JP5681766B2 - Phosphorescent compound and organic light-emitting diode device using the same - Google Patents

Phosphorescent compound and organic light-emitting diode device using the same Download PDF

Info

Publication number
JP5681766B2
JP5681766B2 JP2013154611A JP2013154611A JP5681766B2 JP 5681766 B2 JP5681766 B2 JP 5681766B2 JP 2013154611 A JP2013154611 A JP 2013154611A JP 2013154611 A JP2013154611 A JP 2013154611A JP 5681766 B2 JP5681766 B2 JP 5681766B2
Authority
JP
Japan
Prior art keywords
light emitting
electrode
organic light
material layer
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013154611A
Other languages
Japanese (ja)
Other versions
JP2014031371A (en
Inventor
イン−ボム ソン,
イン−ボム ソン,
ジョン−グン キム,
ジョン−グン キム,
ジュン−ファン ヤン,
ジュン−ファン ヤン,
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド, エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Publication of JP2014031371A publication Critical patent/JP2014031371A/en
Application granted granted Critical
Publication of JP5681766B2 publication Critical patent/JP5681766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D203/00Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Description

本発明は有機発光ダイオード素子に用いられる燐光化合物に関するものであって、特に高い三重項エネルギーと広いエネルギーバンドギャップを有し、発光効率を向上させることができる燐光化合物及びそれを用いた有機発光ダイオード素子に関するものである。   The present invention relates to a phosphorescent compound used in an organic light-emitting diode device, and more particularly, a phosphorescent compound having a high triplet energy and a wide energy band gap and capable of improving luminous efficiency, and an organic light-emitting diode using the phosphorescent compound It relates to an element.

最近、ディスプレイ装置の大型化に伴い、スペース占有の少ない平面ディスプレイ素子に対する要求が増大しているが、このような平面ディスプレイ素子の1つとして有機電界発光素子(organic electroluminescent device:OELD)とも呼ばれる有機発光ダイオード素子に関する技術が速い速度で発展し、既に多くの試製品が発表されている。   Recently, with the increase in the size of display devices, the demand for flat display elements that occupy less space is increasing. As one of such flat display elements, an organic electroluminescent device (OELD) is also known. The technology related to the light emitting diode device has been developed at a high speed, and many trial products have already been announced.

有機発光ダイオード素子は、電子注入電極(陰極)と正孔注入電極(陽極)の間に形成された発光物質層に電荷を注入すると、電子と正孔が対になって消滅しながら光を出す素子である。プラスチックのようなフレキシブルな透明基板上にも素子を形成することができるだけでなく、プラズマディスプレイパネルや無機電界発光(EL)ディスプレイに比べて低電圧(10V以下)で駆動が可能であり、また、消費電力が比較的に低く、色純度に優れるという長所がある。また、有機電界発光(EL)素子は緑色、青色、赤色の3色を表すことができるため、豊富な色を持つ次世代ディスプレイ素子として脚光を浴びている。ここで、有機発光ダイオードの製作過程を簡単に説明する。   An organic light emitting diode element emits light while electrons and holes are paired and disappeared when a charge is injected into a light emitting material layer formed between an electron injection electrode (cathode) and a hole injection electrode (anode). It is an element. Not only can the element be formed on a flexible transparent substrate such as plastic, but it can be driven at a lower voltage (10 V or less) than a plasma display panel or an inorganic electroluminescent (EL) display. It has the advantages of low power consumption and excellent color purity. In addition, since organic electroluminescence (EL) elements can represent three colors of green, blue, and red, they are attracting attention as next-generation display elements having abundant colors. Here, the manufacturing process of the organic light emitting diode will be briefly described.

(1)まず、透明基板上にインジウム‐チン‐オキサイド(酸化インジウムスズ:ITO)のような物質を蒸着し、陽極(anode)を形成する。   (1) First, a material such as indium-tin-oxide (indium tin oxide: ITO) is deposited on a transparent substrate to form an anode.

(2)前記陽極上に正孔注入層(HIL:hole injecting layer)を形成する。正孔注入層は、主に下記化学式(1‐1)で表される4,4′‐ビス[N‐[4‐{N、N‐ビス(3‐メチルフェニル)アミノ}フェニル]‐N‐フェニルアミノ]ビフェニル(DNTPD)を、10nmないし60nmの厚さで蒸着して形成される。   (2) A hole injecting layer (HIL) is formed on the anode. The hole injection layer is composed mainly of 4,4′-bis [N- [4- {N, N-bis (3-methylphenyl) amino} phenyl] -N— represented by the following chemical formula (1-1). Phenylamino] biphenyl (DNTPD) is formed by vapor deposition with a thickness of 10 nm to 60 nm.

(3)次に、前記正孔注入層上に正孔輸送層(HTL:hole transport layer)を形成する。正孔輸送層は、下記化学式(1‐2)で表される4,4′‐ビス[N‐(1‐ナフチル)‐N‐フェニルアミノ]‐ビフェニル(NPB)を、30nmないし60nm程度蒸着して形成される。   (3) Next, a hole transport layer (HTL) is formed on the hole injection layer. For the hole transport layer, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] -biphenyl (NPB) represented by the following chemical formula (1-2) is deposited by about 30 to 60 nm. Formed.

(4)次に、前記正孔輸送層上に発光物質層(EML:emitting material layer)を形成する。必要によってドーパントを添加し、カラーの具現化のため、赤色、緑色及び青色の発光物質層を形成することができる。例えば、下記化学式(1‐3)で表されるホストのビス(N‐カルバゾリル)ビフェニル(CBP)に、下記化学式(1‐4)で表される燐光青色ドーパントのトリス((3,5‐ジフルオロ‐4‐シアノフェニル)ピリジン)イルジウム(III)(FCNIr)をドーピングして青色の発光物質層を形成する。   (4) Next, an emissive material layer (EML) is formed on the hole transport layer. If necessary, dopants may be added to form red, green, and blue light emitting material layers for color realization. For example, the phosphorescent blue dopant tris ((3,5-difluoro) represented by the following chemical formula (1-4) is added to the host bis (N-carbazolyl) biphenyl (CBP) represented by the following chemical formula (1-3). -4-Cyanophenyl) pyridine) yldium (III) (FCNIr) is doped to form a blue luminescent material layer.

(5)続いて、前記発光物質層上に電子輸送層(ETL:electron transport layer)及び電子注入層(EIL:electron injection layer)を連続形成する。   (5) Subsequently, an electron transport layer (ETL: electron transport layer) and an electron injection layer (EIL: electron injection layer) are continuously formed on the light emitting material layer.

(6)次に、前記電子注入層上に陰極(cathode)を形成し、最後に前記陰極上に保護膜を形成する。   (6) Next, a cathode is formed on the electron injection layer, and finally a protective film is formed on the cathode.

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

最近は、発光物質層に蛍光物質より燐光物質が多く用いられる。その理由は、蛍光物質の場合、発光物質層で形成されるエキシトンのうち、約25%の一重項だけが光形成に使われ、75%の三重項は殆どが熱で消失される反面、燐光物質は、一重項と三重項、両方とも光に転換させる発光メカニズムを有するためである。燐光ドーパントは、一般的に有機物の中心部にIr、Pt、Euのような重い元素(heavy atom)を含み、三重項から一重項への電子遷移確率が高い。   Recently, a phosphorescent material is used more frequently in a light emitting material layer than a fluorescent material. The reason for this is that in the case of a fluorescent material, only about 25% of singlet excitons formed in the luminescent material layer are used for photogeneration, and 75% of triplets are mostly lost by heat, but phosphorescence. This is because the substance has a light emitting mechanism in which both singlet and triplet are converted into light. A phosphorescent dopant generally contains a heavy element such as Ir, Pt, or Eu at the center of an organic substance, and has a high electron transition probability from a triplet to a singlet.

しかし、かかるドーパントは、濃度消光現象により急激な効率減少が発生するため、単独で発光物質層を構成することができない。従って、ドーパントより熱安定性及び三重項エネルギーの高いホストと共に発光層を構成することになる。   However, since such a dopant causes a sudden decrease in efficiency due to the concentration quenching phenomenon, a luminescent material layer cannot be formed alone. Therefore, the light emitting layer is formed together with a host having higher thermal stability and triplet energy than the dopant.

燐光物質を含む有機発光ダイオード素子の発光プロセスを簡単に説明すると、陽極から注入された正孔と陰極から注入された電子が発光層のホストで出会い、ホストで形成された一重項エキシトンは、ドーパントの一重項または三重項へのエネルギー遷移が起こり、三重項エキシトンは、ドーパントの三重項へのエネルギー遷移が起こる。ドーパントの一重項に遷移したエキシトンは、またドーパントの三重項に遷移するため、全てのエキシトンの1次終着地はドーパントの三重項準位になる。このように形成されたエキシトンは、基底状態(ground state)に遷移し、光を発する。   Briefly explaining the light emitting process of an organic light emitting diode device containing a phosphor, a hole injected from the anode and an electron injected from the cathode meet at the host of the light emitting layer, and the singlet exciton formed by the host is a dopant. Energy transition to singlet or triplet occurs, and triplet excitons undergo energy transition to the triplet of the dopant. Since the exciton that has transitioned to the singlet of the dopant also transitions to the triplet of the dopant, the primary termination of all excitons becomes the triplet level of the dopant. The exciton thus formed transitions to the ground state and emits light.

ドーパントへの効率的なエネルギー遷移のため、ホストの三重項エネルギーは、ドーパントの三重項エネルギーより高くなければならない。ホストの三重項エネルギーがドーパントの三重項エネルギーより低い場合、ドーパントからホストへのエネルギー逆遷移が発生し、効率が低下する。   For efficient energy transfer to the dopant, the host triplet energy must be higher than the dopant triplet energy. When the triplet energy of the host is lower than the triplet energy of the dopant, an energy reverse transition from the dopant to the host occurs, and the efficiency decreases.

即ち、図1を参照すると、従来、ホスト物質として多く用いられるCBPの場合、三重項エネルギーが2.6eVであり、HOMO(highest occupied molecular orbital):−6.3eV、LUMO(lowest unoccupied molecular orbital):−2.8eVであるため、青色燐光ドーパントであるFCNIr燐光ドーパント(HOMO:−5.8eV、LUMO:−3.0eV、三重項エネルギー:2.8eV)を用いた場合、ドーパントからホストへのエネルギー逆遷移が発生し、効率が低下する。特に、低温下において効率低下が大きく発生する。   That is, referring to FIG. 1, in the case of CBP that has been conventionally used as a host material, the triplet energy is 2.6 eV, HOMO (high occupied molecular orbital): -6.3 eV, LUMO (lowest unoccupied molecular orbital). : -2.8 eV, so when using FCNIr phosphorescent dopant (HOMO: -5.8 eV, LUMO: -3.0 eV, triplet energy: 2.8 eV), which is a blue phosphorescent dopant, the dopant to the host An energy reverse transition occurs and the efficiency decreases. In particular, a significant decrease in efficiency occurs at low temperatures.

本発明は、三重項エネルギーが2.8eV以上であり、熱安定性に優れて3.3eV以上の広い一重項エネルギーギャップを有する新しい燐光物質を提供し、発光効率の低下を防止することを目的とする。   An object of the present invention is to provide a new phosphor having a triplet energy of 2.8 eV or more, excellent thermal stability, and a wide singlet energy gap of 3.3 eV or more, and preventing a decrease in luminous efficiency. And

特に、ホスト物質の三重項エネルギーをドーパントの三重項エネルギーより高くすることによって、発光効率の低下を防止することを目的とする。   In particular, an object is to prevent a decrease in luminous efficiency by making the triplet energy of the host material higher than the triplet energy of the dopant.

前述のような課題を解決するために、本発明は、下記化学式で表され、X及びYのそれぞれは、独立して芳香族化合物(aromatic compound)および複素環式化合物(heterocyclic compound)からなる群から選択される燐光化合物を提供する。   In order to solve the above-described problems, the present invention is represented by the following chemical formula, wherein each of X and Y is independently a group consisting of an aromatic compound and a heterocyclic compound. A phosphorescent compound selected from:

Figure 0005681766
Figure 0005681766

本発明の燐光化合物において、前記Xと前記Yのそれぞれは、カルバゾール、α‐カルボリン、β‐カルボリン、γ‐カルボリン、ピリジン、フェニル、ジベンゾフラン、およびそれらの置換体からなる群から選択されることを特徴とする。   In the phosphorescent compound of the present invention, each of the X and the Y is selected from the group consisting of carbazole, α-carboline, β-carboline, γ-carboline, pyridine, phenyl, dibenzofuran, and their substitutes. Features.

他の観点から、本発明は、第1電極と;前記第1電極と向かい合う第2電極と;前記第1電極と前記第2電極の間に位置する発光物質層とを含み、前記発光物質層は、下記化学式で表され、X及びYのそれぞれは、独立して芳香族化合物(aromatic compound)および複素環式化合物(heterocyclic compound)からなる群から選択される燐光化合物を含んでなる有機発光ダイオード素子を提供する。   In another aspect, the present invention includes: a first electrode; a second electrode facing the first electrode; and a luminescent material layer positioned between the first electrode and the second electrode, wherein the luminescent material layer Is represented by the following chemical formula, wherein each of X and Y independently comprises a phosphorescent compound selected from the group consisting of an aromatic compound and a heterocyclic compound: An element is provided.

Figure 0005681766
Figure 0005681766

本発明の有機発光ダイオード素子において、前記Xと前記Yのそれぞれは、カルバゾール、α‐カルボリン、β‐カルボリン、γ‐カルボリン、ピリジン、フェニル、ジベンゾフラン、およびそれらの置換体からなる群から選択されることを特徴とする。   In the organic light-emitting diode device of the present invention, each of the X and the Y is selected from the group consisting of carbazole, α-carboline, β-carboline, γ-carboline, pyridine, phenyl, dibenzofuran, and their substituted products. It is characterized by that.

本発明の有機発光ダイオード素子において、前記第1電極と前記発光物質層の間に位置する正孔注入層と、前記発光物質層と前記正孔注入層の間に位置する正孔輸送層と、前記第2電極と前記発光物質層の間に位置する電子注入層と、前記発光物質層と前記電子注入層の間に位置する電子輸送層とを含むことを特徴とする。   In the organic light emitting diode device of the present invention, a hole injection layer located between the first electrode and the light emitting material layer, a hole transport layer located between the light emitting material layer and the hole injection layer, And an electron injecting layer positioned between the second electrode and the light emitting material layer, and an electron transporting layer positioned between the light emitting material layer and the electron injecting layer.

本発明の燐光物質は、2.8eV以上の三重項エネルギーと3.3eV以上の広いエネルギーバンドギャップを有するため、有機発光ダイオード素子の効率を向上させることができる。   Since the phosphor of the present invention has a triplet energy of 2.8 eV or more and a wide energy band gap of 3.3 eV or more, the efficiency of the organic light emitting diode device can be improved.

特に、本発明の燐光物質は、発光物質層に青色ホストとして用いられることができ、ドーパントより高い三重項エネルギーを有するため、発光効率の低下問題を防止することができる。   In particular, the phosphor of the present invention can be used as a blue host in a light-emitting material layer and has a triplet energy higher than that of a dopant.

従来の有機発光ダイオード素子用のホスト物質であるCBPのPLスペクトルである。It is the PL spectrum of CBP which is a host material for the conventional organic light emitting diode element. 本発明の実施例に係る有機発光ダイオード素子用の燐光物質のPLスペクトルである。2 is a PL spectrum of a phosphor for an organic light emitting diode device according to an example of the present invention. 本発明の実施例に係る有機発光ダイオード素子用の燐光物質のUVスペクトル及びPLスペクトルである。2 is a UV spectrum and a PL spectrum of a phosphor for an organic light emitting diode device according to an example of the present invention. 本発明の実施例に係る燐光物質の電流密度を示すグラフである。4 is a graph showing current density of a phosphor according to an example of the present invention. 本発明の実施例に係る燐光物質の電流効率を示すグラフである。3 is a graph showing current efficiency of a phosphor according to an example of the present invention. 本発明の実施例に係る燐光物質の電力効率を示すグラフである。4 is a graph illustrating power efficiency of a phosphor according to an embodiment of the present invention. 本発明の実施例に係る有機発光ダイオード素子の概略的な断面図である。1 is a schematic cross-sectional view of an organic light emitting diode device according to an embodiment of the present invention.

以下、本発明に係る燐光化合物の構造及びその合成例、そしてそれを用いた有機発光ダイオード素子について説明する。   Hereinafter, the structure of the phosphorescent compound according to the present invention, a synthesis example thereof, and an organic light emitting diode device using the same will be described.

本発明の燐光化合物は、下記化学式(2)で表される。即ち、ピリジンの2番、6番の位置に対称または非対称に、芳香族化合物または複素環式化合物が置換された構造を有し、高い三重項エネルギーと広いエネルギーバンドギャップを有する。   The phosphorescent compound of the present invention is represented by the following chemical formula (2). That is, it has a structure in which aromatic compounds or heterocyclic compounds are substituted symmetrically or asymmetrically at positions 2 and 6 of pyridine, and has a high triplet energy and a wide energy band gap.

Figure 0005681766
Figure 0005681766

前記化学式(2)においてX及びYのそれぞれは、独立して芳香族化合物(aromatic compound)または複素環式化合物(heterocyclic compound)から選択される。XとYは、同一であっても良く、異なっても良い。   In the chemical formula (2), each of X and Y is independently selected from an aromatic compound or a heterocyclic compound. X and Y may be the same or different.

例えば、前記Xと前記Yのそれぞれは、下記化学式(3)で表される非置換カルバゾール、α‐カルボリン、β‐カルボリン、γ‐カルボリン、ピリジン、フェニル、ジベンゾフラン、またはそれらの置換体から選択されることができる。   For example, each of X and Y is selected from unsubstituted carbazole represented by the following chemical formula (3), α-carboline, β-carboline, γ-carboline, pyridine, phenyl, dibenzofuran, or a substituted product thereof. Can.

また、X及びYの置換体は、カルバゾール、α‐カルボリン、β‐カルボリン、γ‐カルボリン、ジベンゾフランであっても良い。   Further, the substitution product of X and Y may be carbazole, α-carboline, β-carboline, γ-carboline, dibenzofuran.

Figure 0005681766
Figure 0005681766

特に、本発明の燐光化合物は、電子(electron)特性の強いピリジンコアーの2番、6番の位置に、正孔(hole)特性が強く、高い三重項エネルギーを有するカルバゾールと電子特性のカルボリンをそれぞれ非対称に置換することで、正孔と電子の電荷均衡(charge balancing)が向上し、ターゲットとする青色ドーパントに適合するエネルギーギャップと高い三重項エネルギーを有することになる。   In particular, the phosphorescent compound of the present invention has carbazole having strong triplet energy and carboline having high triplet energy at positions 2 and 6 of a pyridine core having strong electron characteristics. Substituting each asymmetrically improves the charge balancing of the holes and electrons and has an energy gap and high triplet energy compatible with the targeted blue dopant.

例えば、前記化学式(2)の物質は、下記化学式(4)で表される複数の物質のうち、いずれかの1つである。   For example, the substance of the chemical formula (2) is any one of a plurality of substances represented by the following chemical formula (4).

Figure 0005681766
Figure 0005681766

前記化学式(2)で表される燐光化合物は、下記で説明するように高い三重項エネルギーと広いエネルギーバンドギャップを有するため、発光効率が向上する。   Since the phosphorescent compound represented by the chemical formula (2) has a high triplet energy and a wide energy band gap as described below, the light emission efficiency is improved.

以下、本発明に係る燐光化合物のうち、前記化学式(4)で新ホスト1と新ホスト2で表される燐光化合物の合成例を説明する。   Hereinafter, among the phosphorescent compounds according to the present invention, synthesis examples of phosphorescent compounds represented by the new host 1 and the new host 2 in the chemical formula (4) will be described.

1.新ホスト1の合成   1. Synthesis of new host 1

(1)2,6‐ジヨードピリジンの合成   (1) Synthesis of 2,6-diiodopyridine

下記反応式(1)により2,6‐ジヨードピリジンを合成した。   2,6-Diiodopyridine was synthesized according to the following reaction formula (1).

Figure 0005681766
Figure 0005681766

250mLの2口フラスコ(2‐neck flask)に2,6‐ジブロモピリジン(20.2g、84.427mmol)、ヨウ化銅(3.86g、20.263mmol)、ヨウ化ナトリウム(50.62g、33.708mmol)、1,2‐ジシクロヘキサンジメチルジアミン(5.86mL、37.148mmol)を入れ、1,4‐ジオキサンで溶かした後、12時間の間、還流撹拌させた。反応終了後、減圧蒸留して溶媒を除去した後、カラム精製(ヘキサン:メチレンクロリド=3:1)を行い、精製された溶液を減圧蒸留してメチレンクロリド/石油エーテル溶媒で再結晶を行い、9.88gの白色固体を得た(歩留まり率:35%)。   In a 250 mL 2-neck flask, 2,6-dibromopyridine (20.2 g, 84.427 mmol), copper iodide (3.86 g, 20.263 mmol), sodium iodide (50.62 g, 33 .708 mmol) and 1,2-dicyclohexanedimethyldiamine (5.86 mL, 37.148 mmol) were added and dissolved in 1,4-dioxane, followed by refluxing and stirring for 12 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, column purification (hexane: methylene chloride = 3: 1) was performed, the purified solution was distilled under reduced pressure and recrystallized with methylene chloride / petroleum ether solvent, 9.88 g of a white solid was obtained (yield: 35%).

(2)9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドールの合成   (2) Synthesis of 9- (6-iodopyridin-2-yl) -9H-pyrido [2,3-b] indole

下記反応式(2)により9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドールを合成した。   9- (6-Iodopyridin-2-yl) -9H-pyrido [2,3-b] indole was synthesized according to the following reaction formula (2).

Figure 0005681766
Figure 0005681766

250mLの2口フラスコに2,6‐ジヨードピリジン(4.13g、12.486mmol)、カルボリン(1.0g、5.946mmol)、ヨウ化銅(113mg、0.595mmol)、燐酸三カリウム(6.94g、32.703mmol)、トランス‐1,2‐ジシクロヘキサンジアミン(0.22mL、1.843mmol)を入れ、1,4‐ジオキサンで溶かした後、12時間の間、還流撹拌させた。反応終了後、減圧蒸留して溶媒を除去した後、カラム精製(ヘキサン:エチルアセテート=8:1 → ヘキサン:メチレンクロリド=2:1)を行い、溶液を減圧蒸留して液状ワックスの9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドールを2.39g得た(歩留まり率:100%)。   In a 250 mL two-necked flask, 2,6-diiodopyridine (4.13 g, 12.486 mmol), carboline (1.0 g, 5.946 mmol), copper iodide (113 mg, 0.595 mmol), tripotassium phosphate (6 .94 g, 32.703 mmol) and trans-1,2-dicyclohexanediamine (0.22 mL, 1.843 mmol) were added, dissolved in 1,4-dioxane, and then stirred at reflux for 12 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, column purification (hexane: ethyl acetate = 8: 1 → hexane: methylene chloride = 2: 1) was performed, and the solution was distilled under reduced pressure to obtain a liquid wax 9- ( 6.39 g of 6-iodopyridin-2-yl) -9H-pyrido [2,3-b] indole was obtained (yield: 100%).

(3)新ホスト1の合成   (3) Synthesis of new host 1

下記反応式(3)により新ホスト1を合成した。   A new host 1 was synthesized according to the following reaction formula (3).

Figure 0005681766
Figure 0005681766

250mLの2口フラスコに9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドール(2.39g、6.439mmol)、カルバゾール(1.08g、6.439mmol)、ヨウ化銅(123mg、0.644mmol)、燐酸三カリウム(7.52g、35.41mmol)、トランス‐1,2‐ジシクロヘキサンジアミン(0.24mL、1.996mmol)を入れ、1,4‐ジオキサンで溶かした後、12時間の間、還流撹拌させた。反応終了後、減圧蒸留して溶媒を除去した後、カラム精製(ヘキサン:メチレンクロリド=3:1 → 1:1)を行い、溶液を減圧蒸留してメチレンクロリド/石油エーテル溶媒で再結晶を行い、1.50gの白色固体を得た(歩留まり率:81%)。   9- (6-Iodopyridin-2-yl) -9H-pyrido [2,3-b] indole (2.39 g, 6.439 mmol), carbazole (1.08 g, 6.439 mmol) in a 250 mL 2-neck flask , Copper iodide (123 mg, 0.644 mmol), tripotassium phosphate (7.52 g, 35.41 mmol), trans-1,2-dicyclohexanediamine (0.24 mL, 1.996 mmol), and 1,4- After dissolving with dioxane, the mixture was stirred at reflux for 12 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, column purification (hexane: methylene chloride = 3: 1 → 1: 1) was performed, the solution was distilled under reduced pressure and recrystallized with methylene chloride / petroleum ether solvent. 1.50 g of a white solid was obtained (yield rate: 81%).

2.新ホスト2の合成   2. Synthesis of new host 2

(1)6‐ブロモ‐9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドールの合成   (1) Synthesis of 6-bromo-9- (6-iodopyridin-2-yl) -9H-pyrido [2,3-b] indole

下記反応式(4)により6‐ブロモ‐9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドールを合成した。   6-Bromo-9- (6-iodopyridin-2-yl) -9H-pyrido [2,3-b] indole was synthesized according to the following reaction formula (4).

Figure 0005681766
Figure 0005681766

250mLの2口フラスコに2,6‐ジヨードピリジン(6.96g、21.045mmol)、3‐ブロモ−カルボリン(2.60g、10.522mmol)、ヨウ化銅(200mg、1.052mmol)、燐酸三カリウム(12.28g、57.871mmol)、トランス‐1,2‐ジシクロヘキサンジアミン(0.4mL、3.262mmol)を入れ、1,4‐ジオキサンで溶かした後、12時間の間、還流撹拌させた。反応終了後、減圧蒸留して溶媒を除去した後、カラム精製(ヘキサン:メチレンクロリド=3:1 → 2:1)を行い、溶液を減圧蒸留してメチレンクロリド/石油エーテル溶媒で再結晶を行い、1.37gの白色固体を得た(歩留まり率:29%)。   In a 250 mL two-necked flask, 2,6-diiodopyridine (6.96 g, 21.045 mmol), 3-bromo-carboline (2.60 g, 10.522 mmol), copper iodide (200 mg, 1.052 mmol), phosphoric acid Tripotassium (12.28 g, 57.871 mmol) and trans-1,2-dicyclohexanediamine (0.4 mL, 3.262 mmol) were added, dissolved in 1,4-dioxane, and stirred at reflux for 12 hours. I let you. After completion of the reaction, the solvent was removed by distillation under reduced pressure, column purification (hexane: methylene chloride = 3: 1 → 2: 1) was performed, and the solution was distilled under reduced pressure and recrystallized with methylene chloride / petroleum ether solvent. 1.37 g of a white solid was obtained (yield rate: 29%).

(2)新ホスト2の合成   (2) Synthesis of new host 2

下記反応式(5)により燐光化合物の新ホスト2を合成した。   A new host 2 of phosphorescent compound was synthesized according to the following reaction formula (5).

Figure 0005681766
Figure 0005681766

250mLの2口フラスコに6‐ブロモ‐9‐(6‐ヨードピリジン‐2‐イル)‐9H‐ピリド[2,3‐b]インドール(1.37g、3.044mmol)、カルバゾール(1.02g、6.088mmol)、ヨウ化銅(145mg、0.761mmol)、燐酸三カリウム(7.10g、33.484mmol)、トランス‐1,2‐ジシクロヘキサンジアミン(0.3mL、2.131mmol)を入れ、1,4‐ジオキサンで溶かした後、12時間の間、還流撹拌させた。反応終了後、減圧蒸留して溶媒を除去した後、トルエンでショットカラム精製を行って色を抜き、またカラム精製(ヘキサン:メチレンクロリド=2:1 → 1:1)を行い、溶液を減圧蒸留してメチレンクロリド/石油エーテル溶媒で再結晶を行うことにより、0.40gの白色固体を得た(歩留まり率:23%)。   In a 250 mL 2-neck flask, 6-bromo-9- (6-iodopyridin-2-yl) -9H-pyrido [2,3-b] indole (1.37 g, 3.044 mmol), carbazole (1.02 g, 6.088 mmol), copper iodide (145 mg, 0.761 mmol), tripotassium phosphate (7.10 g, 33.484 mmol), trans-1,2-dicyclohexanediamine (0.3 mL, 2.131 mmol), After dissolving with 1,4-dioxane, the mixture was stirred at reflux for 12 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, and then the column was purified with toluene to remove the color, and the column was purified (hexane: methylene chloride = 2: 1 → 1: 1), and the solution was distilled under reduced pressure. Then, recrystallization was performed with methylene chloride / petroleum ether solvent to obtain 0.40 g of a white solid (yield rate: 23%).

下記化学式(5)で表される比較ホスト(ref.Host)と、新ホスト1及び新ホスト2の低温PL(photoluminescence)スペクトルを図2に示し、比較ホスト(ref.Host)と、新ホスト1及び新ホスト2のUVスペクトル及びPLスペクトルを図3に示す。そして、比較ホスト(ref.Host)と、新ホスト1及び新ホスト2の特性を表1に示す。   The low-temperature PL (photoluminescence) spectra of the comparative host (ref. Host) represented by the following chemical formula (5) and the new host 1 and the new host 2 are shown in FIG. 2, and the comparative host (ref. Host) and the new host 1 The UV spectrum and PL spectrum of the new host 2 are shown in FIG. Table 1 shows the characteristics of the comparison host (ref. Host) and the new host 1 and the new host 2.

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

図2、図3及び表1で示すように、本発明に係る燐光化合物の新ホスト1と新ホスト2は、3.3eV以上の広いバンドギャップエネルギーを有し、2.8eV以上の三重項エネルギー(E)を有する。 As shown in FIGS. 2, 3 and Table 1, the new host 1 and the new host 2 of the phosphorescent compound according to the present invention have a wide band gap energy of 3.3 eV or more and a triplet energy of 2.8 eV or more. (E T ).

即ち、比較ホスト(ref.Host)と同様に、従来の発光物質層のホスト物質として用いられるCBPより高い三重項エネルギーを有し、また一般的に用いられるドーパントの三重項エネルギーの2.8eVより高いため、ドーパントからホストへのエネルギー逆遷移を防止することができる。また、広いエネルギーバンドギャップを有するため、発光効率が向上するという長所を有する。   That is, similar to the comparative host (ref. Host), it has a triplet energy higher than that of CBP used as the host material of the conventional light emitting material layer, and more than 2.8 eV of the triplet energy of a commonly used dopant. Since it is high, reverse energy transition from the dopant to the host can be prevented. In addition, since it has a wide energy band gap, it has an advantage of improving luminous efficiency.

更に、本発明の燐光化合物は、比較ホストに比べ、強い電子特性を有するため、電荷均衡特性が向上し、発光効率が向上する。   Furthermore, since the phosphorescent compound of the present invention has stronger electronic characteristics than the comparative host, the charge balance characteristics are improved and the light emission efficiency is improved.

以下、前記した比較ホストと本発明の燐光化合物を、それぞれ青色燐光ホストとして用いて有機発光ダイオード素子を製作する比較例と実験例を通し、本発明に係る燐光物質及びそれを用いた有機発光ダイオード素子の性能を比較説明する。   Hereinafter, the phosphorescent material according to the present invention and the organic light emitting diode using the phosphor will be described through comparative examples and experimental examples in which an organic light emitting diode element is manufactured using the comparative host and the phosphorescent compound of the present invention as a blue phosphorescent host, respectively. The device performance will be described in comparison.

<比較例>
基板上にインジウム‐チン‐オキサイド(酸化インジウムスズ:ITO)を蒸着して陽極を形成し、洗浄した。前記陽極が形成された基板を真空蒸着チャンバに送った後、50Åの厚さのヘキサアザトリフェニレン‐ヘキサニトリル(HAT‐CN)正孔注入層、550Åの厚さの4,4′‐ビス[N‐(1‐ナフチル)‐N‐フェニルアミノ]‐ビフェニル(NPB)正孔輸送層、下記化学式(6)で表される100Åの厚さのTAPC電子阻止層、前記化学式(5)で表される比較ホストに下記化学式(7)で表される青色ドーパント(FCNIr)を15%ドーピングした300Åの厚さの発光物質層、下記化学式(8)で表される400Åの厚さのTmPyPB電子輸送層、5Åの厚さのLiF電子注入層及び1100Åの厚さのアルミニウム陰極を蒸着した。
<Comparative example>
An indium-tin-oxide (indium tin oxide: ITO) was deposited on the substrate to form an anode and washed. After the substrate on which the anode is formed is sent to a vacuum deposition chamber, a 50-thick hexaazatriphenylene-hexanitrile (HAT-CN) hole injection layer, a 550-thick 4,4′-bis [N -(1-naphthyl) -N-phenylamino] -biphenyl (NPB) hole transport layer, TAPC electron blocking layer with a thickness of 100 mm represented by the following chemical formula (6), represented by the above chemical formula (5) A light-emitting material layer having a thickness of 300 mm, in which a comparison host is doped with 15% of a blue dopant (FCNIr) represented by the following chemical formula (7), a TmPyPB electron transport layer having a thickness of 400 mm represented by the following chemical formula (8), A LiF electron injection layer having a thickness of 5 mm and an aluminum cathode having a thickness of 1100 mm were deposited.

<実験例>
基板上にインジウム‐チン‐オキサイド(酸化インジウムスズ:ITO)を蒸着して陽極を形成し、洗浄した。前記陽極が形成された基板を真空蒸着チャンバに送った後、50Åの厚さのヘキサアザトリフェニレン‐ヘキサカルボニトリル(HAT‐CN)正孔注入層、550Åの厚さの4,4′‐ビス[N‐(1‐ナフチル)‐N‐フェニルアミノ]‐ビフェニル(NPB)正孔輸送層、100Åの厚さのTAPC電子阻止層、前記化学式(4)の新ホスト1に青色ドーパント(FCNIr)を15%ドーピングした300Åの厚さの発光物質層、400Åの厚さのTmPyPB電子輸送層、5Åの厚さのLiF電子注入層及び1100Åの厚さのアルミニウム陰極を蒸着した。
<Experimental example>
An indium-tin-oxide (indium tin oxide: ITO) was deposited on the substrate to form an anode and washed. After the substrate on which the anode is formed is sent to a vacuum deposition chamber, a 50-thick hexaazatriphenylene-hexacarbonitrile (HAT-CN) hole injection layer, a 550-thick 4,4′-bis [ N- (1-naphthyl) -N-phenylamino] -biphenyl (NPB) hole transport layer, 100-inch thick TAPC electron blocking layer, and 15 new blue dopant (FCNIr) on new host 1 of formula (4) A light-emitting material layer having a thickness of 300 mm doped with%, a TmPyPB electron transport layer having a thickness of 400 mm, a LiF electron injection layer having a thickness of 5 mm and an aluminum cathode having a thickness of 1100 mm were deposited.

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

Figure 0005681766
Figure 0005681766

比較例及び実験例の素子特性を下記表2に示し、電流密度、電流効率及び電力効率を表すグラフを図4Aないし図4Cに示す。   The device characteristics of the comparative example and the experimental example are shown in Table 2 below, and graphs showing current density, current efficiency, and power efficiency are shown in FIGS. 4A to 4C.

Figure 0005681766
Figure 0005681766

表2及び図4Aないし図4Cに示すように、本発明の燐光物質は、電流効率、電力効率、輝度などに優れた特性を有する。従って、本発明の燐光物質を発光物質層に用いた有機発光ダイオード素子は発光効率が向上し、高輝度の映像を具現化しながらも消費電力を低減することができる。   As shown in Table 2 and FIGS. 4A to 4C, the phosphor of the present invention has excellent characteristics such as current efficiency, power efficiency, and luminance. Therefore, the organic light emitting diode device using the phosphor of the present invention in the light emitting material layer has improved light emission efficiency and can reduce power consumption while realizing a high brightness image.

前記燐光化合物を用いた有機発光ダイオード素子に関する一実施例を図5に示す。   An example of an organic light emitting diode element using the phosphorescent compound is shown in FIG.

図面に示すように、有機発光ダイオード素子は、互いに向かい合う第1及び第2基板(不図示)と、前記第1基板(不図示)と前記第2基板(不図示)の間に形成される有機発光ダイオードEとを含む。   As shown in the drawing, the organic light emitting diode element is formed of a first and second substrate (not shown) facing each other, an organic formed between the first substrate (not shown) and the second substrate (not shown). Light emitting diode E.

前記有機発光ダイオードEは、陽極の役割をする第1電極110と、陰極の役割をする第2電極130と、前記第1電極110と前記第2電極130の間に形成される有機発光層120とからなる。   The organic light emitting diode E includes a first electrode 110 serving as an anode, a second electrode 130 serving as a cathode, and an organic light emitting layer 120 formed between the first electrode 110 and the second electrode 130. It consists of.

前記第1電極110は、仕事関数が比較的に高い物質、例えば、インジウム‐チン‐オキサイド(酸化インジウムスズ:ITO)からなり、前記第2電極130は、仕事関数が比較的に低い物質、例えば、アルミニウム(Al)またはアルミニウム合金(AlNd)からなる。また、前記有機発光層120は、赤色、緑色、青色の有機発光パターンからなる。   The first electrode 110 is made of a material having a relatively high work function, for example, indium-tin-oxide (indium tin oxide: ITO), and the second electrode 130 is made of a material having a relatively low work function, for example, And aluminum (Al) or aluminum alloy (AlNd). In addition, the organic light emitting layer 120 includes red, green, and blue organic light emitting patterns.

前記有機発光層120は、発光効率の極大化のため、多層構造、即ち、第1電極110から順次に正孔注入層(hole injection layer:HTL)121と、正孔輸送層(hole transport layer:HIL)122と、電子阻止層(electron blocking layer)123と、発光物質層(light emitting material layer:EML)124と、電子輸送層(electron transport layer)125と、電子注入層(electron injection layer)126とからなる。   The organic light emitting layer 120 has a multilayer structure, that is, a hole injection layer (HTL) 121 and a hole transport layer (hole transport layer) sequentially from the first electrode 110 in order to maximize luminous efficiency. HIL) 122, an electron blocking layer 123, a light emitting material layer (EML) 124, an electron transport layer 125, and an electron injection layer 126. It consists of.

前記発光物質層124は、前記化学式(2)で表される本発明の燐光物質を含んでなる。   The light emitting material layer 124 includes the phosphor of the present invention represented by the chemical formula (2).

例えば、前記発光物質層124が本発明の燐光物質をホスト物質として用いる場合、ドーパントが添加されることができ、青色を発光する。前記燐光物質はドーパントより高い三重項エネルギーを有するため、ホスト物質からドーパントへのエネルギー逆遷移の発生を防止することができる。また、広いエネルギーバンドギャップを有するため、発光効率を向上させることができる。   For example, when the phosphor layer 124 uses the phosphor of the present invention as a host material, a dopant can be added to emit blue light. Since the phosphor has higher triplet energy than the dopant, the reverse energy transition from the host material to the dopant can be prevented. Moreover, since it has a wide energy band gap, the light emission efficiency can be improved.

なお、上記においては、本発明の好ましい実施例を参照して説明したが、後述する特許請求の範囲に記載された本発明の精神と領域を逸脱しない範囲内で、本発明を種々に修正及び変更できることは、当該技術分野の当業者にとって自明である。  Although the above has been described with reference to the preferred embodiments of the present invention, various modifications and alterations may be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be apparent to those skilled in the art that changes can be made.

110…第1電極、120…有機発光層、121…正孔注入層、122…正孔輸送層、123…電子阻止層、124…発光物質層、125…電子輸送層、126…電子注入層、130…第2電極  DESCRIPTION OF SYMBOLS 110 ... 1st electrode, 120 ... Organic light emitting layer, 121 ... Hole injection layer, 122 ... Hole transport layer, 123 ... Electron blocking layer, 124 ... Light emitting substance layer, 125 ... Electron transport layer, 126 ... Electron injection layer, 130 ... Second electrode

Claims (3)

下記化学式で表され、X及びYのそれぞれは、独立して芳香族化合物(aromatic compound)および複素環式化合物(heterocyclic compound)からなる群から選択され
前記Xは、置換カルバゾールまたは非置換カルバゾールであり、前記Yは、置換カルボリンまたは非置換カルボリンであることを特徴とする燐光化合物。
Figure 0005681766
Each of X and Y is independently selected from the group consisting of an aromatic compound and a heterocyclic compound ;
The phosphorescent compound , wherein X is substituted carbazole or unsubstituted carbazole, and Y is substituted carboline or unsubstituted carboline .
Figure 0005681766
第1電極と;
前記第1電極と向かい合う第2電極と;
前記第1電極と前記第2電極の間に位置する発光物質層とを含み、
前記発光物質層は、下記化学式で表され、X及びYのそれぞれは、独立して芳香族化合物(aromatic compound)および複素環式化合物(heterocyclic compound)からなる群から選択される燐光化合物を含んでな
前記Xは、置換カルバゾールまたは非置換カルバゾールであり、前記Yは、置換カルボリンまたは非置換カルボリンであることを特徴とする有機発光ダイオード素子。
Figure 0005681766
A first electrode;
A second electrode facing the first electrode;
A luminescent material layer positioned between the first electrode and the second electrode;
The light emitting material layer is represented by the following chemical formula, and each of X and Y includes a phosphorescent compound selected from the group consisting of an aromatic compound and a heterocyclic compound. Do Ri,
Said X is substituted carbazole or unsubstituted carbazole, and said Y is substituted carboline or unsubstituted carboline, The organic light emitting diode element characterized by the above-mentioned .
Figure 0005681766
前記第1電極と前記発光物質層の間に位置する正孔注入層と、前記発光物質層と前記正孔注入層の間に位置する正孔輸送層と、前記第2電極と前記発光物質層の間に位置する電子注入層と、前記発光物質層と前記電子注入層の間に位置する電子輸送層とを含むことを特徴とする請求項に記載の有機発光ダイオード素子。 A hole injection layer positioned between the first electrode and the luminescent material layer; a hole transport layer positioned between the luminescent material layer and the hole injection layer; and the second electrode and the luminescent material layer. The organic light emitting diode device according to claim 2 , further comprising: an electron injection layer positioned between the light emitting material layer and an electron transport layer positioned between the light emitting material layer and the electron injection layer.
JP2013154611A 2012-07-31 2013-07-25 Phosphorescent compound and organic light-emitting diode device using the same Active JP5681766B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0083762 2012-07-31
KR1020120083762A KR102038815B1 (en) 2012-07-31 2012-07-31 Host compound for phosphorescent dopant and organic light emitting diode device using the same

Publications (2)

Publication Number Publication Date
JP2014031371A JP2014031371A (en) 2014-02-20
JP5681766B2 true JP5681766B2 (en) 2015-03-11

Family

ID=50024587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154611A Active JP5681766B2 (en) 2012-07-31 2013-07-25 Phosphorescent compound and organic light-emitting diode device using the same

Country Status (4)

Country Link
US (1) US9123898B2 (en)
JP (1) JP5681766B2 (en)
KR (1) KR102038815B1 (en)
CN (1) CN103570712B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633100B (en) * 2013-07-19 2018-08-21 半導體能源研究所股份有限公司 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, lighting device, and electronic device
CN104151296A (en) * 2014-06-27 2014-11-19 南京工业大学 Synthetic method for pyridine derivatives and application of derivatives
CN104059090B (en) * 2014-06-27 2016-07-06 南京工业大学 The synthetic method of one class pyridine and carboline derivative and application thereof
CN111293226B (en) 2014-09-30 2022-10-28 株式会社半导体能源研究所 Light-emitting element, display device, electronic device, and lighting device
KR20220097067A (en) * 2020-12-31 2022-07-07 엘지디스플레이 주식회사 Organic Light Emitting Device and Display Device Using the Same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2736791A1 (en) * 1977-08-16 1979-03-01 Degussa METHOD FOR MANUFACTURING SUBSTITUTED PYRIDINS
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
JP5017858B2 (en) * 2005-12-27 2012-09-05 コニカミノルタホールディングス株式会社 Organic electroluminescence device
KR100846596B1 (en) * 2007-01-18 2008-07-16 삼성에스디아이 주식회사 Heterocycle containing organometallic complex and an organic light emitting device comprising the same
JP4936059B2 (en) 2007-07-09 2012-05-23 株式会社デンソー Mobile object approach recognition device
JP5493333B2 (en) 2008-11-05 2014-05-14 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
KR101174088B1 (en) 2009-06-25 2012-08-14 제일모직주식회사 Compounds?for organic photoelectric?device and organic photoelectric?device containing the same
JP4474493B1 (en) * 2009-07-31 2010-06-02 富士フイルム株式会社 Organic electroluminescence device
JP5457907B2 (en) 2009-08-31 2014-04-02 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5779318B2 (en) 2009-08-31 2015-09-16 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
WO2012077520A1 (en) 2010-12-09 2012-06-14 新日鐵化学株式会社 Organic electroluminescent element
KR101788793B1 (en) * 2010-12-24 2017-10-20 에스에프씨 주식회사 Pyridine derivative compound and organic electroluminescent devices comprising the same
CN102382105B (en) 2011-09-21 2013-06-12 东莞彩显有机发光科技有限公司 Bipolar host material used for blue emitting phosphor

Also Published As

Publication number Publication date
US20140034922A1 (en) 2014-02-06
CN103570712A (en) 2014-02-12
US9123898B2 (en) 2015-09-01
CN103570712B (en) 2016-03-09
KR20140017204A (en) 2014-02-11
KR102038815B1 (en) 2019-10-31
JP2014031371A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
KR101996649B1 (en) Pyrene derivative compounds and organic light-emitting diode including the same
KR101216004B1 (en) Anthracene derivatives and organic light-emitting diode including the same
JP7238120B2 (en) Novel boron compound and organic light-emitting device containing the same
TWI415921B (en) Blue fluorescent compound and organic electroluminescent device using the same
KR102268119B1 (en) Pyrene compound and organic light emitting diode device comprising the same
KR102017506B1 (en) Phenanthridine Derivatives and organic light-emitting diode including the same
JP2005197262A (en) Organic electroluminescent element
KR101865606B1 (en) Condensed aryl compounds and organic light-diode including the same
JP7181397B2 (en) Novel boron compound and organic light-emitting device containing the same
WO2013122082A1 (en) Light-emitting element material, and light-emitting element
JP5681766B2 (en) Phosphorescent compound and organic light-emitting diode device using the same
TW201811753A (en) Organic light emitting devices
KR20130121516A (en) Using new alylamine as hole transporting mateial and organic electroluminescent device using the same
KR20160059733A (en) An organoelectro luminescent compounds and organoelectro luminescent device using the same
KR102237159B1 (en) Organic Compound and Organic Light Emitting Diode Devices using the same
KR20110056728A (en) A novel compound and organic electro luminescence device comprising the same
KR20140145452A (en) Blue Phosphorescent Compound and Organic Light Emitting Diode Devices Using The Same
KR102004385B1 (en) New compounds and organic light-emitting diode including the same
US9431617B2 (en) Phosphorescent compound and organic light emitting diode device using the same
US9911922B2 (en) Organic compound for electroluminescence device
US8941099B2 (en) Organic light emitting device and materials for use in same
JP2020123477A (en) Light-emitting element, display device and illumination apparatus
KR101922050B1 (en) Phosphorescent compound and Organic electroluminescent display device using the same
KR20140079078A (en) Phosphorescent compound and Organic light emitting diode device using the same
KR101779914B1 (en) Naphthalene derivatives and organic light-emitting diode including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250