剤断片組込み型高分岐ポリマーであり、その末端に重合に使用した重合開始剤Bの断片を有している。このため、得られる高分岐ポリマーの物性(溶媒溶解性など)を容易に調整することが可能である。
中でも好ましくは、前記式(6)におけるエレクトロクロミック特性を発現する部分Eが前記式(7)、式(8)、式(9)又は式(10)で表わされる構造である高分岐ポリマーである。
The polymer thus obtained is also an object of the present invention.
That is, in the present invention, the monomer A represented by the formula (6) having a portion exhibiting electrochromic properties is polymerized in the presence of 20 to 300 mol% of the polymerization initiator B with respect to the monomer A. The present invention also relates to a hyperbranched polymer obtained by the treatment. As described above, the hyperbranched polymer of the present invention is a so-called initiator fragment-incorporating hyperbranched polymer, and has a fragment of the polymerization initiator B used for polymerization at the terminal. For this reason, it is possible to easily adjust the physical properties (solvent solubility, etc.) of the obtained hyperbranched polymer.
Among them, the part E that exhibits electrochromic properties in the formula (6) is preferably a hyperbranched polymer having a structure represented by the formula (7), formula (8), formula (9), or formula (10). .

<エレクロトクロミック素子の製造方法>
本発明のエレクトロクロミック材料は、エレクトロクロミック素子の材料として使用することができる。該エレクトロクロミック素子は、少なくとも1枚は透明な2枚の導電基板と、これら基板間の挿設されたイオン導電性物質層と、このイオン導電性物質層と前記いずれかの導電基板との間に挿設された、エレクトロクロミック発色層より構成される。前記エレクトロクロミック発色層は、本発明のエレクトロクロミック材料を含有することを特徴とする。このようなエレクトロクロミック素子の代表的な構成例を図1に示す。
<Method for producing electrochromic element>
The electrochromic material of the present invention can be used as a material for an electrochromic device. The electrochromic element includes at least one transparent conductive substrate, an ion conductive material layer interposed between the substrates, and the ion conductive material layer and any one of the conductive substrates. It is composed of an electrochromic coloring layer inserted in The electrochromic coloring layer contains the electrochromic material of the present invention. A typical configuration example of such an electrochromic element is shown in FIG.

図1に示すように、前記エレクトロクロミック素子は、一例として、透明基板1の一方の面に透明電極層2が形成された透明導電基板の面上に、エレクトロクロミック(EC)層3を形成した第一の積層体と、透明基板6の一方の面に透明電極層5が形成された第二の積層体(透明導電基板)とを、第一の積層体のエレクトロクロミック層3と、第二の積層体の透明電極層5が向き合うように適当な間隔で対向させ、ここにイオン導電性物質を有する電荷輸送(CT)層4を挟持させてなる。
そして上記素子は、電極間に電圧を印加することによりエレクトロクロミック現象を生じさせ、発色・消色を起こすことができる。電圧印加手段としては公知のものを利用することができる。
As shown in FIG. 1, as an example, the electrochromic element has an electrochromic (EC) layer 3 formed on the surface of a transparent conductive substrate having a transparent electrode layer 2 formed on one surface of the transparent substrate 1. The first laminate and the second laminate (transparent conductive substrate) in which the transparent electrode layer 5 is formed on one surface of the transparent substrate 6, the electrochromic layer 3 of the first laminate, and the second laminate The transparent electrode layers 5 of the laminated body are opposed to each other at an appropriate interval so as to face each other, and a charge transport (CT) layer 4 having an ion conductive material is sandwiched therebetween.
The element can cause an electrochromic phenomenon by applying a voltage between the electrodes, and can cause color development and decoloration. A well-known thing can be utilized as a voltage application means.

上記エレクトロクロミック素子を構成する各膜及び層の形成方法としては、特に限定されるものではなく、膜及び層を形成する慣用の方法によって作製可能である。
例えば図2に示すように、透明基板1の一方の面に透明電極層2が形成された透明導電基板としてITO付きガラス基板を採用し、該基板上に、後述に例示する方法でエレクトロクロミック材料を含有するEC(エレクトロクロミック)層3を形成し、第一の積層体(積層板A)を作製する。なお、該ITO付きガラス基板は、前記第二の積層体(積層板B)でもある。
A method for forming each film and layer constituting the electrochromic element is not particularly limited, and it can be produced by a conventional method for forming a film and a layer.
For example, as shown in FIG. 2, a glass substrate with ITO is adopted as a transparent conductive substrate having a transparent electrode layer 2 formed on one surface of a transparent substrate 1, and an electrochromic material is formed on the substrate by a method exemplified below. EC (electrochromic) layer 3 containing is formed, and a first laminate (laminate A) is produced. In addition, this glass substrate with ITO is also said 2nd laminated body (laminate board B).

上記透明基板としてはガラス基板の他、透明な樹脂等も使用することができ、硬い板状のものでも、フレキシブルなフィルム状のものでも良い。透明基板として用いられる樹脂としては、例えばポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニル、ポリカーボネート、ポリビニルアルコール、ポリメチルメタクリレート、フッ素樹脂、エチレン、ビニルアルコールなどの透明樹脂が挙げられる。
また、透明基板に設ける透明電極層としては、前述のITO(錫添加酸化インジウム)のほか、ATO(アンチモン添加酸化錫)、FTO(フッ素添加酸化錫)、AZO(アルミニウム添加酸化亜鉛)、GZO(ガリウム添加酸化亜鉛)、Au、Ag、Pt等の貴金属薄膜等を使用できる。
As the transparent substrate, a transparent resin or the like can be used in addition to a glass substrate, and it may be a hard plate or a flexible film. Examples of the resin used as the transparent substrate include transparent resins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, fluororesin, ethylene, and vinyl alcohol.
As the transparent electrode layer provided on the transparent substrate, in addition to the above-mentioned ITO (tin-added indium oxide), ATO (antimony-added tin oxide), FTO (fluorine-added tin oxide), AZO (aluminum-added zinc oxide), GZO ( Gallium-doped zinc oxide), noble metal thin films such as Au, Ag, and Pt can be used.

上記EC層を形成する具体的な方法としては、まず、エレクトロクロミック材料を溶媒に溶解又は分散してワニスの形態(膜形成材料)とし、該ワニスを基板上にキャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等によって塗布し、その後、ホットプレート又はオーブン等で乾燥して成膜する。これらの塗布方法の中でもスピンコート法が好ましい。スピンコート法を用いる場合には、単時間で塗布することができるために、揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点がある。
上記ワニスの形態において使用する溶媒としては、N,N'−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、メタノール、エタノール、プロパノール、水、テトラヒドロフラン(THF)又はトリクロロメタン等が挙げられる。これら溶媒は単独で使用してもよく、2種類以上の溶媒を混合してもよい。
また上記溶媒に溶解又は分散させる濃度は任意であるが、エレクトロクロミック材料と溶媒の総質量(合計質量)に対して、エレクトロクロミック材料の濃度は0.001乃至90質量%であり、好ましくは0.002乃至80質量%であり、より好ましくは0.005乃至70質量%である。
形成されたEC層の厚さは、通常0.01μm乃至50μm、好ましくは0.1μm乃至20μmである。
また、必要であれば、本発明のエレクトロクロミック材料に加えて、さらに発色を助長する化合物を併用して膜又は層を形成しても良い。
As a specific method for forming the EC layer, first, an electrochromic material is dissolved or dispersed in a solvent to form a varnish (film forming material), and the varnish is cast on a substrate, a spin coating method, Apply by blade coating method, dip coating method, roll coating method, bar coating method, die coating method, ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.), then dry in a hot plate or oven, etc. To form a film. Among these coating methods, the spin coating method is preferable. In the case of using the spin coating method, since it can be applied in a single time, even a highly volatile solution can be used, and there is an advantage that highly uniform application can be performed.
Examples of the solvent used in the form of the varnish include N, N′-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methanol, ethanol, propanol, water, tetrahydrofuran (THF), and trichloromethane. These solvents may be used alone, or two or more kinds of solvents may be mixed.
In addition, the concentration in which the solvent is dissolved or dispersed is arbitrary, but the concentration of the electrochromic material is 0.001 to 90% by mass with respect to the total mass (total mass) of the electrochromic material and the solvent, preferably 0. 0.002 to 80% by mass, more preferably 0.005 to 70% by mass.
The thickness of the formed EC layer is usually 0.01 μm to 50 μm, preferably 0.1 μm to 20 μm.
Further, if necessary, in addition to the electrochromic material of the present invention, a film or a layer may be formed using a compound further promoting color development.

その後、この積層板Aのエレクトロクロミック層3と、積層板Bの透明電極層5を1乃至1,000μm程度の間隔で対向させ、注入口を除いた周辺をシール材7でシールし、注入口付きの空セルを作製する。この注入口より、液状のイオン導電性物質を注入し、注入口を適宜封止することにより、CT(電荷輸送)層4を形成し、エレクトロクロミック素子を完成させる。
あるいは、前記積層板AのEC層3(又は積層板Bの電極層5)上に液状のイオン導電性物質を滴下し、滴下したイオン導電性物質に積層板Bの電極層5(又は積層板AのEC層3)が接するように積層板B(又は積層板A)を重ね、周辺をシールすることによってエレクトロクロミック素子を完成させる。
Thereafter, the electrochromic layer 3 of the laminated plate A and the transparent electrode layer 5 of the laminated plate B are opposed to each other at an interval of about 1 to 1,000 μm, and the periphery excluding the injection port is sealed with a sealing material 7. An empty cell with a mark is produced. A liquid ion conductive material is injected from the injection port, and the injection port is appropriately sealed, thereby forming a CT (charge transport) layer 4 to complete the electrochromic device.
Alternatively, a liquid ion conductive material is dropped on the EC layer 3 of the laminate A (or the electrode layer 5 of the laminate B), and the electrode layer 5 (or laminate) of the laminate B is added to the dropped ion conductive material. The laminated plate B (or laminated plate A) is overlapped so that the EC layer 3) of A is in contact, and the periphery is sealed to complete the electrochromic device.

上記エレクトロクロミック素子のCT層4に用いるイオン導電性物質とは、通常室温で1×10-7S/cm以上のイオン伝導度を示す物質であることが好ましい。イオン導電性物質としては特に限定されず、液状イオン導電性物質、ゲル状イオン導電性物質或いは固体状イオン導電性物質等を挙げることができる。
このなかでも、例えば液状のものとして、溶媒に塩類、酸類、アルカリ類等の支持電解質を溶解したもの等を用いることができる。前記溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、特に極性を有するものが好ましい。具体的には水や、メタノール、エタノール、プロピレンカーボネート、エチレンカーボネート、ジメチルスルホキシド、ジメトキシエタン、アセトニトリル、シクロヘキサノン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、N,N−ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、プロピオンニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、N,N−ジメチルアセトアミド、メチルピロリジノン、ジオキソラン、トリメチルホスフェイト、ポリエチレングリコール等の有機極性溶媒が挙げられる。これらは、使用に際して単独もしくは混合物として使用できる。
支持電解質としての塩類は、特に限定されず、各種のアルカリ金属塩、アルカリ土類金属塩などの無機イオン塩や、4級アンモニウム塩、環状4級アンモニウム塩などがあげられ、具体的にはLiClO4、LiSCN,LiBF4、LiAsF6、LiCF3SO3、LiPF6、LiI、NaI、NaSCN、NaClO4、NaBF4、NaAsF6、KSCN,KCl等のアルカリ金属塩等や、(CH34NBF4、(C254NBF4、(n−C494NBF4、(C254NBr、(n−C494NBr、(C254NClO4、(n−C494NClO4等の4級アンモニウム塩及び環状4級アンモニウム塩等、もしくはこれらの混合物が好適なものとして挙げられる。
The ion conductive substance used for the CT layer 4 of the electrochromic element is preferably a substance that usually exhibits an ion conductivity of 1 × 10 −7 S / cm or more at room temperature. The ion conductive material is not particularly limited, and examples thereof include a liquid ion conductive material, a gel ion conductive material, and a solid ion conductive material.
Among these, for example, as a liquid material, a solution in which a supporting electrolyte such as a salt, an acid, or an alkali is dissolved in a solvent can be used. The solvent is not particularly limited as long as it can dissolve the supporting electrolyte, but a solvent having polarity is particularly preferable. Specifically, water, methanol, ethanol, propylene carbonate, ethylene carbonate, dimethyl sulfoxide, dimethoxyethane, acetonitrile, cyclohexanone, γ-butyrolactone, γ-valerolactone, sulfolane, N, N-dimethylformamide, dimethoxyethane, tetrahydrofuran, Examples thereof include organic polar solvents such as propiononitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, N, N-dimethylacetamide, methylpyrrolidinone, dioxolane, trimethyl phosphate, and polyethylene glycol. These can be used alone or as a mixture in use.
The salt as the supporting electrolyte is not particularly limited, and examples thereof include inorganic ion salts such as various alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, and the like. 4, LiSCN, LiBF 4, LiAsF 6, LiCF 3 SO 3, LiPF 6, LiI, NaI, NaSCN, or NaClO 4, NaBF 4, NaAsF 6 , KSCN, alkali metal salts of KCl and the like, such as, (CH 3) 4 NBF 4, (C 2 H 5) 4 NBF 4, (n-C 4 H 9) 4 NBF 4, (C 2 H 5) 4 NBr, (n-C 4 H 9) 4 NBr, (C 2 H 5) Preferred examples include quaternary ammonium salts such as 4 NClO 4 and (nC 4 H 9 ) 4 NClO 4, cyclic quaternary ammonium salts, and the like, or mixtures thereof.

また上記エレクトロクロミック素子において、前記積層板Aと積層板Bとの間隔を一定に確保するためにスペーサーを用いることができる。スペーサーとしては特に限定されないが、ガラス、ポリマー等で構成されるビーズ、ファイバー又はシートを用いることができる。スペーサーは対向する導電基板の間隙に挿入したり、あるいは、導電基板の電極上に樹脂等の絶縁物で構成される突起状物を形成する方法等により設けることができる。   In the electrochromic device, a spacer can be used to ensure a constant distance between the laminate A and the laminate B. Although it does not specifically limit as a spacer, The bead, fiber, or sheet | seat comprised with glass, a polymer, etc. can be used. The spacer can be inserted by a gap between the conductive substrates facing each other, or can be provided by a method of forming a projecting object made of an insulating material such as resin on the electrode of the conductive substrate.

上記エレクトロクロミック素子は、上述の構成や製造方法に何等限定されるものではなく、更に他の構造又は要素を備えていてもよい。
他の構造又は要素としては、例えば、紫外線反射層や紫外線吸収層などの紫外線カット層、エレクトロクロミックミラー向け用途の場合にはミラー層全体、もしくは各膜層の表面保護を目的とするオーバーコート層等を挙げることができる。
The electrochromic element is not limited to the above-described configuration and manufacturing method, and may further include other structures or elements.
Other structures or elements include, for example, UV-cutting layers such as UV-reflecting layers and UV-absorbing layers, and in the case of applications for electrochromic mirrors, the entire mirror layer or an overcoat layer for the purpose of protecting the surface of each film layer Etc.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。実施例において、試料の調製及び物性測定は、下記の条件のもとで下記の装置を使用して行った。
(1)ゲル浸透クロマトグラフィー
ポリスチレン換算
装置:東ソー(株)製 HLC−8220GPC
カラム:Shodex KF−804L、KF−805L
カラム温度:40℃
溶媒:テトラヒドロフラン
検出器:RI
ポリエチレングリコール換算
装置:東ソー(株)製 HLC−8220GPC
カラム:TSK−GEL G6000PWXL−CP、G3000PWXL−CP
カラム温度:40℃
溶媒:20mM硝酸ナトリウム水溶液
検出器:RI
(2)TEM観察
装置:(株)日立ハイテクノロジーズ製 日立透過電子顕微鏡 H−8000
加速電圧:200kV
(3)スピンコーター
装置:(株)共和理研製 K−359SD−2 SPINNER
(4)レーザー顕微鏡
装置:(株)キーエンス製 超深度形状測定顕微鏡 VK−8510
(5)デジタルマイクロメータ
装置:(株)ミツトヨ製 ABSデジマチックキャリパ 500−150
(6)光源
装置:浜松ホトニクス(株)製 キセノンランプ E7536
(7)熱カットフィルタ
装置:AGCテクノグラス(株)製 IRA No.2
(8)UVカットフィルタ
装置:東芝硝子(株)(現:AGCテクノグラス(株))製
(9)検出器
装置:オプトシリウス(株)製 Ocean Optics USB4000
(10)電流−電圧特性
装置:ビー・エー・エス(株)製 電気化学アナライザー ALS708C
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In the examples, sample preparation and physical property measurement were performed using the following apparatus under the following conditions.
(1) Gel permeation chromatography polystyrene conversion Device: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex KF-804L, KF-805L
Column temperature: 40 ° C
Solvent: Tetrahydrofuran Detector: RI
Polyethylene glycol equivalent Device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GEL G6000PWXL-CP, G3000PWXL-CP
Column temperature: 40 ° C
Solvent: 20 mM sodium nitrate aqueous solution Detector: RI
(2) TEM observation apparatus: Hitachi Transmission Electron Microscope H-8000 manufactured by Hitachi High-Technologies Corporation
Accelerating voltage: 200kV
(3) Spin coater: K-359SD-2 SPINNER manufactured by Kyowa Riken Co., Ltd.
(4) Laser microscope apparatus: Keyence Co., Ltd. ultra deep shape measuring microscope VK-8510
(5) Digital micrometer device: manufactured by Mitutoyo Corporation ABS Digimatic Caliper 500-150
(6) Light source device: Xenon lamp E7536 manufactured by Hamamatsu Photonics Co., Ltd.
(7) Thermal cut filter device: IRA No. manufactured by AGC Techno Glass Co., Ltd. 2
(8) UV cut filter Device: Toshiba Glass Co., Ltd. (currently AGC Techno Glass Co., Ltd.) (9) Detector Device: OptoSirius Co., Ltd. Ocean Optics USB4000
(10) Current-voltage characteristics Apparatus: Electrochemical analyzer ALS708C manufactured by BAS Co., Ltd.

合成例、実施例で使用した主な試薬の出所は以下の通りである。
クロロメチルスチレン:AGCセイミケミカル(株)製 CMS−14
4,4’−ビピリジン:東京化成工業(株)製 特級
テレフタル酸:東京化成工業(株)製 特級
4,4’−ビフェニルカルボン酸:アルドリッチ社製
1,4−ジアセチルベンゼン:東京化成工業(株)製 1級
4−ビニル安息香酸:和光純薬工業(株)製
2,6−ルチジン:東京化成工業(株)製 1級
6−ブロモヘキサノイルクロリド:東京化成工業(株)製
2,2’−アゾビスイソ酪酸ジメチル:大塚化学(株)製
プロピレンカーボネート:東京化成工業(株)製 特級
過塩素酸リチウム:キシダ化学(株)製 特級
ポリメチルメタクリレート:アルドリッチ社製 Mw=350,000
The main reagents used in the synthesis examples and examples are as follows.
Chloromethylstyrene: CMS-14 manufactured by AGC Seimi Chemical Co., Ltd.
4,4′-bipyridine: manufactured by Tokyo Chemical Industry Co., Ltd. Special grade terephthalic acid: produced by Tokyo Chemical Industry Co., Ltd. Special grade 4,4′-biphenylcarboxylic acid: produced by Aldrich Co., Ltd. 1,4-diacetylbenzene: Tokyo Chemical Industry Co., Ltd. First grade 4-vinylbenzoic acid: Wako Pure Chemical Industries, Ltd. 2,6-lutidine: Tokyo Chemical Industry Co., Ltd. First grade 6-bromohexanoyl chloride: Tokyo Chemical Industry Co., Ltd. 2,2 '-Azobisisobutyric acid dimethyl: Otsuka Chemical Co., Ltd. Propylene carbonate: Tokyo Chemical Industry Co., Ltd. Special grade lithium perchlorate: Kishida Chemical Co., Ltd. Special grade polymethyl methacrylate: Aldrich Mw = 350,000

[合成例1]モノマー1の合成
窒素雰囲気下、反応器にクロロメチルスチレン4.6g(30mmol)、4,4’−ビピリジン0.78g(5mmol)及びN,N−ジメチルホルムアミド(以下DMFと略記する)150mLを加え、60℃で20時間撹拌した。反応終了後、反応混合物をろ過し、ろ物をアセトンで洗浄した。得られた湿品を乾燥して、黄色固体のモノマー1を1.2g得た(収率50%)。
[Synthesis Example 1] Synthesis of Monomer 1
Under a nitrogen atmosphere, 4.6 g (30 mmol) of chloromethylstyrene, 0.78 g (5 mmol) of 4,4′-bipyridine and 150 mL of N, N-dimethylformamide (hereinafter abbreviated as DMF) were added to the reactor, and the mixture was heated at 60 ° C. Stir for 20 hours. After completion of the reaction, the reaction mixture was filtered, and the filtrate was washed with acetone. The obtained wet product was dried to obtain 1.2 g of monomer 1 as a yellow solid (yield 50%).

[実施例1]高分岐ポリマー1の合成
窒素雰囲気下、反応器に合成例1で得られたモノマー1 1.15g(2.5mmol)、2,2’−アゾビスイソ酪酸ジメチル1.15g(5mmol)及びエチレングリコール44gを加え、100℃で6時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣をメタノール5mLに溶解させたところへ、酢酸エチル400mLを加えて再沈殿させた。析出した固体をろ過、乾燥して、薄ピンク色固体の高分岐ポリマー1を1.5g得た(得率65%)。
得られた高分岐ポリマー1のポリエチレングリコール換算の重量平均分子量(Mw)は1,300,000だった。
Example 1 Synthesis of Hyperbranched Polymer 1 1.15 g (2.5 mmol) of monomer 1 obtained in Synthesis Example 1 and 1.15 g (5 mmol) of dimethyl 2,2′-azobisisobutyrate in a reactor in a nitrogen atmosphere. And 44 g of ethylene glycol was added and stirred at 100 ° C. for 6 hours. After completion of the reaction, the reaction mixture was concentrated. The residue was dissolved in 5 mL of methanol, and 400 mL of ethyl acetate was added for reprecipitation. The precipitated solid was filtered and dried to obtain 1.5 g of hyperbranched polymer 1 as a light pink solid (yield: 65%).
The obtained hyperbranched polymer 1 had a weight average molecular weight (Mw) in terms of polyethylene glycol of 1,300,000.

[試験例1]高分岐ポリマー1のTEM(透過型電子顕微鏡)観察
実施例1で得られた高分岐ポリマー1の、0.01質量%メタノール溶液をカーボンメッシュグリッドに滴下、乾燥して、TEM観察用サンプルを作製した。このサンプルをTEM観察したところ、10nm程度の粒径を有する球形状の粒子が観察された。観察されたTEM画像を図3に示す。
通常、直鎖状ポリマーは同条件でサンプルを作製しTEM観察を行ってもTEM画像として観察することはできず、高度に分岐したポリマーのみTEM観察できることから、本発明の高分岐ポリマー1は確かに高度に分岐していることが示唆された。
Test Example 1 TEM (Transmission Electron Microscope) Observation of Hyperbranched Polymer 1 A 0.01% by mass methanol solution of hyperbranched polymer 1 obtained in Example 1 was dropped on a carbon mesh grid, dried, and TEM. An observation sample was prepared. When this sample was observed by TEM, spherical particles having a particle size of about 10 nm were observed. The observed TEM image is shown in FIG.
Usually, a linear polymer cannot be observed as a TEM image even if a sample is prepared under the same conditions and observed by TEM, and only a highly branched polymer can be observed by TEM. It was suggested that it was highly branched.

[合成例2]モノマー2の合成
窒素雰囲気下、反応器にテレフタル酸1.0g(6mmol)、水酸化カリウム0.67g(12mmol)及びメタノール20mLを加え、室温で1時間撹拌した。反応終了後、反応混合物を濃縮して乾固した。そこへクロロメチルスチレン2.7g(18mmol)及びDMF25mLを加え、100℃で8時間撹拌した。反応終了後、反応混合物をろ過して沈殿物を取り除き、そのろ液を濃縮した。その残渣をヘキサンで洗浄した後、酢酸エチルで再結晶することで、白色固体のモノマー2を0.66g得た(収率28%)。
[Synthesis Example 2] Synthesis of Monomer 2
Under a nitrogen atmosphere, 1.0 g (6 mmol) of terephthalic acid, 0.67 g (12 mmol) of potassium hydroxide and 20 mL of methanol were added to the reactor, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was concentrated to dryness. Thereto were added 2.7 g (18 mmol) of chloromethylstyrene and 25 mL of DMF, and the mixture was stirred at 100 ° C. for 8 hours. After completion of the reaction, the reaction mixture was filtered to remove the precipitate, and the filtrate was concentrated. The residue was washed with hexane and recrystallized with ethyl acetate to obtain 0.66 g of white solid monomer 2 (yield 28%).

[実施例2]高分岐ポリマー2の合成
窒素雰囲気下、反応器に合成例2で得られたモノマー2 0.40g(1mmol)、2,2’−アゾビスイソ酪酸ジメチル0.46g(2mmol)及びトルエン16gを加え、100℃で5時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣を少量のクロロホルムに溶解させたところへ、ジイソプロピルエーテルを加えて再沈殿させた。析出した固体をろ過した後、同様にして再度再沈殿操作を行った。析出した固体をろ過、乾燥して、白色固体の高分岐ポリマー2を0.30g得た(得率35%)。
得られた高分岐ポリマー2のポリスチレン換算の重量平均分子量(Mw)は8,800だった。
[Example 2] Synthesis of hyperbranched polymer 2 In a nitrogen atmosphere, 0.40 g (1 mmol) of monomer 2 obtained in Synthesis Example 2 in a reactor, 0.46 g (2 mmol) of dimethyl 2,2'-azobisisobutyrate and toluene 16g was added and it stirred at 100 degreeC for 5 hours. After completion of the reaction, the reaction mixture was concentrated. The residue was dissolved in a small amount of chloroform and re-precipitated by adding diisopropyl ether. After the precipitated solid was filtered, a reprecipitation operation was performed again in the same manner. The precipitated solid was filtered and dried to obtain 0.30 g of hyperbranched polymer 2 as a white solid (yield 35%).
The resulting hyperbranched polymer 2 had a weight average molecular weight (Mw) in terms of polystyrene of 8,800.

[合成例3]モノマー3の合成
窒素雰囲気下、反応器にビフェニル−4,4’−ジカルボン酸1.5g(6mmol)、水酸化カリウム0.67g(12mmol)及びメタノール20mLを加え、室温で4時間撹拌した。反応終了後、反応混合物を濃縮して乾固した。そこへクロロメチルスチレン5.6g(36mmol)及びDMF25mLを加え、100℃で8時間撹拌した。反応終了後、反応混合物をろ過して沈殿物を取り除き、そのろ液を濃縮した。その残渣を酢酸エチルで再結晶することで、白色固体のモノマー3を0.66g得た(収率32%)。
[Synthesis Example 3] Synthesis of Monomer 3
Under a nitrogen atmosphere, 1.5 g (6 mmol) of biphenyl-4,4′-dicarboxylic acid, 0.67 g (12 mmol) of potassium hydroxide and 20 mL of methanol were added to the reactor, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the reaction mixture was concentrated to dryness. Chloromethylstyrene 5.6g (36mmol) and DMF25mL were added there, and it stirred at 100 degreeC for 8 hours. After completion of the reaction, the reaction mixture was filtered to remove the precipitate, and the filtrate was concentrated. The residue was recrystallized with ethyl acetate to obtain 0.66 g of monomer 3 as a white solid (yield 32%).

[実施例3]高分岐ポリマー3の合成
窒素雰囲気下、反応器に合成例3で得られたモノマー3 0.48g(1mmol)、2,2’−アゾビスイソ酪酸ジメチル0.46mg(2mmol)及びトルエン20gを加え、100℃で5時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣を少量のクロロホルムに溶解させたところへ、ジイソプロピルエーテルを加えて再沈殿させた。析出した固体をろ過した後、同様にして再度再沈殿操作を行った。析出した固体をろ過、乾燥して、白色固体の高分岐ポリマー3を0.28g得た(得率30%)。
得られた高分岐ポリマー3のポリスチレン換算の重量平均分子量(Mw)は8,100だった。
[Example 3] Synthesis of hyperbranched polymer 3 In a nitrogen atmosphere, 0.48 g (1 mmol) of monomer 3 obtained in Synthesis Example 3 in a reactor, 0.46 mg (2 mmol) of dimethyl 2,2′-azobisisobutyrate and toluene 20g was added and it stirred at 100 degreeC for 5 hours. After completion of the reaction, the reaction mixture was concentrated. The residue was dissolved in a small amount of chloroform and re-precipitated by adding diisopropyl ether. After the precipitated solid was filtered, a reprecipitation operation was performed again in the same manner. The precipitated solid was filtered and dried to obtain 0.28 g of hyperbranched polymer 3 as a white solid (yield 30%).
The resulting hyperbranched polymer 3 had a weight average molecular weight (Mw) in terms of polystyrene of 8,100.

[合成例4]モノマー4の合成
酢酸80mL及び48%臭化水素水溶液5mLの混合溶液の中に、1,4−ジアセチルベンゼン3.2g(20mmol)を加え、0℃まで冷却した。この混合溶液へ、臭素6.4g(40mmol)を反応温度が20℃以上にならないようにゆっくりと加えた。その後、0℃で30分間、室温で1時間撹拌した。反応終了後、反応混合物をろ過し、ろ物をエタノール−水混合溶液(体積比1:1)で洗浄した。得られた湿品を乾燥して、白色固体の1,4−ビス(2−ブロモアセチル)ベンゼンを5.5g得た(収率86%)。
窒素雰囲気下、得られた1,4−ビス(2−ブロモアセチル)ベンゼン4.2g(13mmol)、4−ビニル安息香酸3.9g(26mmol)及びテトラヒドロフラン(以下THFと略記する)70mLを入れた反応器へ、トリエチルアミン5mL(36mmol)を滴下し、室温で16時間撹拌した。反応終了後、反応混合物をろ過し、ろ物を水及び酢酸エチルで洗浄した。得られた湿品を乾燥して、白色固体のモノマー4を4.8g得た(収率81%)。
[Synthesis Example 4] Synthesis of Monomer 4
In a mixed solution of 80 mL of acetic acid and 5 mL of 48% aqueous hydrogen bromide solution, 3.2 g (20 mmol) of 1,4-diacetylbenzene was added and cooled to 0 ° C. To this mixed solution, 6.4 g (40 mmol) of bromine was slowly added so that the reaction temperature did not exceed 20 ° C. Thereafter, the mixture was stirred at 0 ° C. for 30 minutes and at room temperature for 1 hour. After completion of the reaction, the reaction mixture was filtered, and the residue was washed with an ethanol-water mixed solution (volume ratio 1: 1). The obtained wet product was dried to obtain 5.5 g of white solid 1,4-bis (2-bromoacetyl) benzene (yield 86%).
Under a nitrogen atmosphere, 4.2 g (13 mmol) of 1,4-bis (2-bromoacetyl) benzene obtained, 3.9 g (26 mmol) of 4-vinylbenzoic acid, and 70 mL of tetrahydrofuran (hereinafter abbreviated as THF) were added. To the reactor, 5 mL (36 mmol) of triethylamine was added dropwise and stirred at room temperature for 16 hours. After completion of the reaction, the reaction mixture was filtered, and the filtrate was washed with water and ethyl acetate. The obtained wet product was dried to obtain 4.8 g of monomer 4 as a white solid (yield 81%).

[実施例4]高分岐ポリマー4の合成
窒素雰囲気下、反応器に合成例4で得られたモノマー4 0.45g(1mmol)、2,2’−アゾビスイソ酪酸ジメチル0.46g(2mmol)及びDMF17gを加え、100℃で5時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣を少量のTHFに溶解させたところへ、ジイソプロピルエーテルを加えて再沈殿させた。析出した固体をろ過した後、同様にして再度再沈殿操作を行った。析出した固体をろ過、乾燥して、白色固体の高分岐ポリマー4を0.53g得た(得率60%)。
得られた高分岐ポリマー4のポリスチレン換算の重量平均分子量(Mw)は20,000だった。
Example 4 Synthesis of Hyperbranched Polymer 4 In a nitrogen atmosphere, 0.45 g (1 mmol) of monomer 4 obtained in Synthesis Example 4 in a reactor, 0.46 g (2 mmol) of dimethyl 2,2′-azobisisobutyrate and 17 g of DMF And stirred at 100 ° C. for 5 hours. After completion of the reaction, the reaction mixture was concentrated. The residue was dissolved in a small amount of THF and re-precipitated by adding diisopropyl ether. After the precipitated solid was filtered, a reprecipitation operation was performed again in the same manner. The precipitated solid was filtered and dried to obtain 0.53 g of a hyperbranched polymer 4 as a white solid (yield 60%).
The resulting hyperbranched polymer 4 had a weight average molecular weight (Mw) in terms of polystyrene of 20,000.

[合成例5]モノマー5の合成
反応器にクロロメチルスチレン54g(350mmol)、酢酸カリウム40g(420mmol)及びジメチルスルホキシド(以下DMSOと略記する)150mLを加え、40℃で48時間撹拌した。反応終了後、反応混合物を水150mLに加え、酢酸エチルで抽出した。分液した酢酸エチル層を無水硫酸マグネシウムで乾燥し、濃縮した。その残渣を、エタノール−水混合溶液(体積比5:1)150mLに水酸化ナトリウム25g(625mmol)を溶解させた溶液に加え、1.5時間還流させた。その後反応混合物に水を加え、酢酸エチルで抽出した。分液した酢酸エチル層を無水硫酸マグネシウムで乾燥し、濃縮した。その残渣をカラムクロマトグラフィー(クロロホルム)で精製し、4−ヒドロキシメチルスチレンを47g得た(収率98%)。
窒素雰囲気下、反応器に得られたヒドロキシメチルスチレン2.7g(20mmol)、2,6−ルチジン2.7mL(22mmol)及びTHF30mLを加え、撹拌しながら0℃に冷却した。この混合溶液へ、ブロモへキサノイルクロリド3.2mL(21mmol)をシリンジで約10分かけて滴下した。反応終了後、反応混合物をろ過して沈殿物を取り除き、そのろ液を濃縮した。その残渣をカラムクロマトグラフィー(クロロホルム)で精製し、6−ブロモヘキサン酸4−ビニルベンジルを定量的に得た。
窒素雰囲気下、反応器に得られた6−ブロモヘキサン酸4−ビニルベンジル3.1g(10mmol)、4,4’−ビピリジン0.55g(3.5mmol)及びDMF35mLを加え、60℃で24時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣へトルエンを加え、不溶物をろ過した。このろ物を少量のクロロホルムに溶解させたところへ、酢酸エチルを加えて再沈殿させた析出した固体をろ過、乾燥して、モノマー5を1.7g得た(収率31%)。
[Synthesis Example 5] Synthesis of Monomer 5
To the reactor were added 54 g (350 mmol) of chloromethylstyrene, 40 g (420 mmol) of potassium acetate and 150 mL of dimethyl sulfoxide (hereinafter abbreviated as DMSO), and the mixture was stirred at 40 ° C. for 48 hours. After completion of the reaction, the reaction mixture was added to 150 mL of water and extracted with ethyl acetate. The separated ethyl acetate layer was dried over anhydrous magnesium sulfate and concentrated. The residue was added to a solution in which 25 g (625 mmol) of sodium hydroxide was dissolved in 150 mL of an ethanol-water mixed solution (volume ratio 5: 1) and refluxed for 1.5 hours. Thereafter, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The separated ethyl acetate layer was dried over anhydrous magnesium sulfate and concentrated. The residue was purified by column chromatography (chloroform) to obtain 47 g of 4-hydroxymethylstyrene (yield 98%).
Under a nitrogen atmosphere, 2.7 g (20 mmol) of hydroxymethylstyrene obtained in the reactor, 2.7 mL (22 mmol) of 2,6-lutidine and 30 mL of THF were added, and the mixture was cooled to 0 ° C. with stirring. To this mixed solution, 3.2 mL (21 mmol) of bromohexanoyl chloride was dropped with a syringe over about 10 minutes. After completion of the reaction, the reaction mixture was filtered to remove the precipitate, and the filtrate was concentrated. The residue was purified by column chromatography (chloroform) to quantitatively obtain 4-vinylbenzyl 6-bromohexanoate.
Under a nitrogen atmosphere, 3.1 g (10 mmol) of 4-vinylbenzyl 6-bromohexanoate obtained in the reactor, 0.55 g (3.5 mmol) of 4,4′-bipyridine and 35 mL of DMF were added, and the mixture was stirred at 60 ° C. for 24 hours. Stir. After completion of the reaction, the reaction mixture was concentrated. Toluene was added to the residue, and insoluble matters were filtered. This filtrate was dissolved in a small amount of chloroform, and ethyl acetate was added to reprecipitate the precipitated solid, which was filtered and dried to obtain 1.7 g of monomer 5 (yield 31%).

[実施例5]高分岐ポリマー5の合成
窒素雰囲気下、反応器に合成例5で得られたモノマー5 0.39g(0.5mmol)、2,2’−アゾビスイソ酪酸ジメチル0.23g(1mmol)及びエチレングリコール12gを加え、100℃で6時間撹拌した。反応終了後、反応混合物を濃縮した。その残渣を少量のメタノールに溶解させたところへ、THF−ヘキサン混合溶液(体積比1:1)を加えて再沈殿させた。析出した固体をろ過した後、同様にして再度再沈殿操作を行った。析出した固体をろ過、乾燥して、黄色固体の高分岐ポリマー5を0.24g得た(得率38%)。
得られた高分岐ポリマー5は、THF、20mM硝酸ナトリウムの何れにも難溶のため、GPCによる重量平均分子量の測定はできなかった。
Example 5 Synthesis of Hyperbranched Polymer 5 0.39 g (0.5 mmol) of monomer 5 obtained in Synthesis Example 5 and 0.23 g (1 mmol) of dimethyl 2,2′-azobisisobutyrate in a reactor in a nitrogen atmosphere. And 12 g of ethylene glycol was added and stirred at 100 ° C. for 6 hours. After completion of the reaction, the reaction mixture was concentrated. The residue was dissolved in a small amount of methanol, and a THF-hexane mixed solution (volume ratio 1: 1) was added to cause reprecipitation. After the precipitated solid was filtered, a reprecipitation operation was performed again in the same manner. The precipitated solid was filtered and dried to obtain 0.24 g of a hyperbranched polymer 5 as a yellow solid (yield 38%).
Since the obtained hyperbranched polymer 5 was hardly soluble in both THF and 20 mM sodium nitrate, the weight average molecular weight could not be measured by GPC.

[実施例6]エレクトロクロミック評価(電圧印加に伴う発色)
実施例1乃至5で得られた高分岐ポリマー1乃至5を用いて、以下の方法により図1に示す構成に準じたエレクトロクロミックセルを作製し、評価した。
<ITOガラス基板の洗浄>
エアロダスターでITOガラス基板(26mm×22mm)表面のゴミを吹き飛ばし、沸騰したエタノールを用いてITOガラス基板を洗浄した。
<エレクトロクロミック(EC)層の作製>
高分岐ポリマー1乃至5を表1に示した溶媒にそれぞれ溶かし、5質量%の溶液を調製した。得られた各溶液を、ITOガラス基板のITO面にスピンコート法(2,000rpm、1分間)で塗布した後、40℃のホットプレート上で1日乾燥させて成膜した。
得られた膜の一部に剃刀で傷を入れ、レーザー顕微鏡で観察し、傷部と膜部の焦点距離の差から膜厚を求めた。何れの高分岐ポリマーを用いたEC層も、その膜厚はおよそ200nmであった。
<電荷輸送(CT)層の作製>
プロピレンカーボネート10mLに過塩素酸リチウム0.5gを溶かし、この混合物にポリメチルメタクリレート10g及びアセトニトリル30mLを加えた。この混合物を110℃で加熱しながら24時間撹拌し、リチウム電解質溶液を調製した。
得られたリチウム電解質溶液をITOガラス基板上に均一にキャストし、40℃のホットプレート上で1時間乾燥した。
<ECセルの作製>
ITOガラス基板に作製したEC層上に、前述のリチウム電解質溶液を滴下し、さらにその上に、ガラス基板側が外側になるようにCT層を配したITOガラス基板を乗せた。そうしたところ、2枚のガラス基板の間でリチウム電解質溶液が全面に広がり、均一な膜になった。これを40℃のホットプレート上で1日乾燥させ、ECセルを作製した。
得られたECセルのCT層の膜厚をデジタルマイクロメータで測定したところ、何れの高分岐ポリマーを用いたECセルも、そのCT層厚はおよそ15μmであった。
<駆動電圧と発色の評価>
作製したECセルに徐々に負電圧を印加していき、発色した電圧とその色を評価した。結果を表1に示す。
[Example 6] Electrochromic evaluation (color development with voltage application)
Using the hyperbranched polymers 1 to 5 obtained in Examples 1 to 5, an electrochromic cell according to the configuration shown in FIG. 1 was prepared and evaluated by the following method.
<Cleaning of ITO glass substrate>
The dust on the surface of the ITO glass substrate (26 mm × 22 mm) was blown off with an air duster, and the ITO glass substrate was washed with boiling ethanol.
<Preparation of electrochromic (EC) layer>
Hyperbranched polymers 1 to 5 were dissolved in the solvents shown in Table 1 to prepare 5 mass% solutions. Each solution obtained was applied to the ITO surface of the ITO glass substrate by spin coating (2,000 rpm, 1 minute), and then dried on a 40 ° C. hot plate for 1 day to form a film.
A part of the obtained film was scratched with a razor and observed with a laser microscope, and the film thickness was determined from the difference in focal length between the scratched part and the film part. The EC layer using any hyperbranched polymer had a thickness of about 200 nm.
<Preparation of charge transport (CT) layer>
In 10 mL of propylene carbonate, 0.5 g of lithium perchlorate was dissolved, and 10 g of polymethyl methacrylate and 30 mL of acetonitrile were added to this mixture. The mixture was stirred for 24 hours while heating at 110 ° C. to prepare a lithium electrolyte solution.
The obtained lithium electrolyte solution was uniformly cast on an ITO glass substrate and dried on a hot plate at 40 ° C. for 1 hour.
<Production of EC cell>
The above-mentioned lithium electrolyte solution was dropped on the EC layer produced on the ITO glass substrate, and an ITO glass substrate on which a CT layer was arranged so that the glass substrate side was on the outer side was placed thereon. As a result, the lithium electrolyte solution spread across the entire surface between the two glass substrates, and a uniform film was formed. This was dried on a hot plate at 40 ° C. for 1 day to produce an EC cell.
When the thickness of the CT layer of the obtained EC cell was measured with a digital micrometer, the EC layer using any hyperbranched polymer had a CT layer thickness of about 15 μm.
<Evaluation of drive voltage and color development>
A negative voltage was gradually applied to the produced EC cell, and the colored voltage and its color were evaluated. The results are shown in Table 1.

表1に示すように、高分岐ポリマー1を用いた場合に、特に低い駆動電圧でマゼンタ色に発色した。   As shown in Table 1, when the highly branched polymer 1 was used, a magenta color was developed with a particularly low driving voltage.

[実施例7]エレクトロクロミック評価(正負電圧印加に伴う着消色)
実施例6で作製した、高分岐ポリマー1を用いたECセルに、2Vの正負電圧を交互に印加したときの波長530nmの吸光度の変化を測定した。光源はキセノンランプを使用し、熱カットフィルタ及びUVカットフィルタを通した光を検出器で測定した。
−2Vでマゼンタ色に発色したECセルは、+2Vの逆電圧を印加すると色が消え、可逆的に着消色することが確認された。また、印加電圧を−2.5Vに上げるとコントラストが上がり、より鮮明に着消色することが確認された。結果を図4に示す。
[Example 7] Electrochromic evaluation (discoloration with positive / negative voltage application)
A change in absorbance at a wavelength of 530 nm when a positive / negative voltage of 2 V was alternately applied to the EC cell using the highly branched polymer 1 produced in Example 6 was measured. A xenon lamp was used as the light source, and the light passing through the heat cut filter and the UV cut filter was measured with a detector.
It was confirmed that the EC cell that developed a color of magenta at −2V disappeared when a reverse voltage of + 2V was applied, and reversibly disappeared. Further, it was confirmed that when the applied voltage was raised to -2.5 V, the contrast was increased and the color was more clearly erased. The results are shown in FIG.

[実施例8]フレキシブルエレクトロクロミック素子の作製
<パターニングされたITO基板の作製>
ポリカーボネート製ITO基板(帝人(株)製、76mm×70mm)のITO電極面に、ポジ型レジスト(東京応化工業(株)製、TMSR−8900)をスピンコート法(300rpm×3秒間、次いで4,000rpm×30秒間)により塗布し、40℃のホットプレートで5分間加熱乾燥した。得られたレジスト膜をマスク露光後、現像液(東京応化工業(株)製、NMD−3)で現像した。次にこの基板をITOエッチング溶液(関東化学(株)製、ITO−07N)に5分間浸漬し、パターン露光部のITOを除去した。最後に基板上に残っているレジスト膜をアセトンで除去し、イオン交換水で洗浄後乾燥することで、パターニングされたITO基板を作製した。
<エレクトロクロミック(EC)層の作製>
実施例1で得られた高分岐ポリマー1をメタノールに溶解し、2質量%の溶液を調製した。得られた溶液を、前述のパターニングされたITO基板のITO電極面にスピンコート法(100rpm×10秒間、次いで2,000rpm×60秒間)により塗布した。この塗膜を40℃のホットプレートで24時間乾燥し、EC層を得た。
<電荷輸送(CT)層の作製>
プロピレンカーボネート10mLに過塩素酸リチウム2.0gを溶かし、この混合物にポリメチルメタクリレート10g及びアセトニトリル30mLを加えた。この混合物を110℃で加熱しながら24時間撹拌し、CT層となるリチウム電解質溶液を調製した。
得られたリチウム電解質溶液を、別のポリカーボネート製ITO基板(76mm×70mm)のITO電極面に均一にキャストし、40℃のホットプレート上で1時間乾燥した。
<フレキシブルEC素子の作製>
パターニングされたITO基板に作製したEC層上に、前述のリチウム電解質溶液をキャストし、さらにその上に、CT層を配したITO基板をCT層が内側になるように乗せた。そうしたところ、2枚のITO基板の間でCT層液が全面に広がり、均一なCT層になった。これを40℃のホットプレートで24時間乾燥し、フレキシブルEC素子を作製した。
得られたEC素子に−3Vの電圧を印加したところ、作製したパターンがマゼンタに発色し表示された。また、電圧の印加を止めてもパターン表示は維持された。さらに、図5に示すように、このEC素子は可とう性を有するフレキシブルなEC素子であり、その厚み(ITO基板+EC層+CT層+ITO基板)は0.4mmであった。
[Example 8] Production of flexible electrochromic device <Production of patterned ITO substrate>
A positive resist (Tokyo Ohka Kogyo Co., Ltd., TMSR-8900) is applied to the ITO electrode surface of a polycarbonate ITO substrate (Teijin Limited, 76 mm × 70 mm) by spin coating (300 rpm × 3 seconds, then 4, 000 rpm × 30 seconds) and dried by heating on a 40 ° C. hot plate for 5 minutes. The obtained resist film was subjected to mask exposure and then developed with a developer (manufactured by Tokyo Ohka Kogyo Co., Ltd., NMD-3). Next, this substrate was immersed in an ITO etching solution (manufactured by Kanto Chemical Co., Ltd., ITO-07N) for 5 minutes to remove ITO in the pattern exposure portion. Finally, the resist film remaining on the substrate was removed with acetone, washed with ion-exchanged water, and dried to prepare a patterned ITO substrate.
<Preparation of electrochromic (EC) layer>
The hyperbranched polymer 1 obtained in Example 1 was dissolved in methanol to prepare a 2% by mass solution. The obtained solution was applied to the ITO electrode surface of the patterned ITO substrate by spin coating (100 rpm × 10 seconds, then 2,000 rpm × 60 seconds). This coating film was dried on a hot plate at 40 ° C. for 24 hours to obtain an EC layer.
<Preparation of charge transport (CT) layer>
2.0 g of lithium perchlorate was dissolved in 10 mL of propylene carbonate, and 10 g of polymethyl methacrylate and 30 mL of acetonitrile were added to this mixture. The mixture was stirred for 24 hours while heating at 110 ° C. to prepare a lithium electrolyte solution to be a CT layer.
The obtained lithium electrolyte solution was cast uniformly on the ITO electrode surface of another polycarbonate ITO substrate (76 mm × 70 mm) and dried on a hot plate at 40 ° C. for 1 hour.
<Production of flexible EC element>
The above-mentioned lithium electrolyte solution was cast on the EC layer produced on the patterned ITO substrate, and the ITO substrate on which the CT layer was further placed was placed thereon so that the CT layer was inside. As a result, the CT layer solution spread across the entire surface between the two ITO substrates, and a uniform CT layer was obtained. This was dried on a hot plate at 40 ° C. for 24 hours to produce a flexible EC element.
When a voltage of −3 V was applied to the obtained EC element, the produced pattern was colored and displayed in magenta. Moreover, the pattern display was maintained even when the voltage application was stopped. Further, as shown in FIG. 5, this EC element is a flexible EC element having flexibility, and its thickness (ITO substrate + EC layer + CT layer + ITO substrate) was 0.4 mm.

[実施例9]エレクトロクロミック素子(ECセル)A,B及びCの作製
<ITOガラス基板の洗浄>
エアロダスターでITOガラス基板(10mm×20mm)表面のゴミを吹き飛ばし、沸騰したエタノールを用いてITOガラス基板を洗浄した。
<エレクトロクロミック(EC)層の作製>
高分岐ポリマー1をメタノールに溶かし、表2に示した濃度のメタノール溶液をそれぞれ調製した。得られた各溶液を、ITOガラス基板のITO面に表2に示した条件でスピンコート法により塗布した後、40℃のホットプレート上で1日乾燥させて成膜した。
得られた膜の一部に剃刀で傷を入れ、レーザー顕微鏡で観察し、傷部と膜部の焦点距離の差から膜厚を求めた。結果を表2に合わせて示す。
<電荷輸送(CT)層の作製>
プロピレンカーボネート40mLに過塩素酸リチウム2.0gを溶かし、この混合物にポリメチルメタクリレート10g及びアセトニトリル80mLを加えた。この混合物を90℃で加熱しながら6時間撹拌し、リチウム電解質溶液を調製した。
得られたリチウム電解質溶液をITOガラス基板上に均一にキャストした。
<ECセルの作製>
ITOガラス基板に作製したEC層上に、前述のリチウム電解質溶液を滴下し、さらにその上に、ガラス基板側が外側になるようにCT層を配したITOガラス基板を乗せた。そうしたところ、2枚のガラス基板の間でリチウム電解質溶液が全面に広がり、均一な膜になった。これを40℃のホットプレート上で1日乾燥させ、ECセルを作製した。
得られたECセルのCT層の膜厚をデジタルマイクロメータで測定したところ、何れのECセルも、そのCT層厚はおよそ15μmであった。
[Example 9] Production of electrochromic devices (EC cells) A, B and C <Cleaning of ITO glass substrate>
The dust on the surface of the ITO glass substrate (10 mm × 20 mm) was blown off with an air duster, and the ITO glass substrate was washed with boiling ethanol.
<Preparation of electrochromic (EC) layer>
Hyperbranched polymer 1 was dissolved in methanol to prepare methanol solutions having the concentrations shown in Table 2, respectively. Each of the obtained solutions was applied to the ITO surface of the ITO glass substrate by the spin coating method under the conditions shown in Table 2, and then dried on a 40 ° C. hot plate for 1 day to form a film.
A part of the obtained film was scratched with a razor and observed with a laser microscope, and the film thickness was determined from the difference in focal length between the scratched part and the film part. The results are shown in Table 2.
<Preparation of charge transport (CT) layer>
Lithium perchlorate (2.0 g) was dissolved in propylene carbonate (40 mL), and polymethyl methacrylate (10 g) and acetonitrile (80 mL) were added to the mixture. The mixture was stirred for 6 hours while heating at 90 ° C. to prepare a lithium electrolyte solution.
The obtained lithium electrolyte solution was cast uniformly on an ITO glass substrate.
<Production of EC cell>
The above-mentioned lithium electrolyte solution was dropped on the EC layer produced on the ITO glass substrate, and an ITO glass substrate on which a CT layer was arranged so that the glass substrate side was on the outer side was placed thereon. As a result, the lithium electrolyte solution spread across the entire surface between the two glass substrates, and a uniform film was formed. This was dried on a hot plate at 40 ° C. for 1 day to produce an EC cell.
When the film thickness of the CT layer of the obtained EC cell was measured with a digital micrometer, the CT layer thickness of any EC cell was approximately 15 μm.

[実施例10]電流−電圧特性のEC層膜厚依存性
実施例9で作製したECセルA(EC層厚150nm)及びECセルC(EC層厚300nm)の電流−電圧特性を測定した。なお、本明細書中において、プラスの電圧印加はEC層側の電極を正極とすることを表し、マイナスの電圧印加はCT層側の電極を正極とすることを表す。
何れのECセルも−2V付近から電流が流れ始め、マゼンタ色に発色した。また、EC層厚が厚いほうが電流値の上昇が大きく、コントラストが大きくなることが確認された。結果を図6に合わせて示す。
Example 10 Dependence of Current-Voltage Characteristics on EC Layer Thickness Current-voltage characteristics of EC cell A (EC layer thickness 150 nm) and EC cell C (EC layer thickness 300 nm) fabricated in Example 9 were measured. In the present specification, positive voltage application means that the electrode on the EC layer side is the positive electrode, and negative voltage application means that the electrode on the CT layer side is the positive electrode.
In any EC cell, a current started to flow from around −2 V, and a magenta color was developed. It was also confirmed that the thicker the EC layer, the greater the current value and the greater the contrast. The results are shown in FIG.

[実施例11]透過率のEC層膜厚依存性
実施例9で作製したECセルA(EC層厚150nm)及びECセルC(EC層厚300nm)に−2.8Vの電圧を印加し、マゼンタ色に発色したそれぞれのECセルの透過率を測定した。なお、透過率は、各ECセルの消色時の透過率を100%とした。
各ECセルは550nm付近に吸収ピークを示した。また、EC層厚が厚いほうが透過率が低い、すなわち、より色濃く発色することが確認された。得られたスペクトルを図7に合わせて示す。
[Example 11] Dependence of transmittance on EC layer film thickness A voltage of -2.8 V was applied to EC cell A (EC layer thickness 150 nm) and EC cell C (EC layer thickness 300 nm) fabricated in Example 9, The transmittance of each EC cell that developed a magenta color was measured. In addition, the transmittance | permeability at the time of decoloring of each EC cell was 100%.
Each EC cell showed an absorption peak around 550 nm. In addition, it was confirmed that the thicker the EC layer, the lower the transmittance, that is, the color development is deeper. The obtained spectrum is shown in FIG.

[実施例12]吸光度の印加電圧依存性
実施例9で作製したECセルBに、−2.5V、−2.0V、0Vの電圧をそれぞれ印加した際の、ECセルの吸光度を測定した。なお、吸光度の測定は実施例7と同様の方法で行った。
ECセルの吸光度は印加電圧に依存し、より高い負電圧を印加することで、より色濃く発色することが確認された。得られたスペクトルを図8に合わせて示す。
[Example 12] Dependence of absorbance on applied voltage The absorbance of the EC cell was measured when voltages of -2.5 V, -2.0 V, and 0 V were applied to the EC cell B prepared in Example 9, respectively. The absorbance was measured in the same manner as in Example 7.
The absorbance of the EC cell was dependent on the applied voltage, and it was confirmed that coloring with a higher color by applying a higher negative voltage. The obtained spectrum is shown in FIG.

[実施例13]発色応答速度の印加電圧依存性
実施例9で作製したECセルCに、−2.8V、−2.4V、−2.0Vの電圧をそれぞれ印加した際の、ECセルの波長550nmの吸光度の時間変化を測定した。なお、吸光度の測定は実施例7と同様の方法で行った。
ECセルの吸光度変化は印加電圧に依存し、より高い負電圧を印加することで、より速く発色する、すなわち発色応答速度が速いことが確認された。得られたスペクトルを図9に合わせて示す。
[Example 13] Dependence of color development response speed on applied voltage The EC cell C produced in Example 9 was subjected to -2.8V, -2.4V, and -2.0V, respectively. The time change of absorbance at a wavelength of 550 nm was measured. The absorbance was measured in the same manner as in Example 7.
The change in absorbance of the EC cell was dependent on the applied voltage, and it was confirmed that color development was faster, that is, the color development response speed was faster by applying a higher negative voltage. The obtained spectrum is shown in FIG.

[実施例14]正負電圧印加に伴う着消色
実施例9で作製したECセルCに、2.5Vの正負電圧をそれぞれ印加した際の、ECセルの波長550nmの吸光度変化を測定した。なお、吸光度の測定は実施例7と同様の方法で行った。
−2.5Vでマゼンタ色に発色したECセルは、電圧印加を止めてもそのまま発色し、メモリー性を示すことが確認された。また、+2.5Vの電圧印加で色が消え、可逆的に着消色することが確認された。
[Example 14] Color fading accompanying application of positive and negative voltages The EC cell C produced in Example 9 was measured for changes in absorbance at a wavelength of 550 nm when a positive and negative voltage of 2.5 V was applied. The absorbance was measured in the same manner as in Example 7.
It was confirmed that EC cells that developed a magenta color at −2.5 V were colored as they were even when the voltage application was stopped, and exhibited a memory property. In addition, it was confirmed that the color disappears when the voltage of +2.5 V is applied, and the color disappears reversibly.

1・・・透明基板
2・・・透明電極層
3・・・エレクトロクロミック層
4・・・電荷輸送層
5・・・透明電極層
6・・・透明基板
7・・・シール材
A・・・積層板A(第一の積層体)
B・・・積層板B(第二の積層体)
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Transparent electrode layer 3 ... Electrochromic layer 4 ... Charge transport layer 5 ... Transparent electrode layer 6 ... Transparent substrate 7 ... Sealing material A ... Laminate A (first laminate)
B ... Laminated board B (second laminated body)

Claims (20)

同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマーからなる、エレクトロクロミック材料。 A monomer A having a portion exhibiting electrochromic properties and two or more radical polymerizable double bonds in the same molecule is polymerized in the presence of 20 to 300 mol% of a polymerization initiator B with respect to the monomer A. An electrochromic material consisting of a hyperbranched polymer obtained by processing. 前記同一分子内にエレクトロクロミック特性を発現する部分と2個以上のラジカル重合性二重結合を有するモノマーAが、下記式(1)で表される化合物である、請求項1に記載のエレクトロクロミック材料。
[式中、R1及びR2はそれぞれ独立して、水素原子又はメチル基を表し、A1及びA2はそれぞれ独立して、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至14の2価の炭化水素残基を表し、Eはエレクトロクロミック特性を発現する部分を表す。]
2. The electrochromic according to claim 1, wherein the monomer A having an electrochromic property in the same molecule and two or more radical polymerizable double bonds is a compound represented by the following formula (1). material.
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and A 1 and A 2 each independently represent an alkyl group having 1 to 1 carbon atoms which may contain an ether bond or an ester bond. 14 represents a divalent hydrocarbon residue, and E represents a portion that exhibits electrochromic properties. ]
前記式(1)中、A1及びA2が下記式(2)乃至式(5)の何れかで表される構造である、請求項2に記載のエレクトロクロミック材料。
[式中、p、q、r及びsは繰り返し数であり、それぞれ独立して、1乃至6の整数を表し、*はエレクトロクロミック特性を発現する部分であるEと連結する側である。]
The electrochromic material according to claim 2, wherein A 1 and A 2 in the formula (1) have a structure represented by any one of the following formulas (2) to (5).
[Wherein, p, q, r and s are repeating numbers, each independently represents an integer of 1 to 6, and * is a side linked to E which is a portion that develops electrochromic properties. ]
前記式(1)で表されるモノマーAが下記式(6)で表される化合物である、請求項2に記載のエレクトロクロミック材料。
[式中、Eは前記式(1)と同じ意味を表す。]
The electrochromic material according to claim 2, wherein the monomer A represented by the formula (1) is a compound represented by the following formula (6).
[In formula, E represents the same meaning as said Formula (1). ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが、4級ビピリジニウム塩構造の部分、1,4−ジアセチルベンゼン構造の部分、テレフタル酸ジエステル構造の部分、又はビフェニル−4,4’−ジカルボン酸ジエステル構造の部分である、請求項4に記載のエレクトロクロミック材料。 The part E expressing the electrochromic property in the formula (6) is a part of a quaternary bipyridinium salt structure, a part of a 1,4-diacetylbenzene structure, a part of a terephthalic acid diester structure, or biphenyl-4,4′-dicarboxylic The electrochromic material according to claim 4, which is a part of an acid diester structure. 前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(7)で表される構造である、請求項5に記載のエレクトロクロミック材料。
[式中、R3乃至R10はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表し、X-及びY-はそれぞれ独立して、Cl-、Br-、I-、ClO4 -、BF4 -、PF6 -、CH3COO-、PhSO3 -、p−TolSO3 -又はR27SO4 -を表す(前記式中、Phはフェニル基を表し、p−Tolはパラ−トリル基を表し、R27は炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。)。]
The electrochromic material according to claim 5, wherein the portion E expressing the electrochromic property in the formula (6) has a structure represented by the following formula (7).
[Wherein R 3 to R 10 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. And X and Y are each independently Cl , Br , I , ClO 4 , BF 4 , PF 6 , CH 3 COO , PhSO 3 , p-TolSO 3 or R. 27 represents SO 4 (wherein Ph represents a phenyl group, p-Tol represents a para-tolyl group, and R 27 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Represents a group). ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(8)で表される、請求項5に記載のエレクトロクロミック材料。
[式中、R11乃至R14はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The electrochromic material according to claim 5, wherein the portion E expressing the electrochromic property in the formula (6) is represented by the following formula (8).
[Wherein R 11 to R 14 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(9)で表される、請求項5に記載のエレクトロクロミック材料。
[式中、R15乃至R18はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The electrochromic material according to claim 5, wherein the portion E that expresses the electrochromic property in the formula (6) is represented by the following formula (9).
[Wherein, R 15 to R 18 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(10)で表される、請求項5に記載のエレクトロクロミック材料。
[式中、R19乃至R26はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The electrochromic material according to claim 5, wherein the portion E that exhibits electrochromic properties in the formula (6) is represented by the following formula (10).
[Wherein, R 19 to R 26 each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
前記重合開始剤Bがアゾ系重合開始剤である、請求項1乃至請求項9の何れか一項に記載のエレクトロクロミック材料。 The electrochromic material according to any one of claims 1 to 9, wherein the polymerization initiator B is an azo polymerization initiator. 前記重合開始剤Bが2,2’−アゾビスイソ酪酸ジメチルである、請求項10に記載のエレクトロクロミック材料。 The electrochromic material according to claim 10, wherein the polymerization initiator B is dimethyl 2,2'-azobisisobutyrate. 前記高分岐ポリマーのゲル浸透クロマトグラフィーで測定される重量平均分子量(Mw)が、ポリエチレングリコール換算で1,000乃至2,000,000、又はポリスチレン換算で1,000乃至200,000である、請求項1乃至請求項11の何れか一項に記載のエレクトロクロミック材料。 The weight average molecular weight (Mw) measured by gel permeation chromatography of the hyperbranched polymer is 1,000 to 2,000,000 in terms of polyethylene glycol, or 1,000 to 200,000 in terms of polystyrene. The electrochromic material according to any one of claims 1 to 11. 下記式(6)で表される、エレクトロクロミック特性を発現する部分を有するモノマーAを、該モノマーAに対して20乃至300モル%量の重合開始剤Bの存在下で重合させることにより得られる高分岐ポリマー。
[式中、Eはエレクトロクロミック特性を発現する部分を表す。]
It is obtained by polymerizing the monomer A represented by the following formula (6) having a portion exhibiting electrochromic properties in the presence of a polymerization initiator B in an amount of 20 to 300 mol% with respect to the monomer A. Hyperbranched polymer.
[In formula, E represents the part which expresses an electrochromic characteristic. ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(7)で表される構造である、請求項13に記載の高分岐ポリマー。
[式中、R3乃至R10はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表し、X-及びY-はそれぞれ独立して、Cl-、Br-、I-、ClO4 -、BF4 -、PF6 -、CH3COO-、PhSO3 -、p−TolSO3 -又はR27SO4 -を表す(前記式中、Phはフェニル基を表し、p−Tolはパラ−トリル基を表し、R27は炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。)。]
The hyperbranched polymer of Claim 13 whose part E which expresses the electrochromic characteristic in the said Formula (6) is a structure represented by following formula (7).
[Wherein R 3 to R 10 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. And X and Y are each independently Cl , Br , I , ClO 4 , BF 4 , PF 6 , CH 3 COO , PhSO 3 , p-TolSO 3 or R. 27 represents SO 4 (wherein Ph represents a phenyl group, p-Tol represents a para-tolyl group, and R 27 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms. Represents a group). ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(8)で表される構造である、請求項13に記載の高分岐ポリマー。
[式中、R11乃至R14はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The hyperbranched polymer of Claim 13 whose part E which expresses the electrochromic characteristic in said Formula (6) is a structure represented by following formula (8).
[Wherein R 11 to R 14 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(9)で表される構造である、請求項13に記載の高分岐ポリマー。
[式中、R15乃至R18はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The hyperbranched polymer of Claim 13 whose part E which expresses the electrochromic characteristic in said Formula (6) is a structure represented by following formula (9).
[Wherein, R 15 to R 18 each independently represents a hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
前記式(6)におけるエレクトロクロミック特性を発現する部分Eが下記式(10)で表される構造である、請求項13に記載の高分岐ポリマー。
[式中、R19乃至R26はそれぞれ独立して、水素原子、又はエーテル結合若しくはエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐鎖状又は環状のアルキル基を表す。]
The hyperbranched polymer of Claim 13 whose part E which expresses the electrochromic characteristic in said Formula (6) is a structure represented by following formula (10).
[Wherein, R 19 to R 26 each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond. Represent. ]
請求項1乃至請求項12のうち何れか一項に記載のエレクトロクロミック材料が、少なくとも1種の溶剤に溶解又は分散していることを特徴とするワニス。 A varnish, wherein the electrochromic material according to any one of claims 1 to 12 is dissolved or dispersed in at least one solvent. 請求項1乃至請求項12のうち何れか一項に記載のエレクトロクロミック材料を含有する薄膜状構造体。 A thin film structure containing the electrochromic material according to any one of claims 1 to 12. 少なくとも片方が透明である2枚の電極層間に、請求項1乃至請求項12のうち何れか一項に記載のエレクトロクロミック材料を含有する薄膜状構造体が挟まれているエレクトロクロミック素子。 An electrochromic element in which a thin film-like structure containing the electrochromic material according to any one of claims 1 to 12 is sandwiched between two electrode layers, at least one of which is transparent.
JP2011539402A 2009-11-06 2010-11-05 Electrochromic material Expired - Fee Related JP5689071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011539402A JP5689071B2 (en) 2009-11-06 2010-11-05 Electrochromic material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009255097 2009-11-06
JP2009255097 2009-11-06
JP2010070473 2010-03-25
JP2010070473 2010-03-25
PCT/JP2010/069724 WO2011055792A1 (en) 2009-11-06 2010-11-05 Electrochromic material
JP2011539402A JP5689071B2 (en) 2009-11-06 2010-11-05 Electrochromic material

Publications (2)

Publication Number Publication Date
JPWO2011055792A1 JPWO2011055792A1 (en) 2013-03-28
JP5689071B2 true JP5689071B2 (en) 2015-03-25

Family

ID=43970028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011539402A Expired - Fee Related JP5689071B2 (en) 2009-11-06 2010-11-05 Electrochromic material

Country Status (2)

Country Link
JP (1) JP5689071B2 (en)
WO (1) WO2011055792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099415A (en) * 2017-02-27 2018-09-05 서울시립대학교 산학협력단 Electrochromic Compound, Electrochromic Device, and, Method of Driving Electrochromic Device
WO2023063490A1 (en) * 2021-10-14 2023-04-20 한국기술교육대학교 산학협력단 Electrochromic element composition having light transmissability, high flexibility, and high moisture resistance, and method for producing electrochromic member

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952030B (en) 2011-08-22 2016-02-24 富士施乐株式会社 Compound, charge transport film, photoelectric conversion device and Electrophtography photosensor
JP5879817B2 (en) * 2011-08-22 2016-03-08 富士ゼロックス株式会社 Novel reactive compound, charge transport film and photoelectric conversion device
JP6221686B2 (en) * 2013-11-27 2017-11-01 株式会社リコー Electrochromic compound and display element
JP6613663B2 (en) * 2015-07-10 2019-12-04 株式会社リコー Electrochromic compound, electrochromic composition, and electrochromic display element
JP6677122B2 (en) * 2015-08-20 2020-04-08 Jnc株式会社 Compound having alkenyl at both ends, liquid crystal composition and liquid crystal display device
JPWO2023074408A1 (en) 2021-10-28 2023-05-04

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138454A (en) * 1997-07-15 1999-02-12 Nippon Oil Co Ltd Electrochromic mirror
WO1999023531A1 (en) * 1997-11-05 1999-05-14 Nippon Mitsubishi Oil Corporation Electrochromic mirror
JPH11183941A (en) * 1997-12-19 1999-07-09 Nippon Mitsubishi Oil Corp Electrochromic element
JPH11183940A (en) * 1997-12-19 1999-07-09 Nippon Mitsubishi Oil Corp Electrochromic element
JP2000131722A (en) * 1998-10-22 2000-05-12 Nippon Mitsubishi Oil Corp Electrochromic element
JP2004099874A (en) * 2002-07-18 2004-04-02 Sharp Corp Dendrimer and electronic device element using this
JP2008214394A (en) * 2007-02-28 2008-09-18 Kyushu Univ Mixed atomic valence complex-modified hyper branch polymer
JP2009155619A (en) * 2007-12-28 2009-07-16 Lion Corp Method of synthesizing hyperbranched polymer, and resist composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773745B2 (en) * 2008-05-07 2014-07-08 Kyushu University Electrochromic material
JP5473270B2 (en) * 2008-07-17 2014-04-16 国立大学法人徳島大学 Photopatterning composition using hyperbranched polymer
WO2010126140A1 (en) * 2009-05-01 2010-11-04 日産化学工業株式会社 Method for producing highly branched polymer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138454A (en) * 1997-07-15 1999-02-12 Nippon Oil Co Ltd Electrochromic mirror
WO1999023531A1 (en) * 1997-11-05 1999-05-14 Nippon Mitsubishi Oil Corporation Electrochromic mirror
JPH11183941A (en) * 1997-12-19 1999-07-09 Nippon Mitsubishi Oil Corp Electrochromic element
JPH11183940A (en) * 1997-12-19 1999-07-09 Nippon Mitsubishi Oil Corp Electrochromic element
JP2000131722A (en) * 1998-10-22 2000-05-12 Nippon Mitsubishi Oil Corp Electrochromic element
JP2004099874A (en) * 2002-07-18 2004-04-02 Sharp Corp Dendrimer and electronic device element using this
JP2008214394A (en) * 2007-02-28 2008-09-18 Kyushu Univ Mixed atomic valence complex-modified hyper branch polymer
JP2009155619A (en) * 2007-12-28 2009-07-16 Lion Corp Method of synthesizing hyperbranched polymer, and resist composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099415A (en) * 2017-02-27 2018-09-05 서울시립대학교 산학협력단 Electrochromic Compound, Electrochromic Device, and, Method of Driving Electrochromic Device
KR102038495B1 (en) * 2017-02-27 2019-10-30 서울시립대학교 산학협력단 Electrochromic Compound, Electrochromic Device, and, Method of Driving Electrochromic Device
WO2023063490A1 (en) * 2021-10-14 2023-04-20 한국기술교육대학교 산학협력단 Electrochromic element composition having light transmissability, high flexibility, and high moisture resistance, and method for producing electrochromic member

Also Published As

Publication number Publication date
WO2011055792A1 (en) 2011-05-12
JPWO2011055792A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5689071B2 (en) Electrochromic material
JP2007529781A (en) Gel polymer electrolyte using ionic liquid and electrochromic device using the same
JP2009508148A (en) Electrolyte containing eutectic mixture and electrochemical device using said electrolyte
JP6713175B2 (en) Composite containing organic/metal hybrid polymer and ionic liquid, electrochromic device using the same, and manufacturing method thereof
JP2012093699A (en) Electrochromic element
JP2008191667A (en) Electrochromic display device and method of manufacturing the same
JP2001209078A (en) Electrochromic device
KR101007864B1 (en) New thiophen compounds, thiophen polymer,conductive high polymer film and forming method of conductive high polymer pattern using thereof
WO2009136626A1 (en) Electrochromic material
JP6213080B2 (en) Electrochromic material, electrochromic composition, and electrochromic display element
JP6870288B2 (en) Electrochromic element
JP2014047260A (en) Electrochromic material
US9625782B2 (en) Electrolyte solution, printing method thereof and resulting solid electrolyte
KR101716799B1 (en) Gel polymer electrolyte composition and electrochromic device using the same
KR101911376B1 (en) Gel polymer electrolyte composition and electrochromic device using the same
JP2006235366A (en) Gel electrolyte and electrochromic element using the same
KR101781144B1 (en) Solid polymer electrolyte composition and electrochromic device using the same
JP5445338B2 (en) Method for manufacturing electrochromic display element
JP4569176B2 (en) Display element
KR101780704B1 (en) Gel polymer electrolyte composition and electrochromic device using the same
JP6728951B2 (en) Electrochromic compound, electrochromic composition, and electrochromic device
KR20140037989A (en) Gel polymer electrolyte composition and electrochromic device using the same
KR20130013991A (en) Gel polymer electrolyte composition and electrochromic device using the same
JP2011102288A (en) Electrochromic compound
KR101718370B1 (en) Solid polymer electrolyte composition and electrochromic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5689071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees