JP5685856B2 - Thermal spray coating - Google Patents
Thermal spray coating Download PDFInfo
- Publication number
- JP5685856B2 JP5685856B2 JP2010190601A JP2010190601A JP5685856B2 JP 5685856 B2 JP5685856 B2 JP 5685856B2 JP 2010190601 A JP2010190601 A JP 2010190601A JP 2010190601 A JP2010190601 A JP 2010190601A JP 5685856 B2 JP5685856 B2 JP 5685856B2
- Authority
- JP
- Japan
- Prior art keywords
- spray coating
- thermal spray
- hardness
- coating
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Coating By Spraying Or Casting (AREA)
Description
本発明は、溶射皮膜に関する。 The present invention relates to a thermal spray coating.
各種機器、或いはその部品の耐摩耗性を高める表面処理としては、窒素(N)や炭素(C)等の反応性ガスを鋼材表面から内部に拡散させる窒化処理や浸炭処理、或いは硬質Crめっき、Ni−Pめっき等のめっき処理、セラミックス、サーメット材等の溶射処理、TiN等の高硬度皮膜を形成するCVD処理、PVD処理等が知られている。このうち、溶射処理は、被処理物(溶射皮膜が形成される部材)の材質制約が少なく、比較的広く採用されている。耐摩耗性を高める溶射材料としては、酸化物系セラミックス、炭化物系セラミックス、サーメット材(セラミックスと金属との混合物)等が一般に採用され、特にサーメット材については近年研究開発が盛んに行なわれている。 As a surface treatment for improving the wear resistance of various devices or parts thereof, nitriding treatment or carburizing treatment for diffusing reactive gas such as nitrogen (N) or carbon (C) from the steel surface to the inside, or hard Cr plating, Known are plating treatment such as Ni-P plating, thermal spraying treatment of ceramics, cermet material, etc., CVD treatment for forming a high hardness film such as TiN, PVD treatment, and the like. Among these, the thermal spraying treatment is relatively widely adopted because there are few material restrictions on the object to be treated (the member on which the thermal spray coating is formed). In general, oxide-based ceramics, carbide-based ceramics, cermet materials (mixtures of ceramics and metals), etc. are generally used as thermal spraying materials to improve wear resistance. In particular, cermet materials have been actively researched and developed in recent years. .
例えば、非特許文献1では、HVOF(高速ガスフレーム溶射法)によるCr3C2−NiCr溶射皮膜に関し、溶射中の脱炭が皮膜硬さに及ぼす影響、カーバイド粒子径及びその含有量がアブレシブ摩耗に及ぼす影響等について報告されている。また、特許文献1は、酸化クロムが混在するクロムカーバイドでなるコーティング層、或いは酸化クロムが混在するニッケル基合金でなるコーティング層を有する潤滑剤自発形成型摺動部材を開示し、さらに、クロムカーバイド粉末或いはニッケル基合金粉末と、酸化クロム粉末との混合材料を、プラズマまたは爆発銃で溶射することによって上記コーティング層を形成することを開示する。 For example, in Non-Patent Document 1, regarding Cr 3 C 2 —NiCr sprayed coating by HVOF (high-speed gas flame spraying method), the influence of decarburization during coating on coating hardness, the carbide particle size and the content thereof are abrasive wear. It has been reported on the effects on the environment. Further, Patent Document 1 discloses a lubricant self-forming sliding member having a coating layer made of chromium carbide mixed with chromium oxide or a coating layer made of nickel-based alloy mixed with chromium oxide, and further, chromium carbide. It is disclosed that the coating layer is formed by spraying a mixed material of powder or nickel-based alloy powder and chromium oxide powder with plasma or an explosion gun.
ところで、耐摩耗性の評価においては、当該表面処理をした機器又は部品の摩耗量が少ないことに加えて、相手材の摩耗量も少ないことを要求されることが多い。例えば、エンジン部品では、シール性の確保のために相互に摺動する部品各々の摩耗量が少ないことが要求される。ロータリーエンジンの例で云えば、ローターのサイドシールが摺動するサイドハウジングは、従来、例えば鋳鉄製とされて窒化処理されているが、これをアルミ合金製とすると、大幅な軽量化を期待することができるものの、サイドハウジング及びサイドシールの耐摩耗性が問題になる。特にエンジン部品の場合は、摺動面圧や摺動速度、或いは温度が変化するという厳しい環境下に置かれ、さらには潤滑油の性状も摩耗量に影響を及ぼすことから、耐摩耗性の確保が難しい。 By the way, in the wear resistance evaluation, it is often required that the wear amount of the counterpart material is small in addition to the small wear amount of the surface-treated equipment or parts. For example, engine parts are required to have a small amount of wear on each of the parts that slide against each other in order to ensure sealing performance. In the example of the rotary engine, the side housing on which the rotor side seal slides is conventionally made of cast iron, for example, and is nitrided, but if it is made of aluminum alloy, a significant weight reduction is expected. However, the wear resistance of the side housing and the side seal becomes a problem. In particular, engine parts are placed in a harsh environment where the sliding surface pressure, sliding speed, or temperature changes, and the properties of the lubricant also affect the amount of wear, ensuring wear resistance. Is difficult.
これに対して、先に説明したように、耐摩耗性が要求される部材にサーメット系の溶射皮膜を形成することが考えられる。しかし、一般に、溶射皮膜の緻密化・硬質化により耐摩耗性は向上するものの、相手材に対する攻撃性が強くなり、或いは摺動抵抗が大きくなるなど、他の摺動特性が悪化する場合がある。 On the other hand, as described above, it is conceivable to form a cermet-type sprayed coating on a member that requires wear resistance. However, although the wear resistance is generally improved by densification and hardening of the thermal spray coating, other sliding characteristics may be deteriorated, for example, the aggressiveness against the mating material is increased or the sliding resistance is increased. .
本発明の課題は、上記エンジン部品に代表される各種摺動部材の耐摩耗性を高めることができる、さらには、相手材の摩耗量をも軽減することができる溶射皮膜を提供することにある。 The subject of this invention is providing the thermal spray coating which can improve the abrasion resistance of the various sliding members represented by the said engine components, and also can reduce the wear amount of the other party material. .
本発明は、Cr3C2とNiCrとの混合粉末による溶射皮膜において、その皮膜中に生成しているCr2O3量が耐摩耗性に影響を及ぼすことを見出して本発明を完成した。 The present invention has been completed by finding that the amount of Cr 2 O 3 produced in a sprayed coating of a mixed powder of Cr 3 C 2 and NiCr affects the wear resistance.
すなわち、ここに提示する溶射皮膜は、Cr3C2とNiCrとの混合粉末の溶射によって形成された溶射皮膜であって、
当該溶射皮膜のX線回折チャートにおける、Cr3C2の面指数(121)のピーク面積に対するCr2O3の面指数(012)のピーク面積の割合が2%以上16%以下であることを特徴とする。
That is, the thermal spray coating presented here is a thermal spray coating formed by thermal spraying of a mixed powder of Cr 3 C 2 and NiCr,
In the X-ray diffraction chart of the thermal spray coating, the ratio of the peak area of the Cr 2 O 3 plane index (012) to the peak area of the Cr 3 C 2 plane index (121) is 2% or more and 16% or less. Features.
Cr3C2とNiCrとの混合粉末による溶射皮膜の場合、当該溶射の過程でCr2O3を生成させてこれを溶射皮膜中に混在した状態にすることができる。本発明によれば、溶射皮膜の耐摩耗性が高くなり、しかも、相手材の摩耗も抑えられる。その理由は定かでないが、Cr3C2−NiCr系溶射皮膜中に含まれているCr2O3が当該溶射皮膜の硬度を高めつつ、相手材に対する攻撃性を抑制しているものと考えられる。ここに、Cr3C2の面指数(121)のピーク面積に対するCr2O3の面指数(012)のピーク面積の割合は、溶射皮膜中のCr2O3含有割合自体を示すものではないが、該Cr2O3含有割合の指標になる。 In the case of a thermal spray coating using a mixed powder of Cr 3 C 2 and NiCr, Cr 2 O 3 can be generated in the process of thermal spraying and mixed with the thermal spray coating. According to the present invention, the wear resistance of the thermal spray coating is increased, and the wear of the counterpart material is also suppressed. Although the reason is not clear, it is considered that Cr 2 O 3 contained in the Cr 3 C 2 —NiCr-based thermal spray coating increases the hardness of the thermal spray coating and suppresses the aggressiveness against the counterpart material. . Here, the ratio of the peak area of the Cr 2 O 3 plane index (012) to the peak area of the Cr 3 C 2 plane index (121) does not indicate the Cr 2 O 3 content ratio itself in the thermal spray coating. Is an indicator of the Cr 2 O 3 content ratio.
上記ピーク面積の割合は5%以上16%以下であることがさらに好ましい。また、上記Cr2O3については、X線回折測定結果を用いてシェラー式より求めた結晶子径が16nm以下であること、さらには15nm以下であることが好ましい。また、上記溶射皮膜の硬さはHV700以上であることが好ましい。好ましい実施形態では、上記溶射皮膜は、アルミ合金材の表面に設けられて、他の部材が摺動する摺動面を形成している。 The ratio of the peak area is more preferably 5% or more and 16% or less. As for the Cr 2 O 3, crystallite diameter determined by the Scherrer equation using the X-ray diffraction measurement result is lower than 16 nm, and further preferably not 15nm or less. Moreover, it is preferable that the hardness of the said sprayed coating is HV700 or more. In a preferred embodiment, the thermal spray coating is provided on the surface of an aluminum alloy material to form a sliding surface on which other members slide.
本発明によれば、Cr3C2とNiCrとの混合粉末の溶射によって形成された溶射皮膜であって、X線回折チャートにおける、Cr3C2の面指数(121)のピーク面積に対するCr2O3の面指数(012)のピーク面積の割合が2%以上16%以下であるから、当該溶射皮膜の耐摩耗性が高くなり、しかも、相手材の摩耗も抑えられる。 According to the present invention, it is a thermal spray coating formed by thermal spraying of a mixed powder of Cr 3 C 2 and NiCr, and Cr 2 with respect to the peak area of the surface index (121) of Cr 3 C 2 in the X-ray diffraction chart. Since the ratio of the peak area of the O 3 plane index (012) is 2% or more and 16% or less, the wear resistance of the sprayed coating is increased, and the wear of the counterpart material is also suppressed.
以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.
<溶射皮膜の形成>
板状試験片に、表1に示す溶射条件(溶射ガンの種類、溶射材料の粒径及び溶射距離)で高速ガスフレーム溶射を実施することにより、皮膜硬さが異なるCr3C2−NiCr系溶射皮膜を有するサンプル1〜7を作成した。試験片はいずれもアルミ合金鋳物AC4B−T6(Al−Si−Cu系アルミ合金で溶体化処理後に人工時効したもの)製である。
<Formation of thermal spray coating>
Cr 3 C 2 —NiCr system with different coating hardness by performing high-speed gas flame spraying on the plate-shaped test pieces under the spraying conditions shown in Table 1 (type of spray gun, particle size of sprayed material and spray distance) Samples 1 to 7 having a thermal spray coating were prepared. All the test pieces are made of an aluminum alloy casting AC4B-T6 (an Al-Si-Cu-based aluminum alloy that has been artificially aged after solution treatment).
一般に、粒径の小さい粉末を使用し、溶射速度(溶射中の粉末(粒子)速度)を速くすると、緻密で硬さが高く、基材との密着力の高い溶射皮膜が得られる。この傾向を利用し、同じ組成の溶射材料を用いながら、狙いの硬さの溶射皮膜が得られるように溶射条件を調整した。 In general, when a powder having a small particle diameter is used and the spraying speed (powder (particle) speed during spraying) is increased, a dense sprayed coating with high hardness and high adhesion to the substrate can be obtained. Utilizing this tendency, the thermal spraying conditions were adjusted so as to obtain a thermal spray coating having the desired hardness while using the thermal spray material having the same composition.
表1に示す溶接ガンはいずれもスルーザメテコ社製である。そのうちの「WokaStar」は液体燃料式溶射ガンであり、燃料として酸素とケロシンとを用いる。「DJ−2700」及び「DJ−Std#9」はいずれもガス燃料式溶射ガンであり、燃料として酸素とプロピレンとを用いる(前者は水冷ガン、後者は空冷ガン)。それら溶接ガンの溶射速度の大小関係は、「WokaStar」>「DJ−2700」>「DJ−Std#9」となる。溶射材料は、Cr3C2−25NiCr(Cr3C2粉末とNiCr粉末とを75:25の質量比で混合したもの)であり、粉末粒径としては、細粒(10〜38μm)と粗粒15〜45μm)との2種類を用いた。表1には、狙いの硬さと、得られた溶射皮膜の硬さの実測値を併せて示している。 All the welding guns shown in Table 1 are manufactured by Through Zameteco. Among them, “WokaStar” is a liquid fuel type spray gun, which uses oxygen and kerosene as fuel. Both “DJ-2700” and “DJ-Std # 9” are gas fuel spray guns, and oxygen and propylene are used as fuel (the former is a water-cooled gun and the latter is an air-cooled gun). The relationship of the spraying speeds of these welding guns is “WokaStar”>“DJ-2700”> “DJ-Std # 9”. The spray material is Cr 3 C 2 -25NiCr (Cr 3 C 2 powder and NiCr powder and a mixture at a weight ratio of 75:25), as the powder particle size, the granules (10~38Myuemu) crude Two types, 15 to 45 μm), were used. Table 1 shows the target hardness and the measured value of the hardness of the obtained thermal spray coating.
図1は上記サンプル1〜7各々の断面組織、HV硬さ及び気孔率を示す。例外はあるが、溶射速度大の溶接ガンを用いたサンプル(例えば、サンプル1,2)の方が溶射速度小の溶接ガンを用いたサンプル(例えば、サンプル5〜7)よりも、溶射皮膜が緻密で硬さも高くなっている。また、溶射材料の粉末粒径が小さいサンプル1,3,5の方が、対応する粉末粒径が大きいサンプル2,4,6,7よりも硬さが高くなっている。 FIG. 1 shows the cross-sectional structure, HV hardness and porosity of each of Samples 1-7. Although there are exceptions, the samples using a welding gun with a high spraying rate (for example, Samples 1 and 2) have a thermal spray coating more than the samples using a welding gun with a low spraying rate (for example, Samples 5 to 7). It is dense and hard. Further, samples 1, 3, and 5 having a smaller powder particle size of the thermal spray material have higher hardness than samples 2, 4, 6, and 7 having a larger powder particle size.
<摺動特性評価>
上記サンプル1〜7の溶射皮膜の摺動特性(耐摩耗性、耐焼付き性及び摩擦係数)をピンオンディスク摩擦摩耗試験機を用いて評価した。ピンは鉄系焼結合金(Fe−3%C)製とし、また、溶射皮膜表面はダイヤモンド砥石によって表面粗さをRa=0.10〜0.16に揃えた。
<Sliding characteristic evaluation>
The sliding characteristics (abrasion resistance, seizure resistance and friction coefficient) of the sprayed coatings of Samples 1 to 7 were evaluated using a pin-on-disk friction and abrasion tester. The pins were made of an iron-based sintered alloy (Fe-3% C), and the surface of the sprayed coating was made to have a surface roughness of Ra = 0.10 to 0.16 with a diamond grindstone.
−耐摩耗性−
摺速を1m/s(一定)、負荷(面圧)を6MPa(一定)とし、30分経過後の溶射皮膜及びピン(相手材)の摩耗量を測定した(潤滑なし)。溶射皮膜摩耗量の測定結果(溶射皮膜の硬さとその摩耗量との関係)を図2に示し、ピン摩耗量の測定結果(溶射皮膜の硬さとピン摩耗量との関係)を図3に示す。また、この両図には窒化処理した鋳鉄製サンプルの摩耗量も併せて示している。
−Abrasion resistance−
The sliding speed was 1 m / s (constant), the load (surface pressure) was 6 MPa (constant), and the wear amount of the sprayed coating and the pin (counter member) after 30 minutes was measured (no lubrication). The measurement result of the thermal spray coating wear amount (relation between the hardness of the thermal spray coating and the wear amount) is shown in FIG. 2, and the measurement result of the pin wear amount (relation between the hardness of the thermal spray coating and the pin wear amount) is shown in FIG. . Both figures also show the amount of wear of the cast iron sample that has been nitrided.
図2によれば、溶射皮膜の硬さが高くなるほど該溶射皮膜の摩耗量が少なくなっており、HV700以上であれば、窒化処理した鋳鉄材よりも耐摩耗性が高くなることがわかる。図3によれば、溶射皮膜の硬さとピン摩耗量との間には強い相関はみられず、相手材(ピン)に対する攻撃性は、溶射皮膜の硬さに依らず、窒化処理した鋳鉄材と同等もしくはそれ以下であることがわかる。 According to FIG. 2, it can be seen that as the hardness of the thermal spray coating increases, the wear amount of the thermal spray coating decreases, and if it is HV700 or higher, the wear resistance is higher than that of the nitriding cast iron material. According to FIG. 3, there is no strong correlation between the hardness of the thermal spray coating and the amount of pin wear, and the aggressiveness against the mating material (pin) does not depend on the hardness of the thermal spray coating, and the cast iron material that has been nitrided. It is understood that it is equal to or less than.
−耐焼付き性−
摺速を15m/sの一定とし、負荷を段階的に高めていき、焼付きが発生する限界面圧を測定した。サンプルの温度は100℃とし、摺動面の潤滑のために、常温のエンジンオイル10W−20を0.17mL/分の流量で供給した。結果(溶射皮膜の硬さと焼付き限界面圧との関係)を図4に示す。同図には窒化処理した鋳鉄製サンプルの限界面圧を併せて示している。
-Seizure resistance-
The sliding speed was fixed at 15 m / s, the load was increased stepwise, and the critical surface pressure at which seizure occurred was measured. The temperature of the sample was 100 ° C., and normal temperature engine oil 10W-20 was supplied at a flow rate of 0.17 mL / min for lubricating the sliding surface. The results (relationship between thermal spray coating hardness and seizure limit surface pressure) are shown in FIG. The figure also shows the limit surface pressure of the nitriding cast iron sample.
図4から、サンプル1〜7は、窒化処理した鋳鉄材と同等もしくはそれ以上の耐焼付き性を有することがわかる。図4によれば、溶射皮膜の硬さが高くなるほど焼付き限界面圧が高くなる傾向がみられ、硬さが高い方が有利となる通常の傾向とは逆になっている。これには、溶射皮膜の気孔率が関係していると考えられる。すなわち、図5は溶射皮膜の硬さと気孔率との関係を示すものであり、溶射皮膜の硬さが低くなるほど気孔率が大きくなり、気孔がオイルピットの役割を担って耐焼付き性が高くなっていると考えられる。また、HV900以下であれば、窒化処理した鋳鉄材と同等以上の耐焼付き性が得られることがわかる。なお、気孔率は皮膜の断面を画像解析して求めたものである。 From FIG. 4, it can be seen that Samples 1 to 7 have seizure resistance equivalent to or higher than that of the nitriding cast iron material. According to FIG. 4, the seizure limit surface pressure tends to increase as the hardness of the sprayed coating increases, which is contrary to the normal tendency that higher hardness is advantageous. This is considered to be related to the porosity of the sprayed coating. That is, FIG. 5 shows the relationship between the hardness of the thermal spray coating and the porosity. The lower the hardness of the thermal spray coating, the higher the porosity, and the pores act as an oil pit and the seizure resistance increases. It is thought that. Moreover, if it is HV900 or less, it turns out that the seizure resistance equivalent to or more than the nitriding-treated cast iron material is obtained. The porosity is obtained by image analysis of the cross section of the film.
−摩擦係数−
サンプル4及び7、並びに窒化処理した鋳鉄製サンプルについて、負荷(面圧)及び摺速を変化させて摩擦係数を測定した。潤滑条件及びサンプル温度は上記耐焼付き性の試験と同じにした。面圧2MPaのときの結果を図6に示し、面圧4MPaのときの結果を図7に示す。同図から、溶射皮膜の摩擦係数は、皮膜硬さに依らず、窒化処理した鋳鉄材と同等であることがわかる。
-Friction coefficient-
For samples 4 and 7, and a cast iron sample that was nitrided, the friction coefficient was measured by changing the load (surface pressure) and sliding speed. Lubrication conditions and sample temperature were the same as in the above seizure resistance test. The results when the surface pressure is 2 MPa are shown in FIG. 6, and the results when the surface pressure is 4 MPa are shown in FIG. From the figure, it can be seen that the coefficient of friction of the sprayed coating is equivalent to that of the cast iron material subjected to nitriding treatment, regardless of the coating hardness.
<溶射皮膜中のCr2O3(X線回折)>
図3によれば、溶射皮膜の硬さとピン摩耗量との間には、硬さが高くなるほどピン摩耗量が多くなるという、通常予想されるような相関はみられず、むしろ、溶射皮膜の硬さが高いにも拘わらず、相手材(ピン)に対する攻撃性が低いサンプルがみられる。この点を検討するために、サンプル1〜7の各溶射皮膜のX線回折データをとった。図8に各サンプルのX線回折パターンを示す。このX線回折は、株式会社リガク製RINT2000により、CuKα線を用い、40kV、200mAの条件で測定した。同図において、「121」はCr3C2の面指数(121)のピークであり、「012」はCr2O3の面指数(012)のピークである。
<Cr 2 O 3 in sprayed coating (X-ray diffraction)>
According to FIG. 3, there is no correlation between the hardness of the thermal spray coating and the pin wear amount, which is normally expected, that the pin wear amount increases as the hardness increases. Despite its high hardness, there are some samples with low aggression against the mating material (pin). In order to examine this point, X-ray diffraction data of each sprayed coating of Samples 1 to 7 was taken. FIG. 8 shows an X-ray diffraction pattern of each sample. This X-ray diffraction was measured by RINT2000 manufactured by Rigaku Corporation using CuKα rays under the conditions of 40 kV and 200 mA. In the drawing, “121” is the peak of the Cr 3 C 2 plane index (121), and “012” is the peak of the Cr 2 O 3 plane index (012).
各サンプルについて、上記Cr3C2の面指数(121)のピーク面積Sa、並びにCr2O3の面指数(012)のピーク面積Sbを、解析ソフト「Jada6.0」を用い、カーブフィッティングによって求め、ピーク面積の割合Sb/Saを算出した。また、各サンプルのCr2O3の結晶子径をX線回折測定結果を用いてシェラー式より求めた。結果を表2に示す。また、ピーク面積の割合Sb/Saを図9に示す。 For each sample, the peak area Sa of the Cr 3 C 2 surface index (121) and the peak area Sb of the Cr 2 O 3 surface index (012) were analyzed by curve fitting using the analysis software “Jada 6.0”. The peak area ratio Sb / Sa was calculated. Further, the crystallite size of Cr 2 O 3 of each sample was determined from the Scherrer equation using X-ray diffraction measurements. The results are shown in Table 2. Further, the peak area ratio Sb / Sa is shown in FIG.
図9によれば、ピーク面積の割合Sb/Saには、サンプル2及び4を除くと、右下がりの傾向、つまり、溶射皮膜の硬さが低くなるほど小さくなる傾向がみられる。サンプル2及び4が右下がり傾向から外れる理由は定かでない。サンプル2について検討すると、図3によれば、溶射皮膜硬さがHV900以上であるサンプル1〜4のうちでは、サンプル2のみがピン摩耗量が大きくなっている。これには、サンプル2のSb/Sa割合が小さいこと、つまり、溶射皮膜中のCr2O3量が少ないことが関係していると考えられる。また、Sb/Sa割合が比較的大きい(溶射皮膜中のCr2O3量が比較的多い)サンプル1,3,4は、図3によれば、ピン摩耗量が少ない。Sb/Sa割合が小さいサンプル5〜7をみると、サンプル6のピン摩耗量が比較的少なくなっているが、サンプル5,7のピン摩耗量は多い。 According to FIG. 9, when the samples 2 and 4 are excluded, the peak area ratio Sb / Sa tends to decrease to the right, that is, as the hardness of the thermal spray coating decreases. The reason why Samples 2 and 4 deviate from the downward trend is not certain. Examining the sample 2, according to FIG. 3, among the samples 1 to 4 having a sprayed coating hardness of HV900 or more, only the sample 2 has a large pin wear amount. This is considered to be related to the fact that the Sb / Sa ratio of sample 2 is small, that is, the amount of Cr 2 O 3 in the sprayed coating is small. Further, according to FIG. 3, the samples 1, 3, and 4 having a relatively large Sb / Sa ratio (with a relatively large amount of Cr 2 O 3 in the thermal spray coating) have a small amount of pin wear. When looking at samples 5 to 7 having a small Sb / Sa ratio, the amount of pin wear of sample 6 is relatively small, but the amount of pin wear of samples 5 and 7 is large.
以上から、Sb/Sa割合(溶射皮膜中のCr2O3量)とピン摩耗量との間には強い相関はみられないものの、Sb/Sa割合が大きいほどピン摩耗量が少なくなる傾向、すなわち、相手材に対する攻撃性が弱くなる傾向があるということができる。そして、Sb/Sa割合が2%以上16%以下であるサンプル1〜7のピン摩耗量は、図3によれば、窒化処理した鋳鉄材と同等もしくはそれ以下であり、Sb/Sa割合が当該範囲にあれば、相手材に対する攻撃性が抑制されるということができる。特に、サンプル1,3,4のようにSb/Sa割合を5%以上16%以下にすると、相手材に対する攻撃性を弱くする上で効果的である。 From the above, although there is no strong correlation between the Sb / Sa ratio (Cr 2 O 3 amount in the thermal spray coating) and the pin wear amount, the larger the Sb / Sa ratio, the more the pin wear amount tends to decrease. That is, it can be said that the aggression against the opponent material tends to be weakened. And according to FIG. 3, the pin wear amount of the samples 1-7 whose Sb / Sa ratio is 2% or more and 16% or less is equal to or less than the nitrided cast iron material, and the Sb / Sa ratio is If it is within the range, it can be said that the aggression against the opponent material is suppressed. In particular, when the Sb / Sa ratio is set to 5% or more and 16% or less as in Samples 1, 3, and 4, it is effective in weakening the aggression against the counterpart material.
次にCr2O3の結晶子径をみると、サンプル1〜7のCr2O3結晶子径は13nm以上16nm以下の範囲にあり、該結晶子径が16nm以下であれば、相手材に対する攻撃性の抑制に支障がないことがわかる。 Turning now to crystallite size of Cr 2 O 3, Cr 2 O 3 crystallite size of the sample 1-7 is in the 16nm or less the range of 13 nm, it said binding crystallite diameter is not more than 16nm, for mating member It can be seen that there is no hindrance to suppression of aggression.
<実機評価>
ロータリーエンジンのアルミ合金製サイドハウジングの摺動面(ローターのサイドシールが摺動する面)にCr3C2−25NiCr溶射皮膜を形成し、実機での耐久試験を行なって溶射皮膜の摩耗量を調べた。サイドシールは鉄系焼結合金(Fe−3%C)製とした。摩耗量を調べた溶射皮膜の硬さは、HV1000、HV900及びHV830の3種類である。HV1000の溶射皮膜はサンプル2と同じ溶射条件で形成し、HV900の溶射皮膜はサンプル4と同じ溶射条件で形成し、HV830の溶射皮膜はサンプル5と同じ溶射条件で形成した。
<Evaluation of actual machine>
Forming a Cr 3 C 2 -25NiCr sprayed coating on the sliding surface of the aluminum alloy side housings of rotary engine (the surface side seal of the rotor slides), the wear amount of the thermal spray coating is performed an endurance test in actual Examined. The side seal was made of an iron-based sintered alloy (Fe-3% C). There are three types of hardness of the sprayed coating whose amount of wear was examined: HV1000, HV900, and HV830. The spray coating of HV1000 was formed under the same spraying conditions as Sample 2, the spray coating of HV900 was formed under the same spraying conditions as Sample 4, and the spray coating of HV830 was formed under the same spraying conditions as Sample 5.
図10はその結果を示し、また、窒化処理した鋳鉄製サイドハウジングの場合の摩耗量も併せて示す。実機でも、溶射皮膜の硬さと該皮膜の摩耗量との関係は図2に示すリグ試験の場合と同様の傾向を示しており、窒化処理した鋳鉄製サイドハウジングよりも摺動特性が優れていることがわかる。 FIG. 10 shows the result, and also shows the amount of wear in the case of a nitriding cast iron side housing. Even in the actual machine, the relationship between the hardness of the thermal spray coating and the wear amount of the coating shows the same tendency as in the case of the rig test shown in FIG. 2, and the sliding characteristics are superior to the nitrided cast iron side housing. I understand that.
なし None
Claims (5)
当該溶射皮膜のX線回折チャートにおける、Cr3C2の面指数(121)のピーク面積に対するCr2O3の面指数(012)のピーク面積の割合が2%以上16%以下であることを特徴とする溶射皮膜。 A thermal spray coating formed by thermal spraying of a mixed powder of Cr 3 C 2 and NiCr,
In the X-ray diffraction chart of the thermal spray coating, the ratio of the peak area of the Cr 2 O 3 plane index (012) to the peak area of the Cr 3 C 2 plane index (121) is 2% or more and 16% or less. Characteristic thermal spray coating.
上記割合が5%以上16%以下であることを特徴とする溶射皮膜。 In claim 1,
The said ratio is 5 to 16%, The thermal spray coating characterized by the above-mentioned.
X線回折測定結果を用いてシェラー式より求めた上記Cr2O3の結晶子径が16nm以下であることを特徴とする溶射皮膜。 In claim 1 or claim 2,
A thermal spray coating, wherein the crystallite diameter of the Cr 2 O 3 obtained from the Scherrer equation using the X-ray diffraction measurement result is 16 nm or less.
皮膜硬さがHV700以上であることを特徴とする溶射皮膜。 In any one of Claim 1 thru | or 3,
A thermal spray coating having a coating hardness of HV700 or more.
アルミ合金材の表面に設けられて、他の部材が摺動する摺動面を形成していることを特徴とする溶射皮膜。 In any one of Claims 1 thru | or 4,
A thermal spray coating characterized by being provided on the surface of an aluminum alloy material to form a sliding surface on which other members slide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010190601A JP5685856B2 (en) | 2010-08-27 | 2010-08-27 | Thermal spray coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010190601A JP5685856B2 (en) | 2010-08-27 | 2010-08-27 | Thermal spray coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012046798A JP2012046798A (en) | 2012-03-08 |
JP5685856B2 true JP5685856B2 (en) | 2015-03-18 |
Family
ID=45901976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010190601A Expired - Fee Related JP5685856B2 (en) | 2010-08-27 | 2010-08-27 | Thermal spray coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5685856B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6934567B2 (en) * | 2018-05-21 | 2021-09-15 | Tpr株式会社 | Cylinder liner and its manufacturing method |
CN110318907A (en) * | 2019-07-22 | 2019-10-11 | 西安方霖动力科技有限公司 | Rotary engine end cover structure, spray processes and application |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01195267A (en) * | 1988-01-29 | 1989-08-07 | Mazda Motor Corp | Manufacture of sprayed deposit, thermally sprayed article, and powder for thermal spraying |
JPH0261051A (en) * | 1988-08-25 | 1990-03-01 | Babcock Hitachi Kk | Method for coating surface of material and thermal spraying material used in the same method |
JP2770968B2 (en) * | 1988-12-12 | 1998-07-02 | バブコツク日立株式会社 | Chromium carbide-metal composite powder for high energy spraying |
JP3468599B2 (en) * | 1994-11-29 | 2003-11-17 | スルザーメテコジャパン株式会社 | High-speed gas flame spraying method |
JP2004307975A (en) * | 2003-04-10 | 2004-11-04 | Riken Corp | Sliding member |
-
2010
- 2010-08-27 JP JP2010190601A patent/JP5685856B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012046798A (en) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1894987A1 (en) | Double-layer lubrication coating composition, double-layer lubrication coating and piston having same coating | |
WO2013047800A1 (en) | Sliding member and sliding material composition | |
US20160281202A1 (en) | Piston ring | |
JPWO2015004993A1 (en) | Iron-based thermal spray coating, cylinder block for internal combustion engine using the same, and sliding mechanism for internal combustion engine | |
JP2003064463A (en) | Wear-resistant sprayed coating film on sliding member | |
Krishnamurthy et al. | A study of parameters affecting wear resistance of alumina and yttria stabilized zirconia composite coatings on Al‐6061 substrate | |
Zhu et al. | Tribological behavior of Ni3Al alloy at dry friction and under sea water environment | |
Singh et al. | Effect of lubrication on the wear behaviour of CrN coating deposited by PVD process | |
Chen et al. | Tribological behavior of the low-pressure cold sprayed (Cu-5Sn)/Al2O3-Ag solid-lubricating coating in artificial seawater | |
JPH044361A (en) | Piston ring | |
Babu et al. | Slurry erosion resistance of microwave derived Ni-SiC composite claddings | |
Sert et al. | Wear behavior of different surface treated cam spindles | |
JP5685856B2 (en) | Thermal spray coating | |
Li et al. | Subsonic-flame-sprayed CoCrFeNi, AlCoCrFeNi and MnCoCrFeNi-based high-entropy alloy coatings and their tribological behaviors | |
WO2015052761A1 (en) | Piston ring and seal ring for turbocharger | |
Merlin et al. | Effect of relative humidity and applied loads on the tribological behaviour of a steel/Cr2O3-ceramic coupling | |
JP2003013163A (en) | Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring | |
Liu et al. | Improvement in High-Velocity Air-Fuel-Sprayed Cr3C2-NiCr/(NiAl, NiCr) Composite Coatings by Annealing Heat Treatment | |
Fan et al. | Optimization of the HVOF spray deposition of Ni3Al coatings on stainless steel | |
Rahman et al. | Investigation of mechanical properties of TiN+ MoSx coating on plasma-nitrided substrate | |
Chandramouli et al. | Effect of temperature on wear and friction performance of WC-Co and Cr3C2 reinforced with 17-4PH Fe-based composite coatings | |
JP6411875B2 (en) | Piston ring and manufacturing method thereof | |
Xiao et al. | Fretting tribological performance of DLC, TiAlN and DLC/TiAlN coatings deposited on carburized 18CrNi4A steel | |
Tyagi et al. | Evaluation of tribological, oxidation and corrosion behavior of HVOF sprayed sustainable temperature-dependent carbon coating | |
Pradeep Kumar et al. | Dry Sliding Friction and Wear Performance of HVOF Sprayed WC–Co Coatings Deposited on Aluminium Alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130313 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5685856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |