JP5679336B2 - Welded structure with excellent brittle crack propagation stop properties - Google Patents
Welded structure with excellent brittle crack propagation stop properties Download PDFInfo
- Publication number
- JP5679336B2 JP5679336B2 JP2011283295A JP2011283295A JP5679336B2 JP 5679336 B2 JP5679336 B2 JP 5679336B2 JP 2011283295 A JP2011283295 A JP 2011283295A JP 2011283295 A JP2011283295 A JP 2011283295A JP 5679336 B2 JP5679336 B2 JP 5679336B2
- Authority
- JP
- Japan
- Prior art keywords
- welded
- web
- flange
- joint
- fillet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 description 32
- 239000010959 steel Substances 0.000 description 32
- 238000012360 testing method Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- 210000001503 joint Anatomy 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Description
本発明は、例えば、大型コンテナ船やバルクキャリアーなどの厚鋼板を用いて溶接施工された構造物の母材および溶接継手に発生する可能性のある脆性亀裂の伝播を、大規模破壊に至る前に停止させる脆性亀裂伝播停止特性に優れる溶接構造体に関し、具体的には、隅肉溶接継手の接合部材(ウェブ)に脆性亀裂が発生しても、被接合部材(フランジ)への脆性亀裂の伝播を停止する脆性亀裂伝播停止特性に優れる溶接構造体に関する。 The present invention relates to the propagation of brittle cracks that may occur in base materials and welded joints of structures welded using thick steel plates such as large container ships and bulk carriers, before leading to large-scale fracture. In particular, even if a brittle crack occurs in the joint member (web) of a fillet welded joint, the brittle crack in the welded member (flange) The present invention relates to a welded structure excellent in brittle crack propagation stopping characteristics for stopping propagation.
溶接構造体であるコンテナ船やバルクキャリアーは、積載能力の向上や荷役効率の向上等のため、上部開口部を大きくとった構造となっている。このため、これらの船では特に船体外板を厚肉化する必要がある。 Container ships and bulk carriers, which are welded structures, have a structure with a large upper opening in order to improve loading capacity and cargo handling efficiency. For this reason, in these ships, it is necessary to increase the thickness of the hull skin.
近年、コンテナ船は大型化し、6,000〜20,000TEUの大型船が建造されるようになってきており、それに伴い、用いられる船体外板は50mm以上の厚肉化の傾向にある。 In recent years, container ships have increased in size, and large ships of 6,000 to 20,000 TEU have been built, and accordingly, the hull skin used tends to be thicker than 50 mm.
船体構造においては、万一溶接部から脆性破壊が発生した場合にも、脆性亀裂の伝播を停止させ船体分離を防止することが必要と考えられ、例えば特許文献1には、船舶の船殻外板の補強材に、特定のミクロ組織を有し、耐脆性破壊に優れた鋼板を用いることが記載されている。 In the hull structure, it is considered necessary to stop the propagation of brittle cracks and prevent hull separation even if brittle fracture occurs from a welded part. It is described that a steel plate having a specific microstructure and excellent in brittle fracture resistance is used as a reinforcing material for the plate.
板厚50mm未満の造船用鋼板溶接部の脆性亀裂伝播挙動については、日本造船研究協会第147委員会において、実験的に検討がなされている。 The brittle crack propagation behavior of welded steel plate welds with a thickness of less than 50 mm has been experimentally studied by the Japan Shipbuilding Research Association No. 147 Committee.
第147委員会では、溶接部にて強制的に発生させた脆性亀裂の伝播経路、伝播挙動を実験的に調査した結果、溶接部の破壊靱性がある程度確保されていれば、溶接残留応力の影響により脆性亀裂は溶接部から母材側に逸れてしまうことが多いが、溶接部に沿って脆性亀裂が伝播した例も複数確認された。このことは、脆性破壊が溶接部に沿って直進伝播する可能性が無いとは言い切れないことを示唆している。 In the 147th committee, if the fracture toughness of the welded part is secured to some extent as a result of experimentally investigating the propagation path and propagation behavior of the brittle crack forcibly generated in the welded part, the influence of the welding residual stress As a result, brittle cracks often deviate from the weld to the base metal side, but multiple examples of brittle cracks propagating along the weld were also confirmed. This suggests that there is no possibility that brittle fracture will propagate straight along the weld.
しかしながら、第147委員会で適用した溶接と同等の溶接を板厚50mm未満の鋼板に適用して建造された船舶が異常なく就航しているという多くの実績があることに加え、靱性が良好な鋼板母材(造船E級鋼など)は脆性亀裂を停止する能力が十分にあるとの認識から、造船用鋼材溶接部の脆性亀裂伝播停止特性は船級規則等には要求されてこなかった。 However, in addition to the fact that ships constructed by applying welding equivalent to the welding applied in the 147th Committee to steel sheets with a thickness of less than 50 mm are in service, there is good toughness. From the recognition that steel plate base materials (shipbuilding class E steel, etc.) have sufficient ability to stop brittle cracks, the brittle crack propagation stop property of welded steel for shipbuilding has not been required by the classification rules.
しかし、最近の6,000TEUを越える大型コンテナ船では鋼板の板厚は50mmを超え、板厚効果により破壊靱性が低下することに加え、溶接入熱もより大きくなるため、溶接部の破壊靭性が一層低下する傾向にある。 However, in recent large container ships exceeding 6,000 TEU, the plate thickness of the steel plate exceeds 50 mm and the fracture toughness is reduced due to the plate thickness effect, and the weld heat input is also increased, so the fracture toughness of the welded portion is increased. There is a tendency to further decrease.
最近、このような厚肉大入熱溶接継手では、溶接部から発生した脆性亀裂は母材側に反れずに直進し、骨材等の鋼板母材部でも停止しない可能性があることが実験的に示され(山口ら:「超大型コンテナ船の開発―新しい高強度極厚鋼板の実用―」,日本船舶海洋工学会誌,3,(2005),P70.)、50mm以上の板厚の鋼板を適用した船体構造の安全確保の上で大きな問題となっている。また、亀裂停止のために特別な特性を有する鋼板が必要との指摘もされている。 Recently, in such a thick-walled high heat input welded joint, an experiment has been conducted that a brittle crack generated from a welded portion may go straight without warping to the base metal side and may not stop even in a steel plate base material such as an aggregate. (Yamaguchi et al .: "Development of ultra-large container ship-practical application of new high-strength ultra-thick steel plate"), Journal of Japan Society of Marine Science and Technology, 3, (2005), P70.), Steel plate with a thickness of 50 mm or more It is a big problem in ensuring the safety of the hull structure to which is applied. In addition, it is pointed out that a steel plate having special characteristics is necessary to stop cracks.
そこで、本発明は、厚肉の鋼板およびその溶接部において、万一、脆性破壊が発生した場合でも、大規模破壊に至る前に脆性亀裂を停止させる溶接構造体を提供することを目的とする。 Therefore, an object of the present invention is to provide a welded structure that stops a brittle crack before reaching a large-scale fracture even if a brittle fracture occurs in a thick steel plate and a welded portion thereof. .
本発明者らは、上記課題の解決に向けて鋭意検討し、隅肉溶接部の継手断面における接合部材(ウェブ)の、被接合部材(フランジ)との突合せ面に、被接合部材(フランジ)の脆性亀裂伝播停止性能に応じた寸法の未溶着部を確保することにより、板厚50mm以上の厚物材における脆性亀裂の伝播を隅肉溶接部のウェブとフランジの突合せ面で停止させ得ることを見出した。 The inventors of the present invention diligently studied to solve the above-described problems, and the bonded member (flange) is placed on the butting surface of the bonded member (web) in the joint cross section of the fillet welded portion with the bonded member (flange). By securing an unwelded part with a dimension corresponding to the brittle crack propagation stopping performance of steel, it is possible to stop the propagation of brittle cracks in thick materials with a thickness of 50 mm or more at the butt surface between the web and flange of the fillet weld I found.
また、接合部材(ウェブ)が突合せ溶接継手で接合された鋼板の場合は、被接合部材(フランジ)の脆性亀裂伝播停止性能に応じた寸法の未溶着部を、前記突合せ溶接継手の溶接部とフランジとの突合せ面に確保することで同様の脆性亀裂伝播停止特性が得られることを見出した。すなわち、本発明は、
1.ウェブが突合せ溶接継手で接合された鋼板で、当該突合せ溶接継手の溶接部がフランジと交差する隅肉溶接継手を備えた溶接構造体であって、少なくとも前記突合せ溶接継手の溶接部とフランジの突合せ面に未溶着部が残存し、前記未溶着部の幅の、交差部の板厚と左右の隅肉溶接部の脚長の和に対する比率X(%)と、前記フランジの供用温度における脆性亀裂伝播停止靭性Kca(N/mm 3/2 )の関係が、下式を満足することを特徴とする脆性亀裂伝播停止特性に優れる溶接構造体。
X(%)≧{5900−Kca(N/mm 3/2 )}/85
2.前記隅肉溶接継手における未溶着部が、隅肉溶接継手断面において、ウェブの板厚と左右の隅肉溶接部の脚長の和の15〜90%となる幅であることを特徴とする1記載の脆性亀裂伝播停止特性に優れる溶接構造体。
Further, in the case of a steel plate in which the joining member (web) is joined by a butt weld joint, an unwelded portion having a dimension corresponding to the brittle crack propagation stopping performance of the joined member (flange) is referred to as a welded portion of the butt weld joint. It was found that the same brittle crack propagation stopping characteristics can be obtained by securing the butt face with the flange. That is, the present invention
1. A welded structure having a fillet welded joint in which a web is joined by a butt welded joint and a welded portion of the butt welded joint intersects the flange, and at least the welded part of the butt welded joint and the flange butt An unwelded portion remains on the surface, and the ratio of the width of the unwelded portion to the sum of the thickness of the intersection and the leg length of the left and right fillet welds and brittle crack propagation at the service temperature of the flange A welded structure excellent in brittle crack propagation stop characteristics, wherein the relationship of stop toughness Kca (N / mm 3/2 ) satisfies the following formula .
X (%) ≧ {5900−Kca (N / mm 3/2 )} / 85
2 . The unwelded portion of the fillet weld joint, the fillet weld joint section, wherein 1, characterized in that the width to be 15 to 90% of the sum of leg length of fillet welds and the left and right plate thickness of the web Welded structure with excellent brittle crack propagation stopping characteristics.
本発明は、フランジとなる鋼板の脆性亀裂伝播停止性能に応じて、隅肉溶接部のウェブの、フランジとの突合せ面に適切な寸法の未溶着部を残し、従来困難であった板厚50mm以上の厚物材における脆性亀裂の伝播を停止させることが可能である。 According to the present invention, according to the brittle crack propagation stopping performance of the steel plate used as the flange, an unwelded portion having an appropriate dimension is left on the butt face of the web of the fillet welded portion, which has been difficult to achieve in the past. It is possible to stop the propagation of brittle cracks in the above thick material.
その結果、船体などに万一脆性亀裂が発生し伝播した場合でも、船体分離などの大規模な脆性破壊の危険性を回避でき、鋼構造物とりわけ船体構造の安全性を確保するうえで大きく寄与し、産業上極めて有用である。 As a result, even if brittle cracks are generated and propagated in the hull, etc., the risk of large-scale brittle fracture such as hull separation can be avoided, making a significant contribution to ensuring the safety of steel structures, especially hull structures. However, it is extremely useful in industry.
また、施工時に未溶着部の寸法を調整することにより脆性亀裂伝播停止性能の異なる鋼板(製造コストの異なる鋼板)を適切に使い分け、特別な鋼板を使用せずに、安全性を損ねることなしに溶接構造体製造のトータルコスト低減が可能である。 In addition, by adjusting the dimensions of the unwelded part during construction, steel plates with different brittle crack propagation stopping performance (steel plates with different production costs) can be properly used without using special steel plates and without compromising safety. The total cost of manufacturing the welded structure can be reduced.
図1は、隅肉溶接継手の継手断面形状を示し、(a)は接合部材(ウェブ)1(以下ウェブ1)が被接合部材(フランジ)2(以下、フランジ2)に対して直立して取り付けられている場合、(b)は、ウェブ1がフランジ2に対して、斜めに取り付けれらている場合を示す。 FIG. 1 shows a joint cross-sectional shape of a fillet welded joint. (A) shows a joining member (web) 1 (hereinafter referred to as web 1) standing upright with respect to a member (flange) 2 (hereinafter referred to as flange 2). When attached, (b) shows the case where the web 1 is attached to the flange 2 at an angle.
以下の本発明の限定理由の説明における各部は図1に示すものとする。但し、図1(b)に示す隅肉溶接継手の場合は、後記の比率X(%)を求める場合のウェブ板厚として、ウェブ1とフランジ2と交差部の長さ、すなわち、ウェブ板厚/COS(90°−θ)(但し、θはウェブとフランジの交差角でθ<90°)を用いる。 Each part in the following explanation of the limitation reasons of the present invention is shown in FIG. However, in the case of the fillet welded joint shown in FIG. 1 (b), the web plate thickness for obtaining the ratio X (%) described later is the length of the web 1, the flange 2, and the intersecting portion, that is, the web plate thickness. / COS (90 ° −θ) (where θ is the crossing angle between the web and the flange, θ <90 °).
本発明では、隅肉溶接継手のウェブ1の、フランジ2との突合せ面に未溶着部4を残存させる。隅肉溶接継手において、ウェブ1のフランジ2との突合せ面は亀裂伝播面となるので、当該突合せ面に未溶着部4を残存させる。 In the present invention, the unwelded portion 4 is left on the butted surface of the fillet welded joint web 1 with the flange 2. In the fillet welded joint, the abutting surface of the web 1 with the flange 2 becomes a crack propagation surface, so that the unwelded portion 4 remains on the abutting surface.
未溶着部4が残存することにより、ウェブ1を伝播してきた脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が低下し、当該突合せ面において、脆性亀裂は停止しやすくなる。 When the unwelded portion 4 remains, the energy release rate (crack propagation driving force) at the tip of the brittle crack that has propagated through the web 1 is lowered, and the brittle crack is likely to stop at the butt surface.
未溶着部4の存在により、脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)が低下するので、例え、フランジ2側に伝播したとしても、亀裂は隅肉溶接部のあらゆる部位(隅肉溶接金属5、熱影響部(図1では省略))およびフランジ2の母材で停止する。 The presence of the unwelded portion 4 reduces the energy release rate (crack growth driving force) at the tip of the brittle crack. For example, even if the crack propagates to the flange 2 side, the crack can occur at any part of the fillet weld (fillet weld). Stop at the base metal of the metal 5, the heat affected zone (not shown in FIG. 1) and the flange 2.
隅肉溶接継手の継手断面における、ウェブ1の、フランジ2との突合せ面における未溶着部4の寸法は、フランジ2の脆性亀裂伝播停止靭性Kca(N/mm3/2)との関係において規定することが望ましい。 In the joint cross section of the fillet welded joint, the dimension of the unwelded portion 4 at the butt surface of the web 1 with the flange 2 is defined in relation to the brittle crack propagation stop toughness Kca (N / mm 3/2 ) of the flange 2. It is desirable to do.
隅肉溶接継手の継手断面における未溶着部4の幅長さの、ウェブ1の板厚と左右の隅肉溶接金属5の脚長3の和に対する比率X(%)と、前記フランジ2に用いる鋼板の供用温度における脆性亀裂伝播停止靭性Kca(N/mm3/2)の関係を、(1)式を満足するように設定する。
X(%)≧{5900−Kca(N/mm3/2)}/85・・・(1)
比率X(%)が小さくなると脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)の低下が少なくなり、脆性亀裂が停止しにくくなるが、フランジ2に用いる鋼板のKca値が大きければ脆性亀裂を停止させることが可能である。
The ratio X (%) of the width of the unwelded portion 4 in the joint cross section of the fillet weld joint to the sum of the plate thickness of the web 1 and the leg length 3 of the fillet weld metal 5 on the left and right sides, and the steel plate used for the flange 2 The relationship of brittle crack propagation stop toughness Kca (N / mm 3/2 ) at the service temperature is set so as to satisfy the expression (1).
X (%) ≧ {5900−Kca (N / mm 3/2 )} / 85 (1)
When the ratio X (%) decreases, the energy release rate (crack growth driving force) at the tip of the brittle crack decreases and the brittle crack hardly stops. However, if the Kca value of the steel plate used for the flange 2 is large, the brittle crack is It is possible to stop.
更に、隅肉溶接継手における未溶着部4はその幅を、隅肉溶接の継手断面において、ウェブ1の板厚と左右の隅肉溶接金属5の脚長3の和の15〜90%の長さとすることが好ましい。 Further, the width of the unwelded portion 4 in the fillet welded joint is 15 to 90% of the sum of the plate thickness of the web 1 and the leg length 3 of the left and right fillet weld metal 5 in the joint cross section of the fillet weld. It is preferable to do.
未溶着部4の幅長さがウェブ1の板厚とウェブ1の左右の隅肉溶接金属5の脚長3の和の15%未満となると、脆性亀裂先端のエネルギー解放率(亀裂進展駆動力)の低下が少なくなり、脆性亀裂が停止しにくくなる。 When the width of the unwelded portion 4 is less than 15% of the sum of the plate thickness of the web 1 and the leg length 3 of the fillet weld metal 5 on the left and right of the web 1, the energy release rate (crack propagation driving force) at the brittle crack tip Is less likely to stop brittle cracks.
また、未溶着部4の幅長さがウェブ1の板厚とウェブ1の左右の隅肉溶接金属5の脚長3の和の90%超えとなると、継手強度の確保が困難となる。よって、本発明においては、15%以上、90%以下の範囲に限定することが好ましい。 Further, when the width of the unwelded portion 4 exceeds 90% of the sum of the plate thickness of the web 1 and the leg length 3 of the fillet weld metal 5 on the left and right sides of the web 1, it is difficult to ensure the joint strength. Therefore, in this invention, it is preferable to limit to 15% or more and 90% or less of range.
尚、脆性破壊は、欠陥の少ない鋼板母材部で発生することは極めて稀であり、過去の脆性破壊事故の多くは溶接部で発生している。図2はウェブ1が突合せ溶接継手で接合された鋼板で、突合せ溶接継手部の溶接部(以下、突合せ溶接継手部11)がフランジ2と交差する隅肉溶接継手を示し、(a)は外観図、(b)は突合せ溶接継手部11における継手断面形状を模式的に示す。 Note that brittle fracture rarely occurs in a steel plate base material with few defects, and many past brittle fracture accidents have occurred in welds. FIG. 2 shows a fillet welded joint in which a welded portion of a butt welded joint portion (hereinafter referred to as a butt welded joint portion 11) intersects the flange 2 with a steel plate in which a web 1 is joined by a butt welded joint. FIG. 4B schematically shows a joint cross-sectional shape in the butt weld joint portion 11.
図2に示す隅肉溶接継手の場合は、突合せ溶接継手部11から発生する脆性亀裂の伝播を防止するため、少なくとも突合せ溶接継手11とフランジ2の突合せ面に未溶着部4を残存させることが必要である。 In the case of the fillet welded joint shown in FIG. 2, in order to prevent the propagation of brittle cracks generated from the butt welded joint portion 11, at least the unwelded portion 4 may remain on the butt welded surfaces of the butt welded joint 11 and the flange 2. is necessary.
上述したように未溶着部4をウェブ1の母材とフランジ2との突合せ面に残存させると、ウェブ1の母材部で脆性亀裂が発生した場合でも脆性亀裂は停止しやすくなるので、未溶着部4をウェブ1の全長に亘って残存させても良い。 As described above, if the unwelded portion 4 is left on the abutting surface between the base material of the web 1 and the flange 2, the brittle crack is likely to stop even if a brittle crack occurs in the base material portion of the web 1. The welded portion 4 may be left over the entire length of the web 1.
隅肉溶接継手において、突合せ溶接継手部11とフランジ2が交差する交差部の継手断面における未溶着部の幅4の、突合せ溶接継手部11の、ウェブ1の板厚方向の厚み、すなわち、突合せ溶接継手部11の溶接金属高さの平均値と左右の隅肉溶接金属5の脚長(図1と同じ定義とする)の和に対する比率X(%)と、フランジ2に用いる鋼板の供用温度における脆性亀裂伝播停止靭性Kca(N/mm3/2)は、上記(1)式を満足するように規定すると好ましい。比率X(%)は突合せ溶接継手部11の最脆化部であるBOND部における継手断面形状において求めた値とすることが望ましい。 In the fillet welded joint, the thickness of the butt welded joint part 11 in the thickness direction of the web 1 of the unwelded part width 4 in the joint section of the joint part where the butt welded joint part 11 and the flange 2 intersect, that is , the butt joint. The ratio X (%) to the sum of the average value of the weld metal height of the welded joint portion 11 and the leg lengths of the left and right fillet weld metal 5 (same definition as in FIG. 1), and the service temperature of the steel plate used for the flange 2 The brittle crack propagation stop toughness Kca (N / mm 3/2 ) is preferably defined so as to satisfy the above formula (1). The ratio X (%) is desirably a value obtained in the joint cross-sectional shape in the BOND part which is the most brittle part of the butt weld joint part 11.
更に、突合せ溶接継手部11とフランジ2の交差部においても、未溶着部4の幅を、隅肉溶接継手断面において、突合せ溶接継手部11の溶接金属高さの平均値と左右の隅肉溶接金属5の脚長の和の15〜90%とすることが好ましい。 Further, at the intersection of the butt weld joint 11 and the flange 2, the width of the unwelded portion 4 is set to the average value of the weld metal height of the butt weld joint 11 and the left and right fillet welds in the cross section of the fillet weld joint. It is preferable to make it 15 to 90% of the sum of the leg lengths of the metal 5.
図2はウェブ1の突合せ溶接継手部11とフランジ2が直交する場合を示したが、斜めに交差させても良い。図2の隅肉溶接継手は、まずウエブ同士を突合せ溶接し、次に、得られた突合せ溶接継手をフランジに隅肉溶接して製造する。 Although FIG. 2 shows the case where the butt weld joint 11 of the web 1 and the flange 2 are orthogonal to each other, they may be crossed obliquely. The fillet welded joint shown in FIG. 2 is manufactured by first butt welding the webs and then fillet welding the obtained butt welded joint to a flange.
本発明に係る溶接構造体は上述した隅肉溶接継手を有するもので、例えば、船舶の船体外板を、フランジとし、隔壁をウェブとする船体構造、あるいはデッキをフランジとし、ハッチをウェブとする船体構造などに適用可能である。 The welded structure according to the present invention has the above-described fillet welded joint. For example, the hull outer plate of the ship is a flange and the bulkhead is a web, or the deck is a flange and the hatch is a web. Applicable to hull structures.
本発明に係る溶接構造体は板厚50mmを超える厚板を用いる場合に特に優れた効果を発揮するが、鋼板厚さが50mm未満であっても良い。尚、従来の船体構造においては隅肉溶接継手のウェブの突合せ溶接継手部とフランジの突合せ面には、未溶着部は存在しない。 The welded structure according to the present invention exhibits a particularly excellent effect when a thick plate having a plate thickness exceeding 50 mm is used, but the steel plate thickness may be less than 50 mm. In the conventional hull structure, there is no unwelded portion between the butt weld joint portion of the fillet weld joint web and the butt face of the flange.
種々の板厚および脆性亀裂伝播停止靱性(−10℃におけるKca)を有する鋼板を用いて、様々な未溶着部の比率X(ウェブの板厚とウェブの左右の隅肉溶接部の脚長の和に対する未溶着部の幅長さの比率)を有するT字型の隅肉溶接継手を作製した。T字型の隅肉溶接継手はウェブが鋼板の母材のみの場合とウェブを突合せ溶接継手とする場合について作成した。なお、突合せ溶接継手は1パス大入熱溶接もしくは多層CO2溶接にて作製した。 Using steel plates having various plate thicknesses and brittle crack propagation stop toughness (Kca at −10 ° C.), various unwelded portion ratios X (sum of web plate thickness and leg length of left and right fillet welds of web) T-shaped fillet welded joints having a ratio of the width to the length of the unwelded portion with respect to the above were produced. T-shaped fillet welded joints were prepared for the case where the web was only the base material of the steel plate and the case where the web was a butt weld joint. The butt weld joint was produced by one-pass large heat input welding or multilayer CO 2 welding.
得られたT字型隅肉溶接継手を用いて、図3に示す十字型ESSO試験片を作製し、脆性亀裂伝播停止試験(ESSO試験)に供した。十字型ESSO試験片はT字型隅肉溶接継手9のフランジの下方に仮付け溶接8で、ウェブと同じ板厚の鋼板を溶接した。 Using the obtained T-shaped fillet welded joint, a cross-shaped ESSO test piece shown in FIG. 3 was produced and subjected to a brittle crack propagation stop test (ESSO test). The cross-shaped ESSO test piece was tack welded 8 below the flange of the T-shaped fillet weld joint 9 and a steel plate having the same thickness as the web was welded.
図3(a)に示す十字型ESSO試験片はウェブが母材のみで、図3(b)に示す十字型ESSO試験片はウェブの突合せ溶接継手部11をフランジと直交するように作成し、機械ノッチ7の先端を突合せ溶接継手部11のBOND部とし、隅肉溶接を試験片の全長500mmに実施した。 The cross-shaped ESSO test piece shown in FIG. 3 (a) has a web only of the base material, and the cross-shaped ESSO test piece shown in FIG. 3 (b) is prepared so that the butt weld joint 11 of the web is perpendicular to the flange. The tip of the machine notch 7 was used as the BOND part of the butt weld joint part 11, and fillet welding was carried out to a total length of 500 mm of the test piece.
ESSO試験は、機械ノッチに打撃を与え脆性亀裂を発生させ、伝播した脆性亀裂が、隅肉溶接部で停止するか否かを調査した。いずれの試験も、応力24kgf/mm2、温度−10℃の条件にて実施した。応力24kgf/mm2は、船体に多用されている降伏強度36kgf/mm2級鋼板の最大許容応力であり、温度−10℃は船舶の設計温度である。 In the ESSO test, the mechanical notch was hit to generate a brittle crack, and it was investigated whether the propagated brittle crack stopped at the fillet weld. All tests were conducted under the conditions of a stress of 24 kgf / mm 2 and a temperature of −10 ° C. The stress 24 kgf / mm 2 is the maximum allowable stress of the yield strength 36 kgf / mm 2 grade steel plate frequently used in the hull, and the temperature −10 ° C. is the design temperature of the ship.
表1、2に鋼板の板厚、Kcaと併せて試験結果を示す。また、表1の試験結果を図4に、表2の試験結果を図5に示す。表1は図3(a)の十字型ESSO試験片による試験結果を示し、(1)式を満足する発明例では脆性亀裂が隅肉溶接部のウェブからフランジに伝播することなく停止した。 Tables 1 and 2 show the test results together with the plate thickness and Kca of the steel plate. Moreover, the test result of Table 1 is shown in FIG. 4, and the test result of Table 2 is shown in FIG. Table 1 shows the test results using the cross-shaped ESSO test piece of FIG. 3 (a). In the invention example satisfying the formula (1), the brittle crack stopped without propagating from the web of the fillet weld to the flange.
表2は図3(b)の十字型ESSO試験片による試験結果を示し、(1)式を満足する発明例では脆性亀裂が隅肉溶接部のウェブからフランジに伝播することなく停止した。表2中、No.2−0,3−0,4−0はウェブの突合せ溶接継手部11とフランジとの交差部に未溶着部がないため、亀裂が貫通した場合の試験結果を示す。 Table 2 shows the test results using the cross-shaped ESSO test piece of FIG. 3B, and in the invention example satisfying the expression (1), the brittle crack stopped without propagating from the web of the fillet weld to the flange. In Table 2, No. 2-0, 3-0, and 4-0 show test results when a crack penetrates because there is no unwelded portion at the intersection between the butt weld joint 11 of the web and the flange.
尚、表1、2における隅肉溶接部の未溶着比率X(%)は任意の一つの継手断面形状において求めた値を示す。 The unwelded ratio X (%) of the fillet weld in Tables 1 and 2 indicates a value obtained for any one joint cross-sectional shape.
1 ウェブ
2 フランジ
3 脚長
4 未溶着部
5 隅肉溶接金属
6 分離面
7 機械ノッチ
8 仮付け溶接
9 T字型溶接継手
11 突合せ溶接継手部
a 間隔
θ 交差角
DESCRIPTION OF SYMBOLS 1 Web 2 Flange 3 Leg length 4 Unwelded part 5 Fillet weld metal 6 Separation surface 7 Machine notch 8 Tack welding 9 T-shaped welded joint 11 Butt welded joint part a Space | interval θ Crossing angle
Claims (2)
X(%)≧{5900−Kca(N/mm3/2)}/85 A welded structure having a fillet welded joint in which a web is joined by a butt welded joint and a welded portion of the butt welded joint intersects the flange, and at least the welded part of the butt welded joint and the flange butt An unwelded portion remains on the surface, and the ratio of the width of the unwelded portion to the sum of the thickness of the intersection and the leg length of the left and right fillet welds and brittle crack propagation at the service temperature of the flange A welded structure excellent in brittle crack propagation stop characteristics, wherein the relationship of stop toughness Kca (N / mm 3/2 ) satisfies the following formula.
X (%) ≧ {5900−Kca (N / mm 3/2 )} / 85
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283295A JP5679336B2 (en) | 2006-05-12 | 2011-12-26 | Welded structure with excellent brittle crack propagation stop properties |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006133487 | 2006-05-12 | ||
JP2006133487 | 2006-05-12 | ||
JP2011283295A JP5679336B2 (en) | 2006-05-12 | 2011-12-26 | Welded structure with excellent brittle crack propagation stop properties |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006282132A Division JP5144053B2 (en) | 2006-05-12 | 2006-10-17 | Welded structure with excellent brittle crack propagation stop properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012096790A JP2012096790A (en) | 2012-05-24 |
JP5679336B2 true JP5679336B2 (en) | 2015-03-04 |
Family
ID=46389182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011283295A Active JP5679336B2 (en) | 2006-05-12 | 2011-12-26 | Welded structure with excellent brittle crack propagation stop properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5679336B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103895813B (en) * | 2014-03-26 | 2016-09-28 | 扬帆集团股份有限公司 | 5000 railway carriage angle mounting process |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951387B2 (en) * | 1976-08-27 | 1984-12-13 | 三菱電機株式会社 | Method for manufacturing welded joints with non-welded parts |
JP2538815B2 (en) * | 1991-08-30 | 1996-10-02 | 川崎製鉄株式会社 | Highly efficient fillet welding method for thick steel plate |
JP3184408B2 (en) * | 1994-09-22 | 2001-07-09 | 株式会社日立製作所 | Welded structure |
JPH08267234A (en) * | 1995-03-31 | 1996-10-15 | Nippon Steel Corp | Fillet welding method and joint therefor |
JP4074524B2 (en) * | 2003-01-31 | 2008-04-09 | 新日本製鐵株式会社 | Welded structure with excellent brittle fracture resistance |
JP3811479B2 (en) * | 2003-10-08 | 2006-08-23 | 新日本製鐵株式会社 | Weld metal for welded structure having excellent brittle fracture propagation resistance, its construction method, and welded structure |
JP4505368B2 (en) * | 2004-04-21 | 2010-07-21 | 新日本製鐵株式会社 | Welded steel structure excellent in brittle crack propagation stopping characteristics and method for producing the same |
JP5144053B2 (en) * | 2006-05-12 | 2013-02-13 | Jfeスチール株式会社 | Welded structure with excellent brittle crack propagation stop properties |
-
2011
- 2011-12-26 JP JP2011283295A patent/JP5679336B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012096790A (en) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144053B2 (en) | Welded structure with excellent brittle crack propagation stop properties | |
JP6744274B2 (en) | Welded structure | |
JP5408396B1 (en) | Welded structure | |
JP5395985B2 (en) | Welded structure | |
JP5365761B2 (en) | Welded structure | |
JP6615215B2 (en) | Welded structure with excellent brittle crack propagation stop properties | |
WO2022265010A1 (en) | Weld structure body | |
JP4537683B2 (en) | Welded structure with excellent brittle fracture resistance | |
JP4074524B2 (en) | Welded structure with excellent brittle fracture resistance | |
JP5657873B2 (en) | Welded structure with excellent fracture prevention characteristics after brittle crack arrest | |
JP5679336B2 (en) | Welded structure with excellent brittle crack propagation stop properties | |
JP6720106B2 (en) | Welded structure | |
JP6251463B1 (en) | Welded structure with excellent brittle crack propagation stop properties | |
JP2022083554A (en) | Method of evaluating brittle crack arrestability of weld structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120123 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120416 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130423 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130909 |
|
AA92 | Notification that decision to refuse application was cancelled |
Free format text: JAPANESE INTERMEDIATE CODE: A971092 Effective date: 20131008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5679336 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |