JP5685207B2 - Engine support structure - Google Patents

Engine support structure Download PDF

Info

Publication number
JP5685207B2
JP5685207B2 JP2012010238A JP2012010238A JP5685207B2 JP 5685207 B2 JP5685207 B2 JP 5685207B2 JP 2012010238 A JP2012010238 A JP 2012010238A JP 2012010238 A JP2012010238 A JP 2012010238A JP 5685207 B2 JP5685207 B2 JP 5685207B2
Authority
JP
Japan
Prior art keywords
connecting member
vehicle
support structure
frame
extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010238A
Other languages
Japanese (ja)
Other versions
JP2012071837A5 (en
JP2012071837A (en
Inventor
徹 鬼頭
徹 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012010238A priority Critical patent/JP5685207B2/en
Publication of JP2012071837A publication Critical patent/JP2012071837A/en
Publication of JP2012071837A5 publication Critical patent/JP2012071837A5/ja
Application granted granted Critical
Publication of JP5685207B2 publication Critical patent/JP5685207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンを支持する支持構造に係り、特に車両前後方向からの衝突時に車体骨格フレームでエネルギー吸収を行うエンジン支持構造に関する。   The present invention relates to a support structure that supports an engine, and more particularly, to an engine support structure that absorbs energy with a vehicle body skeleton frame in the event of a collision from the vehicle longitudinal direction.

従来のエンジン支持構造としては、例えば特許文献1に記載されたものがある。この特許文献1に記載の構造では、図4(a)のように、車両前後方向に延びる車体前部骨格フレーム50の下方に、当該車体前部骨格フレーム50と上下に所定の距離をあけると共に車両前後方向に延在するサブフレーム51が配置され、上記車体前部骨格フレーム50の前側とサブフレーム51の前側とが上下に延びる連結部材52で連結されている。また、上記サブフレーム51に対してエンジンが搭載される。
そして、衝突などによって車両前方から後方に向けて所定以上の荷重が入力されると、上記車体前部骨格メンバ50が潰れ変形することで上記入力荷重に対するエネルギー吸収の効率を高める工夫がなされている。
As a conventional engine support structure, there is one described in Patent Document 1, for example. In the structure described in Patent Document 1, as shown in FIG. 4A, a predetermined distance is provided below the vehicle body front skeleton frame 50 extending in the vehicle front-rear direction and above and below the vehicle body front skeleton frame 50. A sub frame 51 extending in the vehicle front-rear direction is disposed, and the front side of the vehicle body front skeleton frame 50 and the front side of the sub frame 51 are connected by a connecting member 52 extending vertically. An engine is mounted on the subframe 51.
Further, when a predetermined load or more is input from the front of the vehicle toward the rear due to a collision or the like, the vehicle body front skeleton member 50 is crushed and deformed to increase the efficiency of energy absorption with respect to the input load. .

特開2002−160663号公報JP 2002-160663 A

ここで、衝突時に、パンパー53を介して車体骨格フレーム50に衝突入力が作用する。乗員保護の観点から車室の変形を小さくするためには、車室よりも車両前後方向前側あるいは後側にある車体骨格フレーム50の変形で、衝突入力のエネルギーを効率良く吸収させたい。車体骨格フレーム50が、衝突入力エネルギーをもっとも効率よく吸収できる変形モードは、軸方向への圧縮変形するモードである。   Here, at the time of a collision, a collision input acts on the vehicle body skeleton frame 50 via the bumper 53. In order to reduce the deformation of the passenger compartment from the viewpoint of occupant protection, it is desirable to efficiently absorb the energy of the collision input by the deformation of the vehicle body skeleton frame 50 on the front side or the rear side in the vehicle longitudinal direction from the passenger compartment. The deformation mode in which the vehicle body frame 50 can absorb the collision input energy most efficiently is a mode in which the body frame 50 compresses and deforms in the axial direction.

しかしながら、上記従来技術では、図4に示す模式図のように、サブフレーム51と車体骨格フレーム50とを連結する連結部材52は、車体骨格フレーム50に剛的に固定され、且つ車両上下方向に所定の長さを有する。このため衝突時に車体骨格フレーム50に車両前後方向のカが入力されると、図4のA−A断面にて、衝突入力を受ける車体骨格フレーム50と連結部材52の一体構造の剛性の中心位置Gが、衝突入力点より車両上下方向下側のG点にあるため、G点を中心とするモーメントAが加わることとなり、また、長手方向途中部でもモーメントBが作用するために、図4(b)に示す模式図のように、車体骨格フレーム50が面外方向に変形するおそれがある。面外方向に変形する場合には、車体骨格フレーム50の圧縮方向(車両前後方向)に潰れる量が小さくなり、エネルギー吸収量が小さくなる。
本発明は、上記のような点に着目してなされたもので、車両前後方向の衝突入力に対する車体骨格フレームでのエネルギー吸収効率を向上させることを課題としている。
However, in the prior art, as shown in the schematic diagram of FIG. 4, the connecting member 52 that connects the sub frame 51 and the vehicle body frame 50 is rigidly fixed to the vehicle frame 50 and extends in the vehicle vertical direction. It has a predetermined length. For this reason, when a vehicle front-rear direction force is input to the vehicle body frame 50 at the time of a collision, the center position of the rigidity of the integrated structure of the vehicle body frame 50 and the connection member 52 that receives the collision input in the AA cross section of FIG. Since G is at point G on the lower side of the vehicle in the vertical direction from the collision input point, moment A is applied centering on point G, and moment B is applied even in the middle in the longitudinal direction. As shown in the schematic diagram shown in b), the body frame 50 may be deformed in the out-of-plane direction. In the case of deformation in the out-of-plane direction, the amount of the body skeleton frame 50 that is crushed in the compression direction (vehicle front-rear direction) is reduced, and the energy absorption amount is reduced.
The present invention has been made paying attention to the above points, and it is an object of the present invention to improve the energy absorption efficiency in the vehicle body skeleton frame with respect to a collision input in the vehicle longitudinal direction.

上記課題を解決するために、本発明は、車両前後方向に延在する延在部を有する車体骨格フレームと、その車体骨格フレームの下方に配置されてエンジンを支持するサブフレームと、上記延在部とサブフレームとを連結する連結部材と、を備えるエンジン支持構造であって、
上記サブフレームは、上記延在部と上下に対向して且つ当該延在部と平行に車両前後方向に延びるフレーム本体部を有し、
上記連結部材は、上記延在部及び上記フレーム本体部の両方と直交し、
前記車体骨格フレームは、前記延在部の車両前後方向後端部に連続して下方に向けて屈曲した傾斜部を有し、その傾斜部の下部位置と上記サブフレームの後端部との間は、インシュレータを介して弾性支持され、
上記延在部と連結部材の上部とを、上記サブフレームよりも上記延在部に近い位置に配設され車両前後方向に弾性変形可能な弾性体を介して連結することで、車幅方向を軸とする回転方向の拘束力について、延在部と連結部材との連結部での拘束力が、サブフレームと連結部材との連結部での拘束力よりも小さいことを特徴とするものである。
In order to solve the above-described problems, the present invention provides a vehicle body skeleton frame having an extending portion extending in the vehicle front-rear direction, a subframe that is disposed below the vehicle body skeleton frame and supports an engine, and the extension An engine support structure comprising: a connecting member that connects the portion and the subframe;
The sub-frame has a frame main body portion that vertically faces the extension portion and extends in the vehicle front-rear direction in parallel with the extension portion,
The connecting member is orthogonal to both the extending part and the frame main body part,
The vehicle body skeleton frame has an inclined portion that is bent downward continuously from the rear end portion of the extending portion in the vehicle front-rear direction, and between the lower position of the inclined portion and the rear end portion of the subframe. Is elastically supported through an insulator,
By connecting the extending part and the upper part of the connecting member via an elastic body that is disposed closer to the extending part than the subframe and is elastically deformable in the vehicle longitudinal direction, the vehicle width direction is About the restraining force in the rotation direction as the shaft, the restraining force at the connecting portion between the extending portion and the connecting member is smaller than the restraining force at the connecting portion between the subframe and the connecting member. .

本発明によれば、車体骨格フレームとサブフレームとの間に上下に距離がある配置でも、車体前後方向からの衝突時における車体骨格フレームの変形モードが、車両前後方向の圧縮変形が支配的となる結果、衝突エネルギーを効率良く吸収することができる。   According to the present invention, the deformation mode of the vehicle body skeleton frame at the time of a collision from the vehicle body longitudinal direction is predominantly the compression deformation in the vehicle longitudinal direction even when the vehicle frame and the sub frame are spaced apart from each other in the vertical direction. As a result, collision energy can be absorbed efficiently.

本発明に基づく実施形態に係るエンジン支持構造を示す模式的な側面図であって、(a)は変形前の状態を(b)は変形後の状態をそれぞれ示す。It is a typical side view which shows the engine support structure which concerns on embodiment based on this invention, Comprising: (a) shows the state before a deformation | transformation, (b) shows the state after a deformation | transformation, respectively. 本発明に基づく実施形態に係る連結部材を介したとフロント骨格サイドメンバとのサブメンバとの連結構造を示す断面図である。It is sectional drawing which shows the connection structure with the sub member of the front frame side member via the connection member which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る別のエンジ支持構造を示す図である。It is a figure which shows another engine support structure which concerns on embodiment based on this invention. 従来のエンジン支持構造を説明する模式的な側面図であって、(a)は変形前の状態を(b)は変形後の状態をそれぞれ示す。It is a typical side view explaining the conventional engine support structure, Comprising: (a) shows the state before a deformation | transformation, (b) shows the state after a deformation | transformation, respectively.

次に、本発明の実施形態について図面を参照しつつ説明する。
本実施形態では、車両前後方向前側にエンジンを搭載するフロントエンジンの車両構成を例に説明する。図1は、本実施形態のエンジン支持構造を示す模式的側面図である。
車体骨格フレーム1は、車両前後方向に延在する左右一対のフロント骨格サイドメンバ2(延在部)と、車幅方向に延びて左右のフロント骨格サイドメンバ2間を連結する複数のクロス骨格メンバ(不図示)とから構成される。上記各フロント骨格サイドメンバ2は、ダッシュパネルに至る部分で下方に屈曲して傾斜部2aを構成し、その傾斜部2aよりも車両前後方向後方が車体フロアの下側且つ両側に配置されるエクステンションサイドメンバ2bとなっている。符号11はバンパーを示す。
Next, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, a vehicle configuration of a front engine in which an engine is mounted on the front side in the vehicle front-rear direction will be described as an example. FIG. 1 is a schematic side view showing an engine support structure of the present embodiment.
The body skeleton frame 1 includes a pair of left and right front skeleton side members 2 (extending portions) extending in the vehicle front-rear direction and a plurality of cross skeleton members extending in the vehicle width direction and connecting the left and right front skeleton side members 2. (Not shown). Each of the front skeleton side members 2 is bent downward at the portion reaching the dash panel to form an inclined portion 2a, and an extension in which the rear in the vehicle front-rear direction is disposed below and on both sides of the vehicle body floor relative to the inclined portion 2a. It is a side member 2b. Reference numeral 11 denotes a bumper.

上記車体骨格フレーム1の下方には、上下に所定距離を空けてサブフレーム3が対向配置されている。サブフレーム3は、上記フロント骨格サイドメンバ2と上下に対向して車両前後方向に延びる左右のフレーム本体部4と、その左右のフレーム本体部4間を連結するクロスサブメンバ(不図示)とから構成されている。そして、上記サブフレーム3は、上記フレーム本体部4の前端部及び後端部が上記フロント骨格サイドメンバ2に弾性支持されている。 Below the vehicle body skeleton frame 1, a sub-frame 3 is disposed to face each other with a predetermined distance in the vertical direction. The subframe 3 is composed of left and right frame main body portions 4 extending in the vehicle front-rear direction so as to face the front skeleton side member 2 and a cross submember (not shown) connecting the left and right frame main body portions 4. It is configured. The sub-frame 3 is elastically supported by the front skeleton side member 2 at the front end and the rear end of the frame body 4.

次に、その弾性支持構造について説明する。
上記フロント骨格サイドメンバ2の前端部とフレーム本体部4の前端部とは、上下に延びる連結部材5を介して連結される。連結部材5の下部は、上記フレーム本体部4の前端部に対して一体的に結合されている。
また、連結部材5の上部は、上記フロント骨格サイドメンバ2の前端部にインシュレータ6を介して連結されている。上記インシュレータ6は、図2に示すように、軸を上下に向け且つ同軸に配置された内筒6aと外筒6bとの間に弾性体6cが介装されて構成される。そして、外筒6bが上記連結部材5の上部に圧入等によって固定され、且つ内筒6aが、当該内筒6a内を貫通する取付けボルト12を介して上記フロント骨格サイドメンバ2に固定されている。ここで、内筒6aよりも外筒6bの長さを短くして外筒6bの上端面と上記フロント骨格サイドメンバ2の下面との間に所定の隙間を設けてある。
また、フレーム本体部4の端部は、上記と同様なインシュレータ8を介して、フロント骨格サイドメンバ2における傾斜部2aの下部位置に弾性支持される。
そして、上記サブフレーム3に対してマウント部材13を介してエンジン7が搭載されている。
Next, the elastic support structure will be described.
The front end portion of the front skeleton side member 2 and the front end portion of the frame main body portion 4 are connected via a connecting member 5 extending vertically. The lower portion of the connecting member 5 is integrally coupled to the front end portion of the frame main body portion 4.
The upper part of the connecting member 5 is connected to the front end of the front skeleton side member 2 via an insulator 6. As shown in FIG. 2, the insulator 6 is configured by an elastic body 6c interposed between an inner cylinder 6a and an outer cylinder 6b that are arranged coaxially with their axes directed vertically. The outer cylinder 6b is fixed to the upper part of the connecting member 5 by press-fitting or the like, and the inner cylinder 6a is fixed to the front skeleton side member 2 via mounting bolts 12 penetrating the inner cylinder 6a. . Here, the length of the outer cylinder 6 b is shorter than the inner cylinder 6 a, and a predetermined gap is provided between the upper end surface of the outer cylinder 6 b and the lower surface of the front skeleton side member 2.
The end portion after the frame main body portion 4, through the similar insulator 8, is elastically supported at the bottom position of the inclined portion 2a of the front framework side members 2.
An engine 7 is mounted on the subframe 3 via a mount member 13.

次に、本実施形態の作用・効果等について説明する。
上記エンジン支持構造では、連結部材5はサブフレーム3に一体的に結合されることで、両者5,3は高い剛性を持って、つまり少なくとも車幅方向を軸とした回転方向の拘束力が大きい状態で連結されている。一方、連結部材5はフロント骨格サイドメンバ2に対して弾性体6cを介して連結されることで、互いに揺動可能につまり連結部の剛性が低い状態で連結されて、少なくとも車幅方向を軸とした回転方向の拘束力がゼロに近い小さな状態で連結されている。このため、フロント骨格サイドメンバ2に車両前後方向の入力が作用した場合における当該フロント骨格サイドメンバ2と連結部材5との連結位置(図中A-A位置)での車両上下方向における剛性の中心位置Gは、フロント骨格サイドメンバ2の断面中心とほぼ一致し、また、フロント骨格サイドメンバ2の長手方向中途部(図中B-B位置)においても、フロント骨格サイドメンバ2の車両上下方向における剛性の中心位置G′が当該フロント骨格サイドメンバ2の断面中心とほぼ一致する。
Next, functions and effects of this embodiment will be described.
In the engine support structure described above, the connecting member 5 is integrally coupled to the subframe 3 so that both the members 5 and 3 have high rigidity, that is, a large restraining force in the rotational direction around at least the vehicle width direction. Linked in state. On the other hand, the connecting member 5 is connected to the front skeleton side member 2 via the elastic body 6c so that the connecting member 5 can be swung with each other, that is, connected in a state where the rigidity of the connecting portion is low. It is connected in a state where the restraining force in the rotational direction is small and close to zero. For this reason, when an input in the vehicle longitudinal direction is applied to the front skeleton side member 2, the rigidity in the vehicle vertical direction at the connection position (AA position in FIG. 1 ) between the front skeleton side member 2 and the connection member 5 is obtained. The center position G substantially coincides with the cross-sectional center of the front skeleton side member 2, and the front skeleton side member 2 of the front skeleton side member 2 is also located in the longitudinal direction of the front skeleton side member 2 (BB position in FIG. 1 ). The center position G ′ of rigidity in the direction substantially coincides with the cross-sectional center of the front skeleton side member 2.

したがって、衝突によりフロント骨格サイドメンバ2に車両前後方向の力が入力されると、上記衝突入力による剛性中心位置G及びG′を中心とするモーメントは発生しないか小さいために、フロント骨格サイドメンバ2とサブフレーム3との間に距離があり且つ連結部材5で連結されていても、衝突時にサブフレーム3の反力によりフロント骨格サイドメンバ2に入力される曲げモーメントを小さくすることができる。その結果、衝突時の車両前後方向の入力に対し圧縮方向の変形が支配的となり、図1(b)に示すように、フロント骨格サイドメンバ2は、面外方向に変形することなく、圧縮方向にのみ潰れることとなり、エネルギー吸収量が大きくなる。   Accordingly, when a force in the vehicle longitudinal direction is input to the front skeleton side member 2 due to a collision, the moments around the rigid center positions G and G ′ due to the collision input are not generated or are small. Even if there is a distance between the frame and the sub-frame 3 and the sub-frame 3 is connected by the connecting member 5, the bending moment input to the front skeleton side member 2 by the reaction force of the sub-frame 3 at the time of collision can be reduced. As a result, the deformation in the compression direction becomes dominant with respect to the vehicle front-rear direction input at the time of the collision, and the front skeleton side member 2 does not deform in the out-of-plane direction, as shown in FIG. The energy absorption amount increases.

また、上記のようにフロント骨格サイドメンバ2が車両前後方向に圧縮するに応じて、連結部材5は、その上部が車両前後方向に傾くが、連結部材5に固定された外筒6bの上端面とフロント骨格サイドメンバ2の下面との間に所定の隙間を設けているので、外筒6bの上端がフロント骨格サイドメンバ2に当接するまでは、フロント骨格サイドメンバ2と連結部材5との連結部における上記拘束力が大きくなることを防止できる。なお、外筒6bの上端がフロント骨格サイドメンバ2に当接して上記回転方向の拘束力が大きくなっても、連結部材5とサブフレーム3との連結部での拘束力より遙かに小さいので、フロント骨格サイドメンバ2に入力される上下方向の曲げモーメントの入力は小さく、よって圧縮方向の変形が支配的のままとなる傾向にある。   Further, as described above, as the front skeleton side member 2 is compressed in the vehicle front-rear direction, the upper portion of the outer cylinder 6 b fixed to the connection member 5 is connected to the connection member 5, although the upper portion thereof is inclined in the vehicle front-rear direction. Since a predetermined gap is provided between the front skeleton side member 2 and the lower surface of the front skeleton side member 2, the connection between the front skeleton side member 2 and the connecting member 5 is continued until the upper end of the outer cylinder 6 b comes into contact with the front skeleton side member 2. It is possible to prevent the restraining force at the portion from increasing. Even if the upper end of the outer cylinder 6b abuts against the front skeleton side member 2 and the restraining force in the rotational direction is increased, it is much smaller than the restraining force at the connecting portion between the connecting member 5 and the subframe 3. The vertical bending moment input to the front skeleton side member 2 is small, so that the deformation in the compression direction tends to remain dominant.

また、エンジン7をマウントしているサブフレーム3は、前端部及び後端部が共にフロント骨格サイドメンバ2に対してインシュレータ6、8を介して弾性支持されているので、エンジン7の振動によるサブフレーム3の振動をフロント骨格サイドメンバ2に伝達しにくくなっている。すなわち、エンジン7の振動が伝達されて加振されるサブフレーム3の振動が、フロント骨格サイドメンバ2に伝達することを防ぐことで、騒音・振動性能も向上させることができる。   Further, since the front end portion and the rear end portion of the subframe 3 on which the engine 7 is mounted are elastically supported by the front skeleton side member 2 via the insulators 6 and 8, the subframe 3 mounted by the vibration of the engine 7 is used. It is difficult to transmit the vibration of the frame 3 to the front skeleton side member 2. That is, noise and vibration performance can be improved by preventing the vibration of the sub-frame 3 that is vibrated by the vibration of the engine 7 from being transmitted to the front skeleton side member 2.

ここで、上記実施形態では、弾性体6cを介在させることで両者2,5を揺動可能に連結して、連結部材5とフロント骨格サイドメンバ2との連結部の車幅方向を軸とした回転方向の拘束力を低くしているが、これに限定されない。例えば軸を車幅方向に向けたピン継手や自在継手で連結することで、少なくとも幅方向を軸とした回転方向の拘束力をゼロ若しくは低く設定しても良い。   Here, in the above-described embodiment, the elastic members 6c are interposed so that both the members 2 and 5 are swingably connected, and the vehicle width direction of the connecting portion between the connecting member 5 and the front skeleton side member 2 is used as an axis. Although the restraining force in the rotational direction is reduced, the present invention is not limited to this. For example, the binding force in at least the rotational direction about the width direction may be set to zero or low by connecting the shaft with a pin joint or a universal joint whose direction is the vehicle width direction.

また、上記実施形態では、連結部材5とサブフレーム3とを一体的に連結しているが、図3のように、連結部材5とサブフレーム3とを弾性体10を介して連結しても良い。この場合、連結部材5とサブフレーム3とを連結する弾性体10の剛性を、上記フロント骨格サイドメンバ2と連結部材5との間に介在する弾性体6cの剛性よりも大きく設定する。このようにすると、上記効果を維持しつつ、サブフレーム3の振動をさらにフロント骨格サイドメンバ2に伝わりにくくすることができる。
また、上記実施形態では、フロントエンジンの車両構成に本願発明を適用する場合を例示したが、リアエンジンの車両構成であっても適用でき、車両後方から衝突した場合に、上記と同様な効果を得ることができる。
Moreover, in the said embodiment, although the connection member 5 and the sub-frame 3 are integrally connected, even if it connects the connection member 5 and the sub-frame 3 via the elastic body 10 like FIG. good. In this case, the rigidity of the elastic body 10 that connects the connecting member 5 and the subframe 3 is set to be larger than the rigidity of the elastic body 6 c that is interposed between the front skeleton side member 2 and the connecting member 5. If it does in this way, it can make it difficult to transmit the vibration of subframe 3 to front frame side member 2 further, maintaining the above-mentioned effect.
Further, in the above embodiment, the case where the present invention is applied to the vehicle configuration of the front engine is illustrated, but the present invention can be applied even to the vehicle configuration of the rear engine. Can be obtained.

1 車体骨格フレーム
2 フロント骨格サイドメンバ(延在部)
3 サブフレーム
4 フレーム本体部
5 連結部
6 インシュレータ
6a 内筒
6b 外筒
6c 弾性体
7 エンジン
10 弾性体
12 取付けボルト
1 Body frame 2 Front frame side member (extension)
Reference Signs List 3 Subframe 4 Frame body 5 Connection 6 Insulator 6a Inner cylinder 6b Outer cylinder 6c Elastic body 7 Engine 10 Elastic body 12 Mounting bolt

Claims (6)

車両前後方向に延在する延在部を有する車体骨格フレームと、その車体骨格フレームの下方に配置されてエンジンを支持するサブフレームと、上記延在部とサブフレームとを連結する連結部材と、を備えるエンジン支持構造であって、
上記サブフレームは、上記延在部と上下に対向して且つ当該延在部と平行に車両前後方向に延びるフレーム本体部を有し、
上記連結部材は、上記延在部及び上記フレーム本体部の両方と直交し、
前記車体骨格フレームは、前記延在部の車両前後方向後端部に連続して下方に向けて屈曲した傾斜部を有し、その傾斜部の下部位置と上記サブフレームの後端部との間は、インシュレータを介して弾性支持され、
上記延在部と連結部材の上部とを、上記サブフレームよりも上記延在部に近い位置に配設され車両前後方向に弾性変形可能な弾性体を介して連結することで、車幅方向を軸とする回転方向の拘束力について、延在部と連結部材との連結部での拘束力が、サブフレームと連結部材との連結部での拘束力よりも小さいことを特徴とするエンジン支持構造。
A vehicle body skeleton frame having an extending portion extending in the longitudinal direction of the vehicle, a subframe disposed below the vehicle body skeleton frame to support the engine, and a connecting member connecting the extension portion and the subframe; An engine support structure comprising:
The sub-frame has a frame main body portion that vertically faces the extension portion and extends in the vehicle front-rear direction in parallel with the extension portion,
The connecting member is orthogonal to both the extending part and the frame main body part,
The vehicle body skeleton frame has an inclined portion that is bent downward continuously from the rear end portion of the extending portion in the vehicle front-rear direction, and between the lower position of the inclined portion and the rear end portion of the subframe. Is elastically supported through an insulator,
By connecting the extending part and the upper part of the connecting member via an elastic body that is disposed closer to the extending part than the subframe and is elastically deformable in the vehicle longitudinal direction, the vehicle width direction is An engine support structure characterized in that the restraining force at the connecting portion between the extending portion and the connecting member is smaller than the restraining force at the connecting portion between the subframe and the connecting member with respect to the restraining force in the rotational direction as the shaft. .
上記連結部材を上下方向に延在する部材から構成して、
上記延在部と連結部材とは、軸を上下に向けた外筒と内筒との間に弾性体が介装してなるインシュレータを介して連結され、上記内筒及び外筒の一方を延在部に固定すると共に、上記内筒及び外筒の他方を連結部材の上部に固定することを特徴とする請求項1に記載したエンジン支持構造。
The connecting member is composed of a member extending in the vertical direction,
The extending portion and the connecting member are connected via an insulator in which an elastic body is interposed between an outer cylinder and an inner cylinder whose shafts are directed upward and downward, and extend one of the inner cylinder and the outer cylinder. 2. The engine support structure according to claim 1, wherein the engine support structure is fixed to an existing portion, and the other of the inner cylinder and the outer cylinder is fixed to an upper portion of the connecting member.
内筒を貫通するボルトによって当該内筒が延在部に固定され、外筒が連結部材の上部に固定されることを特徴とする請求項2に記載したエンジン支持構造。   The engine support structure according to claim 2, wherein the inner cylinder is fixed to the extending portion by a bolt penetrating the inner cylinder, and the outer cylinder is fixed to an upper portion of the connecting member. 連結部材上端及び外筒上端と、延在部との間に上下方向の隙間を設けることを特徴とする請求項3に記載したエンジン支持構造。   The engine support structure according to claim 3, wherein a vertical gap is provided between the upper end of the connecting member and the upper end of the outer cylinder, and the extending portion. 上記サブフレームと連結部材とは、上記延在部と連結部材との連結部より剛性が大きな弾性体を介して、連結されていることを特徴とする請求項1〜請求項4のいずれか1項に記載したエンジン支持構造。   The said sub-frame and the connection member are connected via the elastic body whose rigidity is larger than the connection part of the said extension part and a connection member, The any one of Claims 1-4 characterized by the above-mentioned. The engine support structure described in the item. 上記サブフレームと連結部材とは一体に固定されていることを特徴とする請求項1〜請求項4のいずれか1項に記載したエンジン支持構造。   The engine support structure according to any one of claims 1 to 4, wherein the subframe and the connecting member are fixed integrally.
JP2012010238A 2012-01-20 2012-01-20 Engine support structure Active JP5685207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010238A JP5685207B2 (en) 2012-01-20 2012-01-20 Engine support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010238A JP5685207B2 (en) 2012-01-20 2012-01-20 Engine support structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005112187A Division JP5074668B2 (en) 2005-04-08 2005-04-08 Engine support structure

Publications (3)

Publication Number Publication Date
JP2012071837A JP2012071837A (en) 2012-04-12
JP2012071837A5 JP2012071837A5 (en) 2012-05-31
JP5685207B2 true JP5685207B2 (en) 2015-03-18

Family

ID=46168087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010238A Active JP5685207B2 (en) 2012-01-20 2012-01-20 Engine support structure

Country Status (1)

Country Link
JP (1) JP5685207B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119871U (en) * 1985-01-16 1986-07-29
JP3500897B2 (en) * 1997-03-27 2004-02-23 三菱自動車工業株式会社 Car front body structure
JPH11310150A (en) * 1998-04-28 1999-11-09 Daihatsu Motor Co Ltd Mounting structure for sub-frame
JP3743851B2 (en) * 1998-06-16 2006-02-08 富士重工業株式会社 Front body structure of the vehicle

Also Published As

Publication number Publication date
JP2012071837A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP6044796B2 (en) Front body structure of the vehicle
US9242675B2 (en) Automobile vehicle-body front structure
JP6149939B2 (en) Auto body structure
JP5074668B2 (en) Engine support structure
JP4721404B2 (en) Mount structure for vehicle power unit
JP5975168B2 (en) Vehicle front structure
US9505280B2 (en) Trailer hitch structure
JP6518168B2 (en) Motor mounting structure
JP2014234089A (en) Vehicle body front part structure
JP5760991B2 (en) Motor unit support structure
JP2007126093A (en) Vehicle frame structure
JP4687138B2 (en) Vehicle front structure
JP2020164096A (en) Vehicular sub frame
CN109641623B (en) Vehicle body structure
JP6003273B2 (en) Body front structure
JP5685207B2 (en) Engine support structure
KR101664505B1 (en) Breaking type TM mount bracket for improving crashworthiness
JP2014133520A (en) Vehicle body front part structure
JP6828628B2 (en) Body structure
JP5978757B2 (en) Body front structure
WO2020225947A1 (en) Power unit suspension structure
JP2010158974A (en) Vehicle body front structure of automobile
JP4867509B2 (en) Subframe structure
JP2008174179A (en) Vehicle body front part structure
KR100737601B1 (en) A sub-flame for a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5685207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150