JP5679836B2 - Recovery method of iron and manganese oxide from steelmaking slag - Google Patents
Recovery method of iron and manganese oxide from steelmaking slag Download PDFInfo
- Publication number
- JP5679836B2 JP5679836B2 JP2011011875A JP2011011875A JP5679836B2 JP 5679836 B2 JP5679836 B2 JP 5679836B2 JP 2011011875 A JP2011011875 A JP 2011011875A JP 2011011875 A JP2011011875 A JP 2011011875A JP 5679836 B2 JP5679836 B2 JP 5679836B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- treatment
- steelmaking slag
- phase
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002893 slag Substances 0.000 title claims description 187
- 238000009628 steelmaking Methods 0.000 title claims description 91
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 81
- 238000000034 method Methods 0.000 title claims description 80
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 title claims description 20
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims description 17
- 238000011084 recovery Methods 0.000 title description 14
- 238000001816 cooling Methods 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 47
- 229910052742 iron Inorganic materials 0.000 claims description 43
- 238000010298 pulverizing process Methods 0.000 claims description 40
- 239000011572 manganese Substances 0.000 claims description 28
- 229910052748 manganese Inorganic materials 0.000 claims description 26
- 239000011362 coarse particle Substances 0.000 claims description 25
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 23
- 239000010419 fine particle Substances 0.000 claims description 18
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- 229910052500 inorganic mineral Inorganic materials 0.000 description 20
- 239000011707 mineral Substances 0.000 description 20
- WQHONKDTTOGZPR-UHFFFAOYSA-N [O-2].[O-2].[Mn+2].[Fe+2] Chemical compound [O-2].[O-2].[Mn+2].[Fe+2] WQHONKDTTOGZPR-UHFFFAOYSA-N 0.000 description 15
- 238000005261 decarburization Methods 0.000 description 14
- 238000007885 magnetic separation Methods 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 12
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002407 reforming Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Combined Means For Separation Of Solids (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Furnace Details (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、製鋼スラグから、鉄、マンガン酸化物などの有価金属を回収する回収方法に関する。 The present invention relates to a recovery method for recovering valuable metals such as iron and manganese oxide from steelmaking slag.
溶銑の脱りん処理を行ったり、脱りん処理後の溶銑に対して脱炭処理を行ったときには、副産物として製鋼スラグが生成される。このように脱りん処理や脱炭処理によって生成された製鋼スラグから有価金属等を回収して、回収した有価金属を再利用しようという様々な技術が開発されている(例えば、特許文献1〜4)。
特許文献1では、脱燐用の副原料として、主または石灰と蛍石を用いる転炉吹錬、又は溶銑脱燐処理において生成した滓の組成がCaF2≧2.5%及び2.17×(%P2O5)≧0.76×(SiO2)となるように処理条件を調整して造滓を行い、得られた滓に浮遊選鉱法を施して滓中に析出したP2O5濃度の高い相を分離している。
Steelmaking slag is produced as a by-product when hot metal dephosphorization is performed or when decarburization is performed on the hot metal after dephosphorization. Various techniques for recovering valuable metals and the like from steelmaking slag generated by dephosphorization or decarburization and reusing the recovered valuable metals have been developed (for example, Patent Documents 1 to 4). ).
In Patent Document 1, as an auxiliary material for dephosphorization, primary or lime and converter blowing using fluorite, or hot metal composition of slag generated in the dephosphorization is CaF 2 ≧ 2.5% and 2.17 × (% P 2 O 5 ) ≧ 0.76 × (SiO 2 ) The processing conditions were adjusted to form a slag, and the obtained soot was subjected to a flotation method to precipitate P 2 O precipitated in the soot. 5 Separate phases with high concentration.
特許文献2では、溶銑を脱燐してCaOとP2O5の濃度比がCaO/P2O5≦5のスラグを得る第1工程と、前記スラグが凝固を開始する温度から前記スラグ全体が凝固する温度までの範囲を平均冷却速度が5℃/min以下で冷却して凝固させ、凝固後の前記スラグ中に3CaO・P2O5相および/または4CaO・P2O5相を晶出させる第2工程と、前記第2工程後のスラグを粉砕した後に、3CaO・P2O5相および/または4CaO・P2O5相を主成分とするスラグとFeOを主成分とするスラグとに分離し、3CaO・P2O5相および/または4CaO・P2O5相を主成分とするスラグを回収する第3工程とを含むことを特徴としている。 In Patent Document 2, a first step of concentration ratio of CaO and P 2 O 5 to obtain a slag CaO / P 2 O 5 ≦ 5 and dephosphorization of hot metal, the entire slag from the temperature at which the slag starts to solidify There is coagulated with a range up to a temperature that solidifies cooled at an average cooling rate of 5 ° C. / min or less, crystal and 3CaO · P 2 O 5 phase and / or 4CaO · P 2 O 5 phase in said slag after solidification a second step of issued after grinding the slag after the second step, slag composed mainly of slag and FeO mainly composed of 3CaO · P 2 O 5 phase and / or 4CaO · P 2 O 5 phase And a third step of recovering slag mainly composed of 3CaO · P 2 O 5 phase and / or 4CaO · P 2 O 5 phase.
特許文献3では、製鋼スラグのリサイクル処理工程において、少なくともりんが含まれる結晶相を、スラグ内で成長させる結晶相成長処理工程と、前期結晶相成長処理工程にて結晶相成長処理されたスラグを磁力を用いて前期結晶相を主に含むスラグとその他のスラグとに分離する磁力分離処理工程とを含むことを特徴としている。
特許文献4では、溶融状態の転炉スラグにSiO2含有物質の添加によりCaO/SiO2(モル比)=1.5〜2.5にする塩基度調整処理と溶融状態での酸化処理、あるいは核塩基度調整処理とその後のスラグ凝固過程または凝固後の酸化処理とを施して得られたMg-Mnフェライト相とカルシウムシリケート相またはこれらの相とMg−Mnウスタイト相を主構成分とする改質転炉スラグを湿式の磁選処理に付し、得られたスラリー状尾鉱に、高炉スラグ、粘土または石灰石などの調整剤を加え、湿式キルンにて焼成することを特徴としている。
In Patent Document 3, in a steelmaking slag recycling process, a crystal phase growth process in which a crystal phase containing at least phosphorus is grown in the slag, and a slag that has been crystal phase grown in the previous crystal phase growth process are used. And a magnetic separation process for separating the slag mainly containing the crystalline phase and other slag by using magnetic force.
In Patent Document 4, the basicity adjustment treatment and CaO / SiO 2 (molar ratio) = 1.5 to 2.5 by adding a SiO 2 -containing material to the molten converter slag and the oxidation treatment in the molten state, or The main component of the Mg-Mn ferrite phase and the calcium silicate phase or these phases and the Mg-Mn wustite phase obtained by the nuclear basicity adjustment treatment and the subsequent slag solidification process or oxidation treatment after solidification. It is characterized in that the quality converter slag is subjected to a wet magnetic separation process, a regulator such as blast furnace slag, clay or limestone is added to the obtained slurry tailings and fired in a wet kiln.
上記した特許文献1では、製鋼する際にスラグの成分を調整した後、浮遊選鉱法を行うことによってP2O5濃度の高い相を分離していることとしているが、この特許文献1の技術では、P2O5濃度の高い相の形成に影響を与える塩基度が明確に示されておらず、これらの技術を用いても、P2O5濃度の高い相を分離することは難しいのが実情である。
一方、特許文献2〜4では、製鋼で生成した製鋼スラグを粉砕したり磁選することによって、金属を含むものと金属を含まないものとに分離し、分離後に製鋼スラグから有価金属を回収している。しかしながら、これら特許文献2〜4では、製鋼スラグの粉砕/分級条件や磁選条件(磁場強度、磁場勾配など)が詳細に開示されておらず、これらの技術を用いても、十分に有価金属を回収することができないのが実情である。
In Patent Document 1 described above, a phase having a high P 2 O 5 concentration is separated by performing a flotation method after adjusting the components of slag during steelmaking. However, the basicity that affects the formation of a phase with a high P 2 O 5 concentration is not clearly shown, and it is difficult to separate a phase with a high P 2 O 5 concentration using these techniques. Is the actual situation.
On the other hand, in Patent Documents 2 to 4, the steelmaking slag produced by steelmaking is pulverized or magnetically separated to be separated into those containing metal and those not containing metal, and after separation, valuable metals are recovered from the steelmaking slag. Yes. However, these Patent Documents 2 to 4 do not disclose the details of pulverization / classification conditions or magnetic separation conditions (magnetic field strength, magnetic field gradient, etc.) of steelmaking slag, and even if these techniques are used, sufficient valuable metals can be obtained. The fact is that it cannot be recovered.
そこで、本発明は、上記問題点に鑑み、製鋼スラグから回収する鉄−マンガン酸化物の回収率を向上することができる製鋼スラグからの鉄、マンガン酸化物の回収方法を提供することを目的とする。 Then, in view of the said problem, this invention aims at providing the collection | recovery method of the iron and manganese oxide from the steelmaking slag which can improve the recovery rate of the iron-manganese oxide collect | recovered from steelmaking slag. To do.
前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、CaO−SiO2−P2O5相及び(Fe,Mn)OX相を含む製鋼スラグに対して地金を除去する地金除去処理を行ってから鉄、マンガン酸化物を回収する方法であって、処理後に塩基度が1.5〜2.5となっている製鋼スラグ、又は処理後に塩基度が1.5〜2.5になるように調整した製鋼スラグに対して、1200℃までの平均冷却速度が20℃/min以下となるように当該
製鋼スラグを冷却する冷却処理を行っておき、前記地金除去処理及び冷却処理を行った製鋼スラグに対して、粉砕後の代表粒径が50μm以下となるように粉砕処理を行い、粉砕処理後のスラグを粗粒と微粒とに分級する分級処理の際に、前記粗粒の代表粒径と微粒の代表粒径との比が2.5倍以上となるよう処理し、分級処理後に粗粒を回収するものであって、前記代表粒径は、粉砕処理後のスラグを粒子径が小さいものから大きいものへ順番に並べ、並べた後のスラグの体積を小さい方から積算してゆき、積算した体積がスラグ全体の体積の50%となった時点でのスラグの粒子径である点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention is a metal removal process for removing metal from a steelmaking slag containing a CaO—SiO 2 —P 2 O 5 phase and a (Fe, Mn) O X phase. Steel and slag with a basicity of 1.5 to 2.5 after the treatment, or a basicity of 1.5 to 2.5 after the treatment The steelmaking slag thus adjusted is subjected to a cooling process for cooling the steelmaking slag so that the average cooling rate up to 1200 ° C is 20 ° C / min or less, and the bullion removing process and the cooling process are performed. The steelmaking slag was subjected to a pulverization treatment so that the representative particle size after pulverization is 50 μm or less, and the slag after the pulverization treatment was classified into coarse particles and fine particles. The ratio of the representative particle size to the representative particle size is 2.5 times Treated so that the upper been made to collect the coarse after classification treatment, the representative particle diameter is ordered slag after crushing process to larger from those of its small particle size, slag after arranging Is the particle diameter of the slag at the time when the accumulated volume becomes 50% of the total volume of the slag .
前記分級処理後に得られた粗粒に対して、再び、粉砕処理及び分級処理を行うことが好ましい。 The obtained coarse after prior Symbol classification treatment, again, it is preferable to carry out the pulverization treatment and classification treatment.
本発明によれば、製鋼スラグから鉄−マンガン酸化物を回収するに際し、その回収率を確実に向上することができる。 According to the present invention, when recovering iron-manganese oxide from steelmaking slag, the recovery rate can be reliably improved.
以下、本発明の実施の形態を、図面に基づき説明する。
製鋼工程では、高炉から出銑した溶銑に対して脱珪処理や脱硫処理を行った後、脱りん処理及び脱炭処理を行うのが一般的である。これらの脱珪処理、脱硫処理、脱りん処理、脱炭処理ではスラグが生成されるが、このような製鋼工程(製鋼精錬プロセス)にて発生した製鋼スラグ(脱珪処理、脱硫処理、脱りん処理、脱炭処理の少なくとも1つを含むスラグ)を本発明では処理することとしている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the steel making process, dephosphorization treatment and decarburization treatment are generally performed after desiliconization treatment and desulfurization treatment are performed on the molten iron discharged from the blast furnace. These desiliconization treatment, desulfurization treatment, dephosphorization treatment and decarburization treatment produce slag. In the present invention, slag including at least one of treatment and decarburization treatment is treated.
製鋼工程の中でも、脱りん処理及び脱炭処理では、大量の気体及び固体酸素により、溶銑中のりん及び炭素を除去する。そのため、脱りん処理や脱炭処理で生成したスラグには、鉄の酸化物やマンガンの酸化物(マンガン酸化物)が含まれていて、製鋼原料として再利用可能な鉄やマンガンなどの有価金属が存在することとなる。
即ち、脱りん処理や脱炭処理後に生成された製鋼スラグを冷却してSEM(Scanning Electron Microscope)にて観察すると、主に、CaO−SiO2−P2O5系の鉱物相、CaO−FeOX系の鉱物相、CaO−SiO2−FeOX系の鉱物相、(Fe,Mn)OX相の鉱物相が存在する。
Among the steelmaking processes, phosphorus and carbon in hot metal are removed by a large amount of gas and solid oxygen in dephosphorization and decarburization. Therefore, slag produced by dephosphorization and decarburization contains iron oxides and manganese oxides (manganese oxides), and valuable metals such as iron and manganese that can be reused as steelmaking raw materials. Will exist.
That is, when steelmaking slag produced after dephosphorization or decarburization is cooled and observed with a scanning electron microscope (SEM), the CaO—SiO 2 —P 2 O 5 mineral phase, CaO—FeO, is mainly used. There are an X- based mineral phase, a CaO—SiO 2 —FeO X- based mineral phase, and a (Fe, Mn) O X -phase mineral phase.
本発明では、有価金属をリサイクルすべく、鉄−マンガン酸化物(Fe,Mn)OX相を製鋼スラグから回収することとしている。
以下、回収方法を具体的に説明する。
上述したように、製鋼スラグ内には、回収目的としている鉄−マンガン酸化物の他、酸化によって発生したりん酸化物(CaO−SiO2−P2O5系の鉱物相)も含まれている。このりん酸化物は、再利用をし難いことから出来る限り、鉄−マンガン酸化物を含む回収物にりん酸化物が混在しないことが好ましい。
In the present invention, in order to recycle the valuable metals, iron - manganese oxide (Fe, Mn) is set to be recovered O X phase from steelmaking slag.
Hereinafter, the collection method will be specifically described.
As described above, in the steelmaking slag, in addition to the iron-manganese oxide that is the object of recovery, phosphorus oxide (CaO—SiO 2 —P 2 O 5 mineral phase) generated by oxidation is also included. . Since this phosphorous oxide is difficult to reuse, it is preferable that the phosphorous oxide is not mixed in the recovered material containing iron-manganese oxide as much as possible.
鉄−マンガン酸化物とりん酸化物とを分ける方法として、特開昭54−88894号公報に示されているものがある。この技術では、鉄−マンガン酸化物とりん酸化物とは磁気的性質が異なるため、磁選処理により分離する方法をとっている。
しかしながら、この技術で効率よく鉄−マンガン酸化物を回収するためには、磁着し易いようにFe2+をFe3+に酸化処理する必要がある。さらに、磁選時の粒子同士の凝集を防ぐために、湿式処理を実施する必要がある。
As a method for separating the iron-manganese oxide and the phosphorous oxide, there is one disclosed in JP-A-54-88894. In this technique, since iron-manganese oxide and phosphorous oxide have different magnetic properties, a separation method using magnetic separation is employed.
However, in order to efficiently recover iron-manganese oxide with this technique, it is necessary to oxidize Fe 2+ to Fe 3+ so as to facilitate magnetic adhesion. Furthermore, in order to prevent aggregation of particles during magnetic separation, it is necessary to perform a wet process.
つまり、特開昭54−88894号公報には、鉄−マンガン酸化物とりん酸化物とを分ける方法が開示されているものの、酸化処理や湿式処理を行う必要があり、装置が大掛かりとなるばかりか、分離処理した後に分離物の乾燥処理や高pH排水の処理等を行わなければなず工程が複雑となる。
そのため、本発明では、出来るだけ酸化処理や湿式処理を行わずに乾式処理にて鉄−マンガン酸化物とりん酸化物とを分離することとしている。具体的には、鉄−マンガン酸化物とりん酸化物との機械的性質の違い(破砕しやすい/破砕し難い)に着目し、斯かる機械的性質を利用することによって鉄−マンガン酸化物とりん酸化物とを分離している。
That is, Japanese Patent Application Laid-Open No. 54-88894 discloses a method for separating iron-manganese oxide and phosphorous oxide, but it is necessary to perform oxidation treatment or wet treatment, which only requires a large apparatus. In addition, after the separation treatment, the drying process of the separated product, the treatment of high pH waste water, and the like must be performed, and the process becomes complicated.
For this reason, in the present invention, iron-manganese oxide and phosphorous oxide are separated by dry treatment without performing oxidation treatment or wet treatment as much as possible. Specifically, paying attention to the difference in mechanical properties between iron-manganese oxide and phosphorous oxide (easy to crush / hard to crush), by utilizing such mechanical properties, Separated from phosphorous oxide.
以下、鉄−マンガン酸化物とりん酸化物とを分離について詳しく説明する。
本発明では、鉄−マンガン酸化物とりん酸化物とを分離するにあたっては、まず、製鋼スラグから地金を除去する磁選処理、すなわち、製鋼スラグを粉砕して、粉砕後のスラグに磁石等を近づけて当該磁石に地金を付着させることによりスラグと地金とを分離する地金除去処理を行う。
Hereinafter, separation of iron-manganese oxide and phosphorous oxide will be described in detail.
In the present invention, when separating the iron-manganese oxide and the phosphorous oxide, first, a magnetic separation process for removing the metal from the steelmaking slag, that is, the steelmaking slag is pulverized, and a magnet or the like is applied to the slag after pulverization. A bullion removal process is performed to separate the slag and the bullion by bringing the bullion close to the magnet.
次に、地金除去された製鋼スラグを粉砕する粉砕処理を行い、その後、粉砕処理後のスラグを分級する分級処理を行う。
ここで、製鋼スラグを粉砕したとき、粉砕する製鋼スラグ(粉砕対象となる製鋼スラグ)が鉄−マンガン酸化物[(Fe,Mn)OX相]とりん酸化物[CaO−SiO2−P2O5系の鉱物相]とに分かれやすい状態であることが好ましい。
Next, the pulverization process which grind | pulverizes the steelmaking slag from which bullion was removed is performed, and the classification process which classifies the slag after a pulverization process is performed after that.
Here, when the crushed steel slags, iron (steel slag to be crushed object) steelmaking slag grinding - manganese oxide [(Fe, Mn) O X phase] and phosphorus oxide [CaO-SiO 2 -P 2 It is preferably in a state where it can be easily separated into [O 5 -based mineral phase].
製鋼スラグを粉砕する前には、必ず製鋼スラグを冷却することから、本発明では、冷却したときの製鋼スラグを特性(冷却特性)を積極的に利用して、(Fe,Mn)OX相CaO−SiO2−P2O5系の鉱物相]との2相に分かれやすい状態にしている。
具体的には、塩基度が1.5〜2.5となっている製鋼スラグを冷却することとしている。詳しくは、脱りん処理や脱炭処理などの処理後(精錬後)において冷却対象となる製鋼スラグの塩基度が1.5〜2.5となっている場合は、処理後に排滓された製鋼スラグをそのまま冷却する。
Since the steelmaking slag is always cooled before pulverizing the steelmaking slag, the present invention actively utilizes the characteristics (cooling characteristics) of the steelmaking slag when it is cooled, and the (Fe, Mn) O X phase. The CaO—SiO 2 —P 2 O 5 mineral phase] is easily separated into two phases.
Specifically, the steelmaking slag having a basicity of 1.5 to 2.5 is cooled. Specifically, when the basicity of the steelmaking slag to be cooled after treatment (after refining) such as dephosphorization treatment or decarburization treatment is 1.5 to 2.5, steelmaking that has been rejected after treatment Cool the slag as it is.
一方、処理後において冷却対象とする製鋼スラグの塩基度が1.5〜2.5の範囲から外れている場合は、まずは冷却前の製鋼スラグの改質を行う。例えば、塩基度が3.0以上となっている製鋼スラグに対しては、珪石などのSiO2源を添加(供給)して冷却前の製鋼スラグの塩基度を下げ、塩基度が1.5未満の製鋼スラグに対しては、石灰石などのCaO源を添加(供給)して冷却前の製鋼スラグの塩基度を上げる。 On the other hand, when the basicity of the steelmaking slag to be cooled after the treatment is out of the range of 1.5 to 2.5, first, the steelmaking slag before cooling is reformed. For example, for a steelmaking slag having a basicity of 3.0 or more, an SiO 2 source such as silica is added (supplied) to lower the basicity of the steelmaking slag before cooling, and the basicity is 1.5. For less steelmaking slag, the basicity of the steelmaking slag before cooling is increased by adding (supplying) a CaO source such as limestone.
なお、冷却前の製鋼スラグの改質において、SiO2源やCaO源の種類や調整方法については特に限定されず、例えば、塩基度が3.0以上の製鋼スラグと塩基度が1.5未満の製鋼スラグとを混合して、冷却前の製鋼スラグの塩基度を1.5〜2.5の範囲にしてもよい。
上記の如く、塩基度が1.5〜2.5となる製鋼スラグを冷却すると、鉄−マンガン酸化物[(Fe,Mn)OX相]とりん酸化物[CaO−SiO2−P2O5系の鉱物相]との2相に分かれやすいという性質がある。また、塩基度が1.5〜2.5となる製鋼スラグ(スラグ)を粉砕すると、鉄−マンガン酸化物は硬度が高く破砕しづらいため粒径の粗い粒子(粗粒と呼ぶ)となりやすく、その一方で、りん酸化物は硬度が低く破砕し易く粒径の細かい粒子(微粒と呼ぶ)となりやすい。
In addition, in the modification of steelmaking slag before cooling, there are no particular limitations on the types and adjustment methods of the SiO 2 source and the CaO source. The basicity of the steelmaking slag before cooling may be in the range of 1.5 to 2.5.
As described above, when cooling the steel slag basicity is 1.5 to 2.5, iron - manganese oxide [(Fe, Mn) O X phase] and phosphorus oxide [CaO-SiO 2 -P 2 O It has the property of being easily separated into two phases with [ 5 mineral phases]. In addition, when steelmaking slag (slag) having a basicity of 1.5 to 2.5 is pulverized, iron-manganese oxide has high hardness and is difficult to be crushed, so it tends to be coarse particles (called coarse particles). On the other hand, phosphorous oxide has a low hardness and is easily crushed and tends to be fine particles (called fine particles).
一方、冷却前の製鋼スラグの塩基度が2.5を超えてしまうと、当該製鋼スラグを冷却したときに、(Fe,Mn)OX相及びCaO−SiO2−P2O5系の鉱物相の他に、CaO−FeOX系の鉱物相が形成されてしまい、このCaO−FeOX系の鉱物相は、CaO−SiO2−P2O5系の鉱物相と同様に微粒側に偏り、最終的に、(Fe,Mn)OX相の回収率が低下してしまう。また、冷却前の製鋼スラグの塩基度が1.5未満であると、当該製鋼スラグを冷却したときに、(Fe,Mn)OX相及びCaO−SiO2−P2O5系の鉱物相の他に、CaO−SiO2−FeOX系の鉱物相が形成されてしまい、このCaO−SiO2−FeOX系の鉱物相は、CaO−SiO2−P2O5系の鉱物相と同様に微粒側に偏り、最終的に、(Fe,Mn)OX相の回収率が低下してしまう。 On the other hand, if the basicity of the steelmaking slag before cooling exceeds 2.5, when the steelmaking slag is cooled, the (Fe, Mn) O x phase and the CaO—SiO 2 —P 2 O 5 mineral In addition to the phase, a CaO—FeO x -based mineral phase is formed, and this CaO—FeO x -based mineral phase is biased toward the fine particles side like the CaO—SiO 2 —P 2 O 5 -based mineral phase. Eventually, the recovery rate of the (Fe, Mn) O x phase is lowered. Further, when the basicity of the steelmaking slag before cooling is less than 1.5, when the steelmaking slag is cooled, the (Fe, Mn) O x phase and the CaO—SiO 2 —P 2 O 5 based mineral phase In addition, a CaO—SiO 2 —FeO x mineral phase is formed, and this CaO—SiO 2 —FeO x mineral phase is similar to the CaO—SiO 2 —P 2 O 5 mineral phase. Therefore, the recovery rate of the (Fe, Mn) O x phase is lowered.
それ故、本発明では、製鋼スラグの塩基度が1.5〜2.5となるようにしている。
ところで、製鋼スラグの冷却過程において、(Fe,Mn)OX相の粒径を大きくすることができれば、粉砕したときに(Fe,Mn)OX相が単相になり、有価金属の回収が効果的に行える。
そのため、本発明では、塩基度を1.5〜2.5としてからの製鋼スラグの冷却処理を行うにあたって、1200℃までの平均冷却速度を20℃/min以下とし、(Fe,Mn)OX相を大きくしている。
Therefore, in the present invention, the basicity of the steelmaking slag is set to 1.5 to 2.5.
Incidentally, in the course of cooling steel slag, (Fe, Mn) if it is possible to increase the particle size of the O X phase, (Fe, Mn) when triturated O X phase becomes single phase, the valuable metals recovery It can be done effectively.
Therefore, in the present invention, when the steelmaking slag is cooled after the basicity is 1.5 to 2.5, the average cooling rate up to 1200 ° C. is set to 20 ° C./min or less, and (Fe, Mn) O x The phase is getting bigger.
例えば、処理後(精錬後)に製鋼スラグの塩基度が既に1.5〜2.5の範囲となっている場合は、スラグを精錬炉(脱りん炉や脱炭炉)に残して徐々に冷却し、製鋼スラグの温度が1200℃未満となった時点で製鋼スラグを脱りん炉や脱炭炉から排出する。
また、精錬後に一旦製鋼スラグを排出して当該製鋼スラグの改質を行う場合は、まず、製鋼スラグの排出後に珪石や石灰石を供給して塩基度を1.5〜2.5の範囲内とし、その後の平均冷却速度を20℃/min以下として改質した製鋼スラグを徐々に冷却する。
For example, when the basicity of steelmaking slag is already in the range of 1.5 to 2.5 after treatment (after refining), the slag is gradually left in the refining furnace (dephosphorization furnace or decarburization furnace). The steelmaking slag is discharged from a dephosphorization furnace or a decarburization furnace when the temperature of the steelmaking slag becomes less than 1200 ° C.
In addition, when steelmaking slag is temporarily discharged after refining and the steelmaking slag is reformed, first, after the steelmaking slag is discharged, silica or limestone is supplied so that the basicity is within the range of 1.5 to 2.5. Then, the modified steelmaking slag is gradually cooled at an average cooling rate of 20 ° C./min or less.
平均冷却速度とは、製鋼スラグの改質を行わない場合は、処理後から冷却終了(1200℃になるまで)するまでの平均速度であり、製鋼スラグの改質を行う場合は、改質を終了してから冷却終了(1200℃になるまで)までの平均温度である。スラグの温度の測定方法は、放射温度計によるものでも熱電対によるものでも、他の測定器を用いるものであってもよい。 The average cooling rate is the average rate from the end of cooling to the end of cooling (until 1200 ° C.) when the steelmaking slag is not modified. When the steelmaking slag is modified, the modification is performed. It is the average temperature from the end to the end of cooling (until 1200 ° C.). The slag temperature may be measured by a radiation thermometer, a thermocouple, or another measuring device.
なお、製鋼スラグの改質を行う場合は、改質が終了するまで一旦製鋼スラグを加熱して製鋼スラグの温度を1250℃以上にすることが好ましい。
製鋼スラグを冷却したとき、(Fe,Mn)OX相の晶出は当該製鋼スラグの温度が1200℃までにほぼ終了することから、平均冷却速度を管理する温度を1200℃としている。ここで、製鋼スラグを冷却するに際して、1200℃よりも低い温度域での平均冷却速度を管理することも可能であるが、1200℃よりも低い温度域では(Fe,Mn)OX相を大きくする効果は少なく、冷却時間も大幅に増加するため、1200℃までの温度を管理することが好ましい。
In addition, when reforming steelmaking slag, it is preferable to heat the steelmaking slag once until the reforming is completed, so that the temperature of the steelmaking slag is 1250 ° C. or higher.
When the steelmaking slag is cooled, the crystallization of the (Fe, Mn) O x phase is almost completed by the temperature of the steelmaking slag by 1200 ° C., so the temperature for controlling the average cooling rate is 1200 ° C. Here, when cooling the steelmaking slag, it is possible to manage the average cooling rate in a temperature range lower than 1200 ° C., but in the temperature range lower than 1200 ° C., the (Fe, Mn) O X phase is increased. Therefore, it is preferable to control the temperature up to 1200 ° C. because the cooling time is greatly increased and the cooling time is greatly increased.
平均冷却速度の管理を行うにあたって、平均冷却速度を20℃/minよりも大きくした場合、急激に(Fe,Mn)OX相が小さくなる傾向があることから、この値を採用している。
さて、地金除去処理や冷却処理が終了した製鋼スラグに対しては、当該スラグの粉砕を行う(粉砕処理)と共に、分級処理・有価金属回収処理を行う。
In managing the average cooling rate, this value is adopted because when the average cooling rate is higher than 20 ° C./min, the (Fe, Mn) O x phase tends to decrease rapidly.
Now, with respect to the steelmaking slag after the bullion removal process and the cooling process are completed, the slag is pulverized (pulverization process), and the classification process and the valuable metal recovery process are performed.
具体的には、図1(a)に示すように、地金除去後のスラグにおいて粉砕後の代表粒径が50μm以下となるように粉砕機1を用いて粉砕処理を行うこととしている。
なお、粉砕機1は、スラグをジェットエアーに乗せてスラグ同士を衝突させることにより粉砕するジェットミル方式であってもよく、スラグと共に硬質のボールを容器内に入れて回転させることによってスラグを粉砕するボールミル方式であってもよい。
Specifically, as shown in FIG. 1 (a), the pulverization process is performed using the pulverizer 1 so that the representative particle diameter after pulverization is 50 μm or less in the slag after the removal of the metal.
The pulverizer 1 may be a jet mill type in which slag is put on jet air and pulverized by causing the slag to collide with each other. The slag is pulverized by putting a hard ball in the container and rotating the slag. The ball mill method may be used.
ここで、代表粒径とは、粉砕処理後のスラグを粒子径が小さいものから大きいものへ順番に並べ、並べた後のスラグの体積を小さい方から積算してゆき、積算した体積がスラグ全体の体積の50%となった時点でのスラグの粒子径である。この代表粒径のことを50%体積粒径ということがある。
まとめると、本発明では、50%体積粒径が50μm以下となるように、スラグを粉砕する粉砕機1の能力(粉砕時間など)を設定し、設定した粉砕機1でスラグを粉砕する。尚、50%体積粒径は、マイクロトラック等の粒子分析計で求めることができる。
Here, the representative particle size means that the slag after pulverization is arranged in order from the smallest particle size to the larger one, and the volume of the slag after arrangement is accumulated from the smaller one, and the accumulated volume is the whole slag Is the particle diameter of the slag when it reaches 50% of the volume. This representative particle size is sometimes referred to as 50% volume particle size.
In summary, in the present invention, the ability (pulverization time, etc.) of the pulverizer 1 for pulverizing the slag is set so that the 50% volume particle size is 50 μm or less, and the slag is pulverized by the set pulverizer 1. The 50% volume particle diameter can be obtained with a particle analyzer such as Microtrac.
粉砕処理後のスラグにおいて、50%体積粒径が50μm以下でないと、粉砕が不十分である。この場合、粉砕後のスラグを見ると、粗粒子側に偏り易い(Fe,Mn)OX相と微粒子側に偏り易いCaO−SiO2−P2O5系の鉱物相とに分かれずに、(Fe,Mn)OX相とCaO−SiO2−P2O5系との両方が一つの粒子中に混在したもの(所謂片刃粒子)の割合多くなるため、粉砕後に行われる分級処理により両相を分離することができなくなる。このため、再利用が難しいCaO−SiO2−P2O5系の鉱物相が粗粒側に増え、粗粒を製鉄原料の一部として使用することが難しくなる。 In the slag after the pulverization treatment, the pulverization is insufficient unless the 50% volume particle diameter is 50 μm or less. In this case, without divided into Looking slag after crushing, and the coarse particles side easily biased (Fe, Mn) O X phase and biased microparticles side easily CaO-SiO 2 -P 2 O 5 based mineral phase, Since the ratio of both the (Fe, Mn) O x phase and the CaO—SiO 2 —P 2 O 5 system mixed in one particle (so-called single-edged particles) increases, both of the two are obtained by classification after pulverization. The phases cannot be separated. For this reason, the CaO—SiO 2 —P 2 O 5 -based mineral phase, which is difficult to reuse, increases toward the coarse particles, making it difficult to use the coarse particles as part of the iron-making raw material.
次に、粉砕処理が終了すると、粉砕処理後のスラグに対して、図1(a)に示すように、分級機2によって分級処理を行う。分級機2は、サイクロン式のものであって、エアーによってロータ内でスラグを螺旋状に回転させる一方でロータの下部側に設けた回転羽を回転させることで微粒と粗粒とに分級するものである。なお、分級機2は、この方式に限定されず、微粒と粗粒とに分級するものであればどのようなものであってもよい。 Next, when the pulverization process is completed, the slag after the pulverization process is classified by the classifier 2 as shown in FIG. The classifier 2 is of a cyclone type and classifies into fine particles and coarse particles by rotating the slag spirally in the rotor by air while rotating the rotating blades provided on the lower side of the rotor. It is. In addition, the classifier 2 is not limited to this system, What kind of thing may be used if it classifies into a fine particle and a coarse particle.
この分級処理では、粗粒と微粒との2つに分けた分級後のスラグを見たとき、粗粒の50%体積粒径と微粒の50%体積粒径との比が2.5倍以上となるように処理を行う。
詳しくは、分級処理では、粉砕後のスラグを分級機2に入れてサイクロン式の当該分級機2を可動させることにより、粗粒と微粒との2つに分ける。同時に、粗粒の50%体積粒径と微粒の50%体積粒径との比が2.5倍以上となるように、分級機2の回転羽の回転数を制御することにより、粉砕後のスラグを分級する。
In this classification treatment, when the slag after classification divided into two types of coarse particles and fine particles is seen, the ratio of 50% volume particle size of coarse particles to 50% volume particle size of fine particles is 2.5 times or more. The process is performed as follows.
Specifically, in the classification process, the slag after pulverization is put into the classifier 2 and the cyclone type classifier 2 is moved to divide the slag into two, coarse particles and fine particles. At the same time, by controlling the rotational speed of the rotating blades of the classifier 2 so that the ratio of the 50% volume particle size of coarse particles to the 50% volume particle size of fine particles is 2.5 times or more, Classify slag.
この分級処理において、粗粒側の代表粒径/微粒側の代表粒径の値が2.5未満であると、粗粒側に多量のCaO−SiO2−P2O5系の鉱物相が入ることとなり、粗粒に分けられたスラグを製鉄原料の一部として使用することが難しくなる。
以上の処理により得られた粗粒は、(Fe,Mn)OX系の鉱物相を多く含む粒子(破砕後のスラグ)であり、この粗粒を回収することで、製鋼スラグから回収する鉄−マンガン酸化物の回収率を向上することができるようになる。分級後に回収した(Fe,Mn)OX相のスラグ(鉄、マンガン酸化物濃縮物、回収物)は、脱りん処理や脱炭処理において、インジェクション、ブラスティングで溶湯中に吹き込んだり、塊成化して炉上から上方投入することにより、製鉄原料としてリサイクルすることができる。
In this classification treatment, if the value of the representative particle size on the coarse particle side / representative particle size on the fine particle side is less than 2.5, a large amount of CaO—SiO 2 —P 2 O 5 based mineral phase is present on the coarse particle side. It becomes difficult to use the slag divided into coarse particles as a part of the iron making raw material.
The coarse particles obtained by the above treatment are particles (slag after crushing) containing a large amount of (Fe, Mn) O x -based mineral phase, and the iron recovered from the steelmaking slag by collecting the coarse particles. -The recovery rate of manganese oxide can be improved. Recovered after the classification (Fe, Mn) O X phase of the slag (iron, manganese oxide concentrate, collected material), in the dephosphorization process and decarburization, Dari blown into the molten metal injection, in blasting, agglomerated It can be recycled as an iron-making raw material by turning it upward from the furnace.
なお、図1(b)の如く、ミル方式の粉砕機1と気体分級する分級機2との両方を備えた複合装置3を用いて、分級処理後に得られた粗粒のスラグを再び、粉砕機1に戻して、粉砕処理及び分級処理を繰り返し行う(閉回路分級処理)を行っても良い。ここで、分級処理後に得られたスラグ(微粒のスラグ)は外部に排出し、廃棄処分することとしてもよい。代表粒径は、外部に排出されたスラグと複合装置3に残して回収するスラグによって求めることができる。 As shown in FIG. 1 (b), the coarse slag obtained after the classification treatment is pulverized again using the composite apparatus 3 including both the mill type pulverizer 1 and the gas classifier 2. You may return to the machine 1 and perform a grinding process and a classification process repeatedly (closed circuit classification process). Here, the slag (fine slag) obtained after the classification treatment may be discharged to the outside and discarded. The representative particle size can be obtained from the slag discharged to the outside and the slag collected and left in the composite apparatus 3.
ところで、前述した地金除去処理は、少なくとも粉砕処理を行う前に実施していればよく、製鋼スラグの改質前に行ってもよいし冷却処理後に行ってもよい。
例えば、磁選処理と粉砕処理とを連続して行う場合は、磁選処理の前段階で製鋼スラグを冷却させる際には、(改質処理)→冷却処理→磁選処理→粉砕処理の順で行えばよく、磁選処理後に加熱処理等が入る場合は、磁選処理→加熱処理→(改質処理)→冷却処理→粉砕処理の順で行えばよい。
By the way, the bullion removing process described above may be performed at least before the pulverization process, and may be performed before the steelmaking slag reforming or after the cooling process.
For example, when the magnetic separation process and the pulverization process are performed continuously, when the steelmaking slag is cooled in the previous stage of the magnetic separation process, (reforming process) → cooling process → magnetic separation process → pulverization process When the heat treatment or the like is performed after the magnetic separation process, the magnetic separation process → the heating process → (the modification process) → the cooling process → the pulverization process may be performed.
上記した実施形態の手法により製鋼スラグから有価金属を回収した実施例について、以下述べる。
表1及び2は、本発明の製鋼スラグからの鉄、マンガン酸化物の回収方法に基づいて処理を行った実施例と、本発明とは異なる方法で処理を行った比較例とをまとめたものである。実施例Aは、粉砕処理及び分級処理を1回行った結果であり、実施例Bは、粉砕処理及び分級処理を繰り返し行った、即ち、上述した閉回路分級処理を行った結果である。
An example in which valuable metals are recovered from steelmaking slag by the method of the above-described embodiment will be described below.
Tables 1 and 2 summarize examples in which processing was performed based on a method for recovering iron and manganese oxide from steelmaking slag of the present invention and comparative examples in which processing was performed by a method different from the present invention. It is. Example A is a result of performing the pulverization process and classification process once, and Example B is a result of repeatedly performing the pulverization process and classification process, that is, the above-described closed circuit classification process.
まず、実施例及び比較例の実施条件について説明する。
表中のスラグの種類の欄で改質とは、溶銑を脱炭処理した際に発生した脱炭スラグと、脱珪処理(脱りん処理の前に行った脱珪処理)にて発生した脱珪スラグとを用意し、両者を混合して塩基度が1.5〜2.5となるよう製鋼スラグの改質を行ったものを示している。製鋼スラグの改質にあたっては、当該製鋼スラグの温度を1250〜1400℃の範囲として1時間で改質を行った。
First, implementation conditions of Examples and Comparative Examples will be described.
In the column of slag type in the table, reform refers to decarburization slag generated when hot metal is decarburized and desiliconization (desiliconization performed before dephosphorization). Silica slag is prepared, and both are mixed to modify steelmaking slag so that the basicity is 1.5 to 2.5. In reforming the steelmaking slag, the steelmaking slag was reformed in 1 hour with the temperature of the steelmaking slag in the range of 1250 to 1400 ° C.
スラグの種類の欄で脱りんとは、脱りん処理(脱炭処理前に行った脱りん処理)にて発生した脱りんスラグ(塩基度が1.5〜2.5の範囲になっている脱りんスラグ)を製鋼スラグとしてそのまま用いた。
脱炭スラグ、脱珪スラグ、脱りんスラグの組成は表3の通りである。
In the column of slag type, dephosphorization means dephosphorization slag (basicity in the range of 1.5 to 2.5) generated by dephosphorization (dephosphorization performed before decarburization). Phosphorus slag) was used as it was as steelmaking slag.
Table 3 shows the composition of decarburized slag, desiliconized slag and dephosphorized slag.
地金除去処理(磁選処理)に関し、脱炭スラグ及び脱珪スラグに対しては改質を行う前に、脱りんスラグに対しては排出後に行った。磁選処理では、ローラミルにより各スラグを5mmアンダーに粉砕後に地金分を除去した。
脱炭スラグ及び脱珪スラグの改質は、電気抵抗加熱炉(抵抗炉)の中にMgO坩堝を入れ、この坩堝に脱炭スラグと脱珪スラグとを混合した混合スラグを投入し、1250〜1400℃の範囲で混合スラグを1時間加熱を行った(混合スラグを溶融させた)。
Regarding the bullion removal treatment (magnetic separation treatment), the decarburized slag and the desiliconized slag were subjected to the reforming and the dephosphorized slag after the discharge. In the magnetic separation process, each slag was pulverized to 5 mm under by a roller mill, and then the metal was removed.
The reforming of the decarburized slag and desiliconized slag is performed by putting an MgO crucible in an electric resistance heating furnace (resistance furnace), and adding a mixed slag in which the decarburized slag and desiliconized slag are mixed to 1250 The mixed slag was heated in the range of 1400 ° C. for 1 hour (mixed slag was melted).
冷却処理における平均冷却速度の管理(制御)において、改質した製鋼スラグの場合は、抵抗炉の出力をコントロールすることにより1200℃までの平均冷却速度を5〜40℃/minとした。また、脱りんスラグの場合は、脱りん処理後(精錬処理後)に脱りんスラグを脱りん炉内に留めておき、放射温度計で脱りんスラグの温度を測定して、脱りんスラグの温度が1200℃以下になったことを確認して脱りんスラグの排出(排滓)を行った。なお、脱りんスラグの場合、脱りん処理後での温度を測定すると共に脱りん処理後から1200℃になるまでの時間を測定することによって、1200℃になるまでの平均冷却速度を算出することができる。 In the management (control) of the average cooling rate in the cooling process, in the case of modified steelmaking slag, the average cooling rate up to 1200 ° C. was set to 5 to 40 ° C./min by controlling the output of the resistance furnace. In the case of dephosphorization slag, after dephosphorization treatment (after refining treatment), dephosphorization slag is kept in the dephosphorization furnace, and the temperature of dephosphorization slag is measured with a radiation thermometer. After confirming that the temperature was 1200 ° C. or lower, dephosphorization slag was discharged (drained). In the case of dephosphorization slag, the average cooling rate until 1200 ° C. is calculated by measuring the temperature after dephosphorization treatment and measuring the time after dephosphorization treatment until 1200 ° C. Can do.
粉砕処理は、ボールミル又はジェットミルで行った。また分級処理は2次エア方式の気流分級にて行った。
実施例及び比較例においては、粗粒[(Fe,Mn)OX相のスラグ]の回収率を式(1)により求めた。式(1)に示すように、回収率は、粉砕前のスラグ重量に対する回収した粗粒の割合のことであり、高ければ高いほどよい。また、実施例及び比較例においては、有価金属(T・Fe,Mn)がどれほど効率よく回収されたか分かり易くするために式(2)によって濃縮率を求めた。濃縮率では、有価金属(T・Fe,Mn)は高ければ高いほどよく、P2O5は低ければ低いほどよい。
The pulverization treatment was performed with a ball mill or a jet mill. Moreover, the classification process was performed by the air classification of the secondary air system.
In Examples and Comparative Examples, the recovery of coarse particles [(Fe, Mn) O X phase of the slag] was determined by Equation (1). As shown in Formula (1), the recovery rate is the ratio of recovered coarse particles to the slag weight before pulverization, and the higher the better. Further, in the examples and comparative examples, the concentration ratio was determined by the formula (2) in order to make it easy to understand how efficiently valuable metals (T · Fe, Mn) were recovered. In terms of the concentration rate, the higher the valuable metal (T · Fe, Mn), the better, and the lower the P 2 O 5, the better.
図2は、T・Feの濃縮率(鉄濃縮率)とスラグの塩基度との関係をまとめたものである。図2及び表1、2に示すように、製鋼スラグの塩基度が1.5〜2.5である実施例は、比較例に比べて鉄濃縮率が非常に高いものとなった。なお、実施例及び比較例における製鋼スラグ(スラグ)の塩基度は式(3)により求めた。 FIG. 2 summarizes the relationship between the concentration ratio of T · Fe (iron concentration ratio) and the basicity of slag. As shown in FIG. 2 and Tables 1 and 2, the examples in which the basicity of the steelmaking slag was 1.5 to 2.5 had a very high iron concentration rate as compared with the comparative examples. In addition, the basicity of the steelmaking slag (slag) in an Example and a comparative example was calculated | required by Formula (3).
図3は、冷却処理においてT・Feの濃縮率(鉄濃縮率)と平均冷却速度との関係をまとめたものである。図3及び表1、2に示すように、平均冷却速度が20℃/min以下である実施例は、平均冷却速度が20℃/minよりも大きい比較例に比べて鉄濃縮率が非常に高いものとなった。
図4は、粉砕処理においてT・Feの濃縮率(鉄濃縮率)と50%体積粒径との関係をまとめたものである。図4及び表1、2に示すように、粉砕処理において50%体積粒径が50μm以下である実施例は、比較例に比べて鉄濃縮率が非常に高いものとなった。
FIG. 3 summarizes the relationship between the T · Fe concentration rate (iron concentration rate) and the average cooling rate in the cooling process. As shown in FIG. 3 and Tables 1 and 2, the examples in which the average cooling rate is 20 ° C./min or less have a very high iron concentration rate compared to the comparative example in which the average cooling rate is greater than 20 ° C./min. It became a thing.
FIG. 4 summarizes the relationship between the T · Fe concentration rate (iron concentration rate) and the 50% volume particle size in the pulverization treatment. As shown in FIG. 4 and Tables 1 and 2, in Examples where the 50% volume particle size was 50 μm or less in the pulverization treatment, the iron concentration rate was very high as compared with the Comparative Example.
図5は、分級処理においてT・Feの濃縮率(鉄濃縮率)と粒径比との関係をまとめたものである。図5及び表1、2に示すように、粉砕処理において粒径比(粗粒側の50%体積粒径/微粒側の50%体積粒径)が2.5以上である実施例は、比較例に比べて鉄濃縮率が非常に高いものとなった。
以上、本発明によれば、精錬処理後(処理後)に塩基度が1.5〜2.5となっている製鋼スラグ又は処理後に塩基度が1.5〜2.5になるように調整した製鋼スラグを用意し、用意した製鋼スラグに対して1200℃までの平均冷却速度が20℃/min以下となるように当該製鋼スラグを冷却する冷却処理を行っておき、地金除去処理及び冷却処理を行った製鋼スラグに対して、粉砕後の代表粒径が50μm以下となるように粉砕処理を行い、粉砕処理後のスラグを粗粒と微粒とに分級する分級処理の際に、粗粒の代表粒径と微粒の代表粒径との比が2.5倍以上となるよう処理し、分級処理後に粗粒を回収すれば、有価金属(T・Fe,Mn)の回収率を向上させることができる(表中、評価、◎、○)。
FIG. 5 summarizes the relationship between the T · Fe concentration rate (iron concentration rate) and the particle size ratio in the classification process. As shown in FIG. 5 and Tables 1 and 2, examples in which the particle size ratio (50% volume particle size on the coarse particle side / 50% volume particle size on the fine particle side) in the pulverization treatment is 2.5 or more are compared. Compared to the example, the iron concentration rate was very high.
As described above, according to the present invention, steelmaking slag having a basicity of 1.5 to 2.5 after refining treatment (after treatment) or adjusted to have a basicity of 1.5 to 2.5 after treatment. The steelmaking slag was prepared, and a cooling treatment for cooling the steelmaking slag was performed so that the average cooling rate up to 1200 ° C was 20 ° C / min or less with respect to the prepared steelmaking slag. For the steelmaking slag that has been treated, the pulverization treatment is performed so that the representative particle size after pulverization is 50 μm or less, and the slag after the pulverization treatment is classified into coarse particles and fine particles. If the ratio of the representative particle diameter of the fine particles to the representative particle diameter of the fine particles is 2.5 times or more and the coarse particles are recovered after the classification treatment, the recovery rate of valuable metals (T, Fe, Mn) is improved. (In the table, evaluation, ◎, ○).
なお、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。 It should be noted that matters not explicitly disclosed in the embodiment disclosed this time, such as operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component, deviate from the range normally practiced by those skilled in the art. However, matters that can be easily assumed by those skilled in the art are employed.
1 粉砕機
2 分級機
3 複合装置
1 Crusher 2 Classifier 3 Combined equipment
Claims (2)
処理後に塩基度が1.5〜2.5となっている製鋼スラグ、又は処理後に塩基度が1.5〜2.5になるように調整した製鋼スラグに対して、1200℃までの平均冷却速度が20℃/min以下となるように当該製鋼スラグを冷却する冷却処理を行っておき、
前記地金除去処理及び冷却処理を行った製鋼スラグに対して、粉砕後の代表粒径が50μm以下となるように粉砕処理を行い、
粉砕処理後のスラグを粗粒と微粒とに分級する分級処理の際に、前記粗粒の代表粒径と微粒の代表粒径との比が2.5倍以上となるよう処理し、
分級処理後に粗粒を回収するものであって、
前記代表粒径は、粉砕処理後のスラグを粒子径が小さいものから大きいものへ順番に並べ、並べた後のスラグの体積を小さい方から積算してゆき、積算した体積がスラグ全体の体積の50%となった時点でのスラグの粒子径であることを特徴とする製鋼スラグからの鉄、マンガン酸化物の回収方法。 This is a method for recovering iron and manganese oxides after performing a bullion removal treatment to remove bullion on a steelmaking slag containing a CaO—SiO 2 —P 2 O 5 phase and a (Fe, Mn) O X phase. And
Average cooling to 1200 ° C. for steelmaking slag having a basicity of 1.5 to 2.5 after treatment, or steelmaking slag adjusted to have a basicity of 1.5 to 2.5 after treatment A cooling process for cooling the steelmaking slag is performed so that the speed is 20 ° C./min or less,
For the steelmaking slag that has been subjected to the bullion removal treatment and the cooling treatment, a pulverization treatment is performed so that the representative particle size after pulverization is 50 μm or less,
In the classification process of classifying the slag after the pulverization process into coarse particles and fine particles, the ratio of the representative particle size of the coarse particles to the representative particle size of the fine particles is 2.5 times or more,
Coarse grains are collected after the classification process ,
The representative particle size is obtained by arranging the slag after pulverization in order from the smallest particle size to the largest, and integrating the volume of the slag after the arrangement from the smaller one, and the integrated volume is the total volume of the slag. A method for recovering iron and manganese oxide from steelmaking slag , wherein the particle diameter of the slag is 50% .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011011875A JP5679836B2 (en) | 2011-01-24 | 2011-01-24 | Recovery method of iron and manganese oxide from steelmaking slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011011875A JP5679836B2 (en) | 2011-01-24 | 2011-01-24 | Recovery method of iron and manganese oxide from steelmaking slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012153917A JP2012153917A (en) | 2012-08-16 |
JP5679836B2 true JP5679836B2 (en) | 2015-03-04 |
Family
ID=46835962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011011875A Expired - Fee Related JP5679836B2 (en) | 2011-01-24 | 2011-01-24 | Recovery method of iron and manganese oxide from steelmaking slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5679836B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112404096B (en) * | 2020-10-26 | 2022-11-01 | 贵州大学 | Treatment method for removing ammonia by fixing manganese in electrolytic manganese slag |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5832209B2 (en) * | 1976-04-15 | 1983-07-12 | 株式会社神戸製鋼所 | Reforming converter slag and reforming method |
JPS53127392A (en) * | 1977-04-14 | 1978-11-07 | Nippon Steel Corp | Treating method for steel making slag |
JPS5456996A (en) * | 1977-10-15 | 1979-05-08 | Kobe Steel Ltd | Improved converter slag and its improvement method |
US6258150B1 (en) * | 1998-03-24 | 2001-07-10 | Mackellar William James | Process for the beneficiation of waste material and the product developed therefrom |
JP2002265240A (en) * | 2001-03-07 | 2002-09-18 | Nisshin Steel Co Ltd | Treatment process of slag |
US7810746B2 (en) * | 2006-12-21 | 2010-10-12 | Westwood Lands, Inc. | Processing of steel making slags |
JP4913023B2 (en) * | 2007-11-28 | 2012-04-11 | 新日本製鐵株式会社 | Slag manufacturing method |
JPWO2010055830A1 (en) * | 2008-11-11 | 2012-04-12 | 株式会社Hi−Van | Method for treating metal-containing particles |
-
2011
- 2011-01-24 JP JP2011011875A patent/JP5679836B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012153917A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4913023B2 (en) | Slag manufacturing method | |
JP5454747B1 (en) | Grinding material for shot blasting and its manufacturing method | |
CN106676281A (en) | Process for comprehensively recycling copper and iron through ore phase restructuring of copper smelting molten slag | |
CN104988302A (en) | Nickel slag processing method for efficiently recovering iron resource | |
Bölükbaşı et al. | Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality | |
JP2009006273A (en) | Wet type magnetic separation method for separating mixture of microparticles | |
JP5017846B2 (en) | Reuse of chromium-containing steel refining slag | |
JP5531536B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
WO1996012047A1 (en) | Titanium and vanadium recovery process | |
JP2001192741A (en) | Method for utilizing steel making slag | |
JP5679836B2 (en) | Recovery method of iron and manganese oxide from steelmaking slag | |
JP4867406B2 (en) | Steel recovery method and recycling method for steelmaking slag | |
JP2011236115A (en) | Treatment method of steel slag | |
CN210875721U (en) | Recovery system of multiple metallic element in metallurgical sediment | |
JP5524097B2 (en) | Method for recovering valuable metals from steelmaking slag | |
JP5524098B2 (en) | Efficient method for recovering valuable metals from steelmaking slag | |
JP2017205715A (en) | Method for recovering valuables from dephosphorized slag | |
JP4932309B2 (en) | Chromium recovery method from chromium-containing slag | |
JP3645818B2 (en) | How to recycle refractories | |
JP6140423B2 (en) | Method for recovering metal containing desulfurized slag | |
JP6201736B2 (en) | Method for producing sintered ore using desulfurized slag | |
JP2017213481A (en) | Valuable recovery method from dephosphorization slag | |
TWM603468U (en) | Combined steel slag iron resource recovery system | |
CN110586302A (en) | Recovery system and recovery method for multiple metal elements in metallurgical slag | |
KR100900394B1 (en) | Increasing recovery of magnetic metal from stainless steel slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5679836 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |