JP5679286B2 - Condensing optical element, condensing device, and photovoltaic device - Google Patents
Condensing optical element, condensing device, and photovoltaic device Download PDFInfo
- Publication number
- JP5679286B2 JP5679286B2 JP2010248856A JP2010248856A JP5679286B2 JP 5679286 B2 JP5679286 B2 JP 5679286B2 JP 2010248856 A JP2010248856 A JP 2010248856A JP 2010248856 A JP2010248856 A JP 2010248856A JP 5679286 B2 JP5679286 B2 JP 5679286B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical element
- condensing optical
- axis direction
- condensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 235
- 239000002245 particle Substances 0.000 claims description 107
- 230000010287 polarization Effects 0.000 claims description 52
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 230000005684 electric field Effects 0.000 claims description 25
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 claims description 15
- 238000002834 transmittance Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 description 36
- 230000008859 change Effects 0.000 description 20
- 230000007423 decrease Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000004088 simulation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000001902 propagating effect Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、光を集光する装置に関し、なお詳細には、縦横比が大きな出射面から出射する出射光を、出射面と対峙して設けられた入射面で受光して入射光を長辺が伸びる方向に集光する集光光学素子、及びこれを用いた集光装置並びに光発電装置に関する。 The present invention relates to an apparatus for concentrating light. More specifically, the present invention relates to an apparatus for collecting light emitted from an exit surface having a large aspect ratio by receiving the incident light on an entrance surface facing the exit surface. The present invention relates to a condensing optical element that condenses light in the direction in which the light extends, a condensing device using the condensing optical element, and a photovoltaic device.
近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用では、旧来より太陽熱温水器等により太陽光の熱エネルギー利用が用いられてきたほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。 In recent years, reduction of CO 2 emissions has been demanded worldwide and the use of natural energy has been promoted. In the use of solar energy, solar heat energy has been used for some time with solar water heaters, etc., and a photovoltaic power generation system that converts solar light energy into electrical energy has been introduced to ordinary households. Large-scale solar power plants are also being put into practical use in various countries.
光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、電力への変換効率が概ね10〜20%程度である。そこで、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。 Solar cells that convert light energy into electrical energy are classified into silicon-based, compound-based, organic-based, dye-sensitized systems, and the like in terms of photoelectric conversion material classification. A typical solar battery cell made of such a material has a power conversion efficiency of about 10 to 20%. Therefore, the radiation spectrum range of sunlight is divided into a plurality of wavelength bands, and a plurality of semiconductor layers with band gaps that are optimal for photoelectric conversion of light in each wavelength band are stacked, and the conversion efficiency to power is about 40%. Multi-junction type (also called tandem type, stacked type, etc.) solar cells have been developed.
しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに入射させるレンズ集光型(例えば、特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(例えば、特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(例えば、特許文献4を参照)などが提案されている。
However, the high-efficiency solar cells as described above are extremely expensive and difficult to use except for special applications such as aerospace. In view of this, a concentrating solar cell module has been devised that condenses and enters sunlight into a small cell to reduce costs and to perform solar power generation with high efficiency. As a condensing form, a lens condensing type that condenses sunlight with a Fresnel lens or a reflecting mirror and enters the solar cell (for example, see
しかしながら、上記各集光方式には一長一短がある。例えば、レンズ集光型では、光軸方向にレンズの焦点距離に応じた厚さが必要であることや、光軸を太陽の方位に一致させるための追尾装置が必要になる。一方、蛍光プレート集光型や分光集光型のようなプレート形態の集光方式は、モジュールの光軸方向寸法を薄くでき、また必ずしも追尾装置を必要としないものもあるが、プレート側端部に導かれた光の出射面は長辺/短辺の縦横比が大きく、集光効率や太陽電池セルとのマッチング等の面で改善すべき余地がある。 However, each condensing method has advantages and disadvantages. For example, the lens condensing type requires a thickness corresponding to the focal length of the lens in the optical axis direction and a tracking device for matching the optical axis with the azimuth of the sun. On the other hand, the plate-type condensing method such as the fluorescent plate condensing type and the spectroscopic condensing type can reduce the dimension in the optical axis direction of the module and does not necessarily require a tracking device. The light-exiting surface led to has a large aspect ratio of long side / short side, and there is room for improvement in terms of light collection efficiency and matching with solar cells.
本発明は、上記のような事情に鑑みてなされたものであり、縦横比が大きい出射面から出射する太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a new condensing means that can efficiently use light energy such as sunlight emitted from an emission surface having a large aspect ratio. With the goal.
上記目的を達成するため、本発明を例示する第1の態様は集光光学素子である。この集光光学素子は、長辺/短辺の縦横比が大きな出射面(例えば、実施形態における集光パネル8の出射面8a)から出射する幅広の出射光を、出射面と対峙して設けられ長辺が伸びる方向(例えば、実施形態におけるx軸方向)に集光する集光光学素子であり、光透過性を有するA部材と、A部材中に入射光の入射方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成される。B部材の粒子径dは、入射光の波長をλとしたときに円相当径が0.1λ〜10λである。いま、入射方向に延びる軸をy軸、第1方向に延びる軸をx軸、第2方向に延びる軸をz軸、x軸及びy軸を含む面をxy面、y軸及びz軸を含む面をzy面とする。そして、A部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnaxy、電界振幅がzy面内でy軸方向に進む光の屈折率をnazy、電界振幅がxy面内でx軸方向に進む光の屈折率をnayxとし、B部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnbxy、電界振幅がzy面内でy軸方向に進む光の屈折率をnbzy、電界振幅がxy面内でx軸方向に進む光の屈折率をnbyxとしたときに、naxyとnbxy、及びnazyとnbzyとが異なり、nayxとnbyxとが実質的に等しいことを特徴として構成される。なお、本明細書において「粒子径」は、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径(直径)で規定し、頻度分布が最大の最頻粒子径(モード径)をもって粒子径dとしている。
なお、A部材における電界振幅がzy面内でz軸方向に進む光の屈折率をnayzとし、B部材における電界振幅がzy面内でz軸方向に進む光の屈折率をnbyzとしたときに、nayzとnbyzとが実質的に等しくなるように構成することができる。
In order to achieve the above object, a first aspect illustrating the present invention is a condensing optical element. This condensing optical element is provided with wide emission light that is emitted from an emission surface having a large aspect ratio of long side / short side (for example, the
In addition, when the refractive index of light that the electric field amplitude in the A member advances in the z-axis direction in the zy plane is nayz, and the refractive index of the light that the electric field amplitude in the B member advances in the z-axis direction in the zy plane is nbyz , Nayz and nbyz can be configured to be substantially equal.
この場合において、前記屈折率の関係は、naxy<nbxyでありnbxy>nbyx、あるいはnaxy<nbxyでありnaxy<nayx、あるいはnaxy>nbxyでありnbxy<nbyx、またはnaxy>nbxyでありnaxy>nayxとなるように構成することができる。 In this case, the relationship between the refractive indexes is as follows: n xy <nbxy and nbxy> nbyx, or nax <nbxy and nax <nyx, or nax> nbxy and nbxy <nbyx, or nax> nbxy and nax> nayx. It can be comprised so that it may become.
前記A部材及び前記B部材は、(π×d×naxy)/λで規定するサイズパラメータαが、1.5≦α≦40であることが好適であり、2≦α≦20とすることができる。また、B部材の粒子径dを20μm以下とすることもできる。 In the A member and the B member, the size parameter α defined by (π × d × naxy) / λ is preferably 1.5 ≦ α ≦ 40, and 2 ≦ α ≦ 20. it can. Moreover, the particle diameter d of B member can also be 20 micrometers or less.
前記A部材中に分散された前記B部材の密度は、入射面からy軸方向に入射し、複数のB部材により多重散乱されて集光光学素子の裏面に向かう光が、裏面において全反射されるように設定することができる。 The density of the B member dispersed in the A member is incident in the y-axis direction from the incident surface, and the light scattered by the plurality of B members toward the back surface of the condensing optical element is totally reflected on the back surface. Can be set to
本発明を例示する第2の態様は集光装置である。この態様に含まれる第1の構成形態の集光装置は、請求項1〜12のいずれかに記載の集光光学素子と、前記出射面と前記入射面との間に設けられて出射光の偏光面を90度回転させる偏光面回転素子(例えば、実施形態における偏光面回転素子65)とを備えて構成される。
The 2nd mode which illustrates the present invention is a condensing device. Condenser of the first example of the configuration included in this embodiment, a focusing optical element according to any one of
本態様に含まれる第2の構成形態の集光装置は、請求項1〜12のいずれかに記載の集光光学素子と、この集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、集光光学素子と反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子(例えば、実施形態における偏光面回転素子75)とを備えて構成される。
Condenser of the second example of the configuration included in the present embodiment, a focusing optical element according to any one of
本態様に含まれる第3の構成形態の集光装置は、請求項1〜12のいずれかに記載の第1の集光光学素子と、請求項1〜12のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子のx軸方向が第1の集光光学素子のx軸方向と平行になるように配設されるとともに、第1の集光光学素子と第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子(例えば、実施形態における偏光面回転素子85)が設けられることを特徴とする。
Condenser of the third example of the configuration included in the present embodiment, the first focusing optical element according to any one of
本発明を例示する第3の態様は光発電装置である。この態様に含まれる第1の構成形態の光発電装置は、請求項1〜12のいずれかに記載の集光光学素子と、集光光学素子によりx軸方向に導かれた光(例えば、実施形態における+x側及び−x側の少なくともいずれか一方に導かれた光)を光電変換する光電変換素子とを備えて構成される。
A third aspect illustrating the present invention is a photovoltaic device. A photovoltaic device according to a first configuration included in this aspect includes a condensing optical element according to any one of
本態様に含まれる第2の構成形態の光発電装置は、請求項13または14に記載の集光装置と、集光光学素子によりx軸方向に導かれた光(例えば、実施形態における+x側及び−x側の少なくともいずれか一方に導かれた光)を光電変換する光電変換素子とを備えて構成される。 The photovoltaic device of the second configuration form included in this aspect includes the light collecting device according to claim 13 or 14 and light guided in the x-axis direction by the light collecting optical element (for example, the + x side in the embodiment) And a photoelectric conversion element that photoelectrically converts light guided to at least one of the −x side).
本態様に含まれる第3の構成形態の光発電装置は、請求項15に記載の集光装置と、第1の集光光学素子におけるx軸方向に導かれた光(例えば、実施形態における+x側及び−x側の少なくともいずれか一方に導かれた光)を光電変換する光電変換素子と、第2の集光光学素子におけるx軸方向に導かれた光(同上)を光電変換する第2の光電変換素子とを備えて構成される。
The photovoltaic device of the third configuration form included in this aspect includes the light collecting device according to
本発明の第1の態様の集光光学素子は、透明なA部材中に粒子状のB部材が分散されており、このB部材の粒子径は、入射光の波長をλとしたときに円相当径dが0.1λ〜10λとされる。A部材及びB部材は、電界振幅がxy面内でy軸方向に進む光の屈折率を各々naxy及びnbxy、電界振幅がzy面内でy軸方向に進む光の屈折率を各々nazy及びnbzyとし、電界振幅がxy面内でx軸方向に進む光の屈折率を各々nayx及びnbyxとしたときに、y軸方向に進む光についてnaxyとnbxy、及びnazyとnbzyとが異なり、x軸方向に進む光についてnayxとnbyxとが実質的に等しく構成される。このとき、y軸方向に進む光には、A部材の屈折率naxyとB部材の屈折率nbxy、及びnazyとnbzyとが異なることからB部材が粒子として見える。 In the condensing optical element of the first aspect of the present invention, the particulate B member is dispersed in the transparent A member, and the particle diameter of the B member is a circle when the wavelength of incident light is λ. The equivalent diameter d is 0.1λ to 10λ. The A member and the B member have a refractive index of light that travels in the y-axis direction in the xy plane, and the refractive index of light that travels in the y-axis direction in the zy plane, respectively, nazy and nbzy. And the refractive index of light traveling in the x-axis direction within the xy plane is defined as nayx and nbyx, respectively, the light beams traveling in the y-axis direction are different from each other in the n-axis and nbxy , and the nazy and nbzy. Nayx and nbyx are configured to be substantially equal for the light traveling to. At this time , in the light traveling in the y- axis direction, the B member appears as particles because the refractive index “naxy” of the A member is different from the refractive index nbxy of the B member , and nazy and nbzy .
本発明の第1の態様の集光光学素子は、A部材中に分散されたB部材の粒子径が入射光の波長λと同程度のオーダーであることから、ミー(Mie)の散乱理論によれば、y軸方向に進む光は、B部材に遭遇するたびに所定角度範囲に散乱され、これを繰り返すことによって+x側に傾斜して進む光と−x側に傾斜して進む光の割合が多くなる。電界振幅がxy面内でx軸方向に進む光には、A部材の屈折率nayxとB部材の屈折率nbyxとで実質的な屈折率差がないことから、B部材が粒子として見えず、均質媒質中を伝播するようにA部材及びB部材を透過して、x軸方向の+x側または−x側に集光される。従って、本発明によれば、x軸方向に幅が広い出射面から出射された光をx軸方向に集光して集光効率を高めることができ、太陽光等の光エネルギーを効率的に利用可能な新たな集光手段を提供することができる。 The condensing optical element according to the first aspect of the present invention is based on the Mie scattering theory because the particle diameter of the B member dispersed in the A member is on the same order as the wavelength λ of the incident light. According to this , the light traveling in the y- axis direction is scattered within a predetermined angle range every time the B member is encountered, and the ratio of the light traveling inclined toward the + x side and the light traveling inclined toward the -x side by repeating this Will increase. In the light whose electric field amplitude travels in the x-axis direction in the xy plane, there is no substantial difference in the refractive index between the refractive index nayx of the A member and the refractive index nbyx of the B member. The light passes through the A member and the B member so as to propagate in the homogeneous medium, and is condensed on the + x side or the −x side in the x-axis direction. Therefore, according to the present invention, it is possible to increase the light collection efficiency by condensing the light emitted from the emission surface having a wide width in the x-axis direction in the x-axis direction, and efficiently radiate light energy such as sunlight. New condensing means that can be used can be provided.
本発明の第2の態様の集光装置は、集光光学素子を透過した偏光成分の光を再度同一の/または第2の集光光学素子で集光するように構成される。このため、簡明かつコンパクトな構成で太陽光等の光エネルギーを効率的に利用可能な集光装置を提供することができる。 The condensing device according to the second aspect of the present invention is configured to condense the light of the polarization component transmitted through the condensing optical element again with the same / or the second condensing optical element. For this reason, the condensing apparatus which can utilize optical energy, such as sunlight efficiently, by simple and compact structure can be provided.
本発明の第3の態様の光発電装置は、上記のような集光光学素子または集光装置と、集光された光を光電変換する光電変換素子とを備えて構成される。このため、小型の光電変換素子にパワー密度の高い光を入射させることができ、小型かつ低コストの構成で太陽光等の光エネルギーを高効率に電力変換可能な光発電装置を提供することができる。 The photovoltaic device according to the third aspect of the present invention includes the above-described condensing optical element or condensing device, and a photoelectric conversion element that photoelectrically converts the collected light. Therefore, it is possible to provide a photovoltaic device capable of allowing light with high power density to be incident on a small photoelectric conversion element and capable of converting light energy such as sunlight with high efficiency with a small and low-cost configuration. it can.
以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置1の外観斜視図を図1に、図1中に付記するII−II矢視方向に見た模式的な断面図を図2に示す。なお、説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。y軸は集光パネル8から集光光学素子10に入射する光の入射方向、x軸及びz軸は集光光学素子10の入射面10aに沿って直交する二軸であり、図2はx軸及びy軸を含みz軸に垂直な面(xy面)で切断した模式的な断面図に相当する。なお、説明の便宜上から、図1に示す姿勢をもって上下左右ということがあるが、配設姿勢は任意である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a
[光発電装置の概要]
装置全体の概要を把握するため、まず第1構成形態の集光光学素子10を利用した光発電装置1を主たる例として全体概要を説明する。光発電装置1は、上面から厚さ方向(z軸方向)に入射する光を集光し側端の出射面8aから出射するプレート状の集光パネル8と、出射面8aに沿って設けられ長辺/短辺の縦横比が大きな出射面8aから出射された幅広の出射光を長辺が伸びるx軸方向(またはy軸方向)に集光する集光光学素子10(20)と、集光光学素子により集光されて端部に導かれた光を光電変換する光電変換素子50とを備えて構成される。図示する構成形態は、集光光学素子10(20)を棒状ないし帯板状に形成した構成例を示す。光電変換素子50は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。
[Outline of photovoltaic power generation equipment]
In order to grasp the outline of the whole apparatus, first, the whole outline will be described with the photovoltaic
[集光パネルの概要]
集光パネル8は、上面から厚さ方向(z軸方向)に入射する光をプレート内に閉じ込めてy軸方向(及び/またはx軸方向)に集光し、側端の出射面8aから出射するプレート状の集光光学素子であり、例えば、前述した蛍光プレート集光型や分光集光型の集光光学素子、後に詳述する集光光学素子10(20)と同様の散乱理論を適用した集光光学素子、あるいはレンズアレイにより一次集光された複数の集束光を側端の出射面に導いて集光する導波路型の集光光学素子などを用いることができる。
[Outline of condensing panel]
The condensing
[集光光学素子の概要]
集光光学素子10(20)は、太陽光を透過するA部材11(21)と、このA部材中に分散された光透過性を有する粒子状のB部材12(22)とを主体として構成される。B部材の粒子径は、集光光学素子に入射する光の波長をλとしたときに円相当径dが0.1λ〜10λ程度に設定される。ここで、集光光学素子において集光しようとする光の波長λが幅を有する場合には、B部材の粒子径dは、その波長帯域における最短波長λminの1/10〜最長波長λmaxの10倍とすることができる。具体的に、太陽光を集光する場合には、太陽光の放射スペクトルは概ね400nm〜1800nm程度であり、B部材の粒子径dは、40nm〜1.8μmとすることができる。
[Outline of condensing optical element]
The condensing optical element 10 (20) is mainly composed of an A member 11 (21) that transmits sunlight and a particulate B member 12 (22) having light permeability dispersed in the A member. Is done. The particle diameter of the B member is set such that the equivalent circle diameter d is about 0.1λ to 10λ, where λ is the wavelength of light incident on the condensing optical element. Here, when the wavelength λ of the light to be condensed in the condensing optical element has a width, the particle diameter d of the B member is 1/10 of the shortest wavelength λmin in the wavelength band and 10 of the longest wavelength λmax. Can be doubled. Specifically, when collecting sunlight, the radiation spectrum of sunlight is approximately 400 nm to 1800 nm, and the particle diameter d of the B member can be 40 nm to 1.8 μm.
B部材は、x軸方向、y軸方向及びz軸方向に、全体として(マクロ的に見て)均一に分散されるが、図2ではB部材12による散乱の作用を説明するため、散乱された光の光路上にあるB部材12のみを模式的に示している。なお、B部材の分布密度は、A部材及びB部材の材質や形状寸法、使用条件等に応じて適宜設定される。これについては後に詳述する。
The B member is uniformly dispersed (as viewed macroscopically) as a whole in the x-axis direction, the y-axis direction, and the z-axis direction. However, in FIG. Only the
集光光学素子10(20)は、A部材とB部材11,12(21,22)の屈折率特性が異なり、かつA部材及びB部材の少なくともいずれか一方が複屈折性を有している。本明細書においては、A部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnaxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnayx、電界振幅がzy面内でy軸方向に進む光の屈折率をnazyとする。同様に、B部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnbxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnbyx、電界振幅がzy面内でy軸方向に進む光の屈折率をnbzyとする。
In the condensing optical element 10 (20), the refractive index characteristics of the A member and the
ここで、電界振幅がxy面内の光(図2において電界振幅が紙面に平行な光)について偏光状態をp偏光、電界振幅がzy面内の光(図2において電界振幅が紙面に垂直な光)の偏光状態をs偏光とすると、電界振幅がxy面内でy軸方向に進む光はy軸方向に進むp偏光の光、電界振幅がxy面内でx軸方向に進む光はx軸方向に進むp偏光の光である。また、電界振幅がzy面内でy軸方向に進む光はy軸方向に進むs偏光の光である。 Here, the electric field amplitude is light in the xy plane (light whose electric field amplitude is parallel to the paper surface in FIG. 2), the polarization state is p-polarized light, and the electric field amplitude is in the zy plane (the electric field amplitude is perpendicular to the paper surface in FIG. 2). If the polarization state of the light is s-polarized light, the light whose electric field amplitude travels in the y-axis direction in the xy plane is p-polarized light which travels in the y-axis direction, and the light whose electric field amplitude travels in the x-axis direction in the xy plane is x P-polarized light traveling in the axial direction. In addition, the light whose electric field amplitude travels in the y-axis direction in the zy plane is s-polarized light that travels in the y-axis direction.
このとき、naxyとnbxyとが異なり、nayxとnbyxとが実質的に等しくなるようにA部材及びB部材が設定される。なお、nayxとnbyxとが実質的に等しいとは、x軸方向に進むp偏光の光が、B部材により有意な散乱や屈折を受けない屈折率の関係をいい、具体的には、屈折率差が0.05以下のような場合をいう。 At this time, the A member and the B member are set so that “naxy” and “nbxy” are different and “nayx” and “nbyx” are substantially equal to each other. Note that “nayx” and “nbyx” are substantially equal to each other, a p-polarized light traveling in the x-axis direction means a refractive index relationship that is not significantly scattered or refracted by the B member. A case where the difference is 0.05 or less.
このような集光光学素子10(20)では、上方から素子内に入射してy軸方向に進むp偏光の光には、naxyとnbxyとが異なることから、B部材12(22)が粒子として認識される。このとき、y軸方向に進むp偏光の光がB部材の存在によりどの様な影響を受けるか、その取扱いは、媒質(A部材)中をy軸方向に進むp偏光の光の波長(λ/naxy)と媒質中に分散された粒子(B部材)の粒子径dとによって異なったものになる。 In such a condensing optical element 10 (20), in the p-polarized light that enters the element from above and proceeds in the y-axis direction, the N member and the nbxy member are different from each other. Recognized as At this time, how the p-polarized light traveling in the y-axis direction is affected by the presence of the B member is handled by handling the wavelength of the p-polarized light traveling in the y-axis direction in the medium (A member) (λ / Naxy) and the particle diameter d of the particles (B member) dispersed in the medium.
具体的には、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分小さい場合には、レーリー散乱の理論が適用できる。一方、B部材の粒子径dが、A部材中を伝播する光の波長と同程度のオーダーの場合には、ミー散乱の理論が適用できる。また、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分に大きい場合には、幾何光学の理論が適用される。 Specifically, when the particle diameter d of the B member is sufficiently smaller than the wavelength of light propagating in the A member, the Rayleigh scattering theory can be applied. On the other hand, when the particle diameter d of the B member is on the same order as the wavelength of light propagating through the A member, the theory of Mie scattering can be applied. When the particle diameter d of the B member is sufficiently larger than the wavelength of light propagating through the A member, the theory of geometric optics is applied.
本実施形態において、B部材12(22)の粒子径dは、円相当径で0.1λ〜10λ程度に設定されており、媒質であるA部材中を伝播する光の波長と同程度のオーダーである。そのため、集光光学素子10(20)においてA部材中を伝播する光とB部材との関係は、基本的にミー散乱の理論が適用できる。 In the present embodiment, the particle diameter d of the B member 12 (22) is set to a circle-equivalent diameter of about 0.1λ to 10λ, and is on the same order as the wavelength of light propagating through the A member, which is a medium. It is. Therefore, the theory of Mie scattering can be basically applied to the relationship between the light propagating through the A member and the B member in the condensing optical element 10 (20).
但し、集光光学素子10(20)においては、A部材及びB部材11,12(21,22)の少なくとも一方が複屈折性を有しており、その複屈折特性や主軸の方位(光線が異常光となる進相軸または遅相軸の方位)、素子内を進む光の偏光方向及び偏光成分との関係に応じて、散乱の発生状況が変化する。
However, in the condensing optical element 10 (20), at least one of the A member and the
単純化のため、A部材及びB部材のいずれか一方が複屈折性を有し、複屈折の主軸(光学軸)が一軸の場合を考える。この場合において、naxyとnbxyとが異なり(naxy≠nbxy)、nayxとnbyxとが実質的に等しくなる(nayx≒nbyx)構成の端的な例を図3に示す。 For the sake of simplicity, let us consider a case where one of the A member and the B member has birefringence, and the main axis (optical axis) of birefringence is uniaxial. In this case, FIG. 3 shows a straightforward example of a configuration in which “naxy” is different from “nbxy” (naxy ≠ nbxy), and “nayx” is substantially equal to “nbyx” (nayx≈nbyx).
図3(a)(b)は、B部材が複屈折性を有する場合について、A部材とB部材のxy面内における屈折率特性及び両者の関係を表している。図示するように、A部材の屈折率特性30は方向によらず屈折率が一定(naxy=nayx=nazy)の屈折率円、B部材の屈折率特性40(41〜44)は方向によって屈折率が異なる屈折率楕円になっている。図3(a)及び(b)に示す屈折率関係は何れもnaxy≠nbxyであり、A部材の屈折率円30とB部材の屈折率楕円40とが交わるy軸上でnayx=nbyxになっている。
FIGS. 3A and 3B show the refractive index characteristics of the A member and the B member in the xy plane and the relationship between them when the B member has birefringence. As shown in the figure, the refractive index characteristic 30 of the A member has a refractive index circle having a constant refractive index regardless of the direction (naxy = nayx = nazy), and the refractive index characteristic 40 (41 to 44) of the B member has a refractive index depending on the direction. Are different ellipses of refractive index. The refractive index relationships shown in FIGS. 3A and 3B are both “naxy ≠ nbxy”, so that nyx = nbyx on the y-axis where the
従って、集光光学素子内をy軸方向に進むp偏光の光はnaxy≠nbxyによりB部材が粒子として認識される。一方、素子内をx軸方向に進むp偏光の光には、nayx=nbyxであることから、B部材が粒子として認識されない。 Therefore, p-polarized light traveling in the y-axis direction through the condensing optical element is recognized as a particle by the B member as follows: On the other hand, in the p-polarized light traveling in the x-axis direction in the element, since Nayx = nbyx, the B member is not recognized as a particle.
以上は、説明簡明化のため、xy面における屈折率の関係で説明した。これを三次元的に表した概念図を図4、図5に示す。図4(a)は、B部材がx軸方向に正の複屈折性(異常光の屈折率が常光の屈折率よりも高くなる複屈折性)41を有する場合、図4(b)は、B部材がx軸方向に負の複屈折性(異常光の屈折率が常光の屈折率よりも低くなる複屈折性)42を有する場合の例である。図5(a)は、B部材がy軸方向に負の複屈折性43を有する場合、図5(b)は、B部材がy軸方向に正の複屈折性44を有する場合の例である。
The above has been described with respect to the refractive index on the xy plane for the sake of simplicity. The conceptual diagram which expressed this three-dimensionally is shown in FIG. 4, FIG. FIG. 4A shows a case where the B member has positive birefringence (birefringence in which the refractive index of extraordinary light is higher than the refractive index of ordinary light) 41 in the x-axis direction. This is an example in which the B member has negative birefringence (birefringence in which the refractive index of extraordinary light is lower than the refractive index of ordinary light) 42 in the x-axis direction. 5A shows an example in which the B member has
図4中にハッチングを付して示すものは、A部材及びB部材のzy面内の屈折率円である。両図から分かるように、複屈折の主軸がx軸方向に配向する場合には、nayxとnbyxのみならずnazyとnbzyも実質的に等しくなり、nayx=nazy≒nbyx=nbzyとなる。これは、A部材とB部材の屈折率の関係が逆になっても(A部材が複屈折性を有する場合においても)同様である。このように、一軸異方性の複屈折の主軸がx軸方向に配向する場合を第1構成形態の集光光学素子10として説明する。
What is shown with hatching in FIG. 4 is a refractive index circle in the zy plane of the A member and the B member. As can be seen from both figures, when the main axis of birefringence is oriented in the x-axis direction, not only nayx and nbyx, but also nazy and nbzy are substantially equal, so that nayx = nazy≈nbyx = nbzy. This is the same even if the refractive index relationship between the A member and the B member is reversed (even when the A member has birefringence). A case where the principal axis of birefringence having uniaxial anisotropy is oriented in the x-axis direction will be described as the condensing
また、図5中にハッチングを付して示すものは、各々A部材,B部材のxz面内の屈折率円である。両図から分かるように、複屈折の主軸がy軸方向に配向する場合には、屈折率が実質的に等しいのはnayxとnbyxのみであり、naxy≠nbxy,nazy≠nbzyとなる。A部材とB部材の屈折率の関係が逆になっても同様である。このように、一軸異方性の複屈折の主軸がy軸方向に配向する場合を第2構成形態の集光光学素子20として説明する。
Also, in FIG. 5, hatching indicates the refractive index circles in the xz plane of the A member and B member, respectively. As can be seen from both figures, when the main axis of birefringence is oriented in the y-axis direction, the refractive indices are substantially equal only to nayx and nbyx, and thus, n ≠ nbxy, nazy ≠ nbzy. The same applies if the relationship between the refractive indexes of the A member and the B member is reversed. The case where the principal axis of biaxial refraction having uniaxial anisotropy is oriented in the y-axis direction will be described as the condensing
[第1構成形態の集光光学素子]
第1構成形態の集光光学素子10においては、集光パネル8から出射し集光光学素子10に入射してA部材中を進む光のうち、y軸方向に進むp偏光の光にはnaxy≠nbxyであることからB部材12が媒質(A部材11)から識別されて粒子として存在する。一方、x軸方向に進むp偏光の光にはnayx≒nbyxであることからB部材12が粒子と識別されず、粒子が存在しない状態(均質媒質)と同じになる。
[Condensing optical element of first configuration]
In the condensing
そのため、集光光学素子10の上方から入射してy軸方向に進むp偏光の光(p偏光成分)は、屈折率差に基づいて媒質中に粒子として存在するB部材12により散乱されるが、x軸方向に進むp偏光の光は、粒子と識別されないB部材によって散乱されることなくそのままx軸方向に進むことになる。
Therefore, the p-polarized light (p-polarized component) that enters from the upper side of the condensing
本発明は、上記のような複屈折性に基づく屈折率差を利用するため、B部材12に入射する光の入射角に応じて散乱断面積が変化し、散乱効率が変化する。図6(a)〜(d)は、B部材12に入射する光の入射角と散乱との関係を模式的に示す説明図である。図示のように、y軸を基準としたB部材12への入射角θが0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(a)、入射角がθ=90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(d)。
Since the present invention uses the refractive index difference based on the birefringence as described above, the scattering cross section changes according to the incident angle of the light incident on the
B部材への入射角θが0〜90度の間にあるときは、当該入射角におけるA部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する(b)(c)。図6(及び図2)では、散乱により拡散する光を、入射光軸に沿って直進する光と、入射光軸から離れて左右に広がる2本の光とに代表させた3本のベクトルで表しており、入射角θが大きくなるほど散乱効率が低下して左右に広がる散乱光のレートが小さくなること、入射角θが90度では散乱が生じないことを示している。
When the incident angle [theta] to the B member is between 0 and 90 degrees, the scattering efficiency varies with the scattering cross section corresponding to the refractive index difference between the
このような構成の集光光学素子10では、図2に示すように、集光光学素子の入射面10aから入射してy軸方向に進むp偏光の光が、A部材(媒質)11中に粒子として存在するB部材12により散乱を受け、例えば表面付近のB部材12で入射光の4割が散乱される。B部材12の側方を通過した光も厚さ方向に分布する次のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。またB部材12で散乱された光が厚さ方向に分布する次のB部材により散乱され、多重散乱される。
In the condensing
その結果、集光光学素子10にy軸に沿って入射した光は、この素子中を進むにつれてy軸に平行に進む光の割合が減少し、xy面で斜めに傾斜した光の割合が増加する。x軸の+方向または−方向に傾斜した光は、B部材12への入射角が大きくなるほど散乱効率が低下して傾斜角の変化は小さくなるが、x軸方向に大きく傾斜した光(図2及び図6において水平に近くなった光)の割合が大きくなる。x軸に沿って進む光はB部材12によって散乱されず、x軸の+側または−側の側端に向かって進む。
As a result, the light incident on the condensing
このとき、x軸方向に傾斜した状態で集光光学素子の裏面10bに到達した光の傾斜角が、A部材11と空気との界面における全反射角以上になっていれば、集光光学素子10に入射した光を素子内に閉じ込めることができる。例えば、A部材11の屈折率を1.64としたときに、A部材11と空気層との界面に入射する入射角が37.6度以上の光は界面で全反射され、集光光学素子10内に閉じ込められる。集光光学素子の裏面10bで全反射された光は、裏面側から入射面側に進む過程で再びB部材12により散乱され進行方向がx軸方向に偏向される。
At this time, if the inclination angle of the light reaching the
なお、集光光学素子の裏面10bに、A部材11と屈折率が異なる保護膜等を形成した場合には、A部材11と膜との界面において膜の屈折率に応じた光の屈折が生じる。しかしながら、A部材11と膜との界面及び膜と空気との界面においてスネルの法則が成立するため、裏面に到達した光の傾斜角がA部材と空気との界面における全反射角以上になっていれば、少なくとも膜と空気との界面において全反射条件が満たされされ、集光光学素子10内に閉じ込められる。
When a protective film having a refractive index different from that of the
また、上記の保護膜等を有する構成において、裏面に到達した光の傾斜角がA部材と膜との界面における全反射角以上になっている場合は、A部材と膜との界面において全反射条件が満たされ、裏面に到達した光は膜中に進入することなくA部材中へ全反射される。そのため、膜の外側表面が平滑でない等の理由により膜と空気の界面で全反射条件を維持できない場合でも、集光光学素子10に入射したp偏光成分の光が集光光学素子10内に閉じ込められx軸方向に偏向される。
Further, in the configuration having the protective film or the like, when the inclination angle of the light reaching the back surface is greater than or equal to the total reflection angle at the interface between the A member and the film, total reflection is performed at the interface between the A member and the film. The light that reaches the back surface when the condition is satisfied is totally reflected into the A member without entering the film. Therefore, even when the total reflection condition cannot be maintained at the interface between the film and air because the outer surface of the film is not smooth, the light of the p-polarized component incident on the condensing
このため、集光パネル8から出射して集光光学素子10に入射したp偏光成分の光は、ほぼ全体がx軸方向の正負いずれかの端面に向かうこととなり、このようにして集光された光がx軸方向の端部に配設された光電変換素子50に集光入射される。この場合、集光光学素子に入射してy軸方向に進むs偏光成分の光は、集光光学素子10をそのまま透過することになるが、後述する集光装置の構成により、透過した光を効率的に集光することができる。
For this reason, the light of the p-polarized component emitted from the
このような構成よれば、集光パネル8から出射したx軸方向に幅広で縦横比が大きな出射面(例えば、縦横比が50〜500程度の出射面)から出射した光が、集光光学素子10によりx軸方向に集光されて縦横比が減少され(例えば、集光光学素子10の出射面における縦横比が1〜10程度に減少され)、集光効率を大きく向上させることができる。また、このような構成の集光光学素子によれば、屈折率差のないz軸方向に散乱が生じないため、この方向への散乱損失を抑止することができる。
According to such a configuration, the light emitted from the exit surface that is wide in the x-axis direction and has a large aspect ratio (for example, the exit surface having an aspect ratio of about 50 to 500) exiting from the
[第2構成形態の集光光学素子]
第2構成形態の集光光学素子20は、一軸異方性の複屈折の主軸がy軸方向に沿うように配向して分布させた構成である(図5を参照)。このような集光光学素子20において、集光光学素子20に入射してA部材中を進む光のうち、p偏光の光については、前述した第1構成形態の集光光学素子10と同様である。
[Condensing optical element of second configuration]
The condensing
すなわち、集光光学素子20に入射してA部材21中を進む光のうち、y軸方向に進むp偏光の光について、naxy≠nbxyであることからB部材22が媒質から識別されて粒子として存在する。また、A部材中をx軸方向に進むp偏光の光には、nayx≒nbyxであることから、B部材22が粒子として認識されず、粒子が存在しない状態と同じになる。
That is, of the light that enters the condensing
集光光学素子20においては、集光光学素子20に入射してA部材中をy軸方向に進むs偏光の光についても、上記と同様の作用を持つ。集光光学素子20においては、一軸異方性の複屈折の主軸がy軸方向に沿って配向されており、A部材21とB部材22の屈折率の関係がy軸を中心として軸対称になっている。そのため、xy面と直交するzy面において、上記と同様の作用が生じる。
In the condensing
すなわち、集光光学素子20に入射してA部材中を進む光のうち、電界振幅がzy面内でy軸方向に進む光(zy面においてy軸方向に進むp偏光の光)について、nazy≠nbzyであることからB部材22が媒質(A部材21)から識別されて粒子として存在する。また、A部材中を進む光のうち、電界振幅がzy面内でz軸方向に進む光(zy面においてz軸方向に進むp偏光の光)には、nayz≒nbyzであることからB部材22が粒子として認識されず、粒子が存在しない状態と同じになる。
That is, of the light that enters the condensing
そのため、A部材21中をy軸方向に進む光は、p偏光及びs偏向の何れについてもA部材とB部材の屈折率差に基づき媒質中に粒子として存在するB部材22により散乱を受ける。また、A部材中をx軸方向またはz軸方向に進む光は、粒子と識別されないB部材22によって散乱されることなく、そのままx軸方向またはz軸方向に進む。B部材22の散乱断面積は光の入射角に応じて変化し、その変化が軸対称に生じることを除いて、図6(a)〜(d)を参照して説明した状況と同様である。
Therefore, the light traveling in the y-axis direction in the
具体的には、y軸を基準としたB部材22への入射角θが0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(図6(a)を参照)、入射角がθ=90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(図6(d)を参照)。B部材への入射角θが0〜90度の間にあるときは、当該入射角におけるA部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する(図6(b),(c)を参照)。
Specifically, when the incident angle θ to the
このため、集光光学素子20においては、入射面から入射してy軸方向に進む光は、A部材21中に粒子として存在するB部材22により散乱を受け、厚さ方向に分布する複数のB部材22により多重散乱される。このうち、図2においてp偏光(p偏光成分)の光は、素子中を進むにつれてy軸に平行に進む光の割合が減少し、xy面で+x側または−x側に傾斜した光の割合が増加する。また、図2においてs偏光(s偏光成分)の光は、素子中を進むにつれてy軸に平行に進む光の割合が減少し、zy面で+z側または−z側に傾斜した光の割合が増加する。
For this reason, in the condensing
傾斜した光の割合は、裏面に向かうほど大きく傾斜した光の割合が増大する。x軸に沿って進むp偏光の光はB部材22によって散乱されず、x軸の+側または−側の端面に向かって進む。z軸に沿って進むs偏光の光もB部材22によって散乱されず、z軸の+側または−側の端面に向かって進む。
The ratio of the inclined light increases as the distance toward the back surface increases. The p-polarized light traveling along the x-axis is not scattered by the
このとき、x軸方向またはz軸方向に傾斜した光の傾斜角が、A部材11と空気との界面における全反射角を超えていれば、集光光学素子20に入射した光が裏面(s偏光の場合には上面または下面)で全反射され集光光学素子20内に閉じ込められる。集光光学素子20の裏面で全反射された光は、裏面側から入射面側に進む過程で再びB部材22により散乱され進行方向がx軸方向またはz軸方向に偏向される。集光光学素子の下面に、A部材21と屈折率が異なる保護膜等を形成した場合についても、第1構成形態の集光光学素子10と同様である。
At this time, if the inclination angle of the light inclined in the x-axis direction or the z-axis direction exceeds the total reflection angle at the interface between the
このため、集光パネル8から集光光学素子20に入射した光は、p偏光成分のほぼ全体がx軸方向の前後いずれかの端面に向かうこととなり、このようにして集光された光がx軸方向の端部に配設された光電変換素子50に集光入射される。一方、集光光学素子に入射してy軸方向に進むs偏光成分の光は、ほぼ全体がz軸方向の上下いずれかの端面に向かうことになるが、後述する集光装置の構成により、これらをp偏光成分と同様にx軸方向に導いて効率的に集光することができる。
For this reason, the light incident on the condensing
このような構成よれば、集光パネル8から出射したx軸方向に幅広で縦横比が大きな出射面から出射した光が、集光光学素子20によりx軸方向に集光されて縦横比が減少され、集光効率を大きく向上させることができる。
According to such a configuration, light exiting from the exit surface that is wide in the x-axis direction and has a large aspect ratio exiting from the
[サイズパラメータ]
次に、A部材11,21及びB部材12,22の好適な構成形態について、ミーの散乱理論に基づいてより詳細に説明する。なお、ミーの散乱理論そのものについては詳細説明を省略するが、例えば、1995年発売(McGRAW-HILL, INC)の アメリカの光学学会 OSA(OPTICAL SOCIETY OF AMERICA)監修の「HANDBOOK OF OPTICS」VolumeI Chapter6 にミー理論の散乱理論について記載されている。集光光学素子10,20では、B部材の粒子径dを入射光の波長λとほぼ同じオーダーの0.1λ〜10λとすることで散乱を生じさせ、前方散乱を多重的に行わせて光を側方に導いている。このとき、後方散乱(損失)を抑制して前方散乱を支配的とし、また一定の厚さ内で効率的に集光することが望まれる。ミーの散乱理論では、その指標としてサイズパラメータαを用いる。
[Size parameter]
Next, preferred configurations of the
サイズパラメータαは、一般的に、下記(1)式で規定される。
α=(π×d)/(λ/n)=(π×d×n)/λ・・・・・・・(1)
ここで、dは粒子径(直径)であり、本明細書においては、B部材の粒子径を、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径とし、頻度分布が最大の最頻粒子径(モード径)で規定している。また(λ/n)は媒質中を進む光の波長であり、nは媒質(A部材)の屈折率である。例示する集光光学素子10,20において、A部材11は複屈折性を有しておらず、媒質の屈折率はn=naxy=nayx=nazyで一定である。
The size parameter α is generally defined by the following equation (1).
α = (π × d) / (λ / n) = (π × d × n) / λ (1)
Here, d is the particle diameter (diameter), and in this specification, the particle diameter of the B member is the equivalent circle diameter by the microscopic method in Japanese Industrial Standard JIS Z 8901 “Test Powder and Test Particles”. The frequency distribution is defined by the most frequent particle diameter (mode diameter). Further, (λ / n) is the wavelength of light traveling through the medium, and n is the refractive index of the medium (A member). In the illustrated condensing
図7及び図8は、ミー散乱の理論に基づいてシュミレーションしたデータであり、円の中心に配設された粒子により左方から入射した光が散乱される様子(散乱光の分布)を、前方0度方向の大きさで規格化して示している。円の中心から右側の半円が前方、左側が後方であり、点線は30度ごとの方位角を示す。両図における粒子、媒質(媒体)、入射光の共通条件は下記のとおりである。
・粒子の屈折率nbxy:1.88
・媒質の屈折率naxy:1.64
・入射光の波長 λ:633nm
FIGS. 7 and 8 are simulation data based on the theory of Mie scattering, in which light incident from the left is scattered by the particles arranged at the center of the circle (distribution of scattered light). It is shown normalized by the size in the 0 degree direction. The semicircle on the right side from the center of the circle is the front and the left side is the rear, and the dotted line indicates the azimuth angle every 30 degrees. Common conditions for the particles, medium (medium), and incident light in both figures are as follows.
-Particle refractive index nbxy: 1.88
-Refractive index of the medium, sodium: 1.64
-Incident light wavelength λ: 633 nm
図7と図8で相違する条件は粒子径dであり、図7は粒子径d=0.15μm、図8は粒子径d=0.3μmである。これらの値を(1)式に代入してサイズパラメータαを求めると、
・図7の例のサイズパラメータα:1.22
・図8の例のサイズパラメータα:2.44
となる。図9は、図7の散乱分布と図8の散乱分布を、横軸が入射方向を0度とする左右180度の角度とし、縦軸が分布の割合として描きなおしたものである。
The condition that differs between FIG. 7 and FIG. 8 is the particle diameter d, FIG. 7 is the particle diameter d = 0.15 μm, and FIG. 8 is the particle diameter d = 0.3 μm. Substituting these values into equation (1) to obtain the size parameter α,
Size parameter α in the example of FIG. 7: 1.22
Size parameter α in the example of FIG. 8: 2.44
It becomes. FIG. 9 is a redraw of the scattering distribution of FIG. 7 and the scattering distribution of FIG. 8 with the horizontal axis as an angle of 180 degrees to the left and right where the incident direction is 0 degree, and the vertical axis as the distribution ratio.
図7〜図9から、サイズパラメータαが1.22の場合(図7)と2.44の場合(図8)とで散乱光の分布形態が大きく異なること、サイズパラメータα=1.22の場合には散乱角度が前方及び後方に広く分布し前方散乱も分散が大きいのに対し、サイズパラメータα=2.44の場合には殆ど後方散乱が見られず前方散乱の分散も小さいことなどが分かる。 From FIG. 7 to FIG. 9, the distribution form of the scattered light is greatly different between the case where the size parameter α is 1.22 (FIG. 7) and the case of 2.44 (FIG. 8), and the size parameter α = 1.22. In some cases, the scattering angle is widely distributed in the forward and backward directions, and the forward scattering has a large dispersion. On the other hand, in the case of the size parameter α = 2.44, the back scattering is hardly observed and the dispersion of the forward scattering is small. I understand.
図10(a)〜(d)は、上記共通条件のもとでサイズパラメータαを変化させた場合(すなわち粒子径dを変化させた場合)の散乱光の分布を規格化せずに示したものであり、(a)α=1.0、(b)α=1.5、(c)α=2.0、(d)α=2.5である。図11は、上記共通条件のもとでサイズパラメータαを変化させたときの、前方0度方向への散乱割合に対する後方180度方向への散乱割合をプロットしたものである。
FIGS. 10A to 10D show the distribution of scattered light without normalization when the size parameter α is changed under the above common conditions (that is, when the particle diameter d is changed). (A) α = 1.0, (b) α = 1.5, (c) α = 2.0, and (d) α = 2.5. FIG. 11 is a plot of the scattering rate in the backward 180 degree direction with respect to the scattering rate in the
図10及び図11から、サイズパラメータαが1.5以上のときに前方散乱が略9割以上となり、前方散乱が支配的になる。またサイズパラメータαが2以上になると、前方散乱に対する後方散乱の割合がほぼ0になる。 10 and 11, when the size parameter α is 1.5 or more, the forward scattering is approximately 90% or more, and the forward scattering becomes dominant. When the size parameter α is 2 or more, the ratio of backscattering to forward scattering becomes almost zero.
但し、サイズパラメータαが大きくなると0度方向への前方散乱の割合が増加するが、散乱角度が小さく(狭く)なる。このことは、集光光学素子10,20を製作する際の複屈折体の配向精度や、集光光学素子の裏面側に達した光が全反射条件を満たすようにするための厚さ方向(y軸方向)寸法に影響を及ぼす。つまりサイズパラメータαは所定以上大きければ大きいほど良いわけではなく、実用上の見地から一定の範囲であることが必要となる。
However, as the size parameter α increases, the proportion of forward scattering in the 0 degree direction increases, but the scattering angle becomes smaller (narrower). This is because the orientation accuracy of the birefringent body when the condensing
図12は、前記共通条件のもとで、サイズパラメータαと散乱角との関係を示したグラフである。複屈折体(A部材またはB部材)の製作角度精度は1〜2度程度が一般的であり、粒子による散乱角はこれを超える角度であることが必要となる。図12から、現状での一般的な製作角度精度に基づくサイズパラメータαの上限は50前後である。 FIG. 12 is a graph showing the relationship between the size parameter α and the scattering angle under the common conditions. The production angle accuracy of the birefringent body (A member or B member) is generally about 1 to 2 degrees, and the scattering angle by the particles needs to exceed this. From FIG. 12, the upper limit of the size parameter α based on the current general manufacturing angle accuracy is around 50.
次に、前記共通条件のもとで、集光光学素子の体積、及び集光光学素子に占める粒子の充填率を一定(π/6)とした場合のサイズパラメータαと散乱係数との関係を図13に示す。図において、散乱係数が大きいほど集光光学素子の厚さを低減することができ、複屈折材料が少なくて済む。この点から粒子の充填率が一定の場合には、サイズパラメータα=10前後において散乱係数が最大になる。散乱係数は最大値の1/5(20%)以上であることが好ましく、この場合サイズパラメータαの上限はα=40程度となる。 Next, the relationship between the size parameter α and the scattering coefficient when the volume of the condensing optical element and the filling rate of the particles occupying the condensing optical element are constant (π / 6) under the above common conditions. As shown in FIG. In the figure, as the scattering coefficient is larger, the thickness of the condensing optical element can be reduced, and the birefringent material can be reduced. From this point, when the particle filling rate is constant, the scattering coefficient becomes maximum at around the size parameter α = 10. The scattering coefficient is preferably 1/5 (20%) or more of the maximum value. In this case, the upper limit of the size parameter α is about α = 40.
また、製造精度の観点から見ると、一般的な製作精度の2倍以上となる5度を確保可能なサイズパラメータはα=20以下であることが好ましい(図12)。また総体積を一定とした場合の散乱係数の面からも散乱効率がピーク値の1/4以上であるサイズパラメータα=20以下であることが好ましい(図13)。 From the viewpoint of manufacturing accuracy, it is preferable that the size parameter capable of securing 5 degrees, which is twice or more of general manufacturing accuracy, is α = 20 or less (FIG. 12). Further, from the viewpoint of the scattering coefficient when the total volume is constant, it is preferable that the scattering parameter has a size parameter α = 20 or less, which is ¼ or more of the peak value (FIG. 13).
他方、粒子径についてみると、集光光学素子の厚さを考慮した場合、厚さは10mm程度以内にすることが望ましい。この場合において入射面から入射した光が裏面側に到達するまでに500回散乱されるためには粒子間隔が20μm以内である必要があり、このときの最大粒子径は20μmとなる。粒子の体積充填率を5%以内とする場合には、粒子径は10μm以内であることが好ましい。なお、前記共通条件において粒子径をd=10μmとしたときのサイズパラメータはα≒80であり、粒子径をd=10μmとし入射光の波長λを1.3μmとしたときのサイズパラメータはα≒40である。 On the other hand, regarding the particle diameter, when the thickness of the condensing optical element is taken into consideration, it is desirable that the thickness be within about 10 mm. In this case, in order that the light incident from the incident surface is scattered 500 times before reaching the back surface side, the particle interval needs to be within 20 μm, and the maximum particle size at this time is 20 μm. When the volume filling factor of the particles is within 5%, the particle diameter is preferably within 10 μm. Note that the size parameter when the particle diameter is d = 10 μm under the common condition is α≈80, and the size parameter when the particle diameter is d = 10 μm and the wavelength λ of incident light is 1.3 μm is α≈. 40.
以上を総合すると、A部材及びB部材からなる集光光学素子において、サイズパラメータは1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが好ましく、d≦10μmであることがより好ましい。 In summary, in the condensing optical element composed of the A member and the B member, the size parameter is preferably 1.5 ≦ α ≦ 40, and more preferably 2 ≦ α ≦ 20. The particle diameter d of the B member is preferably 20 μm or less, and more preferably d ≦ 10 μm.
以下、前述した第1構成形態の集光光学素子10、第2構成形態の集光光学素子20について、具体的な実施例を説明する。なお、集光光学素子10の適用例を第1実施例、集光光学素子20の適用例を第2実施例とし、A部材及びB部材が何れも複屈折性を有しない構成を比較例として説明する。
Specific examples of the condensing
[第1実施例]
第1実施例は、既述した第1構成形態の集光光学素子10において、A部材11及びB部材12の条件として下記を適用した。
・A部材の屈折率 :naxy=nayx=nazy=1.64
・B部材の屈折率 :nbxy=1.88
nbyx=nbzy=1.64
・B部材の粒子径 :d=1.0μm(延伸後の粒子径)
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=8.14である。本実施例は、第1構成形態の集光光学素子20において、B部材がx軸方向に正の複屈折性(異常光の屈折率が常光の屈折率よりも高くなる複屈折性)を有する場合に相当する。
[First embodiment]
In the first example, the following was applied as the conditions of the
-Refractive index of A member: n ay = nayx = nazy = 1.64
-Refractive index of B member: nbxy = 1.88
nbyx = nbzy = 1.64
-Particle size of B member: d = 1.0 μm (particle size after stretching)
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 8.14. In this example, in the condensing
上記の条件は、A部材11としてナフタレート70/テレフタレート30のコポリエステル(coPEN)のモノマー、B部材12としてポリエチレンナフタレート(PEN)の粒を用いて、A部材11中にB部材12を均一分散させたシートを作成し、このシートをx軸方向に一軸延伸して集光光学素子10を作成した場合に相当する。このとき、A部材11(coPEN)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnaxy=nayx=nazy=1.64程度となる。一方、B部材12は延伸方向(x軸方向)と他の方向とで屈折率が異なり、偏光面が延伸方向に沿った光に対して1.88程度、他の方向について1.64程度となる。なお、散乱理論からB部材は球形でなくても良く、本実施例では、延伸後のB部材(粒子)の円相当径を上記条件として適用した。
The above conditions are as follows: A
ここで、B部材12は、複屈折の主軸がx軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射するp偏光の光はxy面内の入射角度によってB部材12の屈折率が変化し、A部材11との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。具体的には、y軸を基準(0度)とした入射角θが増加するにつれて散乱断面積が減少する。
Here, since the
図14は、横軸にB部材(粒子)12の屈折率、縦軸に散乱断面積をとり、B部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットはB部材12への入射角がθ=0度(入射面に垂直入射)、右下端の黒塗り四角のプロットはB部材12への入射角がθ=90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図14から、B部材12の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材12の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。
In FIG. 14, the horizontal axis represents the refractive index of the B member (particle) 12, the vertical axis represents the scattering cross section, and how the scattering cross section changes due to the refractive index change accompanying the change in the incident angle to the B member. It is shown. In the figure, the plot of the black square at the upper left corner has an incident angle to the
図15は、上記の散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、xy面においてy軸を基準(0度)としx軸方向を90度としたB部材への光の入射角θである。散乱効率は、ミーの散乱理論により求められる散乱断面積をB部材の幾何学的面積(πd2/4)で除した値である。また、散乱係数は、散乱断面積にB部材の密度(単位体積に含まれる粒子の数)を乗じた値、散乱確率は、散乱断面積にB部材の密度の三分の二乗を乗じた値である。 FIG. 15 is a table summarizing how indices such as the scattering cross section and the scattering probability considering the distribution density of the B member change depending on the incident angle to the B member. The incident angle to the particles in the table is the incident angle θ of light on the B member with the y axis as the reference (0 degree) and the x axis direction as 90 degrees on the xy plane. Scattering efficiency is a value obtained by dividing the scattering cross section obtained by the scattering theory of Mie geometric area B member (πd 2/4). The scattering coefficient is a value obtained by multiplying the scattering cross section by the density of the B member (the number of particles contained in the unit volume), and the scattering probability is a value obtained by multiplying the scattering cross sectional area by the square of the density of the B member. It is.
このように構成された集光光学素子10では、入射面10aから入射して厚さ方向に進むp偏光の光が、媒質(A部材11)中に粒子として存在するB部材12によりミー散乱を受ける。B部材12の粒子径が1μm、粒子密度が0.1個/μm3では、表面付近の最初の段階で入射光の約4割が散乱され、6割は散乱されずに直進する。直進した光も厚さ方向に分布する次の段階のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。散乱を受けた光はy軸に対して角度が付き、斜めに傾斜した光になる。
In the condensing
斜めに傾斜した光は、次の段階では一部がより斜め(入射角θが増加する方向)に曲げられ、他の一部は元に戻る方向(入射角θが減少する方向)に曲げられ、残りは入射角が変化せずにそのまま進む光になる(図2を参照)。但し、斜めに傾斜した光は入射角が大きくなるほど(図2において水平に近くなるほど)散乱確率が減少する。これは、媒質(A部材11)と粒子(B部材12)との屈折率差が小さくなり、散乱断面積が急激に減少するからである(図14及び図15を参照)。そのため、入射角度の大きい光については散乱を受ける割合が減少し、元の垂直方向に戻る割合も減少する。 In the next stage, the light that is tilted obliquely is bent more obliquely (in the direction in which the incident angle θ increases), and the other part is bent in the return direction (in the direction in which the incident angle θ decreases). The remaining light becomes the light traveling as it is without changing the incident angle (see FIG. 2). However, the probability of scattering of light inclined obliquely decreases as the incident angle increases (closer to the horizontal in FIG. 2). This is because the refractive index difference between the medium (A member 11) and the particles (B member 12) is reduced, and the scattering cross section is rapidly reduced (see FIGS. 14 and 15). For this reason, the ratio of receiving light with a large incident angle decreases and the ratio of returning to the original vertical direction also decreases.
媒質中を進む光の傾斜角度(入射角θ)が90度近くになると、粒子の屈折率nbyxが媒質の屈折率nayxとほぼ同じになり、散乱確率が無視できるほど小さくなる。そのため、数多くの段階が進むことにより、光は90度方向つまりx軸に沿った+側または−側に向かい、面方向に閉じ込められる。 When the tilt angle (incidence angle θ) of light traveling in the medium is close to 90 degrees, the refractive index nbyx of the particles becomes almost the same as the refractive index nayx of the medium, and the scattering probability becomes so small that it can be ignored. Therefore, as the number of steps proceeds, the light is confined in the plane direction toward the 90 ° direction, that is, the + side or the − side along the x axis.
なお、90度方向まで傾斜せず、集光光学素子の裏面10bに到達した光でも、傾斜角が媒質と空気との界面における全反射角以上になっていれば、媒質中の光は面内に閉じ込められる。本実施例においては、A部材11と空気層との界面に入射する光の入射角が37.6度以上であれば光は界面で全反射される。全反射された光は入射面10aに向けて媒質中を進む過程で再びB部材12に多重散乱され、最終的に90度方向つまりx軸に沿った+側または−側に集光される(図22〜図25を参照)。
Even if the light reaches the
従って、最も裏面側に分散されたB部材12の層を通って裏面に向かう光が、裏面10bにおいて全反射されるようにA部材11及びB部材12を設定すれば、集光光学素子10に入射したp偏光成分の光全てを+x方向の端部に向けて集光することができる。このような構成によれば、集光光学素子10を薄く構成することができる。
Therefore, if the
そこで、集光光学素子10に入射した光が、散乱によりどの様な角度分布に変化してゆくのかを図15に示した指標を用いて計算したシミュレーションデータを図16に示す。図16において、横軸はxy面において集光光学素子の入射面10aに垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材12)による散乱の段階数であり、2n回ごとにプロットしている。
Accordingly, FIG. 16 shows simulation data calculated using the index shown in FIG. 15 as to what angle distribution the light incident on the condensing
このシミュレーションデータから、粒子による散乱の段階が進むにつれ、入射面10aに垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が明確に把握できる。このデータを詳細に見ると、粒子による散乱の段階が16段階程度までは、0度方向の光が減少し角度分布の幅が広がっていく様子が分かる。但し、この初期過程では、割合として0度方向の光が最も多く、1ピークの山形の分布である。ところが、32段階ではピークがほとんどない平坦な分布になり、64段階,128段階では中央がへこんだ緩い凹状の分布に変化する。256段階以降では左右対称な2ピークが明確になり、512段階では−20〜20度の光がほとんど見られなくなる。そして、1024段階以降ではピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。
From this simulation data, it can be clearly seen how the light perpendicularly incident on the
このデータから、粒子による散乱が1000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材11と空気層との界面の全反射角を超える。従って、A部材11に垂直入射した光がB部材12により1000段階以上多重散乱されるように集光光学素子10を構成することにより、入射光を集光光学素子10内に閉じ込め、x軸方向の端部に設けた光電変換素子50に集光入射させることができる。
From this data, when scattering by particles progresses to about 1000 steps, the angle of light propagating in the element is mostly 40 degrees or more and -40 degrees or less, and the total reflection angle at the interface between the
[第2実施例]
第2実施例は、既述した第2構成形態の集光光学素子20において、A部材21及びB部材22の条件として下記を適用した。
・A部材の屈折率 :naxy=nayx=nazy=1.49
・B部材の屈折率 :nbxy=1.49
nbyx=nbzy=1.66
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。本実施例は、第2構成形態の集光光学素子20において、B部材がy軸方向に負の複屈折性(異常光の屈折率が常光の屈折率よりも低くなる複屈折性)を有する場合に相当する。
[Second Embodiment]
In the second example, the following was applied as the conditions of the
-Refractive index of the A member: n ay = nayx = nazy = 1.49
-Refractive index of B member: nbxy = 1.49
nbyx = nbzy = 1.66
-Particle size of B member: d = 1.0 μm
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 7.40. In this embodiment, in the condensing
上記の条件は、A部材21として硬化後の屈折率が1.49となるように調整した熱硬化性ポリマー、B部材22として円相当径1μmの方解石の粒子を用い、A部材21にB部材22を均一分散させた溶液を平板状の型に流し込み、型の上下に3kV/mmの電圧を印加しつつ加熱硬化させて集光光学素子20を作成した場合に相当する。このとき、A部材21(硬化後のポリマー)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnaxy=nayx=nazy=1.49程度となる。一方、B部材22は電圧の印加方向(y軸方向)に誘電率の異常軸が揃って他の方向と屈折率が異なり、偏光面が電圧の印加方向に沿った光に対して1.49程度、他の方向について1.66程度となる。
The above conditions are as follows: A
B部材22は、複屈折の主軸がy軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射する光の入射角度によってB部材22の屈折率が変化し、A部材21との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。xy面について考慮すると、y軸を基準(0度)とした入射角θが増加するにつれて散乱断面積が減少する。
Since the
図17は、横軸にB部材(粒子)22の屈折率、縦軸に散乱断面積をとり、xy面内におけるB部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットがB部材22への入射角がθ=0度(入射面に垂直入射)、右下端の黒塗り四角のプロットがB部材22への入射角がθ=90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図17から、B部材22の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材22の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。
In FIG. 17, the horizontal axis represents the refractive index of the B member (particle) 22, the vertical axis represents the scattering cross section, and how the scattering cross section is represented by the change in the refractive index accompanying the change in the incident angle to the B member in the xy plane. It shows what will change. In the figure, the black square plot at the upper left corner indicates that the incident angle to the
図18は、上記散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、xy面においてy軸を0度としx軸方向を90度としたB部材への光の入射角θである。散乱効率、散乱係数、散乱確率の各指標は、第1実施例の図15と同様である。 FIG. 18 is a table summarizing how indicators such as the scattering cross section and the scattering probability considering the distribution density of the B member change depending on the incident angle to the B member. The incident angle to the particles in the table is the incident angle θ of light on the B member with the y-axis being 0 degree and the x-axis direction being 90 degrees on the xy plane. Each index of scattering efficiency, scattering coefficient, and scattering probability is the same as that of FIG. 15 of the first embodiment.
集光光学素子20では、入射面から入射してy軸方向に進むp偏光の光は、媒質中に粒子として存在するB部材22によりミー散乱を受ける。B部材22の粒子径が1μm、粒子密度が0.1個/μm3では、散乱過程の概要は第1実施例と同様であり、表面付近の最初の段階で入射光の約4割、次段で4割が散乱され、段階が進むにつれて散乱を受ける。散乱を受けた光はy軸に対して傾斜した光となり、徐々に傾斜角が増加してゆく。
In the condensing
図16と同様に、集光光学素子20に入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータを図19に示す。図19において、横軸はxy面において集光光学素子20の入射面に垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材22)による散乱の段階数であり、2n回ごとにプロットしている。
Similarly to FIG. 16, simulation data calculated as to what angle distribution the light incident on the condensing
シミュレーションデータから、粒子による散乱の段階が進むにつれて、入射面に垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が把握でき、この基本的な傾向は第1実施例と同様である。データを詳細に見ると、粒子による散乱の段階が32段階程度まで、0度方向の光が減少し角度分布の幅が広がっていく。この初期過程では、割合として0度方向の光が最も多い1ピークの山形の分布である。ピークがほとんどない平坦な分布になるのは64段階で、128,256段階で中央がへこんだ緩い凹状の分布に変化する。512段階以降で左右対称な2ピークが明確になり、1024段階程度で−20〜20度の光がほとんど見られなくなる。そして、2048段階以降でピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。 From the simulation data, it can be seen that the light perpendicularly incident on the incident surface is inclined in the + direction and the − direction of the x-axis as the stage of scattering by the particles proceeds. This basic tendency is the first example. It is the same. Looking at the data in detail, the light in the 0 degree direction decreases and the width of the angular distribution increases until the number of particle scattering stages reaches about 32 stages. In this initial process, the distribution is a peak-shaped distribution of one peak with the largest amount of light in the 0 degree direction. The flat distribution with almost no peaks is in 64 steps, and the distribution changes into a gentle concave distribution in which the center is recessed in 128 and 256 steps. After the 512 stage, two symmetrical peaks become clear, and -20 to 20 degree light is hardly seen in about 1024 stages. And the change of the angle which takes a peak value after 2048 steps becomes small, and has a strong peak in the vicinity of about ± 80 degrees, and light in an angle range of −40 to 40 degrees is substantially zero.
このデータから、粒子による散乱が2000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材21と空気層との界面の全反射角を超える。従って、A部材21に垂直入射した光がB部材22により2000段階以上多重散乱されるように集光光学素子20を構成することにより、入射光を集光光学素子20内に閉じ込め、x軸方向の端部に設けた光電変換素子50に集光入射させることができる。垂直ではなく斜め入射の光は本例の垂直入射に比べて少ない段数で閉じ込められるようになる。
From this data, when the scattering by the particles proceeds to about 2000 steps, the angle of light propagating in the element is mostly 40 degrees or more and −40 degrees or less, and the total reflection angle at the interface between the
[比較例]
比較例として、何れも複屈折性を有しないA部材及びB部材で構成した場合について、同様のシミュレーションを行った。A部材及びB部材の条件として下記を適用した。
・A部材の屈折率 :naxy=nayx=nazy=1.49
・B部材の屈折率 :nbxy=nbyx=nbzy=1.66
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。
[Comparative example]
As a comparative example, the same simulation was performed for the case where each of the A member and the B member did not have birefringence. The following was applied as conditions of A member and B member.
-Refractive index of the A member: n ay = nayx = nazy = 1.49
-Refractive index of B member: nbxy = nbyx = nbzy = 1.66
-Particle size of B member: d = 1.0 μm
・ B member distribution density: 0.1 / μm 3
The size parameter when the wavelength λ of the incident light is 633 nm is α = 7.40.
図20は、図15及び図18と同様に、散乱断面積や散乱確率などの指標がB部材への入射角度によってどのように変化するかをまとめた表である。また図21が、図16及び図19と同様に、集光光学素子に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータである。 FIG. 20 is a table summarizing how indices such as the scattering cross section and the scattering probability change depending on the incident angle to the B member, as in FIGS. 15 and 18. Further, FIG. 21 shows simulation data calculated as to how the angular distribution of light perpendicularly incident on the condensing optical element changes due to scattering, as in FIGS. 16 and 19.
図21のシミュレーションデータから、粒子による散乱の段階が進むにつれて、垂直入射した光が散乱されていく様子が把握できる。また図16及び図19と対比することにより、実施例1及び2と散乱過程が明らかに異なっていることが把握される。 From the simulation data shown in FIG. 21, it can be seen that vertically incident light is scattered as the stage of scattering by particles proceeds. Further, by comparing with FIG. 16 and FIG. 19, it is understood that the scattering process is clearly different from the first and second embodiments.
すなわち、実施例1及び実施例2においては、垂直入射した光が散乱によってx軸の+方向と−方向に傾斜して行き、所定段階を経ることによって明確な2つのピークとなって表れていたが、この比較例においてそのような傾向は全く見られない。 That is, in Example 1 and Example 2, vertically incident light was tilted in the + and − directions of the x axis due to scattering, and appeared as two distinct peaks through a predetermined stage. However, no such tendency is observed in this comparative example.
データを詳細に見ると、粒子の散乱により0度方向の光が減少して角度分布の幅が広がっていく初期段階の傾向は実施例1及び実施例2と近似する。しかし、比較例においては散乱段階が増えてもこの傾向が変化せずブロードに拡がってゆくことに加え、90度を超えて90〜180度方向に進む光、すなわち入射方向に戻る光の割合が散乱段階の増加とともに増大している。これは素子に入射した光が媒質中の粒子により散乱され単純に拡散していく状況に他ならない。入射と反対側の表面に光が達したときには全反射角より小さな光線は全て外部に抜け出てしまう。これが繰り返し行われると、内部に閉じ込められる光はなくなってくる。 Looking at the data in detail, the tendency of the initial stage where the light in the 0-degree direction decreases due to particle scattering and the width of the angular distribution widens is similar to that in the first and second embodiments. However, in the comparative example, in addition to the fact that this tendency does not change and spreads even if the number of scattering stages increases, the proportion of light that travels in the 90 to 180 degree direction beyond 90 degrees, that is, the ratio of the light that returns to the incident direction. Increasing with increasing scattering stage. This is nothing but a situation where light incident on the element is scattered by particles in the medium and simply diffused. When light reaches the surface opposite to the incident side, all light rays smaller than the total reflection angle escape to the outside. If this is repeated, no light will be trapped inside.
従って、仮にA部材及びB部材の平均的な屈折率やB部材の粒子径、B部材の分布密度等を実施例と同一とし、ミー散乱のサイズパラメータを同一にしたとしても、比較例では入射光を素子内に閉じ込めることができず、素子の端部に設けた光電変換素子に効率的に集光入射させることが困難であることが容易に理解される。 Therefore, even if the average refractive index of the A member and the B member, the particle diameter of the B member, the distribution density of the B member, and the like are the same as those in the example, and the size parameter of the Mie scattering is the same, the incident in the comparative example It is easily understood that light cannot be confined in the element and it is difficult to efficiently collect and enter the photoelectric conversion element provided at the end of the element.
以上の説明では、A部材が複屈折性を持たず、B部材が正または負の複屈折性を有する場合について説明したが、逆であっても良く、A部材及びB部材の両方が複屈折性を有していても良い。また、説明簡明化のため、波長λが一定の場合を例示したが、波長λが幅を有する場合には、B部材の粒子径dを集光する光の波長帯域に応じて適宜設定することができる。具体的には、太陽光の放射スペクトルに合わせて400〜1800nmの範囲とし、あるいは放射スペクトルの強度が高い400〜800nmの範囲とし、または次述する光発電装置における光電変換素子50の変換効率が高い範囲などとすることができる。この場合において、B部材の粒子径dを波長帯域の中心や重心等に合わせて設定することができる他、波長帯域を複数に分割して各分割帯域に合わせた粒子径d1,d2,d3として(すなわち粒子径が異なる複数のB部材の混合体として)設定することも可能である。
In the above description, the case where the A member has no birefringence and the B member has a positive or negative birefringence has been described. However, the opposite may be possible, and both the A member and the B member are birefringent. May have the property. In addition, for simplicity of explanation, the case where the wavelength λ is constant has been illustrated, but when the wavelength λ has a width, the particle diameter d of the B member should be appropriately set according to the wavelength band of the collected light. Can do. Specifically, the conversion efficiency of the
次に、以上説明したような集光光学素子を用いた集光装置について、集光光学素子10を用いた場合を代表例とし、図22〜25を参照して説明する。なお、各図では、電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。 Next, a condensing device using the condensing optical element as described above will be described with reference to FIGS. In each figure, p-polarized light whose electric field amplitude is parallel to the paper surface is indicated by a double-ended arrow symbol, and s-polarized light whose electric field amplitude is perpendicular to the paper surface is indicated by a circular symbol having dots.
[集光装置及び光発電装置の構成例1]
既述したように、第1構成形態の集光光学素子10は、A部材11及びB部材12の屈折率がy軸方向に進むp偏光の光に対して異なり、y軸方向に進むs偏光の光及びx軸方向に進む光について実質的に等しくなるように構成される。
[Configuration example 1 of condensing device and photovoltaic device]
As described above, the condensing
そのため、集光パネルの出射面8aから出射する光がp偏光の直線偏光である場合、図22に示すように、集光光学素子10に入射した光は、いずれもB部材により散乱を受けて進行方向(光ベクトル)が+x側または−x側に配向しx軸方向の端部に集光される。そのため、集光光学素子10単体で、集光パネルの出射面8aから出射した入射光の全量をx軸方向に集光する集光装置を構成することができる。そして、x軸方向の端部に光電変換素子50を設けることにより、極めて簡明かつローコストな構成で、図1に示す光発電装置1を構成することができる。
Therefore, when the light emitted from the
[集光装置及び光発電装置の構成例2]
また、集光パネルの出射面8aから出射する光がs偏光の直線偏光である場合(例えば、集光パネル8が集光光学素子10,20と同様のA部材及びB部材により構成される場合)には、図23に示す集光装置60が適用できる。
[Configuration example 2 of condensing device and photovoltaic device]
Further, when the light emitted from the
集光装置60は、集光光学素子10と、集光パネルの出射面8aと集光光学素子の入射面10aとの間に配設された偏光面回転素子65とにより構成される。偏光面回転素子65は、透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する、広帯域の1/2波長板が好適に用いられる。
The condensing
このような構成の集光装置60では、集光パネルの出射面8aから出射したs偏光の光が偏光面回転素子65を透過することによりp偏光に変換されて集光光学素子10に入射する。そのため、集光光学素子10に入射した光はいずれもB部材により散乱を受けて進行方向が+x側または−x側に配向しx軸方向の端部に集光される。これにより、一対の集光光学素子10と偏光面回転素子65とから成る簡明な構成で、集光パネルの出射面8aから出射した入射光の全量をx軸方向に集光する集光装置を構成することができる。そして、x軸方向の端部に光電変換素子50を設けることにより、簡明かつローコストな構成で光発電装置2を構成することができる。
In the condensing
[集光装置及び光発電装置の構成例3]
集光パネルの出射面8aから出射する光がp偏光及びs偏光の両者からなる場合(例えば、直交二方向の偏光成分からなる光のほか、p偏光成分及びs偏光成分からなるランダム偏光や楕円偏光、円偏光等の場合)、第1構成例及び第2構成例の集光装置では、集光光学素子10に入射するs偏光成分の光がx軸方向に集光されず、集光光学素子10の裏面側に出射する。第3、第4構成例の集光装置70,80は、入射光の偏光組成にかかわらず集光光学素子10に入射する光全てを集光し得るように構成される。
[Configuration Example 3 of Condensing Device and Photovoltaic Power Generation Device]
When light emitted from the
第3構成例の集光装置70は、図24に示すように、集光光学素子10と、この集光光学素子10の裏面側に裏面10aに沿って設けられた反射鏡72と、集光光学素子10と反射鏡72との間に設けられた偏光面回転素子75とを備えて構成される。偏光面回転素子75は、二回度透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回目の透過でs偏光を円偏光に変換し、二回目の透過で円偏光をp偏光に変換する、広帯域の1/4波長板が好適に用いられる。
As shown in FIG. 24, the condensing
このような構成の集光装置70では、入射面10aから入射した光のうち、p偏光成分の光はB部材により散乱されて進行方向がx軸方向の+x側または−x側に配向しx軸方向の端部に集光される。一方、入射面10aから厚さ方向に入射した光のうち、s偏光成分の光は、B部材によって散乱されることなく集光光学素子10を透過して裏面10bから出射する。
In the condensing
集光光学素子10の裏面側に出射したs偏光成分の光は、偏光面回転素子75を透過して反射鏡72により反射され、再び偏光面回転素子75を透過して、集光光学素子の裏面10bから再び集光光学素子10に入射する。このとき、集光光学素子10に再入射する光は、偏光面回転素子75を二度透過していることから、偏光面が90度回転されてp偏光成分の光になっている。そのため、裏面10bから再入射して厚さ方向に進むp偏光成分の光は、集光光学素子10の裏面で全反射されたp偏光成分の光と同様に、裏面側から入射面側に向けて進む過程でB部材により散乱され、x軸方向の+x側または−x側の側端部に集光される。
The light of the s-polarized component emitted to the back surface side of the condensing
従って、このような構成の集光装置70によれば、一組の集光光学素子10と偏光面回転素子75と反射鏡72とから成る簡明な構成で、集光パネルの出射面8aから出射した入射光の全量をx軸方向に集光する集光装置を構成することができる。そして、x軸方向の端部に光電変換素子50を設けることにより、比較的簡明かつローコストな構成で光発電装置3を構成することができる。
Therefore, according to the condensing
[集光装置及び光発電装置の構成例4]
第4構成例の集光装置80は、図25に示すように、第1の集光光学素子101と、その裏面側に設けられた第2の集光光学素子102と、これらの集光光学素子101,102の間に設けられた偏光面回転素子85とからなり、第1の集光光学素子101のx軸方向と第2の集光光学素子102のx軸方向とが平行になるように配設される。偏光面回転素子85は、既述した偏光面回転素子65と同様に透過した光の偏光面を90度回転させる光学素子であり、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する広帯域の1/2波長板が好適に用いられる。
[Configuration example 4 of condensing device and photovoltaic device]
このような構成の集光装置80では、第1の集光光学素子101の入射面側から厚さ方向に入射した光のうち、p偏光成分の光は、第1の集光光学素子101に均一分散されたB部材12により散乱されて進行方向が+x側または−x側に配向し、x軸方向の端部に集光される。一方、第1の集光光学素子101を透過したs偏光成分の光は第1の集光光学素子101の裏面側から出射され偏光面回転素子85に入射する。
In such a configuration of the
偏光面回転素子85に入射したs偏光成分の光は、この偏光面回転素子85を透過する過程で偏光面が90度回転され、p偏光成分の光となって偏光面回転素子85から出射する。そのため、第2の集光光学素子102には、偏光面が回転されてp偏光成分になった光が入射し、この第2の集光光学素子102に均一分散されたB部材12により散乱されてx軸方向の端部に集光される。
The light of the s-polarized component incident on the polarization
従って、このような構成の集光装置80によれば、2本の集光光学素子10と偏光面回転素子85を重ねて配設する比較的簡明な構成で、集光パネル8から出射した光全てをx軸方向に集光する集光装置を構成することができる。また、集光光学素子101,102の各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、比較的簡明な構成で光発電装置4を構成することができる。
Therefore, according to the condensing
以上では、集光光学素子を用いた集光装置について、集光光学素子10を用いた場合を例として説明したが、集光光学素子20を用いた場合も、同様の手法を用いて集光装置を構成することができる。まず、集光パネルの出射面8aから出射する光がp偏光の直線偏光である場合、または集光パネルの出射面8aから出射する光がs偏光の直線偏光である場合には、図22,図23を参照して説明した第1,第2構成例の集光装置と同じである。
Although the case where the condensing
一方、集光パネルの出射面8aから出射する光がp偏光及びs偏光の両者からなる場合、第2構成形態の集光光学素子20においては、入射面から厚さ方向に入射するs偏光成分の光が集光光学素子20の+z方向の面(上面とする)または−z方向の面(下面とする)から出射する。集光光学素子20の上面または下面から出射する光は、電界振幅がzy面内でz軸方向に進む光であり、そのままでは光の進行方向をx軸方向に偏向することができない。
On the other hand, when the light emitted from the
この場合、例えば、第3構成例の集光装置70と同様に、s偏光成分光の出射面(例えば上面)に沿って偏光面回転素子(75)と反射鏡(72)とを設け、集光光学素子20の上面から出射した光の偏光面90度回転させて集光光学素子20に再入射させることにより、x軸方向の+x側または−x側の側端部に集光することができる。
In this case, for example, similarly to the condensing
また、第3構成例の集光装置80と同様に、s偏光成分光の出射面(例えば上面)に沿って偏光面回転素子(85)と第2の集光光学素子10(または20)を設け、集光光学素子20の上面から出射した光の偏光面90度回転させて第2の集光光学素子10に入射させることにより、x軸方向の+x側または−x側の側端部に集光することができる。
Similarly to the condensing
[集光光学素子の端部における光エネルギーの取り出し手法]
次に、以上説明した集光光学素子10,20において、x軸方向に集光される光のエネルギー取り出し手法について、幾つかの代表的な概念を例示する図26(a)〜(e)を参照しながら簡明に説明する。
[Method of extracting light energy at the end of the condensing optical element]
Next, in the condensing
(a)及び(b)は、集光光学素子10,20において、+x側及び−x側のいずれか一方の端部(例えば−x側の端部)に光を反射する反射手段を設け、入射光をx軸方向の他方の端部(例えば+x側の端部)に集光する構成例を示す。このうち、(a)は、集光光学素子10,20の−x側の端面にミラー91を設け、あるいは反射膜を形成して、−x方向に伝播する光を+x方向に折り返して集光する構成例である。(b)は、集光光学素子10,20の−x側の端部にプリズム状の折り返し部92を形成し、あるいは−x側の端面に対峙して直角プリズムを設けて、−x方向に伝播する光を+x方向に折り返して集光する構成例である。このような構成によれば、集光光学素子10,20による集光率(取り出される光のパワー密度)を倍増することができる。
(a) and (b), in the condensing
(c)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の構成例である。本構成は、光電変換素子50を集光光学素子10,20の集光端に結合し、電気エネルギーとして取り出す構成例を示す。なお、集光された光を熱エネルギーとして取り出す場合には、光熱変換手段として光吸収体付きのヒートパイプ等が例示される。
(c) is a structural example in the case of using the light condensed on the end portion by converting it into electric energy or heat energy. This structure shows the structural example which couple | bonds the
(d)は、端部に集光された光を、さらに集光率を高めて取り出す場合の構成例である。本構成の集光光学素子10,20は、集光側の端部近傍領域でx軸方向寸法及びy軸方向寸法の少なくともいずれかが徐々に小さくなるように(すなわち端部の開口面積が小さくなるように)構成されており、x軸方向に集光された光が、出射端部でさらに集光率が高くなるようになっている。これにより、集光した光を光電変換素子50やヒートパイプに入射させる場合のパワー密度をさらに高めることができる。
(d) is an example of a structure in the case of taking out the light condensed on the end part by further increasing the light collection rate. The condensing
(e)は、集光光学素子10,20の端部に、カプラ95を介して光ファイバー96を接続した構成例を示す。カプラ95は、例えば円錐台形状の光学部材で作製される。これにより、集光光学素子10,20で集光された光を集光パネル8から離れた適宜な場所で利用することができる。例えば、光電変換素子50を当該光電変換素子の過熱を防止する冷却装置を備えたユニットボックス内に設置し、このユニットボックス内に光ファイバー96を介して集光光学素子10,20により集光された光を伝送するように構成することができる。同様に、集光光学素子10,20により集光された光を光ファイバー96で伝送し、集光装置と地理的に離間した野菜工場等で利用することも可能である。
(E) shows a configuration example in which an
なお、実施形態では、説明簡明化のため、集光光学素子を帯板状ないし角棒状に構成した形態を例示し、また集光光学素子の作用を説明するため、A部材及びB部材に具体的な物質の屈折率を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子の形状は、円柱状や線状であっても良く、A部材及びB部材の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。また、本発明の要旨を逸脱しない範囲で、A部材及びB部材以外の他の部材を含むものであっても良い。 In the embodiment, for the purpose of simplifying the explanation, the condensing optical element is exemplified as a band plate shape or a square bar shape, and in order to explain the operation of the condensing optical element, the A member and the B member are specifically described. Although the structural example which applied the refractive index of the typical substance was demonstrated, this invention is not limited to these structural forms and structural examples. For example, the shape of the condensing optical element may be a columnar shape or a linear shape, and the material of the A member and the B member can be configured by appropriately selecting various resin materials, inorganic materials, and the like. Further, other members than the A member and the B member may be included without departing from the gist of the present invention.
以上説明したように、集光光学素子10,20は、長辺/短辺の縦横比が大きな集光パネル8の出射面から出射する幅広の出射光を、長辺が伸びる方向に集光する。従って、本発明によれば、x軸方向に幅が広い出射面から出射された光の集光効率を高めることができ、太陽光等の光エネルギーを効率的に利用可能な新たな集光手段を提供することができる。集光装置60,70,80及び光発電装置1〜4は、このような集光光学素子を用いて構成されており、簡明、小型かつ低コストの構成で太陽光等の光エネルギーを効率的に利用可能な集光装置、光発電装置を提供することができる。
As described above, the condensing
1〜4 光発電装置
8 集光パネル(8a 出射面)
10(101,102) 第1構成形態の集光光学素子(10a 入射面)
11 A部材
12 B部材
20 第2構成形態の集光光学素子
21 A部材
22 B部材
30 A部材の屈折率特性
40(41〜44) B部材の屈折率特性
50 光電変換素子
60 第2構成例の集光装置
65 偏光面回転素子
70 第3構成例の集光装置
72 反射鏡
75 偏光面回転素子
80 第4構成例の集光装置
85 偏光面回転素子
91 ミラー(反射手段)
92 プリズム状の折り返し部(反射手段)
95 カプラ
96 光ファイバー
1-4
10 (10 1 , 10 2 ) Condensing optical element of the first configuration form (10a incident surface)
11 A member 12
92 Prism-shaped folding part (reflection means)
95
Claims (18)
光透過性を有するA部材と、前記A部材中に前記入射光の入射方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成され、
前記B部材の粒子径dは、前記入射光の波長をλとしたときに円相当径が0.1λ〜10λであり、
前記入射方向に延びる軸をy軸、前記第1方向に延びる軸をx軸、前記第2方向に延びる軸をz軸、前記x軸及び前記y軸を含む面をxy面、前記y軸及び前記z軸を含む面をzy面とし、
前記A部材における、電界振幅が前記xy面内で前記y軸方向に進む光の屈折率をnaxy、電界振幅が前記zy面内で前記y軸方向に進む光の屈折率をnazy、電界振幅が前記xy面内で前記x軸方向に進む光の屈折率をnayxとし、
前記B部材における、電界振幅が前記xy面内で前記y軸方向に進む光の屈折率をnbxy、電界振幅が前記zy面内で前記y軸方向に進む光の屈折率をnbzy、電界振幅が前記xy面内で前記x軸方向に進む光の屈折率をnbyxとしたときに、
naxyとnbxy、及びnazyとnbzyとが異なり、nayxとnbyxとが実質的に等しいことを特徴とする集光光学素子。 Condensing light emitted from an exit surface having a large aspect ratio of long side / short side received by an entrance surface provided opposite to the exit surface and collecting the incident light in a direction in which the long side extends. An optical element,
A member having light transmittance, and a particulate B member having light transmittance dispersed in the incident direction of the incident light and the first direction and the second direction orthogonal to each other in the A member. Configured with
The particle diameter d of the B member has an equivalent circle diameter of 0.1λ to 10λ when the wavelength of the incident light is λ.
The axis extending in the incident direction is the y axis, the axis extending in the first direction is the x axis, the axis extending in the second direction is the z axis, the plane including the x axis and the y axis is the xy plane , the y axis, A plane including the z-axis is a zy plane ;
In the member A, the refractive index of light that travels in the y-axis direction in the xy plane is expressed as “naxy”, the refractive index of light that travels in the y-axis direction in the zy plane is nazy, and the electric field amplitude is The refractive index of light traveling in the x-axis direction in the xy plane is defined as nayx,
In the member B, the electric field amplitude is nbxy as the refractive index of light traveling in the y-axis direction in the xy plane, the electric field amplitude is nbzy as the refractive index of light traveling in the y-axis direction in the zy plane, and the electric field amplitude is When the refractive index of light traveling in the x-axis direction in the xy plane is nbyx,
naxy and Nbxy, and is different from the nazy and Nbzy, converging optical element and nayx and nbyx is equal to or substantially equal.
前記B部材における、電界振幅が前記zy面内で前記z軸方向に進む光の屈折率をnbyzとしたときに、When the refractive index of light traveling in the z-axis direction in the zy plane in the B member is nbyz,
nayzとnbyzとが実質的に等しいことを特徴とする請求項1に記載の集光光学素子。 The condensing optical element according to claim 1, wherein nayz and nbyz are substantially equal.
前記出射面と前記入射面との間に設けられ、前記出射光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。 A condensing device provided with a polarization plane rotating element that is provided between the exit surface and the entrance surface and rotates the polarization plane of the exit light by 90 degrees.
前記集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、 A reflecting mirror provided on the back side of the condensing optical element along the back side;
前記集光光学素子と前記反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。 A condensing device comprising: a polarization plane rotating element that is provided between the condensing optical element and the reflecting mirror and rotates a polarization plane of light that has been transmitted twice by 90 degrees.
請求項1〜12のいずれかに記載の第2の集光光学素子とを備え、 The second condensing optical element according to any one of claims 1 to 12,
前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記x軸方向が前記第1の集光光学素子の前記x軸方向と平行になるように配設されるとともに、前記第1の集光光学素子と前記第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする集光装置。 The second condensing optical element has a back surface side of the first condensing optical element, and the x-axis direction of the second condensing optical element is the x-axis direction of the first condensing optical element. And a polarization plane rotation element that rotates the plane of polarization of the transmitted light by 90 degrees between the first light collection optical element and the second light collection optical element. A condensing device provided.
前記集光光学素子により前記x軸方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。 A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the x-axis direction by the condensing optical element.
前記集光光学素子により前記x軸方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。 A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the x-axis direction by the condensing optical element.
前記第1の集光光学素子における前記x軸方向に導かれた光を光電変換する光電変換素子と、 A photoelectric conversion element that photoelectrically converts light guided in the x-axis direction in the first condensing optical element;
前記第2の集光光学素子における前記x軸方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。 A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided in the x-axis direction in the second condensing optical element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010248856A JP5679286B2 (en) | 2010-11-05 | 2010-11-05 | Condensing optical element, condensing device, and photovoltaic device |
CN201180030080.XA CN102947731B (en) | 2010-06-18 | 2011-06-20 | Converging optical element, beam condensing unit, light generating device and photothermal conversion device |
EP11795858.7A EP2584383A4 (en) | 2010-06-18 | 2011-06-20 | Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device |
PCT/JP2011/064092 WO2011158956A1 (en) | 2010-06-18 | 2011-06-20 | Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device |
US13/718,510 US9196778B2 (en) | 2010-06-18 | 2012-12-18 | Light concentrating optical element, light concentrating device, photovoltaic power generation device and photothermal conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010248856A JP5679286B2 (en) | 2010-11-05 | 2010-11-05 | Condensing optical element, condensing device, and photovoltaic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012103276A JP2012103276A (en) | 2012-05-31 |
JP5679286B2 true JP5679286B2 (en) | 2015-03-04 |
Family
ID=46393800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010248856A Active JP5679286B2 (en) | 2010-06-18 | 2010-11-05 | Condensing optical element, condensing device, and photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5679286B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9671529B2 (en) * | 2012-08-01 | 2017-06-06 | Ferro Corporation | Light influencing nano layer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3422475B2 (en) * | 1999-06-14 | 2003-06-30 | 日東電工株式会社 | Polarized light guide plate and polarized plane light source |
JP3891266B2 (en) * | 2000-12-28 | 2007-03-14 | 富士電機ホールディングス株式会社 | Light guide plate and liquid crystal display device provided with the light guide plate |
JP4639337B2 (en) * | 2006-02-17 | 2011-02-23 | 国立大学法人長岡技術科学大学 | Solar cell and solar collector |
JP2009169019A (en) * | 2008-01-15 | 2009-07-30 | Nitto Denko Corp | Optical sheet and image display device |
-
2010
- 2010-11-05 JP JP2010248856A patent/JP5679286B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012103276A (en) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9196778B2 (en) | Light concentrating optical element, light concentrating device, photovoltaic power generation device and photothermal conversion device | |
Yu et al. | Nanophotonic light-trapping theory for solar cells | |
US10473852B2 (en) | Light guide apparatus and fabrication method thereof | |
US20100126567A1 (en) | Surface plasmon energy conversion device | |
KR102239427B1 (en) | Optical Diode Comprising Components Made from Metamaterials | |
WO2012025019A1 (en) | Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly | |
Peters et al. | The effect of photonic structures on the light guiding efficiency of fluorescent concentrators | |
WO2021132615A1 (en) | Solar cell device and optical device | |
US8415554B2 (en) | Metamaterial integrated solar concentrator | |
JP5679283B2 (en) | Condensing optical element, condensing device, photovoltaic device and photothermal conversion device | |
JP5679286B2 (en) | Condensing optical element, condensing device, and photovoltaic device | |
KR102204500B1 (en) | Flat Concentrating Photovoltaic Apparatus for Vehicle | |
Hong et al. | Light trapping in hybrid nanopyramid and nanohole structure silicon solar cell beyond the Lambertian limit | |
JP5765608B2 (en) | Condensing optical element, condensing device, and photovoltaic device | |
WO2012026572A1 (en) | Light-condensing device, light power generation device, and photothermal conversion device | |
JP5630690B2 (en) | Condensing optical element, condensing device, and photovoltaic device | |
Wang et al. | Photon management with index-near-zero materials | |
Zhu et al. | Solar energy broadband capturing by metamaterial absorber based on titanium metal | |
Picardi et al. | Nonreciprocity in transmission mode with planar structures for arbitrarily polarized light | |
WO2024172760A1 (en) | Light concentrator and method of forming the same | |
Kavehvash et al. | An energy efficient refractive structure for energy concentration on PV cells | |
Karp et al. | Radial coupling method for orthogonal concentration within planar micro-optic solar collectors | |
WO2012067082A1 (en) | Condenser device, photovoltaic power generator, and light-heat converter | |
JP2012064895A (en) | Light condensation device, optical power generation device and photothermal conversion device | |
Katardjiev | Evaluation of a fractal concentrator of light at 100X |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5679286 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |