JP5681959B2 - Graphene / Diamond Laminate - Google Patents
Graphene / Diamond Laminate Download PDFInfo
- Publication number
- JP5681959B2 JP5681959B2 JP2010272963A JP2010272963A JP5681959B2 JP 5681959 B2 JP5681959 B2 JP 5681959B2 JP 2010272963 A JP2010272963 A JP 2010272963A JP 2010272963 A JP2010272963 A JP 2010272963A JP 5681959 B2 JP5681959 B2 JP 5681959B2
- Authority
- JP
- Japan
- Prior art keywords
- graphene
- diamond
- diamond substrate
- annealing
- torr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 44
- 229910021389 graphene Inorganic materials 0.000 title claims description 41
- 229910003460 diamond Inorganic materials 0.000 title claims description 39
- 239000010432 diamond Substances 0.000 title claims description 39
- 239000000758 substrate Substances 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 13
- 239000002074 nanoribbon Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 11
- 238000001237 Raman spectrum Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本発明はダイヤモンド基板上にグラフェンを形成した新規基盤材料及びその製造方法に関する。 The present invention relates to a novel base material in which graphene is formed on a diamond substrate and a manufacturing method thereof.
これまで各種デバイスの基盤材料として、シリコンが広く使用されてきている。
しかし、近年、CMOS技術の高度化により、シリコンLSIの微細化に限界が見え始めていること、デバイスの省エネ化にはシリコン以上の性能が要求されるパワーデバイスに対するニーズ、さらには、生体との親和性の高いホワイトデバイスの実現等の要求があり、シリコンに替わる基盤材料の開発が望まれている。
本出願に係る発明者のうち徳田 規夫らのグループは、ダイヤモンドが他の半導体材料であるSi,GaAs,SiC,GaN等に比較して非常に優れた物性を有していることに着目し、これまでに原子的平坦面を有するダイヤモンド基板(特許文献1)や表面にステップテラス構造を有するダイヤモンド基板(特許文献2)を提案している。
一方、近年、グラフェンが上記他の半導体材料に比較して高い熱伝導率と大きいヤング率を有することに着目され、グラフェンの研究も盛んに行われている(非特許文献1)。
グラフェンは、その高い柔軟性、透明性、量子効果等からバイオセンサーやガスセンサーへの応用が期待されているものの、基本的にバンドギャップがゼロであり、電子デバイスへの応用にはバンドギャップの形成方法とその制御が課題となっている。
非特許文献2にグラフェンの幅がグラフェン骨格の数倍程度に形成したグラフェンナノリボンにすることで、このグラフェンにバンドギャップを形成できることが記載されている。
Until now, silicon has been widely used as a base material for various devices.
However, in recent years, with the advancement of CMOS technology, the limit of miniaturization of silicon LSIs has begun to appear, the need for power devices that require higher performance than silicon for energy saving of devices, and the compatibility with living bodies There is a demand for the realization of highly functional white devices, and the development of a base material to replace silicon is desired.
The group of Norio Tokuda among the inventors of the present application pays attention to the fact that diamond has very good physical properties compared to other semiconductor materials such as Si, GaAs, SiC, GaN, So far, a diamond substrate having a flat atomic surface (Patent Document 1) and a diamond substrate having a step terrace structure on the surface (Patent Document 2) have been proposed.
On the other hand, in recent years, attention has been paid to the fact that graphene has a higher thermal conductivity and a higher Young's modulus than the above-mentioned other semiconductor materials, and research on graphene has been actively conducted (Non-patent Document 1).
Graphene is expected to be applied to biosensors and gas sensors due to its high flexibility, transparency, quantum effect, etc., but its band gap is basically zero. The forming method and its control have been problems.
Non-Patent Document 2 describes that a band gap can be formed in graphene by forming a graphene nanoribbon in which the width of graphene is about several times that of the graphene skeleton.
本発明は、単結晶ダイヤモンド基板上にグラフェンを積層又はグラフェンナノリボンを形成する方法及びそれにより得られたグラフェン・ダイヤモンド積層体の提供を目的とする。 An object of the present invention is to provide a method of laminating graphene or forming a graphene nanoribbon on a single crystal diamond substrate and a graphene / diamond laminate obtained thereby.
本発明に係るグラフェン・ダイヤモンド積層体は、ダイヤモンド基板上にグラフェンを積層した、又はダイヤモンド基板上にグラフェンのナノリボン膜を有することを特徴とする。 The graphene / diamond laminate according to the present invention is characterized by having graphene laminated on a diamond substrate or having a graphene nanoribbon film on a diamond substrate.
ダイヤモンドとグラフェンは図1に模式的に示すように結晶構造が近い同素体であることから、ダイヤモンド基板の表面が原子的に平坦であれば欠陥の少ないグラフェンとダイヤモンドの積層体が後述する方法により得られる。 Since diamond and graphene are allotropes having a close crystal structure as schematically shown in FIG. 1, if the surface of the diamond substrate is atomically flat, a laminate of graphene and diamond with few defects can be obtained by the method described later. It is done.
本発明に係るグラフェン・ダイヤモンド積層体の製造方法は、{111}、{110}及び{100}のうちのいずれかの結晶面が表面に原子的平坦に形成されたダイヤモンド基板を10 −1 Torr以下の真空下、又は不活性ガス環境下でアニーリング処理をすることで当該ダイヤモンド基板の表面にグラフェンを相転移により形成することを特徴とする。
本発明に係る方法は、ダイヤモンド基板の表面が原子的に平坦であればダイヤモンド基板の製造方法に制限はないが、表面に{111}、{110}及び{100}のいずれかの結晶面が平坦に形成されたダイヤモンド基板は特許文献1に示された方法を取り込むことで原子的平坦性に優れた表面が得られる。
In the method for producing a graphene / diamond laminate according to the present invention, a diamond substrate in which any one of {111}, {110}, and {100} crystal planes is formed on an atomic flat surface is 10 −1 Torr. Graphene is formed by phase transition on the surface of the diamond substrate by annealing in the following vacuum or in an inert gas environment.
The method according to the present invention, the surface of the diamond substrate is not limited to the method of manufacturing a diamond substrate if atomically flat, on the surface {111}, one of the crystal faces of the {110} and {100} A diamond substrate formed flat can obtain a surface excellent in atomic flatness by adopting the method disclosed in Patent Document 1.
また、ダイヤモンド基板の上にグラフェンナノリボンを形成する方法としては、結晶面{111}、{110}及び{100}のうちのいずれかが表面に原子的平坦に形成されたダイヤモンド基板の表面にステップテラス構造を形成し、10−1Torr以下の真空下、又は不活性ガス環境下でアニーリング処理をすることで当該ダイヤモンド基板上の前記ステップ端に沿ってグラフェンのナノリボン膜を相転移により形成することもできる。
ここでステップテラス構造を形成する方法として特許文献2に示された方法を取り込むことができる。
Further, as a method of forming a graphene nanoribbon on a diamond substrate, a step is performed on the surface of the diamond substrate in which any one of the crystal planes {111}, {110}, and {100} is atomically flat on the surface. A graphene nanoribbon film is formed by phase transition along the step edge on the diamond substrate by forming a terrace structure and annealing in a vacuum of 10 −1 Torr or less or in an inert gas environment. You can also.
Here, as a method for forming the step terrace structure, the method disclosed in Patent Document 2 can be incorporated.
本発明に用いるアニーリング処理条件としては、10−1Torr以下の真空下又は不活性ガス下で、800〜1400℃の範囲、好ましくは850〜1400℃の範囲で実施するとよい。
なお、不活性ガス下の環境下では酸素濃度が1ppm以下であるのが好ましい。
ここで、酸素濃度にはO2の他にCO、CO2等の酸素原子を含むガスのO2換算濃度も含まれる。
The annealing treatment conditions used in the present invention may be carried out in the range of 800 to 1400 ° C., preferably in the range of 850 to 1400 ° C. under a vacuum of 10 −1 Torr or less or under an inert gas.
In addition, it is preferable that oxygen concentration is 1 ppm or less in the environment under inert gas.
Here, the oxygen concentration CO in addition to O 2, O 2 concentration calculated gas containing oxygen atoms such as CO 2 is also included.
本発明に係るグラフェン・ダイヤモンド積層体は、表面が原子的に平坦な単結晶のダイヤモンド基板を用いたことにより、その後の真空アニーリング又は不活性ガス環境下のアニーリングにて欠陥の少ないグラフェンをダイヤモンド基板上に相転移により形成することができる。
また、ダイヤモンド基板上にステップテラス構造を形成し、真空アニーリング又は不活性ガス環境下でアニーリングすると、ステップ端に沿ってグラフェンナノリボンが形成される。
グラフェンのリボン幅がグラフェン骨格の1〜10倍程度のアームチェア型構造であれば、非特許文献2に記載されているようにバンドギャップが出現する。
The graphene / diamond laminate according to the present invention uses a single-crystal diamond substrate having an atomically flat surface, so that graphene with few defects can be obtained by subsequent vacuum annealing or annealing in an inert gas environment. It can be formed by phase transition on top.
Further, when a step terrace structure is formed on a diamond substrate and vacuum annealing or annealing is performed in an inert gas environment, graphene nanoribbons are formed along the step edge.
If the graphene ribbon width is an armchair structure that is about 1 to 10 times that of the graphene skeleton, a band gap appears as described in Non-Patent Document 2.
本発明に係る積層体の製造例を以下説明するが、本発明の趣旨の範囲にて適宜変更が可能である。 Although the manufacture example of the laminated body which concerns on this invention is demonstrated below, it can change suitably in the range of the meaning of this invention.
特許文献1(特許第4446065号公報)に記載の方法に基づいてメサ構造のダイヤモンド基板を製作する。
次にマイクロ波プラズマCVDを用いて、炭素源ガス濃度を0.001〜0.2%の範囲にて適宜調整し、エピタキシャル成長機構でメサ上面に結晶構造{111}、{110}又は{100}の原子的に平坦な表面を形成した。
10−5Torr以下の真空下で、1100℃×10min.のアニーリングを実施した。
なお、10−1Torr以下の真空下でよいが好ましくは10−3Torr以下であり、本実施例は10−5Torr以下の真空下で実施した。
図2に上記の方法で作製された試験片のラマンスペクトル分析チャートと光学顕微鏡像を示す。
光学顕微鏡像(a)はアニーリング処理前で(b)はアニーリング処理後を示す。
ラマンスペクトルからアニーリング処理によりグラフェンが形成されているのが分かり、また、チャートにはグラフェンの格子欠陥に基づくピークが認められないことから、格子欠陥の少ないグラフェンであることが確認できた。
また、図3に示すように断面をTEMにて観察したところ、3層のグラフェンが形成されていた。
A diamond substrate having a mesa structure is manufactured based on the method described in Patent Document 1 (Japanese Patent No. 4446065).
Next, by using microwave plasma CVD, the carbon source gas concentration is appropriately adjusted in the range of 0.001 to 0.2%, and the crystal structure {111}, {110} or {100} is formed on the upper surface of the mesa by the epitaxial growth mechanism. Formed an atomically flat surface.
Under a vacuum of 10 −5 Torr or less, 1100 ° C. × 10 min. Annealing was conducted.
In addition, although it may be under a vacuum of 10 −1 Torr or less, it is preferably 10 −3 Torr or less, and this example was performed under a vacuum of 10 −5 Torr or less.
FIG. 2 shows a Raman spectrum analysis chart and an optical microscope image of the test piece prepared by the above method.
The optical microscope image (a) shows before annealing, and (b) shows after annealing.
From the Raman spectrum, it was found that graphene was formed by annealing treatment, and the peak based on the lattice defects of graphene was not recognized in the chart, so that it was confirmed that the graphene had few lattice defects.
Further, when the cross section was observed with a TEM as shown in FIG. 3, three layers of graphene were formed.
次に特許文献2(特開2010−251599号公報)に記載されている方法にて、ダイヤモンド{111}のバイレイヤーの単原子ステップ(0.21nm)又はそのn段原子ステップを有し、テラス表面が原子的に平坦であるステップテラス構造をダイヤモンド表面に形成し、10−5Torr以下、1000℃×10min.アニーリング処理した。
その顕微鏡写真を図4に示し、ラマンスペクトルチャートを図5に示す。
これにより、ダイヤモンドのテラス構造のステップ端に沿ってグラフェンが形成されていることが分かる。
なお、これを模式的に示すと図6のようになる。
Next, in the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2010-251599), a diamond {111} bilayer monoatomic step (0.21 nm) or an n-step atomic step thereof, A step terrace structure having an atomically flat surface is formed on the diamond surface, and is 10 −5 Torr or less, 1000 ° C. × 10 min. Annealed.
The micrograph is shown in FIG. 4, and the Raman spectrum chart is shown in FIG.
This shows that graphene is formed along the step edge of the diamond terrace structure.
This is schematically shown in FIG.
本発明に係るグラフェン・ダイヤモンド積層体は、グラフェンが100,000cm2/Vs以上の高い電子移動度と1500GPa程度の大きいヤング率を有し、室温でバリステック伝導等を示すことから透明電極、超高速・高周波デバイス、各種電子デバイスへの応用が期待される。
また、バイオセンサー、ガスセンサー等の応用も期待される。
The graphene / diamond laminate according to the present invention has a high electron mobility of 100,000 cm 2 / Vs or more, a large Young's modulus of about 1500 GPa, and exhibits ballistic conduction at room temperature. Applications to high-speed and high-frequency devices and various electronic devices are expected.
Applications such as biosensors and gas sensors are also expected.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272963A JP5681959B2 (en) | 2010-12-07 | 2010-12-07 | Graphene / Diamond Laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272963A JP5681959B2 (en) | 2010-12-07 | 2010-12-07 | Graphene / Diamond Laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012121751A JP2012121751A (en) | 2012-06-28 |
JP5681959B2 true JP5681959B2 (en) | 2015-03-11 |
Family
ID=46503625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010272963A Active JP5681959B2 (en) | 2010-12-07 | 2010-12-07 | Graphene / Diamond Laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5681959B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2980786B1 (en) * | 2011-09-30 | 2013-10-25 | Centre Nat Rech Scient | METHOD OF FORMING A GRAPHENE LAYER ON THE SURFACE OF A SUBSTRATE COMPRISING A SILICON LAYER |
JP5763597B2 (en) * | 2012-07-23 | 2015-08-12 | 日本電信電話株式会社 | Method for producing graphene |
TWI529128B (en) * | 2013-08-19 | 2016-04-11 | 長庚大學 | A system for manufacturing graphene nanoribbon by continuous microwave |
JP6394301B2 (en) * | 2014-11-10 | 2018-09-26 | 富士通株式会社 | Gas sensor and manufacturing method thereof |
EP4131346A4 (en) * | 2020-03-23 | 2023-04-19 | Mitsubishi Electric Corporation | Nitride semiconductor device, and method for manufacturing same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03268477A (en) * | 1990-03-19 | 1991-11-29 | Fujitsu Ltd | Manufacture of printed wiring board |
EP1636829B1 (en) * | 2003-06-12 | 2016-11-23 | Georgia Tech Research Corporation | Patterned thin film graphite devices |
WO2005019104A2 (en) * | 2003-08-18 | 2005-03-03 | President And Fellows Of Harvard College | Controlled nanotube fabrication and uses |
JP5137066B2 (en) * | 2007-09-10 | 2013-02-06 | 国立大学法人福井大学 | Graphene sheet manufacturing method |
US7781061B2 (en) * | 2007-12-31 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Devices with graphene layers |
KR100973697B1 (en) * | 2008-05-29 | 2010-08-04 | 한국과학기술연구원 | Aa stacked graphene-diamond hybrid material by high temperature treatment of diamond and the fabrication method thereof |
WO2010001686A1 (en) * | 2008-07-01 | 2010-01-07 | 日本電気株式会社 | Semiconductor device using grapheme-graphite film and method of fabricating the same |
JP5454867B2 (en) * | 2009-04-17 | 2014-03-26 | 独立行政法人産業技術総合研究所 | Single crystal diamond substrate |
WO2012029191A1 (en) * | 2010-09-03 | 2012-03-08 | Nanocarbon Research Institute, Ltd. | Nanospacer lubrication |
-
2010
- 2010-12-07 JP JP2010272963A patent/JP5681959B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012121751A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ben et al. | 2D III‐Nitride Materials: Properties, Growth, and Applications | |
Gong et al. | Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides | |
Tai et al. | Fast and large-area growth of uniform MoS 2 monolayers on molybdenum foils | |
Jiao et al. | Molecular-beam epitaxy of monolayer MoSe2: growth characteristics and domain boundary formation | |
Chabi et al. | From graphene to silicon carbide: ultrathin silicon carbide flakes | |
JP6177295B2 (en) | Method for producing graphene nanoribbons on h-BN | |
Jiang et al. | Two-step fabrication of single-layer rectangular SnSe flakes | |
Uddin et al. | Layer-structured hexagonal (BN) C semiconductor alloys with tunable optical and electrical properties | |
KR101284059B1 (en) | Graphene-Oxide Semiconductor Heterojunction Devices, and Production Method of the Same | |
Saha et al. | Comprehensive characterization and analysis of hexagonal boron nitride on sapphire | |
JP5681959B2 (en) | Graphene / Diamond Laminate | |
JPWO2010023934A1 (en) | Method for producing graphene / SiC composite material and graphene / SiC composite material obtained thereby | |
JP2011102231A (en) | Method of fabricating graphene using catalyst alloy | |
Javaheri et al. | Electronic and optical properties of V doped AlN nanosheet: DFT calculations | |
Kim et al. | Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils | |
Zhao et al. | Epitaxial growth of two-dimensional SnSe 2/MoS 2 misfit heterostructures | |
JP2018035051A (en) | SiC STRUCTURE AND PRODUCTION METHOD OF THE SAME, AND SEMICONDUCTOR DEVICE | |
JP5454867B2 (en) | Single crystal diamond substrate | |
US20170081782A1 (en) | Transfer-free method for forming graphene layer | |
WO2011027585A1 (en) | Graphene substrate, graphene electronic device, and methods for manufacturing the substrate and the device | |
Taguchi et al. | Effect of surface treatment on photoluminescence of silicon carbide nanotubes | |
JP6041346B2 (en) | Method for producing graphene / SiC composite material and graphene / SiC composite material obtained thereby | |
JP2014240340A (en) | Substrate, method of producing substrate, and electronic apparatus | |
Biswas et al. | Properties and device performance of BN thin films grown on GaN by pulsed laser deposition | |
Qi et al. | The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5681959 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |