JP5685138B2 - Conductive composition - Google Patents

Conductive composition Download PDF

Info

Publication number
JP5685138B2
JP5685138B2 JP2011105913A JP2011105913A JP5685138B2 JP 5685138 B2 JP5685138 B2 JP 5685138B2 JP 2011105913 A JP2011105913 A JP 2011105913A JP 2011105913 A JP2011105913 A JP 2011105913A JP 5685138 B2 JP5685138 B2 JP 5685138B2
Authority
JP
Japan
Prior art keywords
silver
mass
powder
nickel powder
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011105913A
Other languages
Japanese (ja)
Other versions
JP2012238443A (en
Inventor
森本 博
博 森本
賢二 別府
賢二 別府
哲郎 古谷
哲郎 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2011105913A priority Critical patent/JP5685138B2/en
Publication of JP2012238443A publication Critical patent/JP2012238443A/en
Application granted granted Critical
Publication of JP5685138B2 publication Critical patent/JP5685138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は電熱調理器や自動車用ガラスの曇り止めに使用する発熱体の導電性組成物に関
するものであり、より詳細には、焼成条件により塗膜性能が変化しにくい導電性組成物に関する。
The present invention relates to a conductive composition for a heating element used for anti-fogging of an electric heating cooker or automotive glass, and more particularly relates to a conductive composition whose coating film performance hardly changes depending on baking conditions.

発熱体をガラス基板や琺瑯基板に形成する方法としてペースト状の導電性組成物をスクリーン印刷した塗膜を乾燥した後600℃〜750℃で熱処理することにより基板に焼き付け、所定の電圧を印加し発熱させることが一般的になされている。
この時、好適な発熱を得るために導電塗膜を最適な抵抗体にする必要があると同時に電圧
を印加するための端子をハンダにより取り付けている。一般的には抵抗体にするため銀に
様々な物質を添加して所定の抵抗を得る方法がとられている。
例えば、抵抗調整剤としてRh、Pd等のAgより高い体積抵抗率を有する物質やNiOを含んだガラスフリットやFe等々が用いられている。
As a method of forming a heating element on a glass substrate or a glazed substrate, after drying the coating film on which the paste-like conductive composition is screen-printed, it is baked on the substrate by heat treatment at 600 ° C. to 750 ° C., and a predetermined voltage is applied. Generally, heat is generated.
At this time, in order to obtain suitable heat generation, it is necessary to make the conductive coating film an optimum resistor, and at the same time, a terminal for applying a voltage is attached by solder. In general, a method of obtaining a predetermined resistance by adding various substances to silver is used to form a resistor.
For example, a substance having a volume resistivity higher than Ag, such as Rh and Pd, a glass frit containing NiO, Fe 3 O 4 and the like are used as a resistance adjusting agent.

特開2003−168322号JP 2003-168322 A 特開2004−327356号JP 2004-327356 A

しかしながら、上述のようなRhやPdでは所定の抵抗を得るには高価になり工業的に使用するには経済的でなく、またガラスフリット等で所定の抵抗を得た場合端子強度が弱くなり性能がでなくなる。また酸化物で所定の抵抗を得た場合も端子がハンダで取り付けられないため同塗膜の上にハンダ付けが可能な別の塗膜を形成する必要があり製造工程が増すため製品不良率が大きくなる可能性がる。
また、これらの組成物では焼成により銀の焼結が進み高温で焼成するほど抵抗が低くなる
ことが問題視されている。
However, Rh and Pd as described above are expensive to obtain a predetermined resistance and are not economical for industrial use, and if a predetermined resistance is obtained with glass frit or the like, the terminal strength becomes weak and the performance Disappears. In addition, even when a predetermined resistance is obtained with oxide, the terminal cannot be attached with solder, so another coating film that can be soldered must be formed on the same coating film, and the number of manufacturing processes increases, resulting in a product defect rate. May be bigger.
Moreover, in these compositions, it is regarded as a problem that the resistance becomes lower as the sintering of silver proceeds and the baking is performed at a higher temperature.

そこで、本願発明者は種々検討を重ねた結果、(A)銀粉末、(B)銀メッキニッケル粉末、(C)ガラスフリット、(D)有機ビヒクルを含有させた導電性組成物であって、抵抗調整剤として銀メッキニッケル粉末を用いたことで、塗膜形成時の熱処理温度が違っていても得られる抵抗体の体積抵抗率の変化が小さく、また体積抵抗率が高くてもハンダ付による端子強度が高くなることで上記の課題が解決可能であることを見出した。   Therefore, the inventors of the present application have conducted various studies, and as a result, (A) a silver powder, (B) a silver-plated nickel powder, (C) a glass frit, and (D) an electrically conductive composition containing an organic vehicle, By using silver-plated nickel powder as a resistance regulator, the change in volume resistivity of the resistor is small even if the heat treatment temperature during coating film formation is different, and soldering is applied even if the volume resistivity is high. It has been found that the above problems can be solved by increasing the terminal strength.

上記課題を解決可能な本発明の導電性組成物は、
(A)銀粉末
(B)10〜25質量%の銀でメッキされている銀メッキニッケル粉末
(C)ガラスフリット
(D)有機ビヒクル
を含有し、前記(A)〜(D)の成分比を100質量%にした場合、
(A)と(B)の合計が50〜80質量%、(C)が2〜8質量%、
残部が(D)であり、
かつ(A)と(B)の配合比率合計を100質量%とした場合、(A)が50〜80質量%、(B)が20〜50質量%であることを特徴とする。
また、本発明は、上記の特徴を有した導電性組成物において、
(B)銀メッキニッケル粉末の粒径が0.5〜15μm、比表面積が0.6〜1.5
2/gであることを特徴とするものでもある。
The conductive composition of the present invention capable of solving the above problems is
(A) Silver powder (B) Silver-plated nickel powder plated with 10 to 25% by mass of silver (C) Glass frit (D) An organic vehicle is included, and the component ratios of (A) to (D) are When it is 100% by mass,
The total of (A) and (B) is 50 to 80% by mass, (C) is 2 to 8% by mass,
The balance is (D),
And when the mixture ratio total of (A) and (B) is 100 mass%, (A) is 50-80 mass%, (B) is 20-50 mass%, It is characterized by the above-mentioned.
Further, the present invention provides a conductive composition having the above-described features,
(B) Silver-plated nickel powder has a particle size of 0.5 to 15 μm and a specific surface area of 0.6 to 1.5.
It is also characterized by being m 2 / g.

本発明の導電性組成物は、塗膜形成時の熱処理温度が違っていても得られる抵抗体の体積抵抗率の変化が小さく、また体積抵抗率が高くてもハンダ付による端子強度が高いものである。
また、本発明の導電性組成物を用いた場合、熱処理時の作業条件のバラツキが多少あっても体積抵抗率およびハンダ接合強度の良好な塗膜が形成できるため不良が少なく生産性が良いため、経済的にもコストメリットがある。
The conductive composition of the present invention has a small change in the volume resistivity of the obtained resistor even if the heat treatment temperature during coating film formation is different, and has a high terminal strength due to soldering even if the volume resistivity is high It is.
In addition, when the conductive composition of the present invention is used, a coating film with good volume resistivity and solder joint strength can be formed even if there is some variation in the working conditions during heat treatment, so there are few defects and productivity is good. There is also a cost advantage economically.

本発明の膜形成時の熱処理温度が違っていても得られる抵抗体の体積抵抗率の変化が小さく、また体積抵抗率が高くてもハンダ付による端子強度が高くなるという導電性組成物について説明する。
本発明は、ガラス基板または琺瑯基板上に形成された導電性塗膜を発熱体として用いるも
ので導電性組成物を該基板上に付与し熱処理することにより形成されたものであることを
特徴としている。
本発明の導電性組成物は、銀粉末を導体成分とし銀メッキニッケル粉末を抵抗調整成分
とし、ガラスフリットを基板との接合成分とし有機ビヒクルを塗膜形成成分としたもので
ある。
Description of the conductive composition in which the change in the volume resistivity of the obtained resistor is small even when the heat treatment temperature during film formation of the present invention is different, and the terminal strength due to soldering is increased even if the volume resistivity is high. To do.
The present invention is characterized in that a conductive coating film formed on a glass substrate or a glazed substrate is used as a heating element and is formed by applying a conductive composition on the substrate and heat-treating it. Yes.
The conductive composition of the present invention comprises silver powder as a conductor component, silver-plated nickel powder as a resistance adjusting component, glass frit as a bonding component with a substrate, and an organic vehicle as a coating film forming component.

(A)銀粉末
(B)10〜25質量%の銀でメッキされている銀メッキニッケル粉末
(C)ガラスフリット
(D)有機ビヒクル
を含有し、前記(A)〜(D)の成分比を100質量%にした場合、
(A)と(B)の合計が50〜80質量%、(C)が2〜8質量%、
残部が(D)であり、
かつ(A)と(B)の配合比率合計を100質量%とした場合、(A)が50〜80質量%、(B)が20〜50質量%であることを特徴とする導電性組成物である。
(A) Silver powder (B) Silver-plated nickel powder plated with 10 to 25% by mass of silver (C) Glass frit (D) An organic vehicle is included, and the component ratios of (A) to (D) are When it is 100% by mass,
The total of (A) and (B) is 50 to 80% by mass, (C) is 2 to 8% by mass,
The balance is (D),
And when the total mixture ratio of (A) and (B) is 100 mass%, (A) is 50-80 mass%, (B) is 20-50 mass%, The electrically conductive composition characterized by the above-mentioned. It is.

導電成分としての(A)銀粉末は100μmの線幅に印刷できる粉末であれば球状でもフレーク状でもまたそれ以外の形状のものであっても問題ない。
抵抗調整成分の(B)銀メッキニッケル粉末は球状でもフレーク状でも問題ないがメッキの均一性を考慮すると球状粉がより好ましい。メッキの方法は電解メッキ、無電解メッキのどちらの製法で作製したものでも用いることができる。
As long as the (A) silver powder as the conductive component is a powder that can be printed with a line width of 100 μm, there is no problem even if it is spherical, flake-shaped, or other shapes.
The resistance adjusting component (B) silver-plated nickel powder may be spherical or flaky, but considering the uniformity of plating, spherical powder is more preferable. As the plating method, any one of electrolytic plating and electroless plating can be used.

また、大気中で熱処理をするため表面にニッケルが露出していると酸化されハンダ付が困難になるためニッケル粉末上に均一に銀をメッキすることが重要であり、またそのメッキ厚さも重要になる。均一にメッキされた銀メッキニッケル粉末は、銀が10〜25質量%の範囲で管理されることが好ましい。10質量%より少ない場合メッキの厚みが薄く熱処理により酸化が激しくなり体積抵抗率が増加するとともにハンダの濡れ性が悪くなり端子強度が得られなくなるためである。銀を25質量%より多くメッキしても塗膜物性がより効果的に得られないためである。   Also, since nickel is exposed on the surface because heat treatment is performed in the atmosphere, it becomes difficult to solder, so it is important to uniformly plate silver on the nickel powder, and the plating thickness is also important Become. The uniformly plated silver-plated nickel powder is preferably managed in the range of 10 to 25% by mass of silver. When the amount is less than 10% by mass, the thickness of the plating is thin and oxidation is increased by heat treatment, the volume resistivity is increased, the solder wettability is deteriorated, and the terminal strength cannot be obtained. This is because even if silver is plated in an amount of more than 25% by mass, the physical properties of the coating film cannot be obtained more effectively.

本発明品は6〜80×10-6Ω・cmの体積抵抗率および端子のハンダ付強度が100N以上を有する導電性塗膜を形成するためのものであり、それらの物性を発現させるために(A)銀粉末と銀メッキニッケル粉末で体積抵抗率およびハンダ濡れ性を発現成分とし、基板との接合を発現させるために(C)ガラスフリットを発現成分とし、塗膜を形成するための印刷性を発現させるために(D)有機ビヒクルを発現成分としたものである。 The product of the present invention is for forming a conductive coating film having a volume resistivity of 6 to 80 × 10 −6 Ω · cm and a soldering strength of a terminal of 100 N or more. In order to develop these physical properties (A) Silver powder and silver-plated nickel powder with volume resistivity and solder wettability as manifesting components, and (C) glass frit as manifesting component for developing bonding with the substrate, printing for forming a coating film In order to express the sex, (D) an organic vehicle is used as an expression component.

本発明の導電性組成物はその成分比を100質量%にした場合、(A)銀粉末と(B)銀
メッキニッケル粉末の合計が50〜80質量%、(C)ガラスフリットを2〜8質量%、残部が(D)有機ビヒクルとする。
(A)銀粉末と(B)銀メッキニッケル粉末の合計が50質量%より少ないと得られる導電塗膜が薄くなることによりハンダ付が困難になり端子強度が低くなることや導電性組成物中の固形分が少なくなるため熱処理後の導電塗膜にヒビワレ、ムラ等が生じ均一な塗膜が得られなくなり耐久性に問題を生じる。
80質量%より多くすると(D)有機ビヒクルの割合が少なくなりすぎるため好適な粘度および粘性を得ることができず印刷作業が困難となり良好な導電塗膜を形成することができなくなる。
このため、(A)銀粉末と(B)銀メッキニッケル粉末の合計は、50質量%〜80質量%にすることが好ましい。
When the component ratio of the conductive composition of the present invention is 100% by mass, the total of (A) silver powder and (B) silver-plated nickel powder is 50 to 80% by mass, and (C) glass frit is 2 to 8%. Mass%, the balance being (D) an organic vehicle.
When the total of (A) silver powder and (B) silver-plated nickel powder is less than 50% by mass, the resulting conductive coating film becomes thin, so that soldering becomes difficult and terminal strength is reduced, or in the conductive composition Therefore, the conductive film after heat treatment is cracked, uneven, etc., and a uniform film cannot be obtained, resulting in a problem in durability.
If it exceeds 80% by mass, the proportion of the organic vehicle (D) becomes too small, so that a suitable viscosity and viscosity cannot be obtained, the printing operation becomes difficult, and a good conductive coating film cannot be formed.
For this reason, it is preferable that the sum total of (A) silver powder and (B) silver plating nickel powder shall be 50 mass%-80 mass%.

また、(C)ガラスフリットは基板と導電性粉末を結合させる役割を果しておりその組成は、600℃以下の軟化点を有したホウ酸鉛系、ホウ珪酸鉛系、ホウ酸ビスマス系、ホウ酸ビスマス亜鉛系等の組成のガラスフリットを用いることができる。ガラスフリットが2質量%より少ないと基板に形成された導電性塗膜の強度が弱くなり耐久性に問題を生じることや端子をハンダ付したときの強度が低くなる。8質量%より多くすると熱処理したときにガラスフリットが溶融し塗膜表面に多く析出し端子をハンダ付するときにハンダが導電塗膜に濡れなくなり端子の接合強度を低くする。このため、ガラスフリットは2質量%〜8質量%にすることが好ましい。   (C) The glass frit plays a role of bonding the substrate and the conductive powder, and the composition thereof is a lead borate-based, lead borosilicate-based, bismuth borate-based, boric acid having a softening point of 600 ° C. or less. A glass frit having a composition such as bismuth zinc can be used. If the glass frit is less than 2% by mass, the strength of the conductive coating film formed on the substrate is weakened, causing a problem in durability, and the strength when soldering the terminal is lowered. If the amount is more than 8% by mass, the glass frit melts when heat-treated and precipitates on the surface of the coating film, and when soldering the terminal, the solder does not get wet with the conductive coating film and the bonding strength of the terminal is lowered. For this reason, it is preferable to make glass frit into 2 mass%-8 mass%.

(D)有機ビヒクルは、導電塗膜形成するための印刷性を付与させるためのものであり、熱処理工程で蒸発、燃焼分解する。一般に市販されているセルロース系樹脂、アクリル系樹脂等を比較的高沸点のターピネオール、ブチルカルビトール等の溶剤で溶解したものを用いることができる。 (D) The organic vehicle is for imparting printability for forming a conductive coating film, and evaporates and burns and decomposes in the heat treatment step. A commercially available cellulose resin, acrylic resin or the like dissolved in a solvent having a relatively high boiling point such as terpineol or butyl carbitol can be used.

また、本発明の(A)銀粉末と(B)銀メッキニッケル粉末の配合比率合計を100質量%とした場合、銀粉末が50〜80質量%、で銀メッキニッケル粉末が20〜50質量%にすることが好ましい。
銀粉末が80質量%より多いと銀の接触抵抗に誘引され体積抵抗率が6×10-6Ω・cmより低くなり、反対に50質量%より少ないと銀メッキニッケルの接触抵抗に誘引され体積抵抗率が80×10-6Ω・cmより大きくなる。このため、銀粉末と銀メッキニッケル粉末の配合比率合計を100質量%とした場合、銀粉末が50〜80質量%で銀メッキニッケル粉末が20〜50質量%にすることが好ましい。
Further, when the total blending ratio of (A) silver powder and (B) silver-plated nickel powder of the present invention is 100% by mass, the silver powder is 50-80% by mass, and the silver-plated nickel powder is 20-50% by mass. It is preferable to make it.
If the silver powder is more than 80% by mass, it is attracted by the contact resistance of silver, and the volume resistivity is lower than 6 × 10 −6 Ω · cm. Conversely, if it is less than 50% by mass, it is attracted by the contact resistance of silver-plated nickel. The resistivity becomes larger than 80 × 10 −6 Ω · cm. For this reason, when the compounding ratio sum total of silver powder and silver plating nickel powder is 100 mass%, it is preferable that silver powder is 50-80 mass% and silver plating nickel powder is 20-50 mass%.

また、本発明で用いる(B)銀メッキニッケル粉の粒子サイズは0.5〜15μmの粒径の粉末が好ましい。15μmより大きい粒子サイズの粉末が入ると塗膜の印刷性に影響し100μmの線幅の塗膜の形成が困難になることと膜厚のバラツキが生じ均一な導電塗膜が得られなくなるためである。0.5μmより小さい粒子サイズ粉末ではメッキ膜厚が薄くなり熱処理時にニッケルの酸化がすすみ抵抗値の増大とともに塗膜表面にニッケルの酸化物が形成されハンダ付が困難になり端子の接合が最悪できなくなるため粒子サイズは0.5〜15μmの粒径の粉末であることが好ましい。 The particle size of the (B) silver-plated nickel powder used in the present invention is preferably a powder having a particle size of 0.5 to 15 μm. If a powder having a particle size larger than 15 μm enters, the printability of the coating will be affected, making it difficult to form a coating having a line width of 100 μm, resulting in variations in film thickness and making it impossible to obtain a uniform conductive coating. is there. When the particle size powder is smaller than 0.5μm, the plating film thickness becomes thin, the oxidation of nickel proceeds during heat treatment, and the nickel oxide is formed on the coating surface with soldering resistance. Since it disappears, it is preferable that the particle size is a powder having a particle size of 0.5 to 15 μm.

一般的に比表面積は粒子の大きさに反比例するが本発明で用いる銀メッキニッケル粉末は0.6〜1.5m/gの比表面積のものが好ましい。0.6m/gより小さい粉末はメッキが厚く付くため熱処理をしたときに所定の体積抵抗率より低くなり、1.5m/gより大きい粉末では厚みが薄く熱処理により酸化が激しくなりハンダの濡れ性が悪くなり端子強度が得られなくなるためである。 In general, the specific surface area is inversely proportional to the size of the particles, but the silver-plated nickel powder used in the present invention preferably has a specific surface area of 0.6 to 1.5 m 2 / g. Powders smaller than 0.6 m 2 / g have a thick plating so that they are lower than the prescribed volume resistivity when heat-treated, while powders larger than 1.5 m 2 / g are thin and become more oxidized due to heat treatment. This is because the wettability deteriorates and the terminal strength cannot be obtained.

(導電性組成物の作製)
以下、本発明を実施例に基づいて更に詳細に説明する。
実施例1〜20および比較例1〜8を表1に示す導電性組成物の配合割合にて以下のように作製した。
(A)銀粉末、(B)銀メッキニッケル粉末、(C)ガラスフリットおよび(D)有機ビヒクルを表1に示す質量%の割合で3本ロールミルにより均一混合して導電性組成物とした。
(A)銀粉末と(B)銀メッキニッケル粉末の配合比率および(B)銀メッキニッケル粉末の銀メッキ量を表1に示す。
この時、銀粉末は純度99%以上のものを用い、有機ビヒクルとしてエチルセルロースを
テルピネオールに溶解したものを用いた。また、ガラスフリットは、ホウ珪酸ビスマス系
で軟化点が561℃のものを用いた。
(A)銀粉末と(B)銀メッキニッケル粉末の配合比率は銀粉末と銀メッキニッケル粉末の合計を100としたときの各々の質量比として示している。
(Preparation of conductive composition)
Hereinafter, the present invention will be described in more detail based on examples.
Examples 1 to 20 and Comparative Examples 1 to 8 were prepared as follows at the blending ratio of the conductive composition shown in Table 1.
(A) Silver powder, (B) Silver-plated nickel powder, (C) Glass frit, and (D) Organic vehicle were uniformly mixed by a three roll mill in the proportion of mass% shown in Table 1 to obtain a conductive composition.
Table 1 shows the blending ratio of (A) silver powder and (B) silver-plated nickel powder and (B) silver plating amount of silver-plated nickel powder.
At this time, silver powder having a purity of 99% or more was used, and an organic vehicle in which ethyl cellulose was dissolved in terpineol was used. The glass frit used was bismuth borosilicate and the softening point was 561 ° C.
The blending ratio of (A) silver powder and (B) silver-plated nickel powder is shown as a mass ratio when the total of silver powder and silver-plated nickel powder is 100.

表2に実施例1〜20および比較例9〜11として、(B)銀メッキニッケル粉末の粒径、比表面積を示す。比較例9〜11は、実施例4と同様の導電性組成物配合割合、銀粉末と銀メッキニッケル粉末の配合比率、銀メッキ量のものを作製した。
銀メッキニッケル粉末特性で銀メッキ量は化学分析により測定した。
粒径はレーザー回折式粒度測定装置SALD3000J(島津製作所製)により測定した。
比表面積はBET1点法による流動式比表面積測定装置フローソーブ2300(島津製作
所製)により測定した。
Table 2 shows the particle diameter and specific surface area of (B) silver-plated nickel powder as Examples 1 to 20 and Comparative Examples 9 to 11. In Comparative Examples 9 to 11, the same conductive composition blending ratio as that of Example 4, a blending ratio of silver powder and silver-plated nickel powder, and a silver plating amount were prepared.
The amount of silver plating was measured by chemical analysis due to the characteristics of silver-plated nickel powder.
The particle size was measured with a laser diffraction particle size analyzer SALD3000J (manufactured by Shimadzu Corporation).
The specific surface area was measured with a flow-type specific surface area measuring apparatus Flowsorb 2300 (manufactured by Shimadzu Corporation) according to the BET one-point method.

(物性評価用試料の作成)
実施例1〜20および比較例1〜11で作製した導電性組成物を厚さ3.5mmで10cm×10cmのグリーン色のソーダ石灰ガラス上に幅が1.0mm、長さ200mmおよび10mm×50mmのパターンをスクリーン印刷法により形成した。
印刷したソーダ石灰ガラスを120℃で10分間熱処理し溶剤を蒸発させた。その後650℃に加熱した電気炉にて5分間熱処理を施したものを評価用試料とした。
(評価項目)
体積抵抗率:塗膜を形成したソーダ石灰ガラス上の幅1.0mm長さ200mmのパターンの長さ方向の抵抗値をミリオームハイテスタ3540-02(日置電機製)にて測定し、表面粗さ計SE−3C(小阪研究所製)にて線幅および膜厚を測定し計算により体積抵抗率を得た。
端子強度:塗膜を形成したソーダ石灰ガラス上の10mm×50mmパターン上にSn
メッキ銅製端子をハンダにより接合し所定の冶具を用いて引張試験機SV−201(今田
製作所製)にて端子の接合強度を測定した。
実施例および比較例の体積抵抗率および端子接合強度結果を表3に示す。
(Preparation of samples for physical property evaluation)
The conductive compositions prepared in Examples 1 to 20 and Comparative Examples 1 to 11 were 3.5 mm thick and 10 cm × 10 cm on green soda-lime glass having a width of 1.0 mm, a length of 200 mm and a length of 10 mm × 50 mm. The pattern was formed by screen printing.
The printed soda lime glass was heat-treated at 120 ° C. for 10 minutes to evaporate the solvent. Then, a sample subjected to heat treatment in an electric furnace heated to 650 ° C. for 5 minutes was used as an evaluation sample.
(Evaluation item)
Volume resistivity: The resistance value in the length direction of a pattern of width 1.0 mm and length 200 mm on soda-lime glass on which a coating film was formed was measured with a milliohm high tester 3540-02 (manufactured by Hioki Electric), and surface roughness The line resistivity and film thickness were measured with a total of SE-3C (manufactured by Kosaka Laboratory), and the volume resistivity was obtained by calculation.
Terminal strength: Sn on a 10 mm x 50 mm pattern on soda-lime glass with a coating film formed
The plated copper terminals were joined with solder, and the joining strength of the terminals was measured with a tensile tester SV-201 (manufactured by Imada Seisakusho) using a predetermined jig.
Table 3 shows the results of volume resistivity and terminal bonding strength of Examples and Comparative Examples.

表3の結果より、本発明の導電性組成物から得られる導電性塗膜は実施例1〜20に示すとおり良好な体積抵抗率と接合強度を得ることができる。
しかし、比較例1〜8に示すとおり本発明の範囲を外れると体積抵抗率および接合強度の一方または両方を満足させることができなくなる。
また、比較例9 〜 1 1 に示すとおり(A)〜(D)の配合割合、(B)の銀メッキ量、(A)と(B)の配合比率が本発明の範囲を満足した導電性組成物であっても、銀メッキニッケル粉末の粒径および比表面積の一方または両方が本発明の範囲を外れると体積抵抗率および接合強度の一方または両方を満足させることができなくなる。

From the results of Table 3, the conductive coating film obtained from the conductive composition of the present invention can obtain good volume resistivity and bonding strength as shown in Examples 1-20.
However, as shown in Comparative Examples 1 to 8, if it falls outside the scope of the present invention , one or both of the volume resistivity and the bonding strength cannot be satisfied.
Moreover, as shown in Comparative Examples 9 to 11 1, the blending ratio of (A) to (D), the silver plating amount of (B), and the blending ratio of (A) and (B) satisfying the scope of the present invention . Even in the case of a composition, if one or both of the particle size and specific surface area of the silver-plated nickel powder are out of the scope of the present invention, one or both of the volume resistivity and the bonding strength cannot be satisfied.

本発明によれば、資源の豊富な銀およびニッケルを用いるため高価で生産量の少ない材料を用いる必要がなく安定した特性の発熱体を生産することが可能であり、自動車の曇り止めや電熱調理器に用いることができる。
従って、本発明の産業上の利用可能性は非常に高いといえる。
According to the present invention, since abundant silver and nickel are used, it is possible to produce a heating element having a stable characteristic without using an expensive and low-production material. It can be used for a vessel.
Therefore, it can be said that the industrial applicability of the present invention is very high.

Claims (1)

(A) 銀粉末
(B) 10〜25質量%の銀でメッキされている銀メッキニッケル粉末
(C) ガラスフリット
(D) 有機ビヒクル
を含有し、前記(A)〜(D)の成分比を100質量% にした場合、
(A)と(B)の合計が50〜80質量%、(C)が2〜8質量% 、
残部が(D)であり、
かつ(A)と(B)の配合比率合計を100質量%とした場合、(A)が50〜80質量%、(B)が20〜50 質量%
かつ(B)銀メッキニッケル粉末の粒径が0.5〜15μm 、比表面積が0.6〜1.5m 2 /gであることを特徴とする導電性組成物。
(A) Silver powder (B) Silver-plated nickel powder plated with 10 to 25% by mass of silver (C) Glass frit (D) An organic vehicle is contained, and the component ratios of the above (A) to (D) are When 100% by mass,
The total of (A) and (B) is 50 to 80% by mass, (C) is 2 to 8% by mass,
The balance is (D),
And when the mixture ratio total of (A) and (B) is 100 mass%, (A) is 50-80 mass%, (B) is 20-50 mass% ,
And (B) a conductive composition, wherein the silver-plated nickel powder has a particle size of 0.5 to 15 μm and a specific surface area of 0.6 to 1.5 m 2 / g.
JP2011105913A 2011-05-11 2011-05-11 Conductive composition Active JP5685138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105913A JP5685138B2 (en) 2011-05-11 2011-05-11 Conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105913A JP5685138B2 (en) 2011-05-11 2011-05-11 Conductive composition

Publications (2)

Publication Number Publication Date
JP2012238443A JP2012238443A (en) 2012-12-06
JP5685138B2 true JP5685138B2 (en) 2015-03-18

Family

ID=47461188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105913A Active JP5685138B2 (en) 2011-05-11 2011-05-11 Conductive composition

Country Status (1)

Country Link
JP (1) JP5685138B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463202A (en) 2014-06-30 2017-02-22 株式会社村田制作所 Conductive paste and glass article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302510A (en) * 1994-05-10 1995-11-14 Sumitomo Metal Mining Co Ltd Conductive paste composition
DE10116653A1 (en) * 2001-04-04 2002-10-10 Dmc2 Degussa Metals Catalysts Cerdec Ag Conductivity paste, articles thus produced with a conductive coating on glass, ceramic and enamelled steel and process for their production
JP2006028213A (en) * 2004-07-12 2006-02-02 Toyama Prefecture Functional electroconductive coating, electronic circuit using the same and its formation method
KR100669725B1 (en) * 2004-09-09 2007-01-16 삼성에스디아이 주식회사 A photosensitive paste composition
JP5374788B2 (en) * 2009-08-31 2013-12-25 シャープ株式会社 Conductive paste, solar cell electrode, solar cell, and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2012238443A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
EP1560227B1 (en) Conductive paste
KR102488162B1 (en) Manufacturing method of conductive composition and terminal electrode
JPS6016041B2 (en) Paste for forming thick film conductors
JP2013251256A (en) Low silver content paste composition, and method of making conductive film from said low silver content paste composition
JP2010287678A (en) Front electrode and back electrode of chip resistor
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP2009146890A (en) Copper conductive paste in which low-temperature baking out is possible
JP5685138B2 (en) Conductive composition
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
JP2018055767A (en) Lead-free conductive paste
CN109994246B (en) Powder composition for forming thick-film conductor and slurry for forming thick-film conductor
TWI796400B (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP4630616B2 (en) Pb-free conductive composition
JP7322534B2 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP2004362862A (en) Conductive paste composition for thick-film conductor
JP2019032993A (en) Thick conductor forming composition and method for producing thick conductor
JP2022082004A (en) Powder composition for forming thick conductor, paste for forming thick conductor, and thick conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5685138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250